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We criticise Shepard's notions of 'invariance' and 'universality', and the 

incorporation of Shepard's work on inference into the general framework of his 

paper. We then criticise Tenenbaum and Griffiths' account of Shepard (1987), 

including the attributed likelihood function, and the assumption of 'weak sampling'. 

Finally, we endorse Barlow's suggestion that MML theory has useful things to say 

about the Bayesian inference problems discussed by Shepard, and Tenenbaum and 

Griffiths. 

Shepard (2001) claims that it is a general fact about the world that objects which 

are of the same basic kind generally form a connected local region in the space of 

possible objects. Prima facie, at least, this is not a 'fact about the world' at all; 

rather, it is an analytic or a priori truth which connects together the notions of 

'basic kind' and 'connected local region in the space of possible objects'. Moreover, 

even if this were a general fact about the world, it seems implausible to suppose 

that it would have an important role to play in the explanation of the 'universality' 

of Bayesian inference: the efficacy of Bayesian inference does not depend upon 

the kinds of things which there are. The 'universality, invariance and mathematical 
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elegance' which Shepard finds for this theory of inference seems different in kind 

from that which he finds for his theory of perceived colour—and perhaps also for 

his theory of perceived motion—even though it might be accommodated in an 

appropriate evolutionary theory (on the grounds that Bayesian inferrers will be 

advantaged in any possible world in which mobile perceivers can evolve). 

Shepard's use of the term 'invariance'—in characterising the general aim of this 

theory—puzzles us. He claims that the General Theory of Relativity provides a 

model for the kind of psychological theory which he wants. However, it seems to 

us that there are several confusions in this part of his discussion. Most importantly, 

while it is true that Einstein cast General Relativity in generally covariant form, it 

is perfectly possible to cast Newtonian mechanics in generally covariant form: this 

just amounts to the observation that it is possible to give a coordinate–free 

formulation of these theories. In our view, the most natural notion of invariance—

or invariance group—for physical theories is that developed by Anderson (1967), 

which turns on questions about the 'absolute objects' postulated by these theories: 

the advance which is marked by General Relativity is that it contains no absolute 

objects. Furthermore, as we understand it, it was never the case that Newton's laws 

were restricted to inertial frames moving at slow speeds relative to the speed of 

light; rather, it turns out that Newton's 'laws' do not fit the data for objects moving 

at speeds which are not slow relative to the speed of light. We confess that we have 

no idea what Shepard has in mind when he says that he is aiming for 'invariant' 

psychological principles. (We have similar concerns about his use of the term 

'universal', and its relations to 'invariance'.) 

 Tenenbaum and Griffiths (2001) begin with 'Shepard's problem of generalisation 

from a single positive instance'. They propose a modification—to what they take to 

be Shepard's approach—which makes a significant difference when we move on to 

consider generalisation from multiple positive instances. In their view (Section 

2.3), Shepard (1987) argued for the default assumption that the positive instance 

was sampled uniformly from the full range of cases ('weak sampling'); Tenenbaum 

and Griffiths claim that in many cases, it is better to suppose that the positive 

instance is sampled uniformly from the consequential region, i.e., from amongst 

the positive cases ('strong sampling'). Moreover, Tenenbaum and Griffiths suppose 

that this difference shows up as a difference in the likelihood functions for the two 

approaches. They favour the likelihood function which takes the value 1/ h when 

x h and is otherwise 0; and they attribute to Shepard the likelihood function 

which takes the value 1 when x h, and is otherwise 0. We think that something 

has gone wrong here: the likelihood function attributed to Shepard has not been 

normalised, and the fact that it attributes probability 0 to data outside the 

consequential region contradicts the independence in their informal definition of 

'weak sampling'. Moreover, this function makes no sense as a value for the 

conditional probability of observing x given that h is the true consequential region: 

under the assumption that the sampling is uniform from the entire range of cases, 



that value would have to be 1/ C, where C is the measure of the entire space. 

Perhaps Tenenbaum and Griffiths have here conflated the likelihood function with 

the probability that the sample lies in the consequential region (which is indeed 1 if 

the sample is taken from the consequential region). 

There may be reason for caution in attributing 'weak sampling' to Shepard. It seems 

that Shepard does make this assumption (1987:1321)—though we didn't find 

Shepard's text entirely clear, and we have some sympathy for Tenenbaum and 

Griffith's interpretation of it—but only in the context of his 'theoretical 

justification' for the choice of a probability density function for the size of the 

consequential region. What he says is that, in the absence of any information to the 

contrary, an individual might best assume that nature selects the consequential 

region and the first stimulus independently. However, in the cases which 

Tenenbaum and Griffiths consider, it is plausible that Shepard would deny that 

there is no further information to the contrary—the baby robin has reason to 

suppose that mother will have sampled from the consequential region; and the 

doctor knows that the patient has been sampled from the consequential region—so 

it is not clear that Shepard can't get the same answers as Tenenbaum and Griffiths 

in these cases. Moreover, Tenenbaum and Griffiths discuss the choice of a 

probability density function for the identity of the consequential region; so they are 

not discussing exactly the same question which was taken up by Shepard. (It is 

curious to us that Tenenbaum and Griffiths use Erlang priors in their examples: 

after all, in their view, Shepard's 'rational justification' for this choice of prior relies 

upon the assumption of weak sampling. From their point of view, it requires work 

to show that these priors admit of 'rational justification' under the assumption of 

strong sampling; and we would add that there are mathematically convenient priors 

which do not admit of rational justification (see Wallace and Dowe (1999b:334–

5)). On an unrelated point, it is also curious to us that Tenenbaum and Griffiths 

claim that generality is more primitive than similarity (Section 4.1)—but then go 

on to say that judgments about similarity are required in order to provide 

reasonable constraints on generalisation (Section 5). We doubt that there is any 

neat separation of problems to be made here: see Wallace and Boulton (1973) for 

an example of the simultaneous analysis of both problems in a Bayesian machine–

learning context.) 

Perhaps Tenenbaum and Griffiths might reply that they have given an extension of 

Shepard's work to an area which Shepard himself had not considered: given cases 

in which the natural assumption is strong sampling, what kinds of probability 

distributions would we expect creatures to have? However, as Tenenbaum and 

Griffiths note, there are many other kinds of cases in which various other natural 

assumptions may or may not be made—and, in the end—though Tenenbaum and 

Griffiths don't put it this way—perhaps all that they commit themselves to is the 

claim that the most natural general extension of Shepard's work supports nothing 

more than the hypothesis that Bayesian inference is universal. Yet, if that is right, 

then it is hard to see that we are getting 'universal, invariant general principles' 



which reflect the internalisation of 'pervasive and enduring facts about the world'. 

Perhaps we might hold that we are getting 'universal, invariant, general principles': 

though even that seems a bit of a stretch. After all, it is one question what are the 

optimal inferences to be made from given data; it is quite another question how 

close we should expect evolved creatures to come to these optimal inferences in 

particular cases. There seems to be little reason to suppose that evolved creatures 

will be perfect Bayesians across the board; indeed, we know from countless 

experiments on people that we are very far from being perfect Bayesian reasoners 

ourselves. Unless we are prepared to hold that you don't count as a 'perceptually 

advanced mobile organism' unless you are a reliable Bayesian information 

processor, we see little reason to suppose that there is a universal law of the kind 

which Shepard proposes (even allowing a restriction to cases in which weak 

sampling can be presupposed). Opponents of Bayesian theories of inference will 

no doubt also have many reasons for wishing to raise objections here. 

Tenenbaum and Griffiths appear to claim that their theory 'uniquely' extends 

Shepard's work in a Bayesian framework (3.3). However, one can use a Bayesian 

approach to infer the consequential region itself: see, for example, Wallace and 

Dowe (1999b: 332–4) for analysis of a related continuous case in which the size of 

the consequential region is known. 

We agree with the implicit suggestion of Barlow (2001) that MML theory might 

offer the best Bayesian theory of inference—see Wallace and Boulton (1968), 

Wallace and Freeman (1987); and see Wallace and Dowe (1999a) (and the rest of 

this 1999 special issue of the Computer Journal) for a discussion of the contrast 

between MML, MDL, and the work of Solomonoff (1964) and others. To the 

extent that we expect evolution to optimise, we should expect to find MML 

inferences in nature. No doubt we often do. MML can be made to fit the empirical 

data described by Shepard (1987). And it can be made to yield the generalisations 

offered by Tenenbaum and Griffiths. And it has a high degree of mathematical 

elegance, etc. But we don't think that it would help the general thesis which 

Shepard defends to espouse MML—even though the suggestion could be quite 

congenial to him. That Bayesian MML inference is evolutionarily advantageous is 

true, if it is true, quite independently of facts about the kinds of objects that there 

are in the world. 
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