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Planar geometry was exploited for the computation of symmetric visual curves in the image plane, with consistent variations in
local parameters such as sagitta, chordlength, and the curves’ height-to-width ratio, an indicator of the visual area covered by the
curve, also called aspect ratio. Image representations of single curves (no local image context) were presented to human observers
to measure their visual sensation of curvature magnitude elicited by a given curve. Nonlinear regression analysis was performed
on both the individual and the average data using two types of model: (1) a power function where 𝑦 (sensation) tends towards
infinity as a function of 𝑥 (stimulus input), most frequently used to model sensory scaling data for sensory continua, and (2) an
“exponential rise to maximum” function, which converges towards an asymptotically stable level of 𝑦 as a function of 𝑥. Both
models provide satisfactory fits to subjective curvature magnitude as a function of the height-to-width ratio of single curves. The
findings are consistent with an in-built sensitivity of the human visual system to local curve geometry, a potentially essential ground
condition for the perception of concave and convex objects in the real world.

1. Introduction

The question whether the human brain may have an in-
built sense of geometry has led to the emergence of new
approaches to visual cognition (e.g., [1]). Since our visual
environment abounds with curved shapes and features, the
questionwhether our brain is sensitive to the geometric prop-
erties of visual curves comes tomind. Local two-dimensional
(2D) curvature is a highly informative visual cue for global
shape perception, object recognition, and image interpre-
tation (e.g., [2–8]). Nonconscious brain representations of
local stimulus geometry may enable conscious knowledge
about object properties and associations between specific
two-dimensional projections and their correlated three-
dimensional structures in the real world (e.g., [1, 9–14]).
Objects represented in the two-dimensional image plane
cover spaces with a roughly elliptic geometry (Figure 1).
The receptive field structures of visual cortical neurons
(curvature detectors) in the primate brain, sensitive to local
2D properties of curve stimuli, are also roughly elliptic (e.g.,
[15–17]). Global shape representation is enabled by local

stimulus biases favouring symmetry and other 2D structural
regularities [14, 18]. Neurons of the same coding population,
responding optimally to deviations from a single straight line
(Figure 2), constitute a whole curvature-processing network
in the primate brain [19].

At the level of neural processing, currentmodels of curva-
ture coding based on functional properties of visual cortical
cell populations in the primate brain postulate curvature
mechanisms that operate in parallel [19]. They ensure the
processing of local input fromover the visual field and encode
curvature for all orientations and for a range of curvature
amplitudes. Curvature mechanisms are conceived as the
combination of the responses of several coding populations,
with their receptive fields arranged along several such curved
lines in complex images. Neural response activity is optimal
when the line contour matches locations and orientations
to which the neurons of a given population are selective.
Perceived curvature would then result from the interaction of
mechanisms that operate on spatially local contour curvature
signals with higher level processes that serve to establish
global shape [8, 20]. What has remained unclear is which
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Figure 1: Most objects represented by line contours in the two-dimensional image plane cover a space that roughly corresponds to the shape
of an ellipse. The receptive field structures of visual cortical detectors in the primate brain also cover areas which are roughly elliptic. The
height-to-with ratio (ℎ/𝑤), sometimes also called aspect ratio, of 2D shapes is a geometric parameter relative to the visual area covered by a
curve.
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Figure 2: Curvature selective visual cortical neurons of one and
the same coding population respond optimally to deviations from
a single straight line on the basis of functionally identified receptive
field properties, which include contrast sensitivity and selectivity to
local contrast signs (shown here schematically, for illustration). A
multitude of such curvature mechanisms operate in parallel in the
primates’ visual brain.

critical information contained in a curve stimulus produces
the optimal neural response, and whether this suffices to
account for optimal curvature perception.

At the behavioral level, curvature processing depends
on the visual context of the curved target within the scene
context (Figure 3).The visual salience of curves changes with
the direction, the magnitude, and the immediate context
of the stimuli, which has important implications for the
development of visual interface technologies [7]. Perceptual
interactions between curves have been explained in terms
of influences from large-scale neural averaging occurring in
high-level image processing (e.g., [7, 21]), but this explanation
does not help understand what actually determines our per-
ception of a curve. Thus, to find out which local information
in a curve critically determines curvature perception, we
need to investigate visual sensations in response to single,
preferably symmetric curves under conditions that are as
context-free as possible (i.e., no immediate image context).
Previous research has shown that local curvature signals are
strongest when no immediate image context is given [21].

The goal of this study here was to clarify which local
information in a curve critically determines the strength of
visual sensations of curvature in response to single curves
with consistently varying geometric properties under con-
ditions of context-free viewing. A psychophysical scaling
procedure is used to bring the issue whether a particular local
geometric property accounts for the perceived strength of the
curves to the fore. In psychophysics there are several types
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Figure 3: In complex images, local curvature permits generating
strong three-dimensional shape effects. Curvature processing can be
made easier or rendered more difficult when a local curve (target)
is embedded in such a complex scene context of multiple curves.
Contextual effects of this kind are explained in terms of long-range
neural interactions (see [23], for review).

of measurement (see [22], for an up-to-date review). One
relies on experimental protocols that allow manipulations of
physical variables to be reflected back from an experimental
participant into the physical world.The participant’s response
to a stimulus is measured by counting, for example, the pro-
portion of hits and false alarms as in signal detection theory,
or the time to respond to a stimulus (response time). The
level of some physical variable, like sound or light intensity,
required to reach a certain performance criterion (detection
or discrimination threshold) may also be measured. Another
type ofmeasurement, the one used in this study here, involves
participants’ reporting directly on themagnitude of a sensory
or other subjective experiences such as the magnitude of
brightness, darkness, or curvature (as here) perceived in a
single stimulus. To this effect a typical but informal scale
(most often a category scale from 1 to 10 as here in this study)
is used on sample populations of three to ten observers.

2. Material and Methods

Computations based on strictly local curve geometry were
implemented to generate a whole set of single images of
visual curves with variable symmetric curvature in the two-
dimensional image plane. Images of arcs, corresponding to
lower and upper halves of ellipses, were derived mathe-
matically through planar projection by affinity with circles
(Figure 5).This computation permits generating curved lines
in the 2D plane (using AUTOCAD or equivalent software)
with consistent variations in 2D parameters (Figure 5) for
sagitta, chordlength, and height-to-width ratio (ℎ/𝑤), an index
which conveys spatial information relative to the visual area
covered by a curve [2, 3]. The experiments were conducted
in accordance with the Declaration of Helsinki (1964). Visual
images for the experiments were generated in AUTOCAD.
Statistical analyses of the visual data were performed using
SYSTAT.

2.1. Curve Computation. Elliptic arcs of planar ellipses were
computed using projective geometry and the principle of
transformation by affinity with concentric circles (Figure 5),
a relatively simple procedure for computational image gener-
ation. To explain how ellipses are obtained in this way, it is
useful to recall some of the properties of concentric circles,
which share the same centre. In the two-dimensional plane,
a so-called principal circle with centre 0 (𝐶

0,𝑎
) is defined in

terms of

𝑅
2
(𝐶
0,𝑎
) = (𝑥)

2
+ (𝑦)

2
, (1)

where 𝑅 is the radius of the circle and 𝑥 and 𝑦 the two-
dimensional spatial coordinates of the points falling on its
perimeter. A second concentric circle is obtained from the
first one by
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Ellipses as projected images of concentric circles (Figure 2)
may be defined in terms of

(𝑥, 𝑦) = (𝑏𝑥, 𝑎𝑦) (4)

of the principal circle 𝐶
(0,𝑎)

and

(𝑥, 𝑦) = ((𝑎𝑏) 𝑥, 𝑦) (5)

of the secondary circle 𝐶
(0,𝑏)

. This transform is sometimes
referred to as a particular case of Newton’s transform. In the
two-dimensional plane, an ellipse (𝐸) is thus defined in terms
of

𝐸 = 𝑥
2
𝑎
2
+𝑦

2
𝑏
2
= 1, (6)

with axes 𝑎 and 𝑏 are the axes of symmetry intersecting at
the ellipse’s centre. The larger axis of the two is referred to as
the major and the smaller as the minor. The majors and the
minors are directly linked to the sagitta, or maximum height
(ℎ), and the chordlength, or width (𝑤) of elliptic arcs (Table 1).
The curves were presented as individual images of white
curves on dark backgrounds (Figure 3). Presentations were
generated on an IBM computer (Pentium III) equipped with
a standard colour screen with a display resolution of 1024 ×
768 pixels. The curves, with “positive” (upward) and “neg-
ative” (downward) curvature in the two-dimensional plane,
corresponded to 22 elliptic arcs, derived from concentric
circles with varying diameter through planar projection by
affinity as described here above. The luminance of the bright
curves was 40 cd/m2, measured with a standard photometer
(Cambridge Research Systems), equipped with software for
calibrating grey levels (R–G–B combinations) of a computer
screen. The dark background of the screen on which the
curves were presented had a constant luminance (2 cd/m2).



4 Computational Intelligence and Neuroscience

Figure 4: In this study here, image context effects were excluded by presenting images of a single curve, one after another in random order.
In this way, curvature operators from only one, not many different coding channels, were stimulated on a given experimental trial.

Table 1: Values in centimetres (on the screen) for sagitta or maxi-
mum height (h), chordlength or width (𝑤), and aspect ratio (ℎ/𝑤)
of the curves, presented here as individual images of white visual
contours on dark backgrounds.

Sagitta Chordlength Aspect ratio
2 cm 9 cm 4.50
3 cm 8.5 cm 2.83
4.5 cm 8 cm 1.77
6.5 cm 7.5 cm 1.15
8 cm 7 cm 0.87
8.5 cm 6 cm 0.70
9 cm 5 cm 0.50
10 cm 4 cm 0.40
12 cm 3 cm 0.25
14 cm 2 cm 0.14
18 cm 1 cm 0.05

2.2. Subjects. Nine observers (five women and four men),
all of whom are graduate students in neuroscience at the
University of Montpellier, aged between 24 and 26 and with
normal or corrected-to-normal vision participated in the
experiments. All were naive to the purpose of the study. Indi-
vidual experimental sessions were run, with the individual
seated comfortably in a semidark room in front of a computer
screen.

2.3. Procedure. Observers were told that they were going
to view a series of curves, one at a time, and were asked
to type a number between 0 and 10 that was to reflect the
magnitude of curvature that came up on the screen in a
given trial. The curves (Figure 4) were presented in random
order, and for each observer, a different random sequence of
stimuli was generated. A perfectly straight, white line with
zero curvature was shown on the screen at the beginning of
the experimental trials to clarify the visual standard for “zero
curvature.” This control condition was repeated five times
during a session, with control trials randomly positioned
within a sequence of test trials. This allowed for making sure
that subjects consistently replied “0” to the zero curvature
stimulus. The duration of an image presentation was one
second, and observers were encouraged to give their rating
as rapidly as possible. Typing the “enter” key triggered the
presentation of the next stimulus. Each curve was shown
twice within a single individual session of trials.

3. Results

Individual psychometric functions of subjective curve mag-
nitude as a function of the curves’ height-to-width ratio
were plotted. “Positive” and “negative” curves with identi-
cal height-to-width ratios produced identical or very sim-
ilar magnitudes, as could be expected from previous data
reported by Dresp et al. [5], and these data were therefore
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Figure 5: Vertically and horizontally oriented ellipses in the two-dimensional plane can be obtained from concentric circles through a
geometric transform called planar projection by affinity. In Cartesian space, an ellipsemay be defined as the projected image of two concentric
circles. In the two examples given here, images (𝑥, 𝑦) = (𝑏𝑥, 𝑎𝑦) of the principal circle 𝐶

(0,𝑎)
and images (𝑥, 𝑦) = ((𝑎/𝑏)𝑥, 𝑦) of the secondary

circle 𝐶
(0,𝑏)

generate ellipses through planar projection by affinity with the two circles. In our study, upward oriented and downward oriented
arcs of eleven such ellipses, derived from concentric circles with varying diameter, were generated.

averaged. The individual results, averaged over the curve
orientation factor, are shown in the graphs in Figure 6.
Nonlinear regression analysis was performed on both the
individual and the average data using two types of model: (1)
a power function where 𝑦 (sensation) tends toward infinity
as a function of 𝑥 (stimulus input), most frequently used to
model sensory scaling data for sensory continua, and (2) an
“exponential rise to maximum” function, which converges
towards an asymptotically stable level of 𝑦 as a function of
𝑥.The exponential-rise-to-maximum function thus levels out
flat without progression toward infinity. The exponential-
rise-to-maximum function is written in terms of

𝑦 = 𝑎 (1− exp (−𝑏𝑥)) . (7)

The power function is expressed in terms of

𝑦 = 𝑎𝑥
𝑏
. (8)

The goodness of fit of these models was assessed on the
basis of nonlinear regression analysis. The numerical param-
eter values for 𝑎, 𝑏, the regression coefficient 𝑅2, and the
associated probability limits (𝑝) for each type of fit are
summarized in Tables 2(a) and 2(b). The results from the
nonlinear regression analyses show that the exponential-
rise-to-maximum function and the power function produce
reasonably good model fits to the individual data. Fits to the
average data (shown in Figure 7, with error bars) confirm
these conclusions.

4. Discussion

The visual magnitude of curvature in response to images
of single curves without other local image contexts con-
sistently increases with the aspect ratio of the curves, a
two-dimensional geometry based shape index (e.g., [11, 18]).
Context-free viewing is potentially critical to this finding.
When a curved target is presented together with other curves
in a complex scene context, the visual processing of the
target is influenced by the context and becomesmore difficult
to predict. Such contextual effects are likely to be due to
influences from large-scale neural interactions (see [23],
for review) in networks of cortical operators, functionally
identified in the primate brain [19]. In this study here, context
effects on the curvature ratings can be excluded given that
curvature operators from different coding populations were
not stimulated. Instead, we may assume locally independent
curvature processing, where the effect of a single curvature
signal at a given trial, presented without any other image con-
text here (no local or global interactions), can be directly asso-
ciated with the curvature estimate it produced. Previous psy-
chophysical studies of visual curvature coding [21] had shown
that a local curvature signal is strongest in brief viewing and
in response to images with a single symmetric curve. Sym-
metry of the curves is probably another important factor [14].
The mechanisms which explain why symmetry helps reduce
uncertainty in visual processing are unclear. It has been
suggested that all visual 3D interpretations consistent with
a single 2D image would be mirror symmetric, which could
imply that our visual brain has evolved toward an optimal
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Figure 6: Continued.
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Figure 6: The individual psychometric functions are shown here. Subjective magnitudes of visual curvature are plotted as a function of the
height-to-width ratio of the curves.

sensitivity to symmetrical stimulus input. Also, the process
that leads to 3D shape recovery often depends on the aspect
ratio, or height-to-width ratio, of shapes, and the visual
system appears to compute this parameter on the basis of
criteria for minimum surface area and maximal planarity of
contours [11, 18]. The existence of visual mechanisms that
rely on local 2D shape geometry to recover a 3D shape
interpretation makes good sense and confirms conclusions
from earlier studies (e.g., [8, 9, 24]). The idea of local
mechanisms for global shape recovery is consistent with the
fact that shape recognition is viewpoint independent as far
as the projected image does not change substantially under
small or moderate changes in the viewing direction of the
shape (e.g., [14]). Sensitivity to planar geometry thus appears
as a potentially important aspect of brain processing, essential
for generating the most likely shape interpretation on the
basis of relatively simple computations. The findings from

this study here indicate that the human perceptual system
is definitely sensitive to the local geometry of curve stimuli.
Whether this sensitivity is in-built or learnt remains to be
clarified in experiments testing its ontogenetic development
(cf. [1]). Whether the power law or the exponential rise to
maximum law should be preferred to model the findings
depends on conceptual issues relative to sensory continua (cf.
[22] for a recent review) which are beyond the scope of this
paper and potentially irrelevant, as both functions are shown
to produce reasonably good fits.

5. Conclusions

Curved objects represented in the 2D image plane can be
computed on the basis of a very simple mathematical trans-
form based on planar shape geometry. These computations
yield consistent variations in a limited number of critical
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Figure 7: The psychometric function describing the average data
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plotted as a function of the height-to-width ratio of the curves.

Table 2: Numerical values for a, b, the regression coefficient 𝑅2, and
probability limits (p) for exponential (a) and power (b) functions
fitted to the individual curvature estimates (Figure 5).

(a) Exponential

𝑎 𝑏 𝑅
2

8.21 −2.01 0.94

8.14 −1.47 0.90

8.09 −1.97 0.92

7.43 −2.14 0.84

8.36 −1.35 0.95

9.63 −1.99 0.98

8.05 −1.92 0.95

9.24 −1.46 0.95

7.44 −2.77 0.91

(b) Power

𝑎 𝑏 𝑅
2

5.94 3.33 0.94
5.41 3.70 0.98
5.83 3.37 0.95
5.50 3.39 0.96
5.33 3.94 0.96
6.76 3.56 0.84
5.74 3.45 0.95
6.06 3.81 0.97
5.82 3.06 0.92

curve parameters. Power and exponential rise to maximum
models adequately account for curvature magnitude scaled
by human observers as a function of local curve parame-
ters relative to the two-dimensional visual area covered by

the curve, the height-to-width ratio, showing that the visual
magnitude of curvature in planar images can be consistently
linked to this local parameter. The conclusions lend support
to theories of geometry based brain representations for the
perception or recovery of complex shape information from
two-dimensional images (e.g., [1, 10, 13, 18]).
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