
A defence of Isaacson’s thesis
or how to make sense of the boundaries

of finite mathematics

Pablo Dopico
pablo.dopico@kcl.ac.uk

King’s College London - HU Berlin

Abstract

Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which
the latter is the set of truths that we grasp on the basis of our understanding of the structure
of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is
the theory of finite mathematics, in the sense that it proves all and only arithmetical truths
thus understood. In this paper, we raise a challenge for the thesis and show how it can be
overcome. We introduce the concept of purity for theories of arithmetic: a theory of arithmetic
is pure when it only proves arithmetical truths. Then, we argue that, under Isaacson’s the-
sis, some PA-provable truths—including transfinite induction claims for infinite ordinals and
some consistency statements—are seemingly not arithmetical in Isaacson’s sense, and hence
that Isaacson’s thesis might entail the impurity of PA. Nonetheless, we conjecture that the
advocate of Isaacson’s thesis can avoid this undesirable consequence: the arithmetical nature,
as understood by Isaacson, of all contentious PA-provable statements can be justified. As a
case study, we explore how this is done for transfinite induction claims with infinite ordinals
below ε0. To this end, we show that the PA-proof of such claims exclusively employs resources
from finite mathematics, and that ordinals below ε0 are finitary objects despite being infinite.

1 Introduction

Against what has generally been believed to follow from Gödel’s work, Daniel Isaacson (1987/1996;
1992), defended the view that PA is complete with respect to arithmetical truth. He proposed to
conceptualise arithmetical truth as the set of truths that we grasp on the basis of our understand-
ing of the structure of natural numbers alone, and argued that the first-order axiom system for
arithmetic PA coincides with that set. It is thus that we must understand Isaacson’s claim that
PA is sound and complete with respect to arithmetical truth.

In this paper we identify a reading of Isaacson’s work in which the status of certain PA-
provable sentences as arithmetical, at least in the sense of the word Isaacson proposes, can be
called into question. We first introduce the notion of purity for theories of arithmetic: a theory of
arithmetic is said to be pure if and only if it only proves arithmetical truths. We note that purity
thus understood is an important component of Isaacson’s thesis. We then argue that, under the
aforementioned reading of Isaacson’s thesis, PA seems to be impure with respect to arithmetical
truth—that is, some of the truths proven by PA might not be arithmetical truths in the sense of
Isaacson, for their proof in the language of PA is too long to constitute the epistemic basis on
which to perceive the truth of the statement. These include, for instance, transfinite induction
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claims for infinite ordinals, as well as consistency statements for theories of arithmetic weaker than
PA. We then try to show that the way in which Isaacson, who had foreseen the reading that leads
to this impurity concern, tries to prevent the latter, is not entirely satisfactory. Finally, we explore
a different route to restore purity: justifying the arithmeticality, in Isaacson’s sense, of those claims
that motivated the move in the first place. As a case study, we take transfinite induction claims
for infinite ordinals; thus, we argue that shortened proofs of these statements can be shown to be
arithmetical in Isaacson’s sense, as they do not really contain higher-order notions. We end up
by considering this case study as evidence in favour of a conjecture we advance, namely that the
arithmeticality of all statements leading to the impurity concern can be justified.

2 Isaacson’s thesis

Ever since at least Tarski, the mainstream conception of arithmetical truth has equated the latter
with satisfiability in the standard model for the language of arithmetic, that we will call L0 and
which includes the nonlogical constants (S, 0,+, ·, <).1 We refer to this model simply as the standard
model of arithmetic N , and to the set of sentences true in this model as true arithmetic, or Th(N )—
see e.g. (Boolos et al., 2007, 295).

Contra this widespread view on arithmetical truth, Daniel Isaacson advances his own. For him,
an arithmetical truth is a truth that is perceived as such ‘from the purely arithmetical content of a
categorical conceptual analysis of the notion of natural number’ (1987/1996, 203). Accordingly, he
defends that the way to determine what counts as an arithmetical truth is not only a formal matter
but also an epistemic one, since what counts as arithmetical ‘has to do with the way in which we are
able to perceive [a] statement’s truth or falsity’ (1992, 95). In particular, he defends that the set of
arithmetical truths is to be captured via a recursive definition. The base clause asserts that a true
statement is arithmetical when its truth can be seen to follow directly from our understanding of
the natural number structure; he seems to think that the axioms of PA (and perhaps those alone)
are arithmetical in this sense. The recursive clause asserts that a true statement is arithmetical
if its truth can be perceived as such via first-order logical inferences from known truths whose
arithmetical nature has been granted.2 Thus:

[A] truth expressed in the (first-order) language of arithmetic is arithmetical just in case
its truth is directly perceivable on the basis of our (higher-order) articulation of our
grasp of the structure of the natural numbers or directly perceivable from truths in the
language of arithmetic which are themselves arithmetical. The analysis of the number
concept in §§2-4 seems to me to render the axioms of Peano Arithmetic arithmetical,
in the sense that their truth is directly perceivable so expressed, and on this basis the
second clause renders the theorems of PA arithmetical.(Isaacson, 1987/1996, 217)

Admittedly, Isaacson’s recursive definition only accounts for arithmetical truths, that is, ‘being
arithmetical’ is a property that applies only to true statements that can be expressed in the signature
of PA. But one can easily account for arithmetical falsities by taking them to be all statements

1For differing views, see Sayward (1990).
2One can question, in any case, the appropriateness of this recursive definition. The problem has to do with the

base clause: while PA can be seen to capture the first-order content of second-order elementary number theory, so do
the different theories that are mutually elementary reducible with standard PA, such as

⋃
n IΣn (for a definition of

elementary reducibility see, e.g., ( Le lyk & Nicolai, 2022, p. 8 of 26)). It seems hence arbitrary to establish that one
set of axioms, and not the other, can be directly perceived as the set of truths about the natural number structure.
They all correspond to different axiomatizations of what we consider first-order elementary number theory with full
induction to be. In sum, the base clause ought to allow for a wider range of applicability regarding what counts as
following directly from our understanding of the concept of natural number.
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the negation of which is an arithmetical truth.3 On the other hand, higher-order statements are
truths and falsities that incorporate what Isaacson calls ‘higher-order notions’. These include not
only higher-order (in contrast with first-order) quantification, but also infinitary notions, ‘in the
sense of presupposing an infinite totality’ (1987/1996, 210), as opposed to finitary notions.

Once this much is clear, we can fix the terminology we will use in the remainder of the paper,
for the sake of readability. ‘Elementary number theory’ will here refer simply to the realm of math-
ematics that deals with natural numbers and their basic operations, as traditionally understood;
and ‘number-theoretic’ will just be the corresponding adjective. When we write ‘arithmetical’, we
mean ‘arithmetical in Isaacson’s sense’ (i.e., whose truth or falsity is seen to follow from the purely
number-theoretic content of a categorical conceptual analysis of the notion of natural number);
when we talk about ‘arithmeticality’ or ‘arithmetical nature’, we mean ‘the status of being arith-
metical in Isaacson’s sense’. We avoid the use of the term ‘arithmetic’ to prevent any confusion.
The only exception will be the term ‘theory of arithmetic’, by which we mean a theory aimed at
capturing, fully or partially, the content of Dedekind’s analysis of the natural numbers, as Isaacson
believes that PA does in a first-order setting (1987/1996, 207). Moreover, other potential uses of
the word ‘arithmetical’ will be qualified as appropriate. For instance, an arithmetical statement as
traditionally understood will be referred to as a ‘statement expressible in L0’ (where L0 is as above);
and an arithmetical truth in the traditional, Tarskian sense, will be referred to as a ‘statement of
true arithmetic’.

Our current understanding of the natural number structure owes much to Dedekind’s and Frege’s
studies of the principles of elementary number theory. Hence, theirs (and perhaps Dedekind’s to
a greater extent) are seen as the best categorical conceptual analyses of the notion of natural
number. Admittedly, Dedekind’s analysis contains higher-order concepts in the form of second-
order quantification over subsets of natural numbers. But what remains when we strip this analysis
of its second-order content—i.e., when we ‘first-orderize’ this second-order quantification—is just
PA. As a result, according to Isaacson, PA enjoys a privileged position among all first-order
axiomatizations of elementary number theory: not only does the analysis of the natural number
structure allow us to perceive PA as true and strictly arithmetical, but it is also the case that
PA captures all there is to arithmetical—as opposed to just mathematical—truth: if a statement
expressible in L0 is not provable in PA, then some ‘hidden’ higher-order concept is needed either
to directly perceive its truth or to carry out a proof of it.

With this in mind, we offer a precise formulation of Isaacson’s thesis. There are a couple of
different phrasings in the literature—see e.g. (Incurvati, 2008, 263); (Smith, 2008, 1); or (Horsten,
2001, 181), who instead calls it Isaacson’s ‘theory about arithmetical truth’. Isaacson’s seemingly
preferred way to put it is that Peano Arithmetic consists of those truths which can be perceived
as truths either directly or via a proof from the purely number-theoretic content of the categorical
conceptual analysis of the notion of natural number. However, and since we already know that
‘those truths which...’ is just short for Isaacson’s notion of arithmetical truth, we offer the following,
shorter wording:

Isaacson’s thesis Peano Arithmetic proves all and only arithmetical truths (in the
sense of Isaacson).

As we see it, Isaacson’s thesis gains a great deal of plausibility from the fact that it captures
the long-standing mathematical intuition that our natural number system is at the heart of all
finite mathematics, and that PA, as a set of axioms, is the best, natural approximation of such
a system in first-order logic. Even so, the thesis must be tested, and its most pressing challenge
is accommodating the kinds of sentences that show that PA is incomplete: statements of true

3As Isaacson does in his (1992, 96).
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arithmetic that are nonetheless independent of PA. The thesis predicts that all these sentences
will present a common feature, namely their not being arithmetical in nature. Two clear examples
Isaacson examines are the Gödel sentence for PA and Goodstein’s theorem. In the first case, the
arithmeticality of the sentence is denied on the basis that seeing its truth requires the assumption
that PA is consistent. That is, we can only come to see the truth of the sentence that says of
itself ‘This sentence is unprovable in PA’ by first acknowledging the consistency of PA. But the
latter is the kind of notion that, by Isaacson’s thesis, and due to Godel’s second incompleteness
theorem, cannot be arithmetical—hence the Godel sentence will not be arithmetical either. As
per Goodstein’s theorem, the proof of the theorem relies on the well-ordering of ordinals (i.e.
transfinite induction) for ε0 (TI(ε0) henceforth). The latter, however, is known to entail, over
PA, the sentence Con(PA) (i.e., the sentence asserting the consistency of PA), and hence is also
higher-order in nature. As a result, we should expect PA to prove neither the Gödel sentence nor
Goodstein’s theorem, so Isaacson’s thesis stands.

Similar reasonings are given for two further well-known theorems independent of PA: the Paris-
Harrington theorem and Friedman’s finitization of Kruskal’s theorem. Thus, although none of these
arguments is conclusive enough to secure Isaacson’s thesis—what happens, for instance, with the
Kanamori-McAloon theorem or PA-unprovable versions of the graph minor theorem?4—they make
it rather convincing. In other words, they seem to indicate that all arithmetically-expressible
theorems that PA cannot prove aren’t, after all, arithmetical truths.

3 The impurity concern

One of the key points behind Isaacson’s thesis is that it lifts PA as the first-order axiomatization of
elementary number theory, in the sense of proving all and only arithmetical truths. The ‘all’ part
of the claim is established through completeness and it has certainly been the main focus of the
literature, possibly due to its novelty after (and its defiance of) Gödel’s incompleteness theorems
(see Smith (2008); Tatton-Brown (2018)). But the ‘only’ side has not been thoroughly addressed
so far. This section aims to show that, under a certain reading of Isaacson’s original 1987/1996
paper, there is a real possibility of PA being an impure theory of arithmetic. Here, the notion of
‘purity’ has a precise meaning, in line with Isaacson’s conception of arithmetical truth, that we will
now explain.

3.1 The notion of purity

When we assert that, following Isaacson’s thesis, PA is complete with respect to arithmetical truth,
what we mean by completeness differs as much from the model-theoretic notion of completeness as
Isaacson’s understanding of arithmetical truth does from the Tarskian one. That is, we do not intend
to say that PA proves all statements of true arithmetic, for this is plainly not the case. Rather, we
just mean that there is no arithmetical truth in the sense of Isaacson that PA does not prove. To
be fully unambiguous, we could have given this notion a new name—e.g. ‘I-completeness’—since
it is not what is usually meant by completeness alone.

We now intend to define the counterpart of this notion, which one can understand as the
analogue of soundness under Isaacson’s conception of arithmetical truth. Although, following the
above, we could have called it ‘I-soundness’, we introduce a new term for it. Ordinarily, we say
that a theory of arithmetic T is sound iff every theorem of T is a statement of true arithmetic;
we will stick to this understanding of the term in what follows. Given this definition, when we
read ‘arithmetical truth’ in the Tarskian sense, the question of whether every theorem of PA is an

4See e.g. Bovykin (2009).
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arithmetical truth is just implicit in the question of the soundness of PA. However, since ‘statement
of true arithmetic’ and ‘arithmetical truth’ are concepts with different extensions under Isaacson’s
thesis, there is a possibility that these two questions come apart in Isaacson’s case. In other words:
a theory of arithmetic being sound (i.e., proving only statements of true arithmetic) does not entail
its proving only arithmetical truths. Accordingly, we distinguish between soundness and the fact of
proving only arithmetical truths, a feature of theories of arithmetic that we label ‘purity’.5

Purity A theory of arithmetic T is pure iff every theorem of T is an arithmetical
truth.

As can be understood from our discussion above, whether a theory is pure or not is relative
to a given view on arithmetical truth. Hence, under the framework we work with (i.e., Isaacson’s
thesis), a theory of arithmetic T is pure iff every theorem of T is a true statement expressible in
L0 that follows from the recursive definition proposed by Isaacson. Now, since the questions of
soundness and purity have been separated, we must note that, for a theory to be impure, it need
not be unsound, that is, it need not prove a false statement expressible in L0. It will suffice for it
to prove a statement of true arithmetic that is not an arithmetical truth in the sense of Isaacson.

Clearly, purity is an essential feature for PA in the context of Isaacson’s thesis. Should PA
be impure, Isaacson’s thesis, at least in the way we formulated it here, would simply be wrong.
But even if the thesis was formulated in a way that is less liable to the threats of impurity, we
understand that purity would still be an essential feature for PA in Isaacson’s framework. The
reason is that, in this framework, PA is meant to capture the boundaries of a well-defined region
of mathematical truth, namely arithmetical truth or the truths of finite mathematics. Hence, if
PA is to play that role, it should arguably be able to prove only arithmetical truths. And this
is, precisely, what the idea of being pure amounts to. In fact, and in our view, the desirability of
purity extends to any theory that purports to encapsulate a well-defined region of mathematical
truth.6

The above does not imply, however, that a pure theory of arithmetic will prove all arithmetical
truths—it suffices that all its theorems are arithmetical truths. For instance, PRA, or Robinson
arithmetic, might perfectly well be pure theories of arithmetic if every theorem they prove is an
arithmetical truth. This is in contrast to the case of PA, at least if Isaacson’s thesis holds. For,
if Isaacson’s thesis is true, then PA (i) proves only true statements (soundness), (ii) proves all
arithmetical truths in the sense of Isaacson (I-completeness), and (iii) proves only arithmetical
truths in the sense of Isaacson (purity).

With this notion of purity in mind, we can now move on to see what it would mean for PA to
be an impure theory under Isaacson’s framework.

3.2 Impurity as a potential problem

We start by noticing, as Isaacson does, that some statements that are provable in PA seem to
belong to the class of statements that Isaacson dubs higher-order, since they are about infinitary
objects, or because they involve purportedly higher-order syntactic notions, such as consistency, for

5Our main reason to employ the term ‘purity’ instead of simply calling this notion ‘soundness in Isaacson’s sense’
or ‘I-soundness’ is to keep any possible confusion away. Thus, when we say that a theory is unsound, this is often
associated with the theory proving a false statement. But this is by no means what goes on when we say that PA
might be impure. Therefore, to avoid misleading claims, we leave the term ’soundness’ and derivatives aside.

6What’s more: some relaxed form of purity might also be deemed a desirable property of mathematical theories
with a clearly defined and restricted domain (sometimes known as ‘non-algebraic theories’), since it guarantees that
they do not ‘overshoot’ in relation to that intended matter. To give an example, it would be rather unsettling if we
were to show that, from the axioms for Euclidean geometry, one can prove the existence of a Mahlo cardinal.
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axiomatic systems of elementary number theory. An example of the former is transfinite induction
for any ordinal α < ε0, that we will denote TI(< ε0);7 clearly, ordinals like ωω3

are infinite—but

PA shows ωω3

is well-ordered! An example of the latter is Con(PRA), the sentence that formalizes
the consistency of Primitive Recursive Arithmetic.

Why, Isaacson asks, when statements similar to these ones are not provable in PA (i.e., TI(ε0)
or Con(PA)), are we justified in taking their corresponding L0-formula to be a higher-order truth,
and such move is not available when the statements are PA-provable? The reason, he argues, is
that the very same tool that helped uncovering the higher-order nature of the former statements,
namely coding (broadly understood), also reveals the arithmetical nature of the latter statements.
The possibility of arithmetizing its syntax allows PA to speak about syntactic notions, ‘coding’ such
notions with strings of number-theoretic constants; an ordinal notation system does the same in
relation to infinite ordinals. And the application of coding, Isaacson argues, suffices to realise that
these kinds of sentences are, after all, arithmetical in nature: as an auxiliary device, coding ‘pulls
the ostensibly higher-order truth into the arithmetical’ (1987/1996, 221) and allows for a proof of
the statement in strictly number-theoretic terms, which is all we need for the statement to count
as arithmetical. Note that this is a consequence of Isaacson’s epistemic approach to arithmetical
truth: arithmeticality is not solely a feature of the statement in question but of the way we come
to see its truth.

This cannot be taken, however, to be a conclusive answer, as Isaacson acknowledges and we
shall now explain. The reason has to do with the length of certain proofs in PA when these are
strictly formulated in L0. Thus, there are certain statements whose PA-proofs in the language L0

exhibit too many symbols (e.g., certain transfinite induction claims, or consistency statements),
and hence the only way to present a proof that a human agent might realistically follow is by
employing seemingly higher-order notions, e.g., infinite ordinals. Indeed, this is the reason we work
with the latter and not their notations in proving, e.g., TI(ωωω

) in PA. Given the correctness of
our ordinal notation,8 we know that there exists a corresponding proof with formulas that strictly
belong to L0. But such a proof would be too long to be carried out in practice, so the deployment
of uncoded infinite ordinals becomes indispensable for the presentation of the proof.

Now, if this is the case, someone could reason in the following way. First (1), as we have seen,
under Isaacson’s epistemic take on arithmetical truth, what allows us to establish the arithmeticality
of a given statement expressible in L0 is the perceivability of a statement as true on the basis of
a proof stripped of higher-order notions and consisting of arithmetical truths alone. Second (2),
as just said, the proofs of some L0-expressible statements solely consisting in arithmetical truths
formulated in L0 is too long to be surveyed. Third (3), the sort of proof that is surveyable for these
statements employs seemingly higher-order notions. Then, the second and third claims lead to
(4) the possibility, as Isaacson admits, that in these cases ‘the higher-order perspective is essential
for actual conviction as to truth of the arithmetically expressed sentence.’ (1987/1996, 221). But
this, together with the first claim, suggest that (5) we cannot establish the arithmeticality of
these statements. Therefore, one might be inclined to conclude that Isaacson’s understanding of
arithmetical truth entails that these statements are not arithmetical truths, despite being provable
in PA. Thus, for instance, TI(ωωω

) might be a statement provable in PA, but not an arithmetical
truth.

A key component of this problem concerns the idea of being provable in practice, that is, what
follows from proofs that a human agent might realistically be able to check, versus what is simply
provable in principle. The move, in the previous paragraph, from (1) and (4) to (5) relies on the

7The expression is a little sloppy here: TI(< ε0) is a schema, that is, needs to be instantiated by some formula.
Let’s take that for granted in what follows.

8See e.g. (Pohlers, 2009, Th.3.3.17) for a theorem establishing such correctness.
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idea that perceivability via proof consists somehow in being able to check the proof by oneself, i.e.,
that the statement in question is provable in practice. Thus, Isaacson contends that someone who
accepts that provability in principle in PA is sufficient to define the boundaries of arithmeticality
need not worry further. Insofar as a statement is in principle provable in PA solely through formulae
formulated in L0, the statement counts as arithmetical:

If one is prepared to countenance a notion of being ‘in principle’ derivable in PA, then
the present problem disappears. One might consider that this move is legitimate, as
enabling one to define precisely a theoretical boundary, to which mathematical practice
approximates. (Isaacson, 1987/1996, 221)

However, and as we have seen, Isaacson’s thesis puts the emphasis on the epistemic character of
arithmeticality. Therefore, there is a strong case for demanding that proofs be feasibly apprehensi-
ble, and not solely ideally apprehensible—an attitude we shall call the ‘feasibility attitude’. Being
arithmetical is here as much a product of our possibility to perceive the truth of the statement
as it is a product of the language in which the statement can be expressed. Hence, it looks as if
followability is a reasonable constraint on what counts as a proof that allows us to establish the
arithmetical nature of a statement. This is something that Isaacson (1987/1996, 221-222) concedes:
‘I have in my discussion been considering provability in terms of providing a basis for perceiving
the truth of a given statement. In these terms, a proof in PA of a given proposition being infeasibly
long has to be taken seriously.’

The problem is that the feasibility attitude, despite being a reasonable one, has an important
implication. Since it gives us reasons to buy the argument above, and to conclude that some PA-
provable statements are not arithmetical truths, it also leads to what we have called the impurity
concern: the concern that PA might be an impure theory of arithmetic. Impurity here must be
understood as above, i.e., as implying that some statements provable in the theory of arithmetic
are not arithmetical truths in Isaacson’s sense—roughly, that PA proves too much for a theory of
arithmetic. Thus, under this implication, Isaacson’s thesis as we presented it here collapses; for
PA might still be I-complete, and hence prove all arithmetical truths, but it is no longer the case
that it only proves arithmetical truths. The situation is depicted in figure 1 below: arithmetical
truth would be a proper subset of the set of PA-provable truths, which is in turn a proper subset
of true statements expressible in L0 (due to Gödel’s theorem).

This is something Isaacson himself acknowledges, for he grants that, should one adopt the
feasibility attitude,

then within the arithmetically expressible truths of mathematics, we must think of the
boundary between those which are purely arithmetical and those which are essentially
higher-order as running somewhat inside the collection of those for which derivations in
PA exist. (Isaacson, 1987/1996, 221)

In recent conversation, Isaacson has made clear to me that he favours an ‘in-principle’ take on
provability. His opinion seems to be that the feasibility attitude puts one on the road of strict
finitism, an undesirable philosophy of mathematics that Isaacson now, and unlike then, definitely
rules out. Be that as it may, and as we have argued, we still think that the epistemic turn on
arithmetical truth fostered by Isaacson makes a case for the feasibility reading. Thus, in the
remaining of the paper, we follow that reading.

3.3 Isaacson’s proposed way-out

As it happens, Isaacson offers a solution to the impurity concern on behalf of the advocate of the
feasibility attitude. To follow his reasoning, let us recap the problem: there are true statements

7



Figure 1: The relation between arithmetical truth, truths provable in PA and truths expressible in
the language of arithmetic if Isaacson’s thesis is true and PA is impure

expressible in L0, e.g., TI(ωωω

), that can be proved in PA either employing seemingly higher-
order notions embedded in a relatively short proof, or using solely formulae of L0 but with an
unsurveyably long proof. Now, we could appeal to the mere existence of the latter proof in PA
(even if it is humanly ungraspable) to argue that the higher-order notions are not indispensable.
But, given his epistemic approach to arithmeticality, in which a proof has to be a vehicle to perceive
the truth of a statement, the advocate of the feasibility attitude does not buy that argument, and
will remain at best skeptical regarding the arithmeticality of such statements, leaving a door open
for the impurity concern. Then, and possibly with the aim of avoiding the implications linked to this
concern, Isaacson makes a move on behalf of such hypothetical advocate. According to Isaacson,
one could reject extremely long proofs, such as the one for TI(ωωω

) or the one for Con(PRA), as
genuine proofs in PA. As a result, ‘provable in PA’ would acquire a new, more limited character,
and the set of truths provable in PA would coincide with the set of arithmetical truths. This can be
visualized by considering again figure 1: the circle that represents truths provable in PA ‘shrinks’
to the boundaries of the circle of arithmetical truths. In this case, the impurity concern no longer
applies: all statements that we can consider as genuine proofs of PA are arithmetical.

Now, let me counter this move. There are at least two considerations as for why we might not
want to reject very long proofs as genuine PA-proofs. In the first place, doing so deprives PA of its
privileged proof-theoretic status among first-order axiomatizations of elementary number theory.
After all, PA is widely considered as the strongest first-order theory of arithmetic that directly
follows from our standard understanding of the natural number structure as exposed in the work
of Dedekind. This is a key point underlying Isaacson’s thesis: to a great extent, the proof-theoretic
privilege buttresses the epistemic privilege that Isaacson defends for PA. Theories like IΣn, for
n ∈ ω, can also be said to follow directly from our understanding of the Dedekian analysis; but,
crucially, they are weaker than PA, and hence do not enjoy the same proof-theoretic privilege.
Now, the standard measures of relative proof-theoretic strength between two theories of arithmetic
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S and T in the style of PA, PRA or IΣn include the determination of their proof-theoretic ordinals,
and whether S ⊢ Con(T ) or vice versa. Then, suppose that the length in symbols of the shortest
PA-proof of, e.g., Con(IΣ1), is n, while the length of the shortest PA-proof of any instance of
transfinite induction up to ωω in PA is m. Suppose further, following Isaacson’s suggestion, that
we only admit proofs in PA of symbol length less than min(n,m) = k. In other words, and if ⊢k

is the symbol we use for this restricted notion of provability in PA and ρ(x) is a function that
gives the length in symbols of the shortest proof in PA of the formula represented by x, we write
PA ⊢k φ iff PA ⊢ φ and ρ(φ) < k. The result is then that PA ⊬k Con(IΣ1) and PA ⊬k TI(ωω).
Therefore, it is no longer clear whether PA is in any standard way proof-theoretically stronger,
and hence more privileged, than, in this case, IΣ1: PA understood in this new way does not prove
the consistency of IΣ1, nor can it be said to have a larger proof-theoretic ordinal.9

In the second place, it seems likely that the downgrading of PA could happen not only at
the proof-theoretic but also at the strictly number-theoretic level. That is, the issue is not only
that the restrained view leaves out of PA statements that are of interest to the logician but
only of relative interest to the number-theorist—statements of proof-theoretic nature, or syntactic
statements, like Con(PRA)—but also that we might need to equally give up on certain important
number-theoretic theorems from being considered PA-provable. For consider Theorem 2 in (Buss,
1994), an analogue of Godel’s famous speed-up theorem on the length of proofs measured by
number of steps (Gödel, 1936). The theorem shows that, for each computable function Φ, there
are infinitely many different formulae x provable in PA (or in any first-order theory of arithmetic,
for that matter) such that ρ(x) > Φ(ρ2(x)), where ρ(x) is defined as above and ρ2(x) is the length
of the shortest proof of x in PA2. Now, let’s suppose that, among all instances of transfinite
induction up to ωω, the instantiation with formula φ is the one whose shortest proof involves the
greatest number of symbols, and that the proof is too long to be surveyed. Using upper corners
(⌜⌝) to indicate that what comes inside corresponds to the ‘coded’, L0 version of the formula, we
write ρ(⌜TI(ωω, φ)⌝) for the shortest proof of the instantiation with formula φ of the transfinite
induction schema up to ωω. And, following Isaacson’s suggestion, let’s suppose that only proofs
of length < ρ(⌜TI(ωω, φ)⌝) are accepted. Then, we can find a computable function Ψ such that
Ψ(ρ2(⌜TI(ωω, φ)⌝)) = ρ(⌜TI(ωω, φ)⌝). After that, it is not difficult to generate a countably infinite
number of computable functions Ψ′ that bound Ψ from above, i.e. such that

Ψ(n) ≤ Ψ′(n), for all n ∈ N

For each of those Ψ′, Buss’ result tells us that there are infinitely many different formulas
of L0 that are provable in PA and such that the length of their shortest proof is greater than
Ψ(ρ2(⌜TI(ωω, φ)⌝)). However, all these formulas need to be considered as unprovable in PA, or at
least as formulas the proof of which are not genuine for PA. There are thus infinitely many different
theorems of PA that we stop considering as such. And it might well be possible that relevant
number-theoretic results (say, Fermat’s last theorem) are included among these many formulae.
Plus, this is not merely a speculative point: we know that there are relevant number-theoretic
theorems of this sort. A well-known example includes the instances of Friedman’s finitization of
Kruskal’s theorem. This finitization is a universal statement of the form ∀k∃nψ(k, n) and is known
to be independent of PA. Nonetheless, its particular instances, i.e., ∃nψ(m,n),m ∈ ω, are provable
in PA—but, in most cases, their proofs incorporate a disproportionate number of symbols.10.

9Should someone suggest that a weaker metatheory of arithmetic can still show that PA proves these claims,
or even establish a relative consistency proof, we can insist that what the metatheory should prove, and obviously
cannot, is that these results must be recovered in the new, restricted conception of PA.

10For instance, it is known that proving ∃nψ(10, n) requires at least the number of symbols represented with an
exponential tower of one thousand 2’s (Smoryński, 1982).
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Of course, someone who accepts Isaacson’s move might already be aware of this consequence,
namely that PA would be very lacking as a formal axiomatization of number-theory, and willing
to accept it. This might align them indeed with a strict finitist philosophy of mathematics, as we
said Isaacson thinks. But since our discussion had so far been framed in terms of stripping PA
of theorems like Con(PRA) or transfinite induction claims, the consequence just drawn might not
have been evident to someone keen on giving up these more logical statements, but still thinking
that PA should get most number-theory right.11

These two considerations suggest that provability in PA cannot be so freely adjusted to match
the set of arithmetical truths, and we are left with the impurity concern under the feasibility reading
of Isaacson’s thesis. The remaining of the paper will now be devoted to showing how we can still
avoid this concern with arguments different to those of Isaacson.

4 Resisting the impurity concern

In the previous section, we argued that, according to certain reading of Isaacson’s work, PA could
be impure, and that this would certainly be a blow to Isaacson’s thesis. The reading in question
epistemically favours proofs that can be feasibly apprehended, as opposed to unsurveyably long,
humanly unapprehensible proofs. As we saw and objected to, Isaacson suggests that the advocate
of the feasibility attitude may just do away in PA with all those statements the proof of which is
too long to be carried out in practice. But we argued that such an advocate should not take the
path delineated by Isaacson. As we pointed out, it also seems that Isaacson himself would accept
this conclusion now, having identified that this path leads to strict finitism—and would discard the
feasibility attitude altogether.

Nonetheless, this last move makes us think that Isaacson might have conflated two views that
need to be distinguished: the feasibility attitude as regards arithmetical truth, and the feasibility
attitude as regards derivability in a theory of arithmetic. That is: one can defend the view that
feasible apprehensibility must be a criterion for actual perceivability of the truth of a statement
and thus, following Isaacson, of its arithmetical nature; and one can defend the view that feasible
apprehensibility must be a formal criterion for derivability over a theory of arithmetic. Only the
latter seems to be related to strict finitism (sometimes also known as ultrafinitism). The former,
on the contrary, just concerns what we can consider arithmetical in Isaacson’s sense. Now, in what
follows, we try to show that the as regards arithmetical truth is on safe grounds, so that even those
statements that fall outside the scope of what is feasibly apprehensible with statements written in

11A reviewer of this paper has pointed out a further issue which I had overlooked, and for which I am grateful.
As it happens, there are two kinds of advocates of the feasibility attitude. One such kind is the one I am assuming
all along, namely an advocate for the view that any statement that can be proved in a feasible number of steps
can rightly be called an arithmetical truth. Of course, what ‘feasible’ exactly means here is to be kept loose, as
it might involve a lengthy discussion. Perhaps one can conjecture that a statement with Rayo’s number-steps is
already unfeasible. The other kind of advocate of the feasibility attitude understands ‘in practice’ as that which has
or will be proved. And so the aforementioned issue stems out of this view: since, presumably, the totality of human
agents that there was, there is, and there will be can only establish the arithmeticality of finitely many claims, this
advocate must conclude that the class of arithmetical statements is finite. Further, if we buy Isaacson’s proposal
that provability in PA be restrained to what we can prove in practice, they would need to accept that the class of
PA-provable statements must also be finite.

We take any of these consequences to be truly undesirable. But we also take the second kind of feasibility attitude
to be extremely unpalatable. While marginal, the first feasibility attitude seems to have been held by certain finitists.
To the best of our knowledge, no one has ever held anything like the second attitude. Among other things, this might
have to do with the fact that any such advocate will be accused of not having understood the modality involved the
notion of ‘provable in practice’. The substantial question is what can be considered a proof, not how many proofs
are actually carried out. So, while a fully-fledged dismissal of this attitude is outside the scope of this paper, we will
not consider it further.
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the language L0 alone can, by other means, be considered arithmetical on Isaacson’s understanding
of the term. That is, we will argue that we can establish the arithmeticality of these statements in
a way other than following the proof with only L0-formulae in PA. Or, to be more precise, what we
propose is more of a conjecture—a conjecture whose establishment can, in a sense, be understood
as complementary to Isaacson’s original project, and in fact suggested by Isaacson himself in his
remarks on TI(ωω) (1987/1996, 221). The conjecture in question is to be summed up as follows:

Conjecture. There is a way to justify the arithmetical nature of each statement whose proof in
the language of PA is too long to be carried out in practice, but which is nevertheless provable in
PA in principle.

The idea behind the conjecture is that, for any statement S whose proof employing strictly
L0-formulae is unsurveyable, but which we know to be in principle provable in PA, there is some
argument that settles the arithmeticality of such statement. Some examples of argumentative
strategies of this sort include, but might not be limited to, showing that S is equivalent to some
other statement S′ which is accepted as an arithmetical truth, or demonstrating that some proof of
S which is not formulated in L0 is nonetheless based solely on arithmetical truths. In these cases,
the feasibility attitude is respected: a surveyable proof is still needed to establish the arithmeticality
of a statement. Still, if the conjecture holds, the threat of impurity for Isaacson’s thesis fades away:
suspected higher-order truths of the sort presented in section 3 could be shown to be arithmetical
truths.

How can we defend this conjecture? The option we follow, in line with Isaacson’s original
paper, consists in examining some case studies. We look at two paradigmatic kinds of statements
that may lead to the impurity problem: transfinite induction claims and consistency statements.
Or rather: we will be looking at only one of these, transfinite induction claims, and, we believe,
this will suffice to show that we can justify the arithmeticality of consistency claims too. The
reason is that claims of the form Con(T ), where T is a theory of arithmetic weaker than PA,
can be proven equivalent to a transfinite induction claim up to a certain ordinal below ε0, over
a subsystem of PA proof-theoretically weaker than T itself.12 This follows from the fact that
each of these first-order subsystems, which are weaker than PA, has a proof-theoretic ordinal
strictly smaller than ε0. Hence, should we show that all transfinite induction statements up to ε0
are, after all, arithmetical truths, we could conclude that all syntactic statements of this sort are
arithmetical truths: epistemically, the truth of the syntactic statement would be perceivable insofar
as the entailment can be established via a first-order derivation that only employs other established
arithmetical truths.

Thus, we will try to provide evidence for our conjecture as follows. The problem of impurity
with statements such as TI(ωωω

) is that their not-so-long proofs make use of infinite ordinals and
not their notations, which seem to be higher-order (infinitary) notions. Therefore, it might seem
as if the only way we can feasibly carry out a proof in PA of certain features (i.e., well-orderings)
of these ordinals is a proof which is essentially higher-order. We will show that this intuition is
mistaken. In order to get there, we inspect the argument which constitutes the proof in PA of the
transfinite induction claim in question, and argue that no higher-order resources are employed in
such an argument. Furthermore, we later draw on the proof given to argue that the ordinals the
proofs are about, i.e. the ordinals which PA proves well-ordered, are finitary in nature.

12An earlier version of this paper suggested that the reason had to do with the entailment being provable in
PA. But clearly this does not suffice, and I thank the audience at the Konstanz Summer School on the Phil of
Mathematics for fruitful discussion on this point. After all, every PA-provable statement is entailed by any other
statement over PA. And we do not want to say that the arithmeticality of Con(PRA) is granted by the fact that
0 = 0 is an arithmetical truth. It is the special connection between transfinite induction and consistency that must
do the job.
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Putting the pieces together, we will then conclude that the argument of the standard proof
in PA of transfinite induction claims like TI(ωωω

), even when given in terms of ordinals and not
notations, involves no higher-order notions whatsoever, and are thus based solely on arithmetical
truths. In other words, we will be showing that a proof of the claim can be given which is not
formulated in L0 yet which is based solely on arithmetical truths. But this—and given the epistemic
ideal of arithmetical truth that underlies Isaacson’s thesis, by which a derivation in first-order logic
from known arithmetical truths suffices to establish that statement as an arithmetical truth—will
be enough to assert that TI(ωωω

) and similar statements are arithmetical truths in Isaacson’s sense,
and hence to dispel the threat of impurity generated by transfinite induction claims.13

4.1 The proof of transfinite induction

The first question we address then is: how can PA prove transfinite induction claims, i.e., well-
orderings, for infinite ordinals? How can we make sense of the fact that the theory of finite
mathematics is able to deal, manipulate and establish properties of these infinite objects? We
believe that the way to approach these questions relates to the nature of the supremum of all
ordinals for which transfinite induction claims are provable in PA: ε0. The point is that the way
PA deals with ordered sets of order-type (or lists/sequences/proof-trees of length) less than ε0 does
not go beyond the strictly finite, as we will now see; therefore, they are somehow tractable in a
finitary way.

In order to clarify what we mean here, we turn to the proof in PA of transfinite induction for all
ordinals α < ε0. This result requires a primitive recursive well-ordering of the natural numbers of
order-type (ε0,≺) obtained, by coding, from the Cantor Normal Form Theorem for ordinals of base
ω.14 Whereas the original proof is due to Gentzen (1943), we consider a more up-to-date version
by Halbach (2014, 204-7). The proof in question relies on two lemmas. The first of them is the
following:

Lemma 1. PA ⊢ Prog(φ) → Prog(J (φ))

where Prog(φ) (that reads ‘φ is progressive’) is the formula ∀α(∀β ≺ αφ(β) → φ(α)), and J (φ) is
the formula ∀α(∀ξ(∀η ≺ ξ φ(η) → ∀η ≺ ξ + ωα φ(η))).

And, as for the second lemma:

Lemma 2. If

PA ⊢ Prog(φ) → ∀ξ ≺ αφ(ξ)

for all formulas φ of L0, then

PA ⊢ Prog(φ) → ∀ξ ≺ ωα φ(ξ)

for all formulas φ of L0.
NB: these expressions correspond to TI(α) and TI(ωα), respectively.

13An anonymous reviewer has kindly pointed out that the strategy that we follow here, via Gentzen’s proof of
transfinite induction up to ε0, is only necessary for ordinals > ωω . Transfinite induction for infinite ordinals up to,
and including, ωω can be obtained in alternative fashions. For example, one can consider the set of finite sequences
ordered by the so-called shortlex ordering (that is: any two sequences are ordered by first comparing their lengths
and, if the latter are equal, employing the lexicographical order—see e.g.(Mancosu et al., 2021, ch.8)). This is indeed
a well-order of type ωω .

14This theorem shows that any ordinal below ε0 can be written as the sum of powers of ω with exponent < ε0,
whereas ε0 itself and greater ordinals cannot.
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Transfinite induction up to any ordinal below ε0 can be reached by applying Lemma 2 finitely
many times, and Lemma 2 is easily obtainable from Lemma 1. It is thus the latter that requires
careful examination. And it is in fact the crux of the proof, for it is where the interweaving with
infinite ordinals happens. The formula J (φ), sometimes known as Gentzen’s jump formula, lies
at the heart of this lemma. In all cases in which it is instantiated with α ⪰ 1, Gentzen’s jump
formula seems to announce the possibility of ‘infinite jumps’. We can (very informally) understand
the jump as stating that, when a given formula φ holds for all ordinals below a given one—finite or
not—we can carry that formula along for ωα-many more numbers above that ordinal. That is, it is
as if we were indeed ‘jumping’ over powers of ω—taking an infinite leap the ‘safety’ of which (in the
sense of well-foundedness) is guaranteed by Gentzen’s formula. Notwithstanding these intuitions,
we will now argue that these leaps are not infinite after all.

There is, however, a limit to these leaps. This limit is given by Cantor’s Normal Form Theorem.
Since Gentzen’s jump formula works exclusively with towers of ω such that the next element of
the tower is always smaller or equal than the previous one, ε0 marks the boundary to the number
of ordinals we can ‘jump over’; hence, even if the jumps were infinite (contrary to what we argue
below), they could not be of an arbitrarily big number of infinite ordinals. This is also why
transfinite induction for ε0 cannot be established with an argument in the style of lemmas 1 and
2: the inner structure of Gentzen’s formula prevents us from reaching ε0, and in this we see how
pivotal this formula is for the proof. We will say more about this below.

Now, the other component of Lemma 1 is the notion of ‘progressiveness’, there abbreviated
as Prog. To say that a formula is progressive is to say that, when it holds for all ordinals below
a given one, it holds for that ordinal. Once we know that a formula is progressive, a transfinite
induction claim for some ordinal α is just the assertion that, should the formula be satisfied by 0,
progressiveness will carry the formula along the ordinal sequence all the way to α. This is all there
is to transfinite induction, as Gentzen held (1943, 291); therefore, progressiveness is the cornerstone
of transfinite induction. Yet the apparent mystery of Lemma 1 in relation to our project is that it
shows that Gentzen’s jump for a certain formula holds whenever the formula is progressive. That
is, the formula is carried along 1 ordinal, and then ω ordinals, and then ω2 ... and all the way to
ωω and beyond. As such, the mystery lies in asking how it is possible that a finite, indeed unitary,
increment in the satisfaction of a formula along the ordinal sequence can result in increments of
the order of powers of ω.

The proof of Lemma 1 gives what we take to be a clear answer to this. If a formula φ is
progressive, J (φ(0)) holds trivially, for it just expresses that φ is carried one ordinal forward.
Informally, PA ‘sees’ the unitary jump as safe (in the sense above, i.e., of well-foundedness).15

Now, for J (φ) to be progressive, J (φ(1)), i.e., ∀ξ(∀η ≺ ξ φ(η) → ∀η ≺ ξ + ω φ(η)), must hold.
The key then is that, although we seem to face an ω jump, it is after all a finite one. PA is given
a certain ordinal ξ as input and has to carry that property for a number of ordinals below ω (for
whatever η we pick, it will be strictly less than ξ + ω). Hence, PA only needs to reiterate what it
already ‘sees’ as a ‘safe jump’ (the unitary one) a given finite (hence, also safe) number of times. A
very similar reasoning goes for J (φ(2)): since PA ‘sees’ the ω-jump as safe now, it can perform it
once and combine it with a finite number of steps (or perform it twice!) to leap just under ω2-many
ordinals. The same idea applies to any jump made over ωn ordinals. Thus, in more formal terms,
we are performing an outer or external induction on n for ωn—allowing us to conclude that the
jump must be safe, in the sense of being well-founded, for ωω ordinals.

Likewise, when we consider powers of ω of the form ωα, ωω ≻ α ⪰ ω, the induction is happening
at the next exponential level. That is, having been able to establish the safety of jumps over ωω-

15The reader need not interpret ‘sees’ here in anything like a model-theoretic sense, as a model that ‘thinks’ of itself
in a certain way (e.g., as containing uncountable objects despite being countable, as given by Skolem’s paradox). It
is just a very informal way to describe the operations that are going on in PA to reach the desired results.
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ordinals as above, we perform now an induction on n for ωωn

. This will allow us to conclude, in turn
and by induction, that jumps over ωωω

ordinals are also safe. Unsurprisingly, one will say argue in
the same way for any ω with exponent ≺ ε0. Since induction is an entirely arithmetical task, in the
sense that its correctness can be seen to follow from the number-theoretic content of our categorical
conceptual analysis of the notion of natural number, PA can carry out these nested inductions, one
after the other, to complete the transfinite induction. Even if the ordinals themselves are infinite,
their structure is such that ordinary induction need only be performed a finite amount of times,
and so PA can deal with it.

Hence, the mathematical procedures underlying the proof of transfinite induction for ordinals
below ε0 has an arithmetical nature: we need not invoke any proof resources other than number-
theoretic induction to establish that these ordinals are well-ordered and,a fortiori, we need not
invoke higher-order proof resources.

4.2 The finite nature of (some) infinite ordinals

Despite the above, here is a reason one may doubt that we have really shown the arithmetical
nature, in Isaacson’s sense, of transfinite induction claims like TI(ωωω

). One can think that, since
transfinite induction claims are about ordinals, the equivalent L0 statement will involve coding
techniques for these ordinals. And does not the presence of coding threaten the arithmetical status
of the L0-based formulation of TI(ωωω

)? The answer to this worry is: not necessarily. As we
mentioned, under Isaacson’s framework, coding is simply a device that, in most cases, allows us
to discern whether a seemingly higher-order truth is arithmetical after all, or whether a seemingly
arithmetical truth is higher-order. So the mere fact that the L0-based formulation of TI(ωωω

)
involves coding is not, per se, problematic. What was problematic, at least for the advocate of the
feasibility attitude, was precisely the fact that here coding cannot directly serve as the vehicle to
establish the arithmeticality of the L0-based formulation of TI(ωωω

), because its application renders
a proof too long to be surveyed. Accordingly, what we have been trying to show is that the uncoded
version of the statement TI(ωωω

)—that is, the statement asserting that the ordinal (as opposed to
the code for the ordinal) ωωω

is well-founded—is not higher-order but arithmetical. And we have
done it by verifying that the argument by which (the coded version of) such a claim is proved in
PA employs no higher-order procedures. Hence, this would entail that the L0-based formulation
of TI(ωωω

) is also an arithmetical truth, given the correctness of our coding apparatus. Thus, this
would be a way to verify that, in this case, and to use Isaacson’s words, coding constitutes a ‘linkage
[that] pulls the ostensibly higher-order truth down into the arithmetical’ (Isaacson, 1987/1996, 221).

There is however a second point that the reader may raise here. All we have shown is that the
steps that constitute the argument by which PA can establish TI(< ε0), and thus by which we
come to see the arithmeticality of this statement, are of a finitary nature. That is, we have outlined
the core of a proof that establishes such claims, and which can be fully formalised. But note that,
in this outline, we have availed ourselves to infinite ordinals all along, instead of their notations in
the language L0. And we could have not in fact employed the notations since these are, in many
cases, likely to render such an argument unsurveyable; in other words, the argument above cannot
be formalised in L0 without becoming unfeasibly long, and any feasible formalisation would seem
to appeal to infinite ordinals. Yet these ordinals seem to be higher-order concepts, given that they
might be considered infinitary in nature. Hence, insofar as the argument expounded is the core
of the proof of TI(< ε0), it does seem that the way by which we may convince ourselves of the
arithmeticality of TI(< ε0) does make use of higher-order concepts after all. That is, the possibility
that ‘the higher-order perspective is essential for actual conviction’ (Isaacson, 1987/1996, 221) of
the arithmeticality of the claim seems not to have vanished. Again, insisting that these ordinals
are translatable into expressions in the language L0 is of no use, as the impossibility to do that
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without ending up with an unsurveyable proof is what brought us here in the first place. Thus,
our aim now is to show that these ordinals are finitary in nature, and hence not higher-order, so
as to conclude that the arguments used in the proofs of TI(ωωω

) and similar claims involve no
higher-order concepts at all. The key is to reflect on the proof of the transfinite induction claims
just displayed.

We explained that the main argument for the proof in PA establishing that ordinals below ε0
are well-ordered consists in exploiting a nested induction applied to the inner structure of these
ordinals. But the possibility of this nested induction is only given in the first place because the
structure of these ordinals is finitary. Indeed, what facilitates the nested induction is the fact that
ordinals up to ε0 are capable of being treated as finite objects, as is revealed by their specific Cantor
Normal Form. And what do we mean by this? Cantor’s Normal Form Theorem shows that we can
see any ordinal below ε0 as a sum of towers of ω of the form {α0, α1, ..., αn} where αi ≤ αj when
i < j and αi ≤ ω for each i. Due to this, one can think of any such ordinal as a finite list with two
types of elements: further two-sorted lists, or individuals—symbolised, for instance, by ◁. Thus,
the ordinal ωω2

can be understood as a list with one element: another list, itself containing yet
another list, which finally contains two elements: ◁,◁. On the other hand, the ordinal ωω2

+ 2
can be understood as the same list, now containing also ◁ and ◁. In following this idea, the
theorem allows us to understand each ordinal below ε0 as a finite list, the members of which are
also finite lists, the members of which are also finite lists... and so on. What all of this reveals, in
any case, is that the structure of the ordinal itself responds to a finitary nature. And, as we said,
this makes possible the overall inductive procedure: PA ‘sees as safe’ (in the sense given in the
previous subsection), i.e., apprehends as well-founded, each list in the construction of the ordinal,
and it can also easily establish the well-foundedness of a finite sequence of individuals.

To be clear, this is a semi-informal picture that aims to uncover the finitary structure of the
ordinals we are interested in.16 Of course, alternative pictures are also possible. For example, we
can see the ordinal as a finite tree, the nodes of which are finite trees, the nodes of which are
finite trees, etc. Any such picture will hopefully lead to conviction as to the fact that these infinite
ordinals ω ≤ α < ε0 can truly be said to belong to the realm of finite mathematics, and hence not
to be higher-order concepts.

In fact, while this dividing line between the finitary and infinitary, to be located well into the
infinite ordinals, may initially come as a surprise, it becomes increasingly less so as we learn of
different situations where the link between infinite ordinals below ε0 and finitary mathematics is
made explicit. Some of these examples have been thoroughly investigated in the literature. The
following are just two of them:

• The set of ordinals below ε0, equipped with the usual well-ordering of ordinals, is isomorphic
to the set N with the ordering induced by the so-called Matula numbers—see (Weiermann,
2005).

• Weiermann (2002) has shown that the behaviour regarding limit laws (roughly, the probability
that any property holds in a structure of arbitrarily large size) for classes of infinite structures
of order type up to ε0 is continuous with that for classes of structures of finite size (and hence
order type), assuming certain background conditions on the order. In particular, when seen
as additive systems, these classes of structures meet the so-called zero-one law, that is, all
properties have probability either 0 or 1 to be satisfied in structures of arbitrarily large size,

16I would like to thank the reviewers of this paper for pointing out that a previous argument I advanced to the
effect that ordinals up to ε0 followed from our understanding of natural numbers, based on Kreisel’s notion of ordinal
visualization (Kreisel, 1965), is not available here. First, because the argument relied on the positing of ‘arithmetical
concepts’, which can be problematic in the context of Isaacson’s thesis. Secondly, because a similar argument would
establish the arithmetical nature of TI(ε0), contradicting Isaacson’s thesis.
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whether finite or infinite, as long as the order type induced is less than ε0. In loose terms:
finite structures and infinite structures of order type up to, but not including, ε0, show a
certain ‘decidability’ when it comes to satisfying any property.

4.3 Additional remarks

In this section, we have argued that: (i) the argument behind the proofs in PA of transfinite in-
duction claims up to ε0 does not employ higher-order resources, and (ii) the ordinals with which
these arguments are presented are inherently finitary, and not higher-order. Thus, we conclude
that a surveyable proof can be given for these claims that does not appeal to higher-order notions
overall—which, in the spirit of Isaacson’s thesis, suffices to be convinced that the statements these
proofs establish can be considered arithmetical truths. Therefore, these claims are not a counterex-
ample to the purity of PA under the interpretation of arithmetical truth given by Isaacson. We
take this to render further support and plausibility to Isaacson’s thesis.

What’s more: we believe that the explanation provided reinforces Isaacson’s thesis with respect
to two additional and different (but related) fronts. First, because it gives an answer to a question
that underlay the specific case study: how can PA, which according to Isaacson’s thesis coincides
exactly with the truths of finite mathematics, prove that certain infinite ordinals, i.e., seemingly
higher-order objects, are well-founded? Our response consists in pointing out that these objects are
not really higher-order in nature but, as Cantor’s Normal Form Theorem reveals, finitary; and that
precisely because of this, their inner structure of blended finite strings can be proved well-founded
by PA through the application of ordinary induction finitely many times.

The second front has to do with some remarks presented by Gentzen in his original proof of
transfinite induction up to ε0 in PA, for whom the situation was the opposite of the one we have
presented here. According to him, for an important segment of the countable ordinals (including
ordinals well beyond ε0), ‘transfinite induction is a form of inference which, in substance, belongs to
elementary number theory ’, (Gentzen, 1943, 307, italics in original) so that ‘[t]he fact that transfinite
induction even up to the number ε0 is no longer derivable from the remaining number-theoretical
forms of inference therefore reveals from a new angle the incompleteness of the number-theoretical
formalism’ (ibid.). In other words, he seems to suggest that transfinite induction for α ≥ ε0 is
a genuine arithmetical truth—as opposed to some true statement cooked-up by logicians—that is
nevertheless independent of PA. Following Isaacson’s terminology, we could read him as saying
that transfinite induction for such ordinals is not ‘higher-order’. Recently, Saul Kripke (2022) has
defended a very similar idea, arguing that TI(ε0) is the first genuine arithmetical true statement
that was shown independent from PA. For both Gentzen and Kripke, the unprovability of TI(ε0) is
yet another example of the incompleteness of PA with respect to arithmetical truth, constituting
thus a challenge to Isaacson’s thesis. We believe, however, that our account of what underlies
transfinite induction for ordinals below ε0 renders important support (even if perhaps not decisive)
to a very different conclusion, namely that TI(α), for α ≥ ε0, unlike transfinite induction for smaller
ordinals, is not really arithmetical. After all, the widely accepted strategy for proving transfinite
induction claims in PA (namely, the Gentzen proof just outlined) is not applicable for ordinals
α ≥ ε0, insofar as the inner structure of these ordinals does not allow Gentzen jumps.

5 In search of more evidence

As a reminder, our driving conjecture here is that there is a way to justify the arithmeticality of each
statement whose proof is too long to be proved in practice, but which PA can still prove in prin-
ciple. These might include statements about infinitary concepts, or certain syntactic statements.
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To provide some evidence for this conjecture, we have justified the arithmeticality of transfinite
induction claims for ordinals up to ε0.

The argument deployed seems to do well not only with transfinite induction claims but with
many other statements involving infinitary objects and, in particular, infinite ordinals (for instance,
results on ordinal arithmetic; see e.g., (Sommer, 1995, §3)). Likewise, it seems to us that it fares
well with respect to consistency statements about theories weaker than PA. But these statements
by no means exhaust the class of ‘syntactic’ statements that might involve unfeasibly long proofs.
For instance, we find that statements that code provability in a theory of arithmetic are of an
equally syntactic nature. If we are to defend the conjecture—and, with it, Isaacson’s thesis—one
will have to tell a convincing story on why these statements are also arithmetical.

As a paradigmatic case, take the following: what can we make of Henkin sentences, that is,
formulae φ such that

φ↔ PrPA(⌜φ⌝)?

Some considerations come into play here. First of all, there is no one single formula expressing
provability in a formal system. The formula in question will depend, among other things, on
the choice of coding made, and on the conditions we believe a formula expressing provability in
a system should meet. The last point is particularly relevant, and has been the object of some
discussion—see e.g. Halbach & Visser (2014). Indeed, if some formula π(x) that is intended to
express provability is generally believed to be unsuccessful for that aim, we are (arguably) no longer
talking about a syntactic statement, insofar as it fails to capture the relevant syntactic property.
Hence, formulae like the ones Kreisel devised to answer Henkin’s problem (i.e., whether Henkin
sentences are provable in their relevant systems) (Kreisel, 1954) might not be strictly relevant when
it comes to testing the conjecture: since most would argue that they fail to capture a syntactic
property (as Henkin, and Halbach and Visser, have done), we can discard right away their containing
higher-order notions.

Thus, one could argue that it all boils down to justifying the arithmeticality of Henkin sentences
expressed with the ‘canonical’ formula capturing provability, which we denote as Bew(x). It is at
this point where the defender of the conjecture must step in and try to explain in what sense these
types of sentences are arithmetical. We shall not attempt to do that there. Nonetheless, we venture
that one can accomplish this task for the formulae in question by identifying provability with the
existence of a certain finite sequence and, in turn, justifying the arithmeticality of the notion of
‘sequence’.

6 Conclusion

In this paper, we introduced the notion of purity for theories of arithmetic, and showed that there
is a reading of Isaacson’s thesis under which PA can be considered an impure theory of arithmetic,
thus undermining Isaacson’s thesis. As we see it, two possibilities stand out now if such a conclusion
is to be avoided. Either we take this to be significant evidence in favour of retaining the Tarskian
conception of arithmetical truth as truth in N , thus going back to the incompleteness of PA, or
we find a way to justify the arithmetical character of statements such as TI(ωωω

), Con(PRA) and
the like. Here, we tried to pursue the second path. As we said, our argument is just conjectural,
based on a paradigmatic case study, and more may need to be done. But, if the conjecture holds,
it is definitely a way to buttress the claim that PA proves all and only arithmetical truths—that
is, Isaacson’s thesis.
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