
Computational Individuation

F. T. Doherty

Draft

Abstract

I show that the indeterminacy problem for computational structuralists is in fact far more
problematic than even the harshest critic of structuralismhas realised; it is not a bulletwhich
can be bitten by structuralists as previously thought. Roughly, this is because the struc-
tural indeterminacy of logic-gates such as AND/OR is caused by the structural identity of
the binary computational digits 0/1 themselves. I provide a proof that pure computational
structuralism is untenable because structural indeterminacy entails absurd consequences –
namely, that there is only one binary computational digit. I conclude that accounting for
individuation is a more important desiderata for a theory of computation than even that of
triviality.

§1. When it comes to providing a satisfactory account of physical computation, three main
adequacy conditions emerge from the literature. The first and most classic is the avoid-

ance of triviality, i.e., ensuring one’s theory does not entail that every physical system imple-
ments every computation.1 The second adequacy condition is that computational explanation
is medium independent, i.e., that an account of physical computation can capture the fact that
computational systems are built with distinct materials and specifications.2 The third most re-
cently discussed condition – primarily aimed against computational structuralism – is to ensure
the determinacy of a truth-functional implementation, i.e., that an account can tell us when a
physical system is computing AND rather than OR, for example.3

I will argue that failing to meet this third adequacy condition is far more problematic that
has been recognised since it can lead to a reductio ad absurdum. This demonstrates that ensur-
ing the determinacy of a truth-functional implementation is the most important of the three
adequacy conditions, since failing to meet the others – though objectionable – does not en-
tail absurdity: as with pancomputionalists who deny the first (e.g. Scheutz [2001]; and certain
structuralists who reject the second (e.g. Dewhurst [2018b]).

First I’ll show that for ‘pure’ computational structuralism a reductio can be established by
means of a simplemathematical proof (§3-4). I’ll then survey the prospects formodern ‘hybrid’
structuralism and conclude that the threat of the reductio will, at best, force them to foreclose
on satisfying the second adequacy condition, medium independence (§5-8).

1Note this is the weakest version of the triviality condition, it can be strengthened to ensure an adequate theory
should not entail that every physical system implements some computation, i.e., the theory should place suitable
restraints on the simple mapping account. See Putnam [1988]; Searle [1992]; Sprevak [2018]; Schweizer [2019].

2This can be understood as a species of Putnam’s multiple realisability thesis in the philosophy of mind; a single
computational state can be realised by many distinct physical systems (provided the system’s physical properties
can support the state-transition rules, etc.). See Putnam [1967]; Haimovici [2013]; Shapiro [2000].

3The threat of indeterminacy will similarly arise for all structural dual pairs. See Shagrir [2012]; Sprevak [2010];
Bishop [2009]; Dewhurst [2018b]; Lee [2018].

1



§2. The third adequacy condition, which I shall call the determinacy condition, was first raised
by Shagrir [2001, 2012] as an objection to structuralist accounts of physical computation –

which broadly hold that physical computation is determined by the causal/functional/mechanistic
structure of the physical system.4 The simplest version of the objection, due to Sprevak, is given
by the ‘duality’ of basic Boolean gates. That is to say, the fact that pairs of two-input, single-
output gates such as AND/OR are invertible, such that, appeal to their structural features alone
cannot hope to determine whether a given physical component is an AND-gate or an OR-gate.
For an illustration of this, Sprevak [2010, 296] gives a simple gate which is sensitive to voltage
ranges 0–5v (0) or >5v (1):

input 1 input 2 output
1 1 1
1 0 0
0 1 0
0 0 0

Table 1: Gate 1

Blatantly, Gate 1 could be used to compute either AND or OR because the assignment of
the voltage ranges 0/1 to truth values T/F must be arbitrary if our only recourse is to the structural
features of the physical system. This indeterminacy is not restricted to AND/OR; it generalises
to any structural dual pair of two-input single-output Boolean gates across different physical
mediums (e.g. electric, hydraulic). For example, NAND/NOR, XOR/XNOR.5

Note that on the main alternative view to structuralism; semanticism, this indeterminacy
will be resolved by the additional representational content which semanticists characteristically
appeal to beyond themerely structural features of the physical system.6 ThusGate 1 can be said
to implement AND if the voltage range 0 represents F. For their part, most structuralists – such
as Dewhurst [2018b]; CoelhoMollo [2018]; Miłkowski and Fresco [2019] – opt to bite the bullet
with respect to this indeterminacy and accept the underdetermination of physical computation
as a fact of structuralist life. After all, they can still maintain there is some mapping between
the formal and the physical. Even a surjective non-injective mapping would guarantee that
Gate 1 is mapped to a logical function, just not uniquely. Thus the structuralist need not forgo
the possibility of computational analysis when conceding to the semanticist that certain truth-
functions are systemically underdetermined by structuralist resources.

In what follows I will argue this indeterminacy is caused by amore fundamental indetermi-
nacy and is far more problematic than either semanticists or structuralists have realised, since it
commits structuralists to fatally absurd – and notmerely indeterministic – results. In particular,
the equivocation of the two digits of binary computational 0/1.

§3. Beforewe go further Imust draw a distinction between ‘pure’ structuralist accountswhich
appeal only to structural features of the causal system, such as can be found in: Chalmers

[1996, 2011]; Dewhurst [2018a]; Schweizer [2019] and ‘hybrid’ structuralist accounts which
rely on an appeal to non-structural features such as mechanisms or telofunctions, such as Pic-
cinini [2015]; CoelhoMollo [2018]; Miłkowski [2013]&Fresco [2015]. This distinction is impor-
tant because although the reductio can be raised against both species of structuralist accounts
they require separate treatment, for reasons that will become clear. Until §6 my focus will be
exclusively on pure structuralist accounts for which the reductio’s application is the most vivid
and can even be proven formally.

4See Egan [1992, 1994, 1995]; Chalmers [1996]; Miłkowski [2013]; Fresco [2015] & Piccinini [2007, 2015].
5See Shagrir [2001]; Miłkowski and Fresco [2019, 2].
6Classic semantic accounts include: Dennett [1971]; Fodor [1998]; Searle [1992]; Crane [2003]; Bishop [2009];

Shagrir [2001, 2012, 2018]; Sprevak [2010]; Rescorla [2014].

2



My first conjecture is that if there is indeterminacy with respect to the computational truth-
functions, then there is an (intractable) indeterminacy with respect to the computational digits
0/1. By digit I will mean the most fundamental computational individuals given by a physical
system under a formal interpretation. Most views do not take all of the properties of physi-
cal states (such as voltage levels) to be computationally relevant. The relevant properties of the
physical states are conventionally represented by Boolean values (as in table 1). For pure struc-
turalists the computationally relevant properties are exhausted by the causal structure of the
physical states within the context of the system, i.e., the digit’s structural profiles. In this way
I distinguish physical states (e.g. 0V/5V) from computational digits (0/1), from truth-values
(T/F). Thus digits are not abstract states but slight abstractions from the physical states, or,
to repeat, representations/types of the computationally relevant features of the physical states
implementing the computation.

To set out the indeterminacy between the computational digits, we return to Gate 1 (Table
1). Consider the following, if the digits 0/1 in Gate 1 were determinate then the truth-functions
could not be indeterminate, e.g., if we assigned 0 to F, Gate 1 would implement AND. Contra-
positively, if there is indeterminacy in the truth-functions then there cannot be determinacy in
the digits. Therefore, the indeterminacy of AND/OR issues from the underlying indetermi-
nacy of 0/1. And indeed it seems no structural features of the voltage ranges 0–5v/>5v could
determine which range should be assigned T/F. This will be the case for all problematically
structurally invertible duals because the key point here is that computational truth-functions
are truth-functional, i.e., they are exhaustively defined by their truth tables such that their values
are a function of their digit input.

Structuralists who accept the indeterminacy of the truth-functions will be unmoved by the
indeterminacy of the digits andwonderwhy they cannot simply adopt amany-one relationship
between the logical values and physical states. My next conjecture answers why not: if the
computational digits are indeterminate, then they are structurally identical. If the structural
profiles of the computational digits are identical, rather than merely invertible this commits the
structuralist to the claim there is only one computational digit – an absurdity so great it must
forfeit the very legitimacy of the account, undermining, as it does, any coherent conception of
binary computation.

Structural identity is standardly established by demonstrating that some element or func-
tion can be permuted while the structure of the domain, or system, is preserved. As such,
one only need reflect on the fact that the voltage ranges the computational digits represent can
be swapped without change to the computational system to see that the digits are structurally
identical and hence, for a pure structuralist, identical. This point, which threatens to draw from
pure structuralism a consequence absurd enough to refute it, admits of a proof, given in §4.

§4. To prove structural identity mathematically we standardly define a structure preserving
permutation, i.e., a non-trivial automorphism. For physical computational this amounts

to defining a gate in a given computational system which (determinately) computes a truth-
function which permutes the digits, i.e., an implementation of a non-trivial automorphism.
Given a simple computational system with three logical connectives (NOT, AND, OR) we can
define the automorphism with the following gate, where 1/0 represents the structurally rele-
vant feature of some specifiable discrete physical states:

input output
1 0
0 1

Table 2: Gate 2

3



Let S be the two-membered set of physical states including discrete voltage ranges (say S =
{0–5v, >5v}). The function f implemented by Gate 2 can then be defined:

f : S → S given by f(x) = ¬x, x ∈ S.

Let us now prove that f is a non-trivial automorphism: Since f is not the identity function
f(x) = x, f is non-trivial. A function is an automorphism iff it is an isomorphism which maps
the set S to itself. A function is an isomorphism iff it is a bijection and a homomorphism. A
function is a bijection iff it maps to every element in the set uniquely, i.e. it is surjective and
injective. It is straightforward to prove that f is a bijection by the fact that the function simply
swaps 1 and 0 by replacing each digit (surjective) with the other (injective). However, f is less
obviously homomorphic. A function is a homomorphism if it is a structure preserving mapping,
i.e., a function h such that for the sets G, H under operations (G,∼) and (H, ∗), x, y ∈ G, h :
G→ H : h(x ∼ y) = h(x) ∗ h(y). Since we are establishing an automorphism we need to show
for (S,∼) and (S, ∗), x, y ∈ S,

f : S → S : f(x ∼ y) = f(x) ∗ f(y)

for each of the operations defined on S, i.e. NOT, AND, OR. It is straightforward to show that
f(¬x) = ¬f(x). Substituting f(x) = ¬x gives: ¬(¬x) = ¬f(x) / ¬¬x = ¬(¬x). Next, although
f(x ∧ y) 6= f(x) ∧ f(y), we can prove: f(x ∧ y) = f(x) ∨ f(y) / f(x ∨ y) = f(x) ∧ f(y)

by De Morgan’s Laws since substituting f(x) = ¬x gives

¬(x ∧ y) = ¬x ∨ ¬y

¬(x ∨ y) = ¬x ∧ ¬y.

Revealingly, this latter part of the proof – i.e., that the operations OR/ANDpreserve each others
structure across an automorphic mapping – is a mathematical way of formulating the original
indeterminacy objection as raised by Sprevak.

Since f is a bijection and homomorphism, f is an isomorphism. Since f is an isomorphism
which maps S to itself and not merely the identity mapping, the function implemented by
Gate 2 is a non-trivial automorphism. The significance of this result is that it serves as a formal
articulation and proof of the conjecture that the computational digits 0/1 have an identical
structural profile. It works by precisfying sameness of structure mathematically using some
of the basic tools of group theory. Since we chose the set S arbitrarily, the result applies to all
binary sets of physical states implementing computational digits, without loss of generality.

It is no coincidence that a growing number of opponents ofmathematical structuralism have
defined automorphisms in precisely this way to establish precisely the same thing about var-
ious mathematical objects – namely – that they are problematically structurally identical. Such
proofs issue from disparate fields of mathematics ranging from complex analysis; group the-
ory; and even Euclidean space.7 Some of the most problematic cases define automorphisms
between two unlabelled nodes in a graph.8 However, the classical example is given by defining
an automorphism between a+bi and a−bi on the complex field; i.e., the function f : (C)→ (C)
given by f(x) = −x, ∀x ∈ C.9

This presents us with an interesting corollary: the indeterminacy problem for pure com-
putational structuralism is, at its root, caused by the very same indiscernibility problem well
known to mathematical structuralists. Both species of structuralism must answer to fact that
the provable structural identity of their individuals forces them to count those individuals as
identical, which is false.

7See: Burgess [1999]; Shapiro [2008, 2012]; MacBride [2006]; Button [2006]; and Ladyman [2005].
8Leitgeb and Ladyman [2008, 390–93]
9Computational structuralism and mathematical structuralism are very different theories pertaining to very dif-

ferently behaved phenomenon – in no sense do I equate them. What I am equating is the common objection they
face; i.e., that the definition of an automorphism threatens to reduce to absurdity any view which takes the identity
criteria of certain individuals in their respective domains to be exhausted by their structural profiles.

4



§5. A system over which one can define an automorphism is known as a non-rigid system. A
natural thought is that pure structuralists can somehow defend themselves by pointing

out that since AND/OR preserve each other’s operations, we can block the definition of an au-
tomorphism by adding only one of them to a computational system. It is true this would make
the system rigid. Even a system with both AND and OR can be made rigid by extending it to
include any connective whose structural inverse is not in the extension, for example, NAND
without NOR. A structuralist may protest that the system S I have proven to be non-rigid is
conveniently gerrymandered, containing – as it does – structural inverses which make it pos-
sible to define a structure preserving function. The dice was loaded, so to speak, in the initial
selection of a fully dual computational system.

The undeniable existence of rigid systems, however, can do nothing to detract frommyargu-
ment. For, it is not in the structuralists power to demand that only rigid systems are computational
systemswithout a non ad hoc argument to this effect. Pending such an argument, the existence of
even one non-rigid system (e.g. S) is sufficient to reduce structuralism to absurdity in virtue of
their commitment to the identity of the digits of that particular non-rigid system. In this sense,
the shoe is very much on the other foot: whereas I do not require all computational systems to
be non-rigid to make my objection, pure structuralists must require all computational systems
to be rigid if they are to avoid my objection.

§6. To take stock, the reductio and its proof establish our two conjectures: that if pure struc-
turalists accept the indeterminacy of structural duals, then they are committed to the in-

determinacy of computational digits; and if they are committed to the indeterminacy of com-
putational duals they are provably committed to their identity, which is nonsense. Therefore,
it has been shown that pure structuralists cannot continue to bite the bullet when it comes to
the determinacy condition.

Not only does this provide a new kind of objection to pure computational structuralism,
but I take it to shed an important light on the determinacy condition itself. In fact, I think it
merits a complete reformulation of the condition. For, it is now clear that in order to provide
a determinate account of computing logic gates, we must be able to individuate the funda-
mental computational digits, reducing the determinacy problem to the problem of providing an
adequate account of computational individuation, not merely for truth-functions.

As we have seen, extra-structural resources are required to distinguish the digits contra
pure structuralism. This brings us to hybrid resources such as Piccinini’s proper functions
or Coelho Mollo’s telofunctions. Hybrid accounts are, for the most part, safe from the formal
proof of the reductio because they import formally intractable appeals to suchmechanisms and
functions. Vitally, however, it is incumbent on hybrid accounts to precisify the concepts they
use to characterise computation – if not formally – to the extent that they can provide a criteria
of individuation for computational digits. Otherwise, such accounts will be both immune to
reductio proof and impotent to satisfy the individuation condition simply because the concepts
they import are too vague. Therefore, hybrid accounts are still vulnerable to the reductio if
their particular account of individuation is not able to distinguish digits, though this can only
be established on a case-by-case basis.

Unfortunately, of all the adequacy conditions, comparatively little work has been done on
structuralist accounts of individuation. The arguments I have provided for the importance of
this condition and the disastrous consequences of neglecting it will hopefully put this to right,
but the burden of proof here lies squarely with contemporary structuralists. Two laudable ex-
ceptions include Dewhurst [2018b] and Coelho Mollo [2018], so I want to finish by survey-
ing the prospects of their respective attempts to provide an account of individuation by non-
structural non-semantic means.

5



§7. Dewhurst’s key insight is his distinction between two criteria of individuation operating
on computational systems: algorithmic equivalence and computational equivalence. The for-

mer is grounded in logical equivalence and the latter in physical equivalence such that the same
logical function can be computed by distinct computational systems [Dewhurst, 2018b, 110].10

On Dewhurst’s account the indeterminacy will remain because it maybe be indeterminate
which logical function a computational system is computing. However, with the use of his dis-
tinction of he will avoid the reductio as follows; the definition of the automorphism establishes
neither the algorithmic equivalence of the digits nor their computational equivalence. This is be-
cause the structurally identical digits 0/1 will be kept algorithmically distinct in virtue of their
algorithmic equivalence being grounded in the distinctness of the truth-values T/F. Similarly,
the digits will be kept computationally distinct in virtue of their computational equivalence be-
ing grounded in two distinct physical states, e.g., 0–5v/>5v. In this way, Dewhurst’s fix meets
our new condition by tendering out the individuation of the computational digits to the identity
criteria of the physical states.

Unfortunately, Dewhurst’s proposal globally undergenerates computational equivalences.11
The very same mechanism which protects his account against my objection – i.e., grounding
computational identities in physical identities – also entails that, in practise, no two systems
are computationally identical due to their inevitable minuscule physical variations.12 It is thus
unclear that Dewhurst is providing an account of computational equivalence, given that we can-
not capture cases where we want to say that the same computation is being carried out by dif-
ferent physical systems. Therefore, Dewhurst’s account satisfies the individuation condition at
the cost of another important adequacy condition; themedium independence of computational
explanation.

§8. Coelho Mollo [2018] and Miłkowski and Fresco [2019] have recently argued Dewhurst’s
fix can be itself fixed to recapture medium independence on a mechanistic account. This

is important because so far it looks like structuralists will be systemically unable to fulfil all the
desiderata of an adequate account of computation.

CoelhoMollo followsDewhurst in drawing a distinction between algorithmic equivalence and
computational equivalence.13 However, he grounds the latter, not in physical structure, but in
“computationally-relevant” functional structure of a physical system. The functional structure,
he says, is determined by a “teleological function”, e.g., the capacity to “perform computa-
tions” [Coelho Mollo, 2018, 3495]. This means physically distinct systems can exhibit the same
functional structures if they share a target capacity. Hence, the medium independence of com-
putation is restored on this account.

To take his example, two devices, D1 and D2, with slightly different voltage ranges (0-4/5-
10V for D1 and 0-5/6-10V for D2) will have the same input-output tables “when put in terms
of equivalence classes” [2018, 3494], as below:

10Dewhurst means to supplement Piccinini’s mechanistic account of computation. Piccinini’s own solution, that
a device may implement a multiplicity of computations but that his systemic functions along with the wider system
will determine which function is relevant, will not avoid the reductio. Piccinini accepts the indeterminacy which
leaves him vulnerable to the indeterminacy of the digits and their identification even before we consider he cannot
account for fully dual systems.As we saw in §5 even one counterexample is enough and Piccinini cannot account
for fully dual systems interpretable in multiple ways. Also note that he accepts the indeterminacy which leaves him
vulnerable to the indeterminacy of the digits and their identification, even if in most cases the context of the system
will determine which is relevant.

11As pointed out by Miłkowski and Fresco [2019], but first pointed out by Dewhurst himself [2018b, 110].
12This also means that, even within a system, there may be no equivalences between processors which perform

the very same algorithmic operation.
13My argument will apply equally to Miłkowski and Fresco’s account.

6



input 1 input 2 output
EC1 EC1 EC1
EC1 EC2 EC1
EC2 EC1 EC1
EC2 EC2 EC2

Table 3: Input–output table of D1 and D2’s functional EC’s

Although D1 and D2 are physically distinct, the computationally-relevant functional pro-
files of their input-output equivalence classes (EC’s) are identical and hence they count as com-
putationally equivalent [2018, 3496]. Coelho Mollo thus provides a precisification of ‘function’
tractable enough to provide a criterion of individuation for logic-gates. However, when this
criterion is applied to the individuation of the digits – which are, in this case, EC’s – it fails to
avoid the reductio.

According to Coelho Mollo the identity of the EC’s is defined by the uniform sensitivity of
the processing device with respect to its inputs and outputs [2018, 3494]. D1/D2 are sensitive
to physically distinct voltage ranges but the functional profiles of those voltage ranges are the
same, as in Table 3. This is what justifies him in equivocating EC’s defined relative to physi-
cally distinct devices, like EC1 of D1 (0-4V) and EC1 of D2 (0-5V). This means of satisfying the
individuation condition will be vulnerable to the reductio if the functional profiles of distinct
EC’s can be shown to be identical. We cannot mathematically prove this because an automor-
phism would establish the digit’s structural algorithmic identity, not their functional-structural
computational identity. Instead we must show that the criterion of individuation used in Table
3 overgenerates to falsely equivocate EC1 and EC2.

Consider a fully dual system containing D1. Let EC1= {0−4V }, EC2= {5−10V } and letR
be the equivalence relation by which CoelhoMollo equates EC1 of D1 and EC1 of D2 (Table 3).
R holds between EC1/EC2 iff EC1/EC2 have identical functional profiles. To show EC1/EC2
have identical functional profiles, observe that EC1/EC2 can be permuted without change to
their functional profiles in D1 (table 4).

input 1 input 2 output
EC2 EC2 EC2
EC2 EC1 EC2
EC1 EC2 EC2
EC1 EC1 EC1

Table 4: Input–output table of D1’s functional EC’s after permutation

The functional profiles of EC1/EC2 are identical. Therefore R holds between EC1/EC2,
which is false. Note that we are not merely permuting the names of the EC’s (which are of
course arbitrary) but the equivalence classes themselves, i.e., the digits implemented by 0-4/5-10V.
Permuting EC1/EC2 can have no effect on the uniform sensitivity of the processing device. The EC’s
are functionally as well as structurally symmetric because any functional differences between
EC1/EC2 “play no role in their general computational capacities” [2018, 3496]. Hence the func-
tional profiles of EC1/EC2 are identical and since computational individuation is wholly deter-
mined by the computationally-relevant functional profiles of input-output equivalence classes,
EC1 = EC2. To the pure structuralist we said that since the digits have, by mathematical proof,
identical structural profiles and since appeal to structure is the only means they have of indi-
viduating them, they are forced to identify the binary digits, which is absurd. To CoelhoMollo,
we say that since the EC’s have, by a simply permutation argument, identical functional pro-
files and since functional appeal is the only means he has of individuating them, he is forced
to identify the binary equivalence classes, which is absurd.

7



To avoid this absurdity, it seems the hybrid structuralist is forced to retreat to Dewhurst’s
original proposal of grounding computational individuation in the physical states. This would
individuate EC1/EC2 since they are implemented by distinct voltage ranges. As we saw, this is
to give up on the medium independence condition which threatens the account with explana-
tory inadequacy. However, since explanatory inadequacy is a far better problem that absurdity,
Coelho Mollo’s improvement on Dewhurst fares far worst than Dewhurst’s original proposal.
This is no accident. As Coelho Mollo himself points out, there is an inherent tension between
the individuation condition and the medium independence condition. The digits – which are
in the binary case just symmetric images – must be fine-grained enough not to be identified but
course-grained enough to encompass computation across different mediums. This tension will
temper all hybrid accounts and should make us pessimistic at best that structuralists can meet
all the criteria of an adequate account of physical computation.

§9. We have established several interesting results: that if computational functions are inde-
terminate, computational digits are indeterminate; that the indeterminacy of the compu-

tational digits implies their structural identity; that the latter result admits of mathematical
proof; that this indiscernibility problem threatens structuralism with reduction to absurdity;
that computational and mathematical structuralists face the same objection; that pure compu-
tational structuralism is untenable; that for the best available hybrid account the permutation
of the EC’s preserves their functional profiles hence showing the EQ’s to be identical; and that
the burden of proof lies with other hybrid structuralists to urgently precisify their appeals to
mechanistic/teleofunctional resources far enough to assess whether their means of individu-
ating computational digits are also vulnerable to such a reductio. Most of all I hope to have
demonstrated that providing an account of computational individuation presents us with an
adequacy condition more deserving of attention than that even of triviality.

8



References

Bishop, J.M. (2009). ACognitive Computation Fallacy? Cognition, Computations, and Panpsy-
chism. Cognitive Computation (1), 221–33.

Burgess, J. (1999). Review of Shapiro (1997). Notre Dame Journal of Formal Logic 40, 283–91.

Button, T. (2006). Realistic Structuralism’s Identity Crisis: A Hybrid Solution. Analysis 66,
216–222.

Chalmers, D. J. (1996). Does a Rock Implement Every Finite-State Automaton. Synthese (108),
309–333.

Chalmers, D. J. (2011). A Computational Foundation for the Study of Cognition. Journal of
Cognitive Science 12(4), 323–357.

Coelho Mollo, D. (2018). Functional Individuation, Mechanistic Implementation: The Proper
Way of Seeing the Mechanistic View of Concrete Computation. Synthese (195), 3477–3497.

Coelho Mollo, D. (2019). Are There Teleological Functions to Compute? Philosophy of Sci-
ence 86(3), 431–452.

Crane, T. (2003). The mechanical mind. 2nd ed. London: Routledge.

Dennett, D. C. (1971). Intentional Systems. The Journal of Philosophy (68), 87–106.

Dewhurst, J. (2018a). Computing mechanisms without proper functions. Minds and Ma-
chines 28(3), 569–588.

Dewhurst, J. (2018b). Individuation Without Representation. The British Journal for the Philoso-
phy of Science 69(1), 103–16.

Egan, F. (1992). Individualism, Computation, and Perceptual Content. Mind (101), 443–459.

Egan, F. (1994). Individualism and Vision Theory. Analysis (54), 258–264.

Egan, F. (1995). Computation and Content. Philosophical Review (104), 181–204.

Fodor, J. A. (1998). Concepts. Oxford: Blackwell.

Fresco, N. (2015). Mechanistic Computational Individuation. Erkenntnis (80), 1031–53.

Haimovici, S. (2013). A Problem for the Mechanistic Account of Computation. Journal of Cog-
nitive Science 14, 151–181.

Ladyman, J. (2005). Mathematical Structuralism and the Identity of Indiscernibles. Analy-
sis 65(3), 218–21.

Lee, J. (2018). Mechanisms,Wide Functions, andContent: Towards aComputational Pluralism.
British Journal for the Philosophy of Science.

Leitgeb, H. and J. Ladyman (2008). Criteria of Identity and Structuralist Ontology. Philosophia
Mathematica 16(3), 388–396.

MacBride, F. (2006). What Constitutes theNumerical Diversity ofMathematical Objects? Anal-
ysis 66(1), 63–69.

Miłkowski, M. (2013). Explaining the Computational Mind. Cambridge, MA: MIT Press.

9



Miłkowski, M. and N. Fresco (2019). Mechanistic Computational Individuation without Biting
the Bullet. The British Journal for the Philosophy of Science (0), 1–8.

Piccinini, G. (2007). Computing Mechanisms. Philosophy of Science 4(74), 501–526.

Piccinini, G. (2008). Computation without Representation. Philosophical Studies 137(74), 205–
241.

Piccinini, G. (2015). Physical Computation: AMechanistic Account. New York: Oxford University
Press.

Putnam, H. (1967). Psychological Predicates. In W. H. Capitan and D. D. Merrill (Eds.), Art,
Mind, and Religion, pp. 37–48. Pittsburgh: University of Pittsburgh Press.

Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.

Rescorla, M. (2014). The Causal Relevance of Content to Computation. Philosophy and Phe-
nomenological Research (88), 173–208.

Scheutz, M. (2001). Causal versus Computational Complexity. Minds and Machines 11(4), 534–
566.

Schweizer, P. (2019). Triviality Arguments Reconsidered. Minds and Machines 29, 287–308.

Searle, J. R. (1992). The Rediscovery of the Mind. Cambridge, MA: MIT Press.

Shagrir, O. (2001). Content, Computation and Externalism. Mind 110(438), 369–400.

Shagrir, O. (2012). Computation, Implementation, Cognition. Minds andMachines (22), 137–48.

Shagrir, O. (2018). In Defence of the Semantic View of Computation. Synthese.

Shapiro, L. A. (2000). Multiple realizations. The Journal of Philosophy 12(97), 635–654.

Shapiro, S. (2008). Identity, Indiscernibility, and ante rem Structuralism: The Tale of i and −i.
Philosophia Mathematica 16(3), 285–309.

Shapiro, S. (2012). An ‘i’ for an i: Singular Terms, Uniqueness, andReference. Review of Symbolic
Logic 5(3), 380–415.

Sprevak, M. (2010). Computation, Individuation, and the Received View on Representation.
Studies in History and Philosophy of Science Part A 41(3), 260–70.

Sprevak, M. (2018). Triviality Arguments About Computational Implementation. In M. Spre-
vak andM. Colombo (Eds.), Routledge Handbook of the ComputationalMind, pp. 175–191. Rout-
ledge: London.

10


