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Abstract

When you are indifferent between two options, it’s rationally permissible
to take either. One way to decide between two such options is to flip a
fair coin, taking one option if it lands heads and the other if it lands tails.
Is it rationally permissible to employ such a tie-breaking procedure? Intu-
itively, yes. However, if you are genuinely risk-averse—in particular, if you
adhere to Risk-Weighted Expected Utility Theory (Buchak, 2013) and have
a strictly convex risk-function—the answer will often be no: the REU of
deciding by coin-flip will be lower than the REU of choosing one of the op-
tions outright (so long as at least one of the options is a nondegenerate gam-
ble). This turns out to be a significant worry for Risk-Weighted Expected
Utility Theory. I argue that it adds real bite to established worries about di-
achronic consistency afflicting views, like Risk-Weighted Expected Utility
Theory, that violate Independence. And that, while these worries might be
surmountable, surmounting them comes at a price.

1 Introduction

Instrumental rationality is about taking the best means to one’s ends. According
to the orthodox position—expected utility theory (EUT)—taking the best means
to one’s ends involves two sorts of evaluations: first, there are facts about what
one’s ends are, and the extent to which one values them (information that’s en-
coded in an agent’s utility function); second, there are the facts about how effec-
tive one’s meansmight be at realizing one’s ends (information that’s encoded in an
agent’s credence function). The value of an option is its expected utility: roughly,
the weighted average of how good or bad its potential outcome might be, where
the weights correspond to the agent’s credences in those outcomes resulting from
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its performance. According to the orthodoxy, rational agents maximize expected
utility.¹

Some philosophers—notably, Lara Buchak (e.g. Buchak, 2013)—argue that
EUT is unduly restrictive: it doesn’t appropriately take into account the agent’s
attitude toward risk. EUT, effectively, treats agents as if they were risk-neutral in
virtue of the fact that it only takes local features of a gamble into account. But, ar-
gues Buchak, it’s rationally permissible for agents to care about a gamble’s global
features—the way its potential outcomes are situated in the space of possibilities
(e.g., its minimum, itsmaximum, its variance, its spread, etc.)—in a way that EUT
cannot properly accommodate.

In response, Buchak defends risk-weighted expected utility theory (REUT),
which generalizes EUT by adding a third parameter into the evaluation of a gam-
ble’s subjective value. In addition to a utility function (representing how the agent
values her ends) and a probability function (representing what the agent thinks
might happen), REUT represents an agent’s attitude toward risk by attributing
to her a risk function, r. Unlike EUT, which weights the value of each potential
outcome by that outcome’s probability, REUT weights the value of each potential
outcome by a function r of the probability of getting something at least as valu-
able. If r is convex, the value of outcomes above the minimum will contribute less
to the overall value of the gamble. Agents with convex risk functions are, using
Buchak’s terminology, risk-avoidant: the value they will assign to a risky gamble
will be lower than its expected value.

Although Buchak may well be right that EUT is inadequate, I will argue that
REUT has some rather unpalatable consequences of its own. First, it’s not obvi-
ous that it correctly represents what it is to be risk-averse: REUT will, I argue,
sometimes undervalue gambles that it shouldn’t. Second, and relatedly, REUT
has some counterintuitive consequences regarding tie-breaking. When you’re in-
different between two options, it’s rationally permissible to take either. One way
to decide between two indifferent options is to flip a fair coin, taking the one if it
lands heads and the other if it lands tails. Offhand, it seems rationally permissi-
ble to employ such a tie-breaking procedure. However, if you are risk-avoidant,

¹ Presented this way, EUT sounds like a view about how one ought to rank their options given facts
about one’s utilities and credences. And some might balk at characterizing the view—at least
presented in this way—as orthodoxy given that many decision theorists understand EUT to be
primarily a view about what it is for one’s ordinal preferences (over both outcomes and gambles) to
be consistent and thus understand facts about one’s “utilities” to be derivable from—or perhaps just
shorthand for—facts about one’s ordinal preferences over gambles. There are various positions
regarding the relationship between one’s preferences and one’s utilities (see Dreier (1996) for a
helpful discussion), but nothing I argue for here turns on which is correct. I’ve presented EUT
as I have in order to highlight the ways in which it differs from REUT. Both views can be re-
interpreted as views about what consistency constraints to place on one’s ordinal preferences, but
doing so complicates the presentation in unhelpful ways. Thanks to an anonymous reviewer for
pressing this point.
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there will be cases in which the value of deciding by coin-flip will be lower than
the value of choosing one of the options outright. And so, in such cases, REUT
says that it is not permissible to employ a tie-breaking procedure.

In the next section, I will present REUTusing a couple of examples. In section
3, I will argue that these examples present a challenge for Buchak’s claim that
REUT faithfully captures what it is to be risk-averse. In section 4, I will argue
that REUT offers counterintuitive guidance in cases of tie-breaking.

2 Risk-weighted Expected UtilityTheory
The best way to understand REUT is to contrast it with EUT. Let’s look at what
EUT says in more detail.

First, some terminology. I’ll use italicized lowercase letters (like f, g, and h,
etc.) to refer to gambles, which are functions from events to outcomes.² Events
(denotedwith subscripted capitalized ‘E’s) are descriptions of how theworldmight
be, which are detailed enough to capture everything the agent might care about.
They are understood to be mutually exclusive and jointly exhaustive. They are
the objects of an agent’s credences, which is a probability function (written as
‘Cr’) representing the agent’s subjective uncertainty about how the world is. Out-
comes (denoted by subscripted lowercase ‘x’s) are descriptions of all the things
the agent cares about in a particular situation that could obtain. They are the
inputs of an agent’s utility function (written as ‘u’), which represent the agent’s
non-instrumental preferences. I will, for the sake of readability, use ‘value’ and
‘utility’ interchangeably.

Let h = {x1,E1; x2,E2; . . . xn,En} be a gamble that yields, for each 1 ≤ i ≤ n,
an outcome xi if event Ei obtains, and is such that u(x1) ≤ u(x2) ≤ · · · ≤ u(xn).

Expected Utility

EU(h) =
n∑
i=1

Cr(Ei) · u(xi)

= u(x1) +

(
n∑

i=2

Cr(Ei)

)
· (u(x2)− u(x1)) + · · ·+ Cr(En) · (u(xn)− u(xn−1))

EUT says that you ought to maximize expected utility. The expected utility of a
gamble is the probability-weighted average of the values of its potential outcomes.

² Following Buchak (2013), I present the views using Savage’s framework (Savage, 1954). I don’t
intend formyobjections to dependon anything peculiar to this framework, however, and I assume
it only for presentational convenience.
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Here’s one way to calculate the expected utility of a gamble. First, weight the value
of each of its potential outcomes by the probability of that outcome occurring.
Then, take the sum of those probability-weighted values.

Here’s a different, equally as accurate, way of calculating a gamble’s expected
utility. First, order the gamble’s potential outcomes from worst (least preferred)
to best (most preferred). The expected utility of the gamble is at least as high as the
value of its worst potential outcome. So, start with the value of the worst poten-
tial outcome. Then add to this minimum value the difference between it and the
next highest potential value (i.e, the second-worst value), weighted by the prob-
ability of getting at least that amount. Then add to that the difference between
the second-worst value and the next highest potential value (i.e., the third-worst
value), weighted by the probability of getting something at least as valuable as it.
And so on and so forth, until we reach the best potential outcome.

When there are only two outcomes, it’s easy to see that these two methods
coincide. Let x1 and x2 be the worst and best outcomes, respectively. And let p be
the probability of x2 occurring. The expected utility of such a gamble is: p ·u(x2)+

(1 − p) · u(x1). This expression can be rewritten as: u(x1) + p · (u(x2)− u(x1)),
which is theminimum value of the gamble plus the amount youmight gain above
that minimum weighted by the probability of realizing that gain.

The risk-weighted expected utility of a gamble can be calculated in an analo-
gous way—with one crucial difference: instead of weighting the potential gains by
their probabilities, REUTweights these potential gains by a function of their prob-
abilities. So, to use the example from the previous paragraph, the risk-weighted
expected utility of the gamble would be: u(x1)+ r (p) · (u(x2)− u(x1)). If r is con-
vex, r(p) < p for all non-extremal values. And so, the amount you might gain
above the minimum will contribute less to the overall instrumental value of the
gamble than it does on EUT.

Here’s what the view says in general. Again, let h = {x1,E1; x2,E2; . . . xn,En}
be a gamble that yields, for each 1 ≤ i ≤ n, an outcome xi if event Ei obtains, and
is such that u(x1) ≤ u(x2) ≤ · · · ≤ u(xn).³

³ It might be worried that, because REUT deviates from the traditional view by jettisoning the
Independence Axiom (or, in Savage’s framework, the Sure-Thing Principle), the agent will fail to
have a cardinal utility function, u, that’s well-defined. Independence (and the like) is what ensures
that the value an outcome contributes to the value of a gamble is separable: it doesn’t depend on
which other outcomes might result from from the gamble. Separability plays an important role in
the representation of an agent’s preferences with a cardinal utility function because, very roughly,
it allows us to identify an outcome’s utility with how much the agent would risk to secure it. And
so it might be worried that without separability we aren’t warranted in representing the agent’s
non-instrumental preferences with a cardinal utility function.

This is a legitimate worry, but one that can be assuaged. Buchak (2013, ch. 3) (drawing on the
work of Köbberling and Wakker, 2003; Machina and Schmeidler, 1992) proves a representation
theorem for REUT, which shows that, if one’s preferences satisfy a number of constraints (ones
collectively weaker than those underlying the representation theorems for EUT), there will be a
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Risk-Weighted Expected Utility

REU(h) = u(x1) + r

(
n∑

i=2

Cr(Ei)

)
· (u(x2)− u(x1)) + · · ·+ r (Cr(En)) · (u(xn)− u(xn−1))

= u(x1) +
n∑

j=2

r

 n∑
i=j

Cr(Ei)

 ·
(
u(xj)− u(xj−1)

)
REUT is a generalization of EUT: the two views coincide when r(p) = p, for all
probabilities p. The risk function is subject to the following constraints: for all
p, 0 ≤ r(p) ≤ 1; r(0) = 0 and r(1) = 1; r is non-decreasing. For the sake
of concreteness, let’s look at a specific convex risk function: r(p) = p2. (This is
Buchak’s go-to example of a risk function characterizing risk-aversion.)

0.0 0.5 1.0
p

r(p)

p2

The risk function “measures how an agent structures the potential realization of
some of his aims,” (Buchak, 2013, p. 54). In order to better see how agents with
the risk function r(p) = p2 structure the potential realization of their aims, let’s
look at a couple of examples.

You’re at the racetrack placing bets on the horses. You are consideringwhether
to bet for Easy Street (f), which pays out 4 utils if Easy Street wins (E) and 2 utils
if she doesn’t; or to bet ‘gainst Easy Street (g), which pays out 3 utils if Easy Street
doesn’t win (¬E) and 1 util if she does. Let’s suppose that your credence in E is
.25, your credence in ¬E is .75, and your risk function is r(p) = p2.

unique credence function, a unique risk function, and a unique (up to positive affine transfor-
mations) utility function such that one can be represented as maximizing risk-weighted expected
utility relative to those functions. The result illustrates that full separability isn’t necessary for an
agent’s utility function to be well-defined; instead, REUT only requires separability to hold among
comonotonic gambles (i.e., ones that rank all events the same way), so that the contribution that
an outcome xi makes to the value of a gamble doesn’t depend on which other outcomes might
result unless those outcomes affect the relative ranking xi occupies in the gamble. (Thanks to an
anonymous reviewer for raising this worry.)
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E (1/4) ¬E (3/4)
f 4 2
g 1 3

First, note that both gambles have the same expected utility: 21/2.

EU(f) = 2 +
1
4
· (4 − 2)

= 2 +
1
4
· 2 = 21/2

EU(g) = 1 +
3
4
· (3 − 1)

= 1 +
3
4
· 2 = 21/2

Interestingly, when r(p) = p2, both gambles also have the same risk-weighted
expected utility: 21/8. Because r(p) = p2 ≤ p (representing someone who is
risk-avoidant), as we should expect, these gambles have lower REU than EU.

REU(f) = 2 +
(

1
4

)2

· (4 − 2)

= 2 +
1
16

· 2 = 21/8 = 2.125

REU(g) = 1 +
(

3
4

)2

· (3 − 1)

= 1 +
9
16

· 2 = 21/8 = 2.125

If you take gamble f, you are guaranteed to get something at least as valuable as 2
utils, and you have a 25% chance of getting something 2 utils of value more valu-
able. If you’re risk-avoidant, the potential improvements above the guaranteed
minimum are “discounted”, contributing less to the overall instrumental value of
the gamble than it does relative to EUT (see Figure 1). For EUT, the 25% chance of
improving above the minimum adds .5 units of value; for REUT, it only adds .125
units of value. (In Figure 1, each square represents .125 utils of value. The lighter
gray represents the gamble’s EU and the darker gray represents its REU. For EUT,
the chance of improvement above the minimum is worth four .125-util-squares,
which totals .5 utils. For REUT, however, it’s only worth two half .125-util-squares,
which totals .125 utils.)
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Figure 1: The risk-weighted expected utility of gamble f (2.125).
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Figure 2: The risk-weighted expected utility of gamble g (2.125).

If you take gamble g, however, you are only guaranteed to get something at
least as valuable as 1 util, but you have a larger chance—75% rather than 25%—
of getting something 2 utils of value more valuable than that minimum. Again,
if you’re risk-avoidant, this potential improvement contributes less to the overall
instrumental value of the gamble than it does relative to EUT (see Figure 2). For
EUT, the 75% chance of improving above theminimum adds 1.5 units of value; for
REUT, it only adds 1.125 units of value. (As Figure 2 shows, for EUT, the chance of
improvement above the minimum is worth twelve .125-util-squares, totaling 1.5
utils. And, for REUT, that same chance of improvement is only worth eight full
.125-util-squares and two half .125-util squares, totaling 1.125 utils.)

Although gamble f has a higher minimum than gamble g, gamble g affords a
greater chance of improvement beyond that minimum. Somewhat surprisingly,
according to both EUT and REUT, these two features balance out, making the
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two gambles equally valuable. Both views agree that you should be indifferent
between betting for and betting ‘gainst Easy Street. While the two views agree
that gamble g and gamble f have the same value, they disagree about what that
value is. EUT values the two gambles at 2.5, while REUT values them at 2.125.

Suppose that Eunice is an expected utility maximizer and her sister, Reu, is
a risk-weighted expected utility maximizer (with the risk function r(p) = p2).
Suppose they share the same values and beliefs. (Also, for the sake of notational
simplicity, let’s suppose that they valuemoney linearly: u($x) = x.) Eunicewill be
indifferent between gamble f, gamble g, and $2.50. Reu, on the other hand, will be
indifferent between gamble f, gamble g, and $2.125. Let’s say that if S is indifferent
between some gamble and $x, $x is that gamble’s sure-thing cash equivalent for S.
$2.50 is gamble f’s and g’s sure-thing cash equivalent for Eunice; $2.125 is gamble
f’s and g’s sure-thing cash equivalent for Reu. Eunice would bewilling to paymore
to buy one of the two gambles than Reu would.

Suppose, instead of paying the bookie for one of the gambles, Eunice and Reu
are offered the opportunity to select one for free. What, respectively, should they
do? They are both indifferent between the two, so it’s permissible for them to
choose either. In the face of indifference, the sisters typically decide by flipping a
fair-coin: if the coin lands heads, take gamble f; if it lands tails, take gamble g. Call
this a tie-breaking procedure. Is it rationally permissible to employ a tie-breaking
procedure in this case? It depends on the sister. For Eunice, it is. Doing so has
the same expected utility as selecting either of the two gambles outright. For Reu,
on the other hand, it is not. The 50/50 “mixture” of the two gambles has lower
risk-weighted expected utility than selecting one of the gambles outright.

In the next section, we’ll take a closer look at why the 50/50 “mixture” of the
two gambles—let’s call it f ⊕1/2 g—has lower risk-weighted expected utility than
either of the two gambles themselves. I’ll argue that this is a counterintuitive con-
sequence of REUT; one that raises questions about the view’s success in accurately
characterizing what it is to be risk-averse.

3 Mean, Variance, and Risk-aversion

Reu, like Eunice, is indifferent between gamble f and gamble g. Unlike Eunice,
it’s not permissible for Reu to employ a 50/50 tie-breaking procedure—like, using
the flip of a fair-coin—to make her selection.

Decide by Coin Flip
Heads Tails
E ¬E E ¬E

f⊕1/2 g 4 2 1 3
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Employing such a procedure, which corresponds to a 50/50 “mixture” between the
two gambles, has lower risk-weighted expected utility than either of the gambles
themselves. This can be demonstrated by doing the calculation:

REU
(
f⊕1/2 g

)
=1 +

(7
8

)2
· (2 − 1) +

(4
8

)2
· (3 − 2) +

( 1
8

)2
· (4 − 3)

=1 +
49
64

+
16
64

+
1
64

= 21/32 = 2.03125

Thismight seem, however, to be somewhat counterintuitive. Because f and g have
the same expected value (or, mean), their probabilistic mixture does as well. If
their mixture is less valuable, then, it might seem like this must be because it is
more risky than either of the gambles considered alone. But how might “mixing”
together the two gambles introduce more risk? If anything, it seems like mixing
two gambles together should create something less risky!⁴

It might be helpful, then, in the service of evaluating REUT, to saymore about
what risk is and how it can be measured. One common way of measuring risk is
with variance. In general, the variance of a distribution measures the extent to
which its values deviate from the average. The variance of a gamble, in particular,
measures how far away from its expected value the value of its potential outcomes
are. There is a sense, then, in which the higher the variance, the riskier the gam-
ble.⁵

⁴ Consider, for example, the oft-touted financial advice to diversify one’s portfolio. The wis-
dom behind the advice is that diversifying—i.e., spreading one’s money among various different
investments—reduces risk. And, indeed, because equally dividing a fixed amount of wealth be-
tween independently and identically distributed investments results in a portfolio with the same
expected monetary return but a lower variance than those of the individual investments it con-
tains, in many cases, diversifying reduces risk (Markowitz, 1952, 1959). (See Samuelson (1967) for
a different and more general account of how, and under what circumstances, diversification is
beneficial to risk-averse agents.) Because investments (in virtue of paying out different sums of
money in different scenarios) are gambles, diversification might seem akin to taking their “mix-
ture”. One important difference, however, is that in classic cases of diversification, by purchasing
some percentage of each investment, you might benefit from positive returns from all. The prob-
abilistic mixture of some gambles, on the other hand, affords you no such possibility—unlike a
diverse portfolio, you aren’t taking some percentage of each gamble, but instead making it such
that there’s some chance of getting the entirety of one.

⁵ Nearly all textbooks in finance, risk management, and the like include discussions of variance
(and its close cousin, standard deviation) as a measure of risk. This is undoubtedly due in part
to the popularity of Modern Portfolio Theory (Markowitz, 1952, 1959), which employs a “mean-
variance framework” for evaluating investment portfolios. On this approach, an investment is
evaluated along two dimensions: its expected return and its degree of risk (which is captured by
its variance). Given this framework, Markowitz derives the set of optimal investment portfolios
for different levels of risk.

Markowitz’s approach has been robustly criticized. Some of the criticism is to its use of vari-
ance as the measure of a gamble’s riskiness; some to the assumption that the value of a gamble
can be neatly factored into its mean and its riskiness—however it’s measured (see, for example,



10 Risk-Taking and Tie-Breaking
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Figure 3: The risk-weighted expected utility of a fifty-fifty lottery between gamble f and
gamble g (2.03125).

Let h = {x1,E1; x2,E2; . . . xn,En} be a gamble, and let EU(h) be its expected
value. Then, the variance of h is:

Var(h) =
n∑
i=1

Cr (Ei) · (u(xi)− EU(h))2

Roughly, the variance of a gamble is the probabilistically-weighted average of the
“distance” between each of its potential outcomes and its expected value.

Is f ⊕1/2 g riskier—in the sense of having a higher variance—than gamble f
and gamble g? The answer is: no. In addition to having the same mean, the
three also have the same variance: 0.75.⁶ If the risk of a gamble is captured by its
variance, the three are all equally risky. What, then, justifies Reu in assigning a
lower instrumental value to the one than to the other two?

A gamble’s variance, however, is not the only way of measuring its riskiness.
And, indeed, there are good reasons to worry that it is, at best, an imperfect mea-
sure of risk.⁷ Instead, we could compare the riskiness of two gambles by checking
to see if the one is a mean-preserving spread of the other. In fact, this is how
Buchak defines what it is to be risk-averse. She says,

[A]n agent is generally risk-averse inmoney (or any quantitative good)

Oddie andMilne, 1991, p. 58-9). In particular, Borch (1969) argued that, because two-dimensional
mean-variance indifference curves do not exist (they cannot represent the preferences of a rational
agent), the mean-variance framework is logically incoherent. For a fascinating critical discussion
of these issues, see Johnstone and Lindley (2013).

⁶ For the calculations and further discussion, see appendix A.
⁷ See, for example, Rothschild and Stiglitz (1970, p. 241-2), and further discussion in appendix A.
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just in case of any two gambles f and g such that g can be obtained
from f by amean-preserving spread, the agentweakly prefers f; that is,
of any two gambles with the same average monetary value, the agent
weakly prefers the one that is less spread out, if such a judgment can
be made, (Buchak, 2013, p. 21-2).

Roughly, B is a mean-preserving spread of A if, they have the same mean, and B
can be obtained from A by adding “noise”. Impressionistically, mean-preserving
spreads shift value away from the center of a distribution out toward its tails.⁸ If
one gamble is a mean-preserving spread of another, it’s riskier.

However, the relation “is a mean-preserving spread of ” induces only a partial
ordering on gambles. Obviously, if two gambles have different means, neither
can be a mean-preserving spread of the other. Yet, intuitively, one might be more
risky than the other. But even among gambles with the same mean, it might be
that neither is a mean-preserving spread of the other. Our three gambles—f, g,
and f ⊕1/2 g—are a case in point. If B is a mean-preserving spread of A, B will
have a higher variance thanA. But our three gambles all have the same mean and
the same variance, so none are mean-preserving spreads of the other. The lower
instrumental value that Reu assigns to f⊕1/2 g cannot be because it is riskier in the
sense of being a mean-preserving spread of f or g.

What other features could justify assigning a lower instrumental value to f⊕1/2

g than to f and to g? One possibly relevant difference is that, whereas f and g
both have two potential outcomes with positive probability, f⊕1/2 g has four. But,
clearly, having more potential outcomes doesn’t in itself make a gamble riskier
than another.⁹ Another possibly relevant difference regards each gamble’s range:
the difference in value between its best and worst outcomes. Both f and g have a
range of 2, while f ⊕1/2 g’s range is 3. But, again, having a wider range doesn’t in
itself make one gamble riskier than another.¹⁰

⁸ Mean-preserving spreadswere first explored inRothschild and Stiglitz (1970), whosemajor contri-
bution involved proving that the following three properties are equivalent: (1) EU (X) ⪰ EU (Y),
for all concave utility-functions; (2) Y has more weight in its tails than X; (3) The outcomes of Y
are distributed just like X’s plus noise.

⁹ Having more potential outcomes is consistent with being less risky. Consider, for example, the
following gambles with the same mean. The first has three potential outcomes: a 99% chance of
$50, a 0.5% chance of $49.99, and a 0.5% chance of $50.01. The other has only two: a 50% chance
of $0 and a 50% chance of $100. The former is clearly less risky than the latter despite havingmore
potential outcomes.

¹⁰ Given its insensitivity to the gambles’ probabilities, range is at best a very limited indicator of
riskiness. A gamble with a probability distribution concentrated around its mean might, in virtue
of having some very low probability outliers, have a wider range—but be less risky—than onewith
a probability distribution concentrated in its tails.
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4 Tie-breaking

Let’s return to our story of Eunice and Reu. They are both indifferent between
gamble f (betting for Easy Street) and gamble g (betting ‘gainst Easy Street), and
must decide which to select. For Eunice, it’s permissible to employ a tie-breaking
procedure, like flipping a fair coin, in making her selection. For Reu, however, it
is not.

Because Reu is indifferent between f and g, her reasons for taking the one
are perfectly in balance with her reasons for taking the other. She has no ratio-
nal basis for choosing the one over the other. This is—to borrow a distinction
from Ullmann-Margalit and Morgenbesser (1977)—a situation that calls for pick-
ing rather than choosing. When we choose one option over another, we do so on
the basis of the reasons we have that favor the one over the other. One way to
think about picking, on the other hand, is that “when we are in a genuine picking
situation we are in a sense transformed into a chance device that functions at ran-
dom and effects arbitrary selections [...]” (Ullmann-Margalit and Morgenbesser,
1977, p. 773).

Suppose that Reu knows that, later, she will be in a picking situation: she’ll
have to select between options that she is (and knows she will continue to be)
indifferent between. How should Reu value ending up in such a situation?

More concretely, let’s suppose that Reu is in a hallway facing two doors. She
knows that behind Door #1, there is a table on which sits three prizes: a ticket
for gamble f, a ticket for gamble g, and $f (= $g), where $f ($g) is gamble f’s (g’s)
sure-thing cash equivalent. If she opens Door #1, she gets to pick one of those
three prizes. On the other hand, she knows that behind Door #2, there is a table
with one prize on it: $21/16. If she opens Door #2, that’s what she’ll get.

It’s (mostly) clear what Eunice would do in this situation: she would, first,
open Door #1 and then select one of the three options (perhaps with the aid of
some tie-breaking procedure). Even though Eunice might not know which prize
she would select were she to openDoor #1, doing so has greater value for her than
opening Door #2. This is because, no matter how Eunice thinks about going on
to pick between the three prizes if she opens Door #1, the value she assigns to
opening Door #1—its expected value—is equal to the value she assigns to each of
the three prizes behind it. And that value is greater than that of the $21/16 she is
sure to get by opening Door #2 instead.

Opening Door #1 is a sensible thing for Eunice to do because—while opting
for Door #1 doesn’t guarantee a better outcome than opting for Door #2—she
prefers each of the prizes behind Door #1 to the one behind Door #2. This is an
example of Eunice obeying the following principle:

Menu Superiority
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If you know that φing will present you with amenu of options such that, for
each of the items on that menu, you prefer it to all the items on the menu
you’d be presented with if you didn’t φ, then you rationally ought to prefer
φing.

For example, when choosing between two restaurants, if you know that you prefer
each of the dishes on offer at the first to all the dishes on offer at the second, it
would be irrational to prefer going to the second. Eunice obeys this principle.

What about her sister, Reu? Does she obey the principle? Which does she
prefer: Door #1 or Door #2? As I’ll demonstrate in this section, it’s not straight-
forward. Let’s explore some of the possible, conflicting ways of approaching the
question.

(1) Pick One of the Three Outright. Here is one way of thinking about Reu’s
situation. Because Reu is indifferent between the three options behind Door #1,
for all she knows, she might pick any of the three. She has no reason to think she’s
more likely to pick any one of them than the others, so she should assign equal
credence to each of the three possibilities.¹¹

Gamble Between f and g and $f

Pick f Pick g Pick $f
E ¬E E ¬E E ¬E

⊕1/3 (f, g, $f) 4 2 1 3 21/8 21/8

¹¹The reasoning here appears to appeal to something like the Principle of Indifference, which is con-
troversial (see, for example, Hajek, 2003, p. 187-188). I don’t think the argument turns on the truth
of this principle in its full generality, however. For my purposes, it’s enough that it be reasonable
for someone like Reu to assign credences to her future actions in the way described above. It
needn’t be the case that she must—on the pains of irrationality—do so, only that this is an epis-
temically reasonable reaction to her situation. Given that Reu has no more reason to think she’ll
pick any of the options over any of the others, it isn’t unreasonable for her to distribute her cre-
dence uniformly.

That said, one could argue that, in a case like this, (i) Reu is radically uncertain about what she
might go on to pick and (ii) the uniquely epistemically rational response to radical uncertainty
is to adopt imprecise probabilities over the various possibilities. (Seidenfeld (1988b, p. 310-311),
discussing a closely related problem, advocates representing “this uncertainty with a (maximal)
convex set of personal probabilities” over the admissible options. However, in Seidenfeld’s exam-
ple, the agent is unsure what she will go on to choose because she lacks a preference between her
future options, not because she is indifferent between them. Steele (2010) discusses this approach
as it applies to cases of indifference as well.) Generalizing a decision theory to handle imprecise
probabilities is no easy task. Exploring whether this is a promising strategy for proponents of
REUT to pursue is beyond the scope of this paper.
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If Reu thinks that, were she to open Door #1, it’s equally likely that she’d select
any one of the three prizes over the others, then opening Door #1 is like a lottery
with a 1/3 chance of paying out gamble f, a 1/3 chance of paying out gamble g, and a
1/3 chance of paying out $f (which, for Reu, is $21/8). Given Reu’s attitude toward
risk, such a lottery is valued at $2. Because opening Door #2 will result in $21/16

for sure, doing so has higher value for her than opening Door #1. So, if this is
the procedure that Reu knows she’ll use when picking between the three prizes
behind Door #1, she should open Door #2 instead.

But, by preferring Door #2 to Door #1, Reu violates Menu Superiority: she
knows, for each of the prizes behindDoor #1, that she prefers it to the prize behind
Door #2 and yet prefers opening Door #2. In fact, given that one of the things she
could do is to openDoor #1 and then select the sure-thing $21/8, there is something
Reu could do that would guarantee a better outcome than the one she knows she’ll
bring about by opening Door #2. And yet—if it’s reasonable for Reu to think that
she will employ such a procedure when selecting between the prizes behind Door
#1—she should nevertheless prefer to open Door #2.

That might seem absurd. But there are other ways we might approach Reu’s
situation—ways which might prove to be less absurd. Let’s take a look.

(2) Use a Sequential Pairwise Procedure. Alternatively, when picking between
the three prizes behind Door #1, Reu might employ a procedure that involves
evaluating the options pair-by-pair. There are two such procedures: the first, let’s
call Process of Elimination; and the second, let’s call the TournamentMethod. Let’s
look at each in turn.

• Process of Elimination. When deciding between three options, {X,Y,Z},
you first decide whether to select one of the options outright or to eliminate
it from the running; if you opt to eliminate it, then you go on to decide
between the remaining two.

Process of Elimination (Z)
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Z

select Z

Y

X

elim
ina

te Z

Because there are three ways to choose one from a set of three, there are
three differentways of employing this procedure: you canfirst decidewhether
to select or eliminateX, choosing betweenY andZ if you opt for elimination
(call this Eliminate X); or you can first decide whether to select or eliminate
Y, choosing between Z and X if you opt for elimination (Eliminate Y); or,
lastly, you can decide whether to select or eliminate Z, choosing between X
or Y if you opt for elimination (Eliminate Z). Let’s call these ways of setting
the agenda. In this case, there are three ways of setting the agenda.

• Tournament Method. When deciding between three options, {X,Y,Z},
you first decide which out of two of them will proceed to the next round;
then, at the next round, the “winner” of the first round faces-off against the
remaining option.

Tournament Method (Z Gets a “Bye”)

Z

Y
Select Y over X

Z

X

Sele
ct X

ove
r Y

Again, because there are three options, there are three different ways of
employing this procedure: one where X gets a bye, one where Y gets a bye,
and one where Z gets a bye. Here, too, there are three ways of setting the
agenda.
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We have two different sequential pairwise procedures and, for each, three ways
of setting the agenda. When picking between the three prizes between Door #1,
does it matter which procedure is used and how the agenda is set? Should it?
If you’re Eunice, it doesn’t matter. No matter which procedure she thinks she
might implement and however she might set the agenda were she to open Door
#1, opening Door #1 will have greater expected value than opening Door #2. Fur-
thermore, because Eunice is indifferent between the three prizes behind Door #1,
none of the procedures—and none of the ways of setting the agenda—make it
any more or less likely that she’ll end up with one of the prizes rather than an-
other. Consequently, she will have no reason to favor adopting any one of these
procedures over any other. Just as she is indifferent between the results of the
procedure—that is, the three prizes on the table—she is likewise indifferent be-
tween the procedures themselves. Eunice obeys the following principle:

Agenda Invariance

When deciding from a menu of options, how you set the agenda should
have no effect on what it’s rational to do.¹²

When choosing an entree from a menu, it shouldn’t matter whether you start at
the top or the bottom of the list. If it would be irrational for you to choose the
Jellied Eel were you to start at the top, it should be irrational for you to choose
the Jellied Eel were you to start from the bottom instead. How the decision is
“framed” shouldn’t matter.¹³

But as I’ll demonstrate, if you’re Reu, it does matter. Reu, unlike her sister,
violates Agenda Invariance: for her, how the agenda is set does effect what it’s ra-
tional for her to do. Let’s consider each of the two sequential pairwise procedures
outlined above, in turn.

• Process of Elimination. As mentioned before, when there are three op-
tions on the menu, there are three ways of setting the agenda. In Reu’s case,
the menu behind Door #1 includes the ticket for gamble f, the ticket for

¹²More precisely: When deciding from a menu M of options, if there is a way of setting the agenda
A(M) such that, were you to set the agenda that way, rational choicewould result in the selection of
X ∈ M, then everyway of setting the agenda is likewise such that, were you to use it, rational choice
would result in the selection of X. What it’s rational for you to do is invariant across agendas.

¹³ In a series of influential papers (Tversky and Kahneman, 1979, 1984, 1986), Daniel Kahneman and
Amos Tversky argue that, for many of us, how a decision-problem is framed does matter. How-
ever, their examples pertain to how particular options are framed—that is, how various features
of an option are described—and not to the way in which those options are considered. Holding
fixed how the options themselves are described, should it matter e.g. the order in which they are
considered? Furthermore, Kahneman and Tversky are engaged in a descriptive project, not a nor-
mative one. They agree that principles, like the one above, are “normatively essential” (Tversky
and Kahneman, 1986).
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gamble g, and $f (= $21/8)—the sure-thing cash equivalent. Thus, there
are a three corresponding ways of setting the agenda when using Process of
Elimination: she can decide whether or not to eliminate f, or she can decide
whether or not to eliminate g, or she can decide whether or not to eliminate
$f. Let’s explore each of these.

Eliminate f. On this way of setting the agenda, Reu first decides
whether to select or to eliminate gamble f. If she opts to eliminate
f, she’s then faced with a choice between gamble g and $21/8—its sure-
thing cash equivalent.

f

select f

$21/8

g

elim
ina

te f

What should Reu do? She knows that if she elects to eliminate f, she
will face a choice between two prizes—gamble g and $21/8—between
which she is indifferent. Because she is indifferent between the two,
for all she knows, she might pick either when facing such a choice.
So, she assigns equal credence to ending up with either of the prizes
in the event that she eliminates f. Thus, eliminate f is like a lottery
with a 1/2 chance of paying out gamble g and a 1/2 chance of paying
out $21/8. Given Reu’s attitude toward risk, such a lottery is valued at
$163/64.¹⁴ Because gamble f—which is obviously what will result were
Reu to elect to select f rather than to eliminate it—is valued at $21/8,
Reu should prefer selecting gamble f over eliminating it.

Result: If this is the way the agenda is set, Reu will select gamble f.

Eliminate g. On this way of setting the agenda, Reu first decides
whether to select or to eliminate gamble g. If she opts to eliminate
g, she’s then faced with a choice between gamble f and $21/8—its sure-
thing cash equivalent.

¹⁴This is not obvious. See appendix B for details of the calculation.
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g

select g

$21/8

f

elim
ina

te g

Because Reu is indifferent between gamble f and $21/8, the option to
eliminate g is like a 50/50 lottery between the two, which is valued at
$25/64 given her attitude toward risk.¹⁵ Because gamble g—which is
what will result were she to select g rather than eliminate it—is valued
at $21/8, Reu should prefer selecting gamble g over eliminating it.
Result: If this is the way the agenda is set, Reu will select gamble g.

Eliminate$21/8. On thisway of setting the agenda, Reudecideswhether
to select or to eliminate $21/8. If she opts to eliminate it, she goes on
to face a choice between the two gambles.

$21/8

select $2 1/8

g

f

elim
ina

te $
21/8

Because Reu is indifferent between the two gambles, choosing be-
tween them is like a 50/50 lottery. As we saw in Section 3, a 50/50
lottery between gamble f and gamble g is valued at $21/32. This is worth
less than the $21/8 Reu will get by selecting it outright. So, that’s what
she should do.
Result: If this is the way the agenda is set, Reu will select the $21/8.

There are three things to note. First, if Reu uses Process of Elimination to
select between the three prizes behind Door #1, her indifference among the
three is recapitulated in her decision about how to set the agenda. Eachway
of setting the agenda results in each one of the prizes. Second, because each

¹⁵ Again, see appendix B for the calculations.
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of the three prizes is the result of one of the ways of setting the agenda, Reu
violates Agenda Invariance. Different ways of setting the agenda result in
different prizes, so the agenda does have an effect on what it’s (seemingly)
rational for Reu to do.

Finally, what should Reu do—open Door #1 or Door #2—if she knows that,
were she to open Door #1, she would use Process of Elimination to select be-
tween the three prizes? The answer depends on how Reu thinks she might
set the agenda were she to open Door #1. Because each way of setting the
agenda will result in a prize that is valued at $21/8, whereas the prize behind
Door #2 is only $21/16, if Reu is certain of how she would set the agenda, she
should prefer Door #1 to Door #2. However, Reu knows that, just as she is
indifferent between the three prizes themselves, she is indifferent between
the three ways of setting the agenda—and, so, just as it’s rational for her to
be unsure of which of the three prizes she’d select, she shouldn’t be sure of
how she’d set the agenda. If, for instance, she thinks she is equally likely to
set the agenda in any of the three ways, then (echoing the argument from
above regarding the prizes themselves) opening Door #1 is like a lottery
with an equal chance of paying out any of the three prizes, which (as we
saw above) she values at $2—and, thus, she should prefer Door #2. But it
isn’t obvious that she should think she is equally likely to set the agenda
in any of the three ways—for, just as there are various ways she might de-
cide between the three prizes themselves, there are various ways she might
decide between the three ways of setting the agenda. And, as we shall see,
there are ways of making this meta-decision (i.e., the decision about how
to set the agenda for deciding which of the prizes to select) that favor some
ways of setting the agenda over others.

• Tournament Method. With this method, as well, there are three different
ways of setting the agenda. Reu can decide to allow gamble f to get a bye
into the next round, or to allow gamble g to get a bye into the next round,
or to allow the $21/8 sure-thing cash equivalent to get a bye into the next
round. Let’s look at each.

f gets a bye. On this way of setting the agenda, Reu first decides
whether or not to select gamble g over $21/8. Then, whichever is se-
lected is put in contention with gamble f. And Reu decides which of
those two to take home.
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f

$21/8
Select $2 1/8 over g

f

g

Sele
ct g

ove
r $2

1/8

Reu knows that if she selects gamble g over $21/8, she’ll then face a
choice between gamble g and gamble f. Because she is indifferent be-
tween the two, for all she knows, she might pick either one. So, select-
ing gamble g over $21/8 is like a 50/50 lottery between gamble g and
gamble f. Given her attitude toward risk, Reu values such a lottery at
$21/32. On the other hand, if she selects $21/8 over gamble g, she’ll then
face a choice between $21/8 and gamble f. For similar reasons, she can
think of this choice as akin to a 50/50 lottery between the two. Given
her attitude toward risk, she values it at $25/64.¹⁶ The latter is better
than the former, so Reu should opt to select $21/8 over gamble g.
Result: If this is the way the agenda is set, Reu will take home either
$21/8 or gamble f. And this way of setting the agenda is worth $25/64

to her.
g gets a bye. On this way of setting the agenda, Reu decides whether
or not to select gamble f over $21/8. Whichever wins goes on to face
gamble g in the final round.

g

$21/8
Select $2 1/8 over f

g

f

Sele
ct f

ove
r $2

1/8

For reasons analogous to those in the previous example, we can repre-
sent Reu’s choice as between two 50/50 lotteries—one between gam-

¹⁶ See appendix B for details.
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ble f and gamble g, and the other between $21/8 and gamble g. The for-
mer, as we saw, is valued at $21/32, while the latter is valued at $163/64.¹⁷
The former is better than the latter, so Reu should opt to select gamble
f over $21/8.
Result: If this is the way the agenda is set, Reu will take home either
gamble f or gamble g. And this way of setting the agenda is worth
$21/32 to her.

$21/8 gets a bye. Lastly, on this way of setting the agenda, Reu first
decides whether or not to select gamble f over g. The winner faces off
against $21/8—their sure-thing cash equivalent.

$21/8

gSelect g over f

$21/8

f

Sele
ct f

ove
r g

Like above, we can compare the 50/50 lottery between gamble f and
$21/8 with the 50/50 lottery between gamble g and $21/8. The former
is valued at $25/64, while the latter is valued at $163/64. The former is
better than the latter, so Reu should opt to select gamble f over g.
Result: If this is the way the agenda is set, Reu will take home either
gamble f or $21/8. And this way of setting the agenda is worth $25/64

to her.

Again, there are three things to note. First, unlike with Process of Elimi-
nation, Reu values these different ways of setting the agenda differently—
she disprefers the agenda in which gamble g gets a bye to the other two.
She values picking from the menu {f, $21/8} over picking from the menu
{f, g}. Setting the agenda in a way that she prefers, though, effectively re-
moves gamble g from the running. (This is odd because, given Reu’s indif-
ference between gamble g and the other prizes, it seems like it very much
is still in the running.) Second, we have yet another example of Reu vio-
lating Agenda Invariance. Not only might different agendas result in dif-
ferent prizes, this is a case in which Reu has a clear preference for some of

¹⁷ See appendix B for details.
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the ways of setting the agenda over others. And, lastly, if Reu knew that,
were she to open Door #1, she’d select between the prizes using the Tourna-
ment Method, then, because she prospectively values deciding in this way
at $25/64, she’d prefer to open Door #1 over Door #2.

ShouldReu openDoor #1 orDoor #2? It seems like it depends onhow she believes
she might go about deciding between the prizes between Door #1. If she thinks
she’ll implement theTournamentMethod, then she should openDoor #1. (Which
prize she’ll end up with will depend on how she sets the agenda.) If, on the other
hand, she thinks she’ll just pick one of three outright, then she should open Door
#2 instead. It’s less clear what she should do if she thinks she’ll implement Process
of Elimination because that procedure just recapitulates the first-order decision at
the level of agendas—and so which door she should open depends on which pro-
cedure she thinks she might use to select which of the ways to set the agenda. If
she thinks she’ll just pick one of three agendas at random, then she should open
Door #2; however, if she thinks she’ll use the Tournament Method to select be-
tween the agendas, she should ultimately open Door #1.¹⁸ How she thinks her
future decision will be structured—a decision only concerning prizes that she is
indifferent between—makes a (some might say, “implausible”) difference to how
she ought to act.

5 Lessons, Objections, and Replies
Because the value of picking from the menu {f, g, $21/8} depends on the proce-
dure that’s used, it lacks a stable value. But there should be a univocal answer
about whether rationality requires Reu to pick from that menu (which is what’s
behind Door #1) or accept the $21/16 (which is what’s behind Door #2). And if no
stable value can be assigned to picking from themenu, there will not be a univocal
answer. Therefore, we should reject REUT.¹⁹

That’s, very roughly, the argument I’ve raised against REUT.²⁰ Is it right? Let’s
look at some objections and replies.

¹⁸What if she thinks she’ll use Process of Elimination to determine which of the ways to set the
agenda? This, like before, recapitulates the previous decision: there are three different ways to set
the agenda formaking that decision, each one resulting in a different one of the ways of setting the
agenda for the first-order decision, and each of which is equally valuable to her. A regress looms.

¹⁹ Note, however, that there is no analogous problem for EUT. Although Eunice might consider
using the same procedures as her sister (e.g., picking one of the three prizes at random, using
Process of Elimination, using the Tournament Method), each will have the same value for her as
each of the prizes themselves. So, opening Door #1, for Eunice, has a stable value: it’s the same
value she assigns to each of the pries she knows awaits if she does.

²⁰The argument presented above shares certain similarities with the one Seidenfeld (1988a) develops
against decision theories that jettison the Independence axiom. REUT, in virtue of violating Inde-
pendence, is subject to Seidenfeld’s objection. The argument is developed and further refined in
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Response 1: It’s not true that picking from themenu {f, g, $21/8} lacks a stable value.
That doesn’t follow from the fact that its value depends on the procedure that will
be (or that Reu believes will be) used.

1.1 Thevalue of picking from themenu is given, externally, by how the decision-
tree looks. Different decision-trees correspond to different problems. So
there’s nothing objectionable about violating Agenda Invariance because
there’s nothing objectionable about treating different decision problems dif-
ferently.

Response to 1.1: Thedecision-tree ismerely a representation—one that, while
subject to external constraints, isn’t fully determined by your external cir-
cumstances. We aren’t imagining that Reu is literally facing external choice-
points—like actual forks in an actual road. Rather, the different decision-
trees are meant to represent different ways she might structure her internal
deliberation among the options.

1.2 Just as Reu might be uncertain about which of the items will be picked
from the menu were she faced with having to select an item from it (call
this a first-order decision), Reu should also be uncertain about which of the
procedures she will employ (call this a second-order decision). Likewise,
if one’s uncertain about which of the procedures one will employ—if, for
example, the value of using a procedure depends on how the agenda is set—
one should also be uncertain about that. And so on and so forth. The
value of the picking situation can be found by iterating this process until it
terminates in some stable value.

Response to 1.2: That’s true only if a stable evaluation emerges. But, in this
case, it’s not clear that one does. As we’ve seen, when selecting between
three items, there are seven possibilities: Reu can select one of the three
at random, use one of the three versions of Process of Elimination, or one
of the three versions of the Tournament Method. Out of these possibilities,
the three versions of Process of Elimination have the highest risk-weighted
expected utility.²¹ If Reu expects herself to employ a selection procedure

(Seidenfeld, 1988b, 2000a,b) in response to criticism by McClennen (1988) and Rabinowicz (1995,
1997, 2000). (See Steele, 2010, for further discussion of the dialectic.) My argument differs from
Seidenfeld’s in some key respects. His argument relies on a dynamic coherence constraint that re-
quires one’s evaluations of plans to be unchanged by substitutions, at choice nodes, of indifferent
options. He shows that decision theories that jettison Independence violate this constraint—they
prescribe evaluating plans in a way that is, according to Seidenfeld, dynamically incoherent.

²¹ Recall, Reu values each version of Process of Elimination at $21/8; she values picking one of the
three randomly at $2; she values two of the versions of the Tournament Method at $25/64, and the
other at $21/32.
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only if there is no other she prefers to it, then she should expect herself
to use some version of Process of Elimination in selecting the prize behind
Door #1. But because the higher-order decision about which version of
Process of Elimination to employ—the question of how to set the agenda—
recapitulates the first-order decision about which prize to select, it’s not
clear that iterating Process of Eliminationwill result in a stable value assign-
ment. At each level of application, the higher-order decision about how to
set the agenda recapitulates the decision below it. No stable value emerges,
only a regress.

Response 2: It’s not a mark against REUT that there’s no univocal answer about
what rationality requires of you in these situations. Sometimes, there’s just no fact
of the matter about what you are rationally required to do.

Response to 2: This might not be so bad a response if the cases in which
there is no fact of the matter about what you are rationally required to do
are relatively rare or outlandish. But that’s not the case here. Whenever an
agent is indifferent between risky gambles, it will be possible to construct—
or just wander one’s way into—a situation like this one. This is, then, at
best, a position of last resort.

Response 3: The value of picking from the menu {f, g, $21/8} does not depend on
the procedure that’s used. You shouldn’t treat your future decisions as something
to be predicted, but rather as something to be decided: pick the plan that you
like best (where a ‘plan’ is a complete path through a decision-tree). In this case,
you’re indifferent between all of them.

Response to 3: This is to endorse, what is sometimes called, ResoluteChoice.²²
One should settle on the overall plan that one most desires, and then stick
to it—even if that involves acting counter to your preferences in the future.
However, if REUT avails itself of this response, then, as Thoma (2019) con-
vincingly argues, its recommendations will be approximately the same as
expected utility theory’s. This move, then, is at best a Pyrrhic victory. It
rescues REUT from objection, but in so doing bleeds it of its distinctive
content.

6 Conclusion
I’ve argued that REUThas some counterintuitive consequences regarding cases of
tie-breaking. It doesn’t offer clear recommendations about what is rationally re-
quired of you when deciding between options you’re indifferent between. REUT

²² See Machina (1989) and McClennen (1990, 1997) for classic presentations of the view.
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is meant to be an all-encompassing theory of rational action. This should in-
clude decisions in which a source of uncertainty is your own future indecisive-
ness. REUT, however, cannot handle all such cases in plausible way—it appears
to violate either Menu Superiority or Agenda Invariance or both.

Furthermore, I’ve raised someworries that REUT doesn’t offer an appropriate
measure of riskiness to begin with. So, while it might be true that EUT fails to
adequately account for differing attitudes toward risk, REUT isn’t the appropriate
remedy. I have no suggestion for what would be an appropriate remedy. But let’s
not rue a cure that’s worse than the disease.

A Variance and Other Measures of Risk

In §3, I claimed that the gambles f, g, and f⊕1/2 g all have the same variance: 0.75.
I’ll now show why that is the case.

Recall that, for any gamble h = {x1,E1; x2,E2; . . . xn,En} (where EU(h) is its
expected value), the variance of h is:

Var(h) =
n∑
i=1

Cr (Ei) · (u(xi)− EU(h))2

Therefore,

Var(f) = 1/4 · (4 − 2.5)2 + 3/4 · (2 − 2.5)2

= 1/4 · (1.5)2 + 3/4 · (−.5)2

= 1/4 · (2.25) + 3/4 · (.25)
= .5625 + .1875 = .75

Var(g) = 1/4 · (1 − 2.5)2 + 3/4 · (3 − 2.5)2

= 1/4 · (−1.5)2 + 3/4 · (.5)2

= 1/4 · (2.25) + 3/4 · (.25)
= .5625 + .1875 = .75
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Var(f⊕1/2 g) = 1/8 · (4 − 2.5)2 + 3/8 · (3 − 2.5)2 + 3/8 · (2 − 2.5)2 + 1/8 · (1 − 2.5)2

= 1/8 · (1.5)2 + 3/8 · (.5)2 + 3/8 · (−.5)2 + 1/8 · (−1.5)2

= 1/8 · (2.25) + 3/8 · (.25) + 3/8 · (.25) + 1/8 · (2.25)
= 1/4 · (2.25) + 3/4 · (.25)
= .5625 + .1875 = .75

The gambles f and g have the same variance, as does their 50/50 mixture. This is
no coincidence. In general, if two gambles have the samemean and variance, then
any probabilistic mixture of the two will also have the same mean and variance.

A related measure of the “dispersion” of a gamble’s outcomes is its mean ab-
solute deviation:

MAD(h) =
n∑
i=1

Cr (Ei) · |u(xi)− EU(h)|

But, as inspecting the previous calculations might make clear, this change makes
no difference to the three gambles’ relative standing: MAD(f) = MAD(g) =

MAD(f⊕1/2 g).²³
One criticism of both of these measures is that they treat correspondingly

large deviations from the mean the same whether those deviations are positive
or negative. However, variation below the mean might be thought to contribute
more to a gamble’s riskiness than correspondingly large variation above themean;
downside risk, it might be thought, weighs more heavily than upside risk. If that’s
right, wemightmight want to exclusively focus on a gamble’s lower semi-variance:
the probabilistically-weighted squared deviation from themeanof those outcomes
whose values are below the mean. Or, at least, we might want to weight a gam-
ble’s lower semi-variance (SemiVar−) more heavily than its upper semi-variance
(SemiVar+) when assessing its riskiness.

But, as another glance at the previous calculations can reveal, there are no
weights α1 and α2 such that

α1 · SemiVar−(f) + α2 · SemiVar+(f) = α1 · SemiVar−(g) + α2 · SemiVar+(g)
< α1 · SemiVar−(f⊕1/2 g) + α2 · SemiVar+(f⊕1/2 g)

This is because

²³ Somewhat surprisingly, their mean absolute deviations also equal 0.75. That is a coincidence.
Typically, a gamble’s mean absolute deviation and its variance will not be the same.
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SemiVar−(f) = 3/4 · (−.5)2

= .1875
SemiVar+(f) = 1/4 · (1.5)2

= .5625

SemiVar−(g) = 1/4 · (−1.5)2

= .5625
SemiVar+(g) = 3/4 · (.5)2

= .1875

SemiVar−(f⊕1/2 g) = 3/8 · (−.5)2 + 1/8 · (−1.5)2

= .375
SemiVar+(f⊕1/2 g) = 1/8 · (1.5)2 + 3/8 · (.5)2

= .375

And so the only way to weight f’s and g’s lower and upper semi-variances so that
their sums are equal is if they are weighed equally: α1 = α2. But in that case f⊕1/2 g
will be ranked right alongside f and g again. Even if downside risk should loom
larger than upside risk, f⊕1/2 g isn’t any riskier (in that sense) than both f and g.

B REU Calculations
Let’s look at the risk-weighted expected value of deciding between each of the
pairs. First, consider deciding between gamble f and its sure-thing cash equivalent
$f, which—because Reu has no reason to think she is more likely to select the one
rather than the other—corresponds to a 50/50 lottery between the two.

Gamble Between f and $f
Pick f Pick $f
E ¬E E ¬E

f⊕1/2 $f 4 2 21/8 21/8

REU
(
f⊕ 1

2
$f
)
=2 +

( 5
8

)2
· (2 1

8 − 2) +
( 1
8

)2
· (4 − 21/8)

=2 +
25
512

+
15
512

= 25/64
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Figure 4: The risk-weighted expected utility of a fifty-fifty lottery between gamble f and
its sure-thing utility equivalent $f (2.078125).

If Reu thinks it’s equally likely, when picking between f and $f, that she’ll end up
with either, then picking between the two is valued at $25/64. (See Figure 4.)

Next, consider the decision between gamble g and its sure-thing cash equiv-
alent $g (which, again, because Reu is indifferent between f and g, is identical to
$f).

Gamble Between g and $g
Pick g Pick $g
E ¬E E ¬E

g⊕1/2 $g 1 3 21/8 21/8

REU
(
g⊕1/2 $g

)
=1 +

(7
8

)2
· (21/8 − 2) +

( 3
8

)2
· (3 − 2 1

8)

=1 +
441
512

+
63
512

= 163/64

If Reu thinks it’s equally likely, when picking between g and $g, that she’ll end up
with either, then picking between the two is valued at $163/64. (See Figure 5.)
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