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Abstract:

This article consists in two parts that are complementary and autonomous at
the same time.

In the first one, we develop some surprising consequences of the introduction
of a new constant called Lambda in order to represent the object “nothing”
or “void” into a standard set theory. On a conceptual level, it allows to see
sets in a new light and to give a legitimacy to the empty set. On a technical
level, it leads to a relative resolution of the anomaly of the intersection of a
family free of sets.

In the second part, we show the interest of introducing an operator of poten-
tiality into a standard set theory. Among other results, this operator allows
to prove the existence of a hierarchy of empty sets and to propose a solution
to the puzzle of ”ubiquity” of the empty set.

Both theories are presented with equi-consistency results (model and inter-
pretation).

Here is a declaration of intent : in each case, the starting point is a conceptual
questionning; the technical tools come in a second time

Keywords: nothing, void, empty set, null-class, zero-order logic with quan-
tifiers, potential, effective, empty set, ubiquity, hierarchy, equality, equality
by the bottom, identity, identification.
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Part I

Lambda theory : Introduction
Of A Constant For “Nothing”
Into Set Theory: Most
Noticeable Consequences And
Perspectives.

1 Introduction

In this section, we present several immediate consequences of the intro-
duction of a new constant called Lambda in order to represent the object
“nothing” or “void” into a standard set theory. The use of Lambda will ap-
pear natural thanks to its role of condition of possibility of sets.
On a conceptual level, the use of Lambda leads to a legitimation of the empty
set and to a redefinition of the notion of set. It lets also clearly appear the
distinction between the empty set, the nothing and the ur-elements.
On a technical level, we introduce the notion of pre-element and we suggest
a formal definition of the nothing distinct of that of the null-class. Among
other results, we get a relative resolution of the anomaly of the intersection
of a family free of sets and the possibility of building the empty set from
“nothing”. The theory is presented with equi-consistency results (model and
interpretation).
On both conceptual and technical levels, the introduction of Lambda leads to
a resolution of the Russell’s puzzle of the null-class.
Finally, we suggest the possibility of the existence of a zero-order logic with
quantifiers.

1.1 Why

Our aim is to clarify the real puzzle of Russell’s conception of the null class
as developed in the “Principles of Mathematics”[1]: ‘But with the strictly ex-
tensional view of classes propounded above, a class which has no terms fails to
be anything at all: what is merely and solely a collection of terms cannot sub-
sist when all the terms are removed.’; Russell and Whitehead will formally
express this inexistence in “The Principia Mathematica”[2]: ‘` .¬∃ ! Λ’1 .

1N.B. In Russell, Λ denotes the null-class, which is assimilated to nothing.
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Russell could not accept the existence of the null class and assimilates it to
“nothing”, while recognising its technical utility, which is not conceptually
satisfying for us. Notice that in fine Russell conceives the null class as the
standard empty set (symbol: ∅): ‘By symbolic logicians, who have experi-
enced the utility of the null- class, this will be felt as a reactionary view. But
I am not at present discussing what should be done in the logical calculus,
where the established practice appears to me the best, but what is the philo-
sophical truth concerning the null-class’ [3].

Other logicians and mathematicians saw ontological difficulties with a class
free of elements.
The first of them, Frege[4], strongly inspired Russell with his analytical phi-
losophy approach in general, and his conception of the null-class in particular:
‘When a class is composed of objects, when a set is the collective union of
these, then it must disappear, when these objects disappear. If we burn down
all the trees of a wood, we thereby burn down the wood’.
The fathers of the standard axiomatic set theory agreed with this view. So,
in 1908, Zermelo [5] wrote: ‘There exists a fictitious set, the null set, 0, that
contains no element at all.’. In 1923, Fraenkel [6] added: ‘For purely formal
reasons, i.e. to be able to express some facts in a more simple and adequate
manner, let us introduce here an improper set [uneigentliche Menge], the al-
leged set zero [Nullmenge] .../... It is defined by the fact that it does not
contain any element; so it is not really a set, but it must be taken as such and
be designed by 0’.
In his nominalist approach, Lesniewski[7] denies any kind of existence to
classes in general and to the null-class in particular: ‘I have always rejected,
.../..., the existence of theoretical monsters such as the class of squared cir-
cles, being aware that nothing can be constituted of what does not exist’.
Lesniewski only concedes the use of a nominal constant for denoting the noth-
ing.
These quotations show that the doubts about the conceptual legitimacy of
the null-class don’t come only from detractors of set theory like Lesniewski,
but mainly from several fathers themselves of the set theory!

We want to introduce here a clear distinction between the notion of empty
set and the one of “nothing” (or “void”), that we will distinguish from ∅ via
the symbol Λ.2 The “nothing” must be conceived as the free space in any
set (so also in the empty set): this is intuitively linked to the naive image
of a set, as a “box” containing “objects” and where this is precisely possible
because the box presents a “free space”. This condition of possibility is also
a condition of possibility in other fields, like the one of numbers and letters,

2In the use we make of it, Λ is not a class as in Russell; it is a new object that will be
defined as a pre-element and a condition of possibility of sets, among others of the empty
set.
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see Pythagoras[8]: ‘The void exists... It is the void which keeps the things
distinct, being a kind of separation and division of things. This is true first
and foremost of numbers; for the void keeps them distinct.’ Here we see that
the “nothing” clearly plays the role of cut.

The naive acceptance of the idea of “set” is then somehow validated in the
case of the empty set: the empty set is a collection of “nothing”.
Furthermore, this will allow the symbolic representation of the “empty space”
that is intuitively present in any set, particularly in the traditional pictures
of sets.

It would be natural to use the terminology of “inclusion” for the fact that
the “empty space” Λ is “in any set”. Nevertheless we show that the same
symbol ∈ can be used safely to express the fact of “belonging” to a set, for
an object that is not Λ (and such an object is then called an “element” or a
“set”), as well as the fact to be “the space Λ, present in a set” (“space” called
“pre-element”).

More precisely:

“x ∈ y” will express that x is an “element” of y only when x 6= Λ
(corresponding to the usual way of “belonging”).

“Λ ∈ y” will express that Λ is “present in y”; and we use then the word
“pre-element” instead of “element” to avoid any confusion.

Also, when more complex objects are constructed (via “terms”, see sec-
tion 2.2), the same kind of careful distinctions will be taken into account, as
several interpretations are available. For example the usual singleton “{ a }”
is simply “standard” in the universe “without Λ”, while in the “completed
universe” it will appear as something like “{ a , Λ}”. This is further discussed
in section 2.2).

However, even if the same ∈-symbol is used in our theory, the roles of the
elements/sets and of the unique pre-element are never confused; this imme-
diately comes from the characteristic properties:

x is an “element” ⇐⇒ ∃ y y ∈ x

x is a “pre-element” ⇐⇒ [ (@ y y ∈ x ) & ( ∀z 6= xx ∈ z ) ]

and these properties are guaranteed by the axioms (see section 1.2).

In addition, if the nothing-void is conceived as a potential, the Lambda
theory is the first step forward to a theory where the notion of “potential
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membership” (“potentially belongs to”) can be conceived. In that way, we
can hope to handle the strange “ubiquity property” of the empty set (Theory
in development).

Finally, we want to reduce significantly the ontological commitment of set
theory. The classical axiom of existence becomes useless: there is no need
to postulate the existence of a set any more (should it be the empty set) as
Lambda (the “Void”, the “Nothing”) can be now seen as a generator of a
hierarchy of standard sets.

Picture of a set and representation of Lambda
Lambda denotes the free zone around the element “a”. The set pictured

here is {a} in the universe V of a standard set theory
∑

. In the universe VΛ

of the Λ-theory
∑

Λ, the set pictured here is {a,Λ} .

b
a

Λ&%
'$

1.2 How

Let’s simply use the usual symbol ∈ to express that Λ is “in ∅”, in the
same way as Λ is “in any set x”. Starting from some set theory

∑
(in which

the extensionality axiom holds and where ∅ exists), in the current first-order
language L = (∈,=), we define a new theory

∑
Λ in the expanded language

LΛ = (∈,=,Λ) (where Λ is a new constant symbol). This allows to give several
distinct interpretations to the terms conceived in a classical way. Some of these
new distinct interpretations produce interesting results, like: {Λ} = ∅, and
relative “solutions” to the well-known “anomaly” of the usual phenomenon:
“the intersection of an empty family is the universal class”. If we call “sets”
(in

∑
Λ) all the objects distinct from Λ, we expect that their behaviour is

fundamentally the one described by
∑

.

The behaviour of Λ will be governed (in
∑

Λ) by the two following axioms:

(1) Axiom of the Pre-Element : ∀x (x 6= Λ ⇒ Λ ∈ x )
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(2) Axiom of the Nothing-Void : ∀x (¬ (x ∈ Λ ) ).

Notice that there can only be one “object” such as Λ, as axiom (1) is in
contradiction with: ∃ y 6= Λ ∀x¬ (x ∈ y ).

It is easy to construct (in a metatheory like Zermelo-Fraenkel) a model
MΛ for

∑
Λ, starting from a model M for

∑
: we just artificially add a new

element (“Λ”) to the universe of M and extend adequately the ∈-relation of
M . The axiom of extensionality will still be applicable in MΛ. It is easy,
modulo some minimal conditions on

∑
, to improve this result, namely to

give an interpretation of
∑

Λ in
∑

(instead of a stricto sensu “model” as just
described), and to clarify the possibility of using Λ as parameter in several
comprehension axioms: inter alia the example of separation, which is valid in
MΛ even for LΛ-formulas, once it is valid in M (for L-formulas).

2 The theory

We start with a set theory
∑

, expressed in L = (∈,=), and assume “>”,
“⊥” (respectively “true”, “false”) as primitive symbols in our (classical) logic.

We expect
∑

to satisfy at least the 3 following conditions:

-
∑
` EXT,

where EXT is the Extensionality axiom: (∀x∀y∀t(t ∈ x ⇐⇒ t ∈ y)) =⇒ x =
y.

-
∑
` ∃ a ∀x (x /∈ a ); so “∃ ∅”.

-
∑
` ∀ a ∀ b∃ c∀x (x ∈ c ⇐⇒ (x = a ∨ x = b ) );

(the classical “Pairing axiom”).

Our theory
∑

Λ, in the language LΛ = (∈,=,Λ) initially assumes the
axioms described hereunder (2.1), but can surely be enriched based on the
observation of the model MΛ obtained by modification of M (see section 3).
For convenient purposes, we introduce the following abbreviations:

- “∀∗x” for “∀x 6= Λ”.

- “∃∗x” for “∃x 6= Λ”.

Λ will be called “the Nothing” or “the Void”; and the “sets” are the ob-
jects x such that x 6= Λ.
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For ϕ a formula in LΛ (with “>,⊥”, allowed), ϕ∗ will be obtained from ϕ
by replacing in ϕ each ∀ by ∀∗ and each ∃ by ∃∗.

If Γ is a theory (list of axioms), Γ∗ will denote the list of σ∗, with σ in Γ.

2.1 Axioms of
∑

Λ

(1) ∀∗x(Λ ∈ x).

(2) ∀x(x /∈ Λ).

(3) σ∗ for any axiom σ of
∑

(so
∑

Λ “contains”
∑

).

Remarks:

One can easily check that:

-
∑

Λ ` EXT, i.e. EXT is applicable in the “full” universe (sets + Λ).

-
∑

Λ ` ∀x(x ∈ ∅ ⇐⇒ x = Λ), i.e. ∅ is the “singleton” of Λ (cf. hereunder
our discussion about “terms”).

2.2 Interpretations for terms

Usually, the term τ = {x | ϕ} is the name of the (unique via EXT) set b
such that ∀x(x ∈ b ⇐⇒ ϕ). In the theory

∑
Λ however, we can now distin-

guish different interpretations for a term τ = {x | ϕ} based on a formula ϕ
(in LΛ):

Definitions:

1) τ∗ = {x | ϕ}∗ is the unique set (if it exists) b (so b 6= Λ) such that :
∀∗x(x ∈ b⇐⇒ ϕ∗), or equivalently: (∀x(x ∈ b⇐⇒ ϕ))∗.

2) τΛ = {x | ϕ}Λ is the unique set (if it exists) b (so b 6= Λ) such that :
∀∗x(x ∈ b⇐⇒ ϕ), or equivalently (in

∑
Λ): (∀x(x ∈ b⇐⇒ (ϕ ∨ x = Λ)).

3) τ = {x | ϕ} is the unique object (if it exists) b (it could be Λ) such that
: ∀x(x ∈ b⇐⇒ ϕ).

We will also use these indices “*” and “Λ” for the notations that abbrevi-
ate several classical terms, like:



100

{ a } : = {x | x = a} (singleton)

{ a , b } : = {x | x = a ∨ x = b} (pair)

℘a : = {x | x ⊆ a} (power set)⋃
a : = {x | ∃ y ∈ a, x ∈ y} (general union)

a ∪ b : = {x | x ∈ a ∨ x ∈ b} (binary union)⋂
a : = {x | ∀ y ∈ a, x ∈ y} (general intersection)

a ∩ b : = {x | x ∈ a ∧ x ∈ b} (binary intersection)

With these clarifications, one can easily check that, in
∑

Λ:

- {Λ} = {Λ}Λ = {Λ}∗ = ∅: the empty set is the singleton of Λ.

- ℘Λ = ℘ΛΛ = ℘∗Λ = ∅: the empty set is the Power set of Λ.

-
⋂

Λ ∅ = ∅: this constitutes a relative solution (Indeed, as we will see
in section 4.4, it is the case that

⋂
Λ Λ = V ) to the well known classical

“anomaly” of
⋂
∅ = V , that is in dissymetry with

⋃
∅ = ∅. In the Lambda

theory,
⋂

Λ ∅ =
⋃

Λ ∅ = ∅.

-
⋂
∅ = Λ. In the same way,

⋃
∅ = Λ. So, once again we have a symetry

between union and intersection of an empty family.

- Notice that
⋂∗ ∅ = V , as in the “classical” situation.

3 Modelisation

3.1 The Idea

Working in Zermelo-Fraenkel as meta-theory, we can start with a model
(in the stricto sensu sense, as in [9]) for

∑
:

M = (UM ,∈M ), where UM is a set and ∈M is a binary relation on M .

The desired model for
∑

Λ is simply MΛ = (UΛ , ∈Λ), where UΛ = UM ∪
{Λ } and ∈Λ is the obvious extension of ∈M such that: ∀x ∈ UM ( Λ ∈Λ x)
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and ∀x ∈ UΛ ¬ (x ∈Λ Λ ), where Λ is some chosen element, not in UM .

One can easily check that MΛ models
∑

Λ.

The initial set theory
∑

should only satisfy the basic conditions described
in section 2. When stronger theories

∑
are considered, new interesting prop-

erties appear in MΛ, for example when
∑

satisfies the Power set Axiom, or
other specific forms of comprehension. For further details, please refer to
section 3.3. Examples: one can take (for

∑
) ZF, or NF (Quine’s New Foun-

dations), or a “positive set theory” [10]. Furthermore, we can verify that
for these “agreeable theories”, there are corresponding comprehension axioms
still applicable in MΛ, even when the involved formula ϕ is in LΛ (instead of
in L). As a consequence, Λ may appear as a parameter.
For example: the set {x ∈ a | ϕ}∗ exists in MΛ when M is a model of ZF,
even when ϕ is in LΛ; similarly, {x | ϕ}∗ exists in MΛ when M is a model
of NF (and ϕ is stratified): the reason is that by replacing in ϕ any atomic
formula x ∈ Λ,Λ ∈ x, x = Λ, etc. by (the “ad hoc”) ⊥ or >, one gets an
equivalent formula in L, stratified if ϕ was.

3.2 Interpretation of
∑

Λ in
∑

The interpretation of
∑

Λ in
∑

here developed guarantees the equi-consistency
of

∑
and

∑
Λ; the converse interpretation (of

∑
in

∑
Λ) is obviously given

by the initial universe of
∑

. The construction described in 3.1 is the classical
model-theoretic one. However if equi-consistency only is considered, this con-
struction can be improved and we can give a direct interpretation of

∑
Λ in

∑
.

Just take, in the universe U of
∑

, a copy U ′ of that universe, such that
U ′ 6= U ; this allows to choose an object in U \U ′, and we call this object “Λ”.
The usual technical trick to get such a U ′ and Λ (consider f.ex. U ′ : =
U × {∅}, and Λ : = ( ∅ , { ∅ }) is perfectly available here (modulo our condi-
tions on

∑
; cf. section2).

Of course we transfer isomorphically the ∈-relation on the universe U to
the universe U ′, so that (U ′, ∈′) satisfies

∑
. As universe for our interpretation

of
∑

Λ in
∑

, we take then the class UΛ : = U ′ ∪ {Λ }, and apply on it the
obvious class-relation ∈Λ defined by:
x ∈Λ y iff [ ( x ∈ U ′ ∧ y ∈ U ′ ∧ x ∈′ y ) ∨ (x = Λ ∧ y ∈ U ′) ].
The conclusion is now similar to the one of 3.1: (UΛ , ∈Λ) interprets

∑
Λ (in∑

).
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3.3 Enriched Theories

We already mentioned in 3.1 that MΛ (model in 3.1 or interpretation in
3.2) presents new interesting properties, when stronger theories

∑
are con-

sidered.
This is particularly the case for comprehension schemes, and can be explained
very simply modulo the following technical remarks.

From the construction, it is obvious that, in MΛ, any atomic formula con-
taining the symbol Λ (x ∈ Λ , Λ ∈ Λ , Λ ∈ x , x = Λ, etc) is equivalent to
⊥ or >, if the variables are supposed to represent objects distinct from Λ.

As a consequence, for any sentence σ (sentence: formula without free vari-
able) in the language LΛ, the sentence σ* is equivalent, in MΛ, to a sentence
(σ̃)*, where σ̃ is obtained from σ by replacing each atomic formula containing
the symbol “Λ” (adequately) by “⊥” or “>”, the choice being determined by
the axioms (concerning Λ) of

∑
(see 2.1).

Examples:

One will replace “x ∈ Λ ”, “Λ ∈ Λ ”, “x = Λ” by “⊥”; and “Λ ∈ x” by
“>”.

This elementary fact proves the following technical lemma:

If
∑
` ( σ̃ )*, then MΛ |= σ*.

This has interesting consequences on several so-called “comprehension
schemes”; three examples are described below:

1) stratified comprehension, i.e. the scheme of axioms:

σ (the universal closure of): ∃ a∀x (x ∈ a ⇐⇒ ψ ), for each stratified
formula ψ.
Let’s consider here even a stratified ψ in LΛ (ψ “stratified” for LΛ is obtained
from a stratified formula in L, where one or more free variables have been
replaced by “Λ”). Then it is clear that ϕ̃ is again stratified (in L this time).

So, if
∑

is the system NF (cf.[9]), then MΛ |= σ∗, even when σ is a strat-
ified comprehension axiom with ψ in LΛ.

2) Separation and Replacement (as in ZF):

for σ an instance of one of these classical schemes, with Λ now admitted
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as parameter in the involved formulas ψ, we obviously have that σ̃ is again
an instance of the same scheme (in L this time).

Let us briefly detail this for separation (the case of replacement is analo-
gous):

Let’s consider σ (the universal closure of): ∀ b∃ a ∀x (x ∈ a ⇐⇒ (x ∈
b ∧ ϕ )), with ϕ in LΛ (our formula ψ here is: x ∈ b ∧ ϕ). Then σ̃ is (the
universal closure of): ∀ b∃ a ∀x (x ∈ a ⇐⇒ (x ∈ b ∧ ϕ̃ )), which is again
an axiom of separation (in L).

Conclusion: if
∑

is ZF, then MΛ satisfies the versions of Separation* and
replacement* that admit Λ as parameter. (i.e. involved formulas ψ in L∧)

3) Positive Comprehension:

several such systems have been proposed and studied; a description and
references can be found in [9].
The basic idea is to consider comprehension for “positive” formulas, i.e. for-
mulas not allowing negation (nor, of course, implication); notice that “⊥” and
“>” are considered as positive formulas. The corresponding scheme is then
made of sentences σ (universal closure of): ∃ a ∀x (x ∈ a ⇐⇒ ϕ), for any
positive ϕ.

Now, let’s allow also positive formulas ϕ in LΛ. It is obvious that ϕ̃ is
again positive (in L), so that σ̃ is still in the same scheme.

So, if
∑

is a positive set theory (one of the existing variants), then MΛ

satisfies the version of
∑

* that allows Λ as parameter in the comprehension
scheme.

Synthetic conclusion:
Our model/interpretation construction (cf. 3.1, 3.2) gives equiconsistency re-
sults for several “enriched” theories; more precisely:

for
∑

satisfying specific “comprehension schemes” (as described above),
we have the equiconsistency between

∑
and

∑+
Λ , where:

∑+
Λ is

∑
Λ enriched

with Γ*, Γ being one of the types of schemes 1), 2), 3), that admits here Λ as
parameter in the involved formulas ϕ.
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4 Interest, Nature & Properties of Λ

4.1 Terminology

From an ontological point of view, we insist on the fact that here (in
∑

Λ),
we clearly distinguish two types of objects:

- the “sets”, elements x characterized (equivalently) by: x 6= Λ; Λ ∈ x.

- the “void” or “nothing” or pre-element Λ characterized by our axioms
(1), (2) (section 1).

4.2 Internal and External Condition of Possibility

Lambda is a condition of possibility of elements (in the state of affairs,
sets) in two ways:
- as an internal condition of possibility, Λ enables a set to contain elements.
Lambda is the fundamental constituent of any set. This is expressed by the
axiom of the pre-element. Indeed, in order for a set to contain other sets, an
available space is necessary. Without the internal condition of possibility Λ, a
set would be an atom, an ur-element, because there would be no way to make
a distinction between the elements of a set.
- as an external condition of possibility, Λ also allows to have different sets.
Indeed, the “Nothing” plays the role of cut, the physical separation between
sets.

Thanks to this statute of condition of possibility, we think that the use of
Lambda in set theory and the construction of

∑
Λ are not artificial.

4.3 Lambda and the “contradictory property”

The contradictory property is traditionally sufficient to define ∅: {x : x 6=
x} = ∅. Here in

∑
Λ, that property offers some more possibilities:

- {x : x 6= x} = Λ.

- {x : x 6= x}Λ = {x : x 6= x}∗ = ∅.

4.4 Lambda versus the Null-Class (or Empty Set ∅)
It is fundamentally clear that Λ is not ∅, as the first is the (unique) pre-

element, while the second is an element (or set) (cf. 4.1). This has, of course,
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many consequences on their respective behaviours; we give here some inter-
esting examples, involving cases where they behave in an analogous manner,
as well as cases where they don’t. For the notations (terms): cf. 2.2.

Lambda (Λ) Null Class (∅ = {Λ})⋂
Λ = V

⋂
∅ = Λ.⋂

Λ Λ = V
⋂

Λ ∅ = ∅.⋂∗
Λ = V

⋂∗ ∅ = V .
Λ ∩ ∅ = Λ ∅ ∩ ∅ = ∅.
Λ ∩ Λ = Λ ∅ ∩ ∅ = ∅.
{Λ} = ∅ {∅}@.

As we have announced in section 2.2 as well, the classical anomaly of the
intersection reappears at a deeper level, at Lambda level. Nevertheless we
find interesting to see that it does not appear on the level of the sets any
more.

4.5 Lambda versus Ur-elements

The use of “nothing” also enables the distinction of the empty set from
ur-elements (or “atoms”), which are generally considered as kinds of empty
sets:
with u for an ur-element and x for a set, the expression u ∈ x (which can
be true or false) is syntactically admitted, while the expression x ∈ u is not
syntactically allowed.
Of course, “no thing” belongs to an ur-element, even not Lambda. This is
precisely why an ur-element is a kind of atom. But we can make the distinction
between Lambda and an ur-element too. Lambda belongs to the empty set,
and more, Lambda belongs to every set. As we have defined it, as condition
of possibility of elements, Lambda is a pre-element.
Finally, Lambda is different from the empty set by definition, and by its
behaviour as we have seen in point 4.4.
Notice that Λ also enables the distinction ∅ from any ur-element.

4.6 Lambda as Generator of Sets

It is “ontologically interesting” to notice that, while we presented here
∑

Λ

as constructed on the basis of
∑

, where “∅” is already present, we can easily
give an autonomous direct presentation of

∑
Λ where ∅ would be “generated”

(for example as {Λ} or ℘Λ, as we have seen) if
∑

Λ assumes the Pairing axiom
or the Power set axiom.

So it is possible to make redundant the classical axiom of existence; there
is no need any more to postulate the existence of a set. Moreover, we can
build the hierarchy Vω of sets starting from Lambda (assuming the Pairing
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Axiom), or even the Von Neumann Hierarchy (of the well-founded sets), if
∑

extends ZF:

- Let V0 be Λ.
- For any ordinal number β, let Vβ+1 be the Power set of Vβ . So, V1 is
℘(Λ) = ∅.
- For any limit ordinal λ, let Vλ be the union of all the V -stages so far:
Vλ :=

⋃
β≤λ Vβ .

The class V is defined as the union of all the V -stages: V :=
⋃
α Vα.

For those who consider the need to postulate some primitive entities to
be problematic, we hope that Lambda will appear as a more attractive entity
than the empty set or any other primitive set. Indeed, in this way, the theory
is completed by the bottom, in a “minimal way” (Lambda being “nothing”),
and is more in adequacy with a possible “mathematical reality” or at least
with “formal possibilities”.

4.7 Lambda and Simplification of the Axiom of Infinity

Another nice consequence of the use of Λ is the possibility - modulo a
slight modification - of simplifying the classical axiom of infinity, as used in
ZF.

That axiom starts with an initial set b (often, but not necessarily, ∅) and
postulates the existence of an infinite set (“x”):

∃x(b ∈ x ∧ ∀y ( y ∈ x⇒ y ∪ {y} ∈ x)).

In
∑

Λ, the part “b ∈ x” can be removed, as Λ is “omnipresent” as pre-
element in any set. So that the axiom of infinity can be reformulated as:

∃∗x∀y(y ∈ x ⇒ y ∪ {y} ∈ x).

4.8 Lambda as solution to the Puzzle of the Null-Class

We have seen that the Puzzle of the Null-Class as found in Russell consists
in the dichotomy between the technical legitimacy of the use of the Null-Class
and its ontological illegitimacy.
In the “Principia”, Russell justifies this ontological illegitimacy in two ways:
- the null-class does not exist because it does not contain anything.
- the null-class does not exist because it cannot belong to any class.3

3A.N. Whitehead, B. Russell. Principia Mathematica To *56. Ćambridge University
Press, (1997) p.227.
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In the “Principles”, Russell did not really succeed in giving conceptual
legitimacy to the null-class; in the “Principia”, he does not even try to do it.
However he seems to be satisfied in some way with the conceptual use of the
“nothing” since he reduces the null-class to it. Indeed, if the “Nothing” had
no legitimacy at all, the reduction of the null-class to the “Nothing” would
make no sense.

The trick of Lambda theory here consists in starting from and exploiting
this conceptual legitimacy of the “Nothing” in order to give it a technical le-
gitimacy as well.

The way to give technical legitimacy to the “Nothing” is the introduction
of the axiom of the “pre-element”.
While Russell justifies the inexistence of the null-class by denying it the priv-
ilege of belonging to another class, the axiom of the “pre-element” says that
Lambda denotes the “Nothing” because it belongs to any set. In the spirit of
the definition of the inclusion of the empty set in any set, we could say that,
since Lambda denotes the “Nothing”, there is no set to which Lambda cannot
belong. So Lambda belongs to the empty set too.
The empty set becomes the set that contains only Lambda.

The fact that our intuitive wishes about an adequate behaviour of Lambda
can be formally axiomatized and lead to equiconsistency results gives a tech-
nical legitimacy to the notion of “void”.

In this way, not only the null-class seems to acquire complete (conceptual
and technical) legitimacy in set theory, but the “Nothing” does too.

5 Zero-Order Logic with quantifiers

The Lambda theory is expressed in the standard first-order logic. It means
that the quantified variables x, y, z... must be instantiated by first-order ob-
jects.
Second-order logic, in addition to individuals, quantifies variables that range
over relations (properties) and functions too.
Second-order logic is extended by higher-order logics and type theory.
In the other direction, we have the zero-order logic. It is often assimilated
to propositional calculus because quantification is not possible on variables of
propositions. But zero-order logic is sometimes also presented as a first-order
logic without quantifiers. A finitely axiomatizable zero-order logic is isomor-
phic to the propositional logic. With axiom schema, it is a more expressive
system than propositional logic (cfr. the system of primitive recursive arith-
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metic).
As a consequence of the introduction of Lambda in the language of a stan-
dard first-order logic, we think that we can consider the possibility of the
existence of a zero-order logic with quantifiers that range over pre-elements
only. As pre-element, Λ is a zero-order entity. Indeed, Lambda appears to be
the smallest constituent that can be added to a set theory.
In this case, propositional calculus becomes the fundamental structure of any
logic.

6 Conclusion

“Nothing” is added to set theory. This means: the introduction of the
constant Lambda denoting the “Nothing” (the Void) in the language of set
theory does not imply that some new thing (in the sense of: “new set”) is
added to the theory. The Nothing is subjacent to the standard set theory as
a pre-element. It is a condition of possibility for the elements of the theory.
The Nothing has two functions:
- the first one is the function of internal condition of possibility. This enables
a set to contain elements. Lambda is the fundamental constituent of any set,
and this is expressed by the axiom of the pre-element;
- the second one is the function of external condition of possibility. Lambda
plays the role of the physical space, of cut, between sets and allows to have
distinct sets; this can be more specifically studied by formal ontology.

We believe that, as condition of possibility of sets, Lambda is more fun-
damental than sets and should not be reduced to a technical artifice. The
Lambda theory is a natural approach of set theory and probably introduces
the smallest, the minimal constituent that can be added to a set theory.

The use of Lambda leads to several interesting and/or surprising concep-
tual and/or technical results.

1) Introducing the Nothing in the language of set theory allows to distin-
guish the Nothing from the empty set, solving what we called the puzzle of
Lambda in Russell’s approach (see section 1.1).

2) The notion of “set” acquires here a real ontological dimension. In the
naive conception of a set, a set is a collection of elements, and therefore it is
not easy to give conceptual legitimacy to the empty set. The Lambda theory
legitimates and gives an emblematic status to the empty set, now defined in
a positive way: it is the only set that contains only Nothing.

3) More generally, the Lambda theory also allows to redefine the concept
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of set: a set can contain sets or objects thanks to the free space denoted by
Λ. The naive acceptance of set is in some way validated in the case of the
empty set: the empty set is a collection of “Nothing”.

4) The Lambda theory also allows to build the empty set by means of the
axiom of pairing and also by means of the axiom of the power set applied
to Lambda: ∅ = {Λ} = ℘(Λ). In classical ZF set theory, the existence of a
set is to be postulated; in Lambda theory, the first set is built from “Nothing”.

5) In the Lambda theory, the axiom of the existence of the empty set or
the construction of the empty set by means of a contradictory property be-
comes useless. “Something”, or rather a pre-thing belongs to the empty set:
the “Nothing”, and remember that the empty set is the only set to which only
Lambda belongs.

6) It also allows to distinguish the empty set from ur-elements, which
are generally considered as kinds of empty sets. No thing belongs to an ur-
element, not even Lambda. This is why an ur-element is a kind of atom. Now,
no thing belongs to Lambda either. But we can make the distinction between
Lambda and an ur-element: Lambda belongs to the empty set, moreover,
Lambda belongs to every set.

7) Finally, the Lambda theory is the first step forward to a theory where
the notion of “potential membership” (“potentially belongs to”) can be con-
sidered and formalized.

So, the use of Lambda in set theory appears natural and could even be
seen as necessary.

For the theory, the balance in terms of investment and profits is clearly
positive: the investment is quasi-null, the gains are numerous.
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Part II

Theory of the Potential: Some
Consequences Of The
Introduction Of An Operator Of
Potentiality Into Set Theory.

7 Introduction

This section shows the possibility of the existence of a hierarchy of empty
sets and proposes a solution to the puzzle of ”ubiquity” of the empty set
via the introduction of an operator of potentiality into set theory [12]. The
introduction of this operator of potentiality indeed allows to mathematically
distinguish the concepts of potentiality and effectiveness, and consequently to
see sets in a new light. It also leads naturally to interesting questionning on
equality and identification, with some unexpected results.

The starting point, genealogically, was a tentative to resolve the following
conceptual question:

- Does a hierarchy of empty sets exist to a somehow similar extent as the
hierarchy of infinite sets demonstrated by Cantor.[13] Assuming the answer
is yes, then how can we demonstrate the existence of a hierarchy of empty sets?

The idea of making a distinction between two possible aspects of a set: its
effective content and its potential content, appeared to be a promising solu-
tion to demonstrate the existence of this hierarchy of empty sets. From there,
the challenge consisted in giving technical legitimacy to this new notion of
potential introduced in the frame of a classical first-order set theory. This is
what is developed in the first paragraphs of this section.

In addition to the possibility of highlighting the existence of a hierarchy of
empty sets when considered under their potential aspect, another consequence
of the introduction of the operator of potentiality into classical set theory is
the possibility to clarify the real puzzle of the ubiquity of the empty set in
particular, and of any set in general. What do we mean by ubiquity? If we
remove the elements of a set, we get an empty set. And different non empty
sets from which we remove all elements, will give the same empty set. This is
also expressed by the fact that the empty set is included in any set, according
to the interpretation of the formal definition of the inclusion: since the empty
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set does not contain anything, it is true that ∀x ∈ ∅ , x ∈ y.
The puzzle consists in the fact that the same object is so to say ”localized”
at different places at the same time.
Indeed, according to Leibniz’s law of the identity of the indiscernibles,[13] two
empty sets can only be one and the same empty set.

The introdution of the operator of potentiality will make the indiscernibles
discernible. The main interest of this paper is precisely the discovery of a way
or a ”possibility” to refine the notions of equality and identity.

8 How Is Introduced The Operator Of Poten-
tiality?

In the usual first-order set theories (like ZF, NF and other more recent
alternative set theories,[14]), the distinction between the ”element” and the
”collection” aspect of a set is generally not taken into consideration. Other
theories, however (like VBG, Kelley-Morse, etc.[15]), clearly distinguish the
notions of ”set” and ”class”, and use thus a more ”sophisticated” language
(with two types of variables); here we also use several types of variables.

In our theory, several types of variables will also be used. The clear dis-
tinction of the 2 aspects element versus collection both on the effective level
(classical nature and status of sets/objects) and on a potential level (the newly
evidenced nature and status of sets/objects) allows to demonstrate the exis-
tence of a hierarchy of empty sets, brings a solution to the puzzle of ubiquity,
by re-defining the notions of equality and identification.

8.1 The Idea

In theories where the ”individuals” (called ”sets”) do have the ”double
nature” of ”element” and ”collection” (in the expression ”a ∈ b” , the indi-
vidual a ”shows” its ”element” aspect, while b shows its ”collection” aspect),
we add to the usual language L : (∈,=), an operator of potentiality denoted
by the symbol ♦. It allows the universe to be extended via the introduction
of new objects, of a different nature, and for which we will use the symbol ♦
and parameters p, q, r, ... as (upper/lower) index.

In summary:

- x will denote a standard object (a ”set” in the initial set theory); it will
be called a ”schizo-object” or ”schizo-set”(simultaneously element and collec-
tion).
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- C will be a fixed class (in the initial set theory), called Class of Con-
texts (the ”parameters p, q, r, ...” here above) that must satisfy the following
minimal conditions: it must contain the empty set (∅ ∈ C ), and an in-
finite strict ⊂ chain (notations: ⊆ is the usual large inclusion: a ⊆ b iff
∀x ∈ a , x ∈ b; ⊂ is the strict inclusion: a ⊂ b iff a ⊆ b and a 6= b).
For convenience, we introduce the restricted quantifier ”∀C ” with the obvious
meaning: ∀C p ≡ ∀ p ∈ C .
- xp♦ will denote a potential (non-standard) element of some standard set y,
according to some context p (see section 1.2.2) and some axiomatic rules (see
section 3.1); it will be called ghost-element. It means that x does not belong
effectively (in a standard way), to some set y, but that it belongs potentially
to y.
- y♦p will denote the potential (non-standard) content of the set y relatively to

the ”context” p (p is supposed to be an ”effective” set); y♦p is the ”collection”

of what can be ”put” in y in relation to p. Such a collection y♦p will be called
hole-collection.
When necessary, for clarity purposes, the index p, q, r, ... will be used with
effective sets too.

We thus have three universes U , U♦ and U♦ interconnected by the relation
”∈” modulo some rules described hereafter.

There is no relativization of quantification: same quantifiers apply to usual
sets and to hole-collections so that, sometimes, sets and hole-collections can
share the same content (thanks to axiom 4 and to the use of the Scott’s equal-
ity by the bottom ([)) even though they belong to disjoint universes.

We extend the language L = (∈,=) of the initial set theory to a new
”typed” language L♦

♦ that allows two new types of variables: ”x♦p ” and ”xp♦”
(where ”x” is a variable of the language L).

In a first time, before axiomatisation and modelization, we show already
some rules that we expect these objects to obey:

- If y is a standard set/object: xp♦ ∈ y is legal, y ∈ xp♦ is not legal (xp♦
cannot be placed at the right of the relation ∈). This is why xp♦ is element only.

- If y is a standard set/object: y ∈ x♦p is legal, x♦p ∈ y is not legal (x♦p
cannot be placed at the left of the relation ∈). This is why x♦p is collection
only.
The effective/standard content (the y) of x♦p is the potential content (the yp♦)
of x.
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And we suppose of course that the universes U , U♦ and U♦ are disjoint.
A fortiori, x 6= x♦p , x 6= xp♦ and x♦p 6= xp♦.

The relations ∈ and = will be extended to the enlarged universe ”U ∪ U♦

∪ U♦”, and it is worth to note that the relations ⊆ , ⊇ will make sense also
between ”sets” (x) and ”hole-collections” (y♦p ), as between ”hole-collections”.
So that, when both ”inclusions” hold (⊆ and ⊇), ”equality of content” is re-
alized; and in that case we will use Scott’s ”equality by the bottom” symbol:
[.

8.2 Extensionality, Equality, Equality by the Bottom,
Identity, Identification

In standard set theories, the Extensionality axiom is often presented as
following [see 1]:

EXT: (∀t(t ∈ x⇐⇒ t ∈ y))⇐⇒ x = y.

i.e. as a combination of:

1) (∀t(t ∈ x⇐⇒ t ∈ y)) =⇒ x = y

the extensional identity, which is an expression of Leibniz Law of Identity
of Indiscernibles; and:

2) x = y =⇒ (∀t(t ∈ x⇐⇒ t ∈ y)).

which is the predicate calculus equality, or Law of Indiscernability of Iden-
tical (Law of Substitution).

The Scott’s equality by the bottom (x [ y) or equality of content (exten-
sional identity) is defined as being the double inclusion: x ⊆ y ∧ x ⊇ y =⇒
x = y.

The axiom EXT precisely says that Scott’s equality and ordinary equality
(that of identification) coincide.

Logics (replacement) explains that ordinary equality implies Scott’s equal-
ity (= =⇒ [).
Ext axiom adds the converse implication ([ =⇒=).

Identification is associated with ordinary equality. The ordinary equality
is indeed a congruence, an equivalence with the substitution (or replacement)
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property. The Scott’s equality by the bottom is just a relation of equivalence.
In this case, it will only be question of identity of the objects concerned.

8.3 Ur-elements and True Empty Set

The ”objects” of type xp♦ will actually have the behaviour of ”ur-elements”

(as y ∈ xp♦ is not legal). In contrast to this, those a♦p that have an empty
content will be identified by the theory to a ”unique true empty set”, and
so will not be ur-elements, for which the question of content does not make
sense; see for example [16].

8.4 Context

In theories such as ZF, mathematicians work in some delimited context,
such as Vα (the set of all well-founded sets of rank < α), for some large
enough ordinal α. The principle of the theory of the potential consists in
the delimitation of contexts of work. We will call C the class of the allowed
contexts.
If we don’t work so when the starting set theory of our model is ZF for ex-
ample, if the potential elements of a set x are simply the elements of the
complement of x in the universe of the theory, the Russell’s paradox arises in
the theory of the Potential.
The way used to indicate a context is the introduction of a parameter in the
notation x so as to have: xp♦ or x♦p (for x a set).

As we have said above, we will use the letters p , q , r for the parameters.

8.5 Process

Thanks to our operator of potentiality, we get a mean of localization of
”empty sets” on a potential level and so solve the anomaly of the ”ubiquity” of
the empty set (and the solution is extended to non-empty sets as well); and we
are able to make the distinction between what we call ”effective” (standard)
elements (z) of a set x and what we call ”potential” (in a non modal way, as
we will show) elements (zp♦) of the same set x. In this way, it will surprisingly
be possible to show that two sets equal on an effective level (x = y) can be
different on a potential level (x♦p 6= y♦q ), and conversely, that sets different

on an effective level (x 6= y) can be equal on a potential level, (x♦p = y♦q ).
Another astonishing consequence of this approach is the possibility to high-

light the existence of a ”hierarchy” of empty sets on a potential level, thanks
to the following property: p ⊂ q =⇒ ∅♦p ⊂ ∅♦q .
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9 Conditions on
∑

We start with a set theory
∑

, expressed in L = (∈,=), and assume ”>”,
”⊥” (respectively ”true”, ”false”) as primitive symbols in our (classical) logic.

We expect
∑

to satisfy at least the 4 following conditions:

-
∑
` EXT,

where EXT is the Extensionality axiom: (∀t(t ∈ x⇐⇒ t ∈ y)) =⇒ x = y.

-
∑
` ∃ a ∀x (x /∈ a ); existence of the empty set ∅.

-
∑
` ∀ a ∀ b∃ c∀x (x ∈ c ⇐⇒ (x = a ∨ x = b ) ); the classical ”Pair-

ing axiom”.

-
∑
` ∀ a ∀ b∃ c∀x (x ∈ c ⇐⇒ (x ∈ a ∨ x ∈ b ) );

(Finite union).

These minimal conditions will allow us to keep extensionality in the ex-
tended universe and to satisfy our wishes. In addition, we will get a mutual
interpretability of

∑
and

∑♦
♦.

10 Formalized theory
∑♦
♦ of Potential

10.1 List of Axioms of Potential and comments

- Axiom 1: b ⊆ p =⇒ (xp♦ ∈ b ⇐⇒ x ∈ b♦p ). This is the axiom of
”Switch” element/collection (interconnection between the nature of element
and the nature of collection). If a set b has a potential to have additional
members x, y..., then that shows that those additional members x, y... have
the potential to belong to b.

- Axiom 2: x ⊆ p ⊂ q =⇒ x♦p ⊂ x♦q . This is the axiom of strict Hier-
archy. The leitmotiv behind this is: ”the greater the context, the greater the
potential”. It will reveal an easy way to build a hierarchy of ”empty sets” on
a potential level.

- Axiom 3: a ⊆ b =⇒ b♦p ⊆ a♦p . This is the axiom of Reversing. It
corresponds to the natural expectation that ”the bigger the set, the less it
has potential elements”.

- Axiom 4: a♦p ⊆ p. This is the axiom of Localization of potential content.

It ensures that ∈ and ⊆ can hold between the elements of U and U♦ despite
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of the fact that these two universes are disjoint. So it is clear that a♦p contains
ordinary, effective elements. In light of axiom 1, these effective elements of
a♦p appear to be the potential elements of a.

- Axiom 5: ∃z ( z ∈ x♦p ) =⇒ x ⊆ p. This is the axiom of Contextualiza-
tion. It ensures that if x is not in the good context, it will have no potential
content.

- Axiom 6: x♦p ⊆ y♦q ∧ x♦p ⊇ y♦q =⇒ x♦p = y♦q . This is the axiom of

Extensionality for hole-sets. Notation: EXT♦.

- Axiom 7: xp♦ = yq♦ iff p = q and x = y. This is the axiom of Equality
on the universe of the x♦.

- Axiom 8: ∅♦p [ p. This is the axiom of maximum potential content,
complement of axiom 4. Our expectation being that, when considered in a
determined context, ∅ contains potentially all the elements of this context.
Indeed, since the empty set ∅ does not contain any effective element, ∅♦p is

the set a♦p ⊆ p that contains all the elements of p. In other words, ∅p (∅ ⊆ p)
contains potentially all the elements of p.

- Axiom 9: x ∈ a♦p =⇒ x /∈ a. This is the axiom of strict potentiality.
”Potential” elements of a set are elements that do not belong effectively to
the set (according to the context considered). The effective elements x of a♦p
are potentially in a (xp♦ ∈ a). So we see that ♦ is not modal. Indeed, in a

modal approach, one would expect x ∈ a =⇒ x ∈ a♦p .

10.2 Theorems

Theorem 1 : p ⊂ q =⇒ ∅♦p ⊂ ∅♦q , by axiom 2. It gives a strict hierarchy of

empty sets and an infinite chain ∅♦1 ⊂ ∅
♦
2 ⊂ ... thanks to the conditions on C .

Theorem 2 : p ⊆ q =⇒ a♦p ⊆ a♦q .
Suppose p ⊆ q, and distinguish the following cases:
- a ⊆ p:
* if p = q, obviously, a♦p = a♦q ;

* if p ⊂ q, then by axiom 2: a♦p ⊂ a♦q ;

- a * p, so by axiom 5: a♦p [ ∅, and so a♦p ⊆ a♦q .

Theorem 3 : ∅♦p ⊆ p, by axiom 4. This is the localization of the empty set.

Theorem 4 : x♦p ⊆ ∅ =⇒ x♦p = ∅♦∅ ; proof:
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Suppose x♦p ⊆ ∅.
By axiom 4: ∅♦∅ ⊆ ∅.
So x♦p [ ∅♦∅ and by axiom 6, x♦p = ∅♦∅ .
This is the theorem of the empty hole. Via this theorem, all the empty hole-
sets are identified to ∅♦∅ .

Theorem 5 : among all the potential forms of ∅: ∅♦p , ∅♦∅ is the only ”true”

empty one, i.e. ( ∀x , x /∈ ∅♦p ) ⇐⇒ p = ∅.
Proof:
- if p = ∅, by axiom 4: ∅♦∅ ⊆ ∅, so ∀x (x /∈ ∅♦∅ ).

- if p 6= ∅, then ∅ ⊂ p, so by axiom 2: ∅♦∅ ⊂ ∅♦p , which contradicts

∀x (x /∈ ∅♦p ).

Theorem 6 : ∅♦p is the maximum of the a♦p , (a♦p ⊆ ∅♦p ). By axioms 4 and 8.

Theorem 7: ∀C p ( p♦p = ∅♦∅ ).
Proof:
By axiom 4, p♦p ⊆ p. This implies, by axiom 9 (for a = p): p♦p ⊆ ∅. Then,

by theorem 4: p♦p = ∅♦∅ .
We will call this the theorem of the self-context.

10.3 Examples and Observations

In ZF, let’s take C = {Vα | α ordinal }: this is a strict chain that induces
the strict chain of hole-sets (∅♦Vα

)αord..

In NF, let’s take C = V : this is a lattice, producing another lattice of
hole-sets: (∅♦p )p∈V .

With some extra-properties (obvious by theorem 2):

- ∅♦p∩q ⊆ ∅♦p ∩ ∅♦q .

- ∅♦p ∪ ∅♦q ⊆ ∅♦p∪q.

Remark about ∅∅♦.

∅∅♦ is a particular element as it cannot belong to any set: ∅∅♦ ∈ x is impossible;

indeed: by axiom 4, we have ∅∅♦ ⊆ ∅, and by axiom 1: ∅∅♦ ∈ x ⇐⇒ x ∈ ∅♦∅ .
Comparing the theory of the Potential with the Lambda theory [6](where
Lambda, the nothing, belongs to any set, including the empty set), it rather
appears that ∅∅♦ is a kind of anti-Lambda.
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11 Modelisation

Let M be a model for our initial set theory
∑

(in L = (∈,=)). M♦ will
be the set of the ”formal objects” x♦p , with x in M and p in C (a class in M
satisfying the minimal conditions explained in 1.2.1), and M♦ will be the set
of the ”formal objects” xp♦, with x in M and p in C . Technically, one can

simply take for x♦p the triple : ( x , p , 1) and for xp♦, the triple : ( x , p , 2).

And we can suppose wlog that the universes of M , M♦ and M♦ are mutually
disjoint. We have in the universes of M♦ and M♦ as many sub-copies of M
as we have contexts p, q, r...

The universe of M∗ (the model for
∑♦

♦) will be given by the union of the

universes of M , M♦ and M♦.

The structure M∗ will be given by:

(1) the minimum relation ∈∗, extending ∈M such that:

- x ∈∗ y ⇐⇒ x ∈M y

- if ∀ z ∈M y , z ∈M p, then x ∈∗ y♦p ⇐⇒ (x ∈M p ∧ x /∈M
y ) ⇐⇒ xp♦ ∈∗ y

(2) the minimum equivalence relation =∗, extending =M such that:

- x =∗ y ⇐⇒ x =M y

- ∀ z ( z ∈∗ x♦p ⇐⇒ z ∈∗ y♦q ) ⇐⇒ x♦p =∗ y♦q

- xp♦ =∗ yq♦ ⇐⇒ (x =M y ∧ p =M q )

A straightforward verification allows to see that M∗ indeed satisfies our
axioms of Potential!

In particular is =∗ indeed a congruence, the ”replacement” aspect being
guaranteed by our conditions on the use of ∈ between objects of different
types (see 1.2.1.).

This model fundamentally uses the difference ”p \ x” to play the role of
x♦p .

The extension of ∈M to ∈∗ simply specifies that ”z ∈∗ x♦p ” whenever ”the
contextualization is satisfying”, i.e. ”x ⊆ p” and ”z ∈ p \ x”. Further does
zp♦ ∈∗ x then happen exactly when ”z ∈∗ x♦p ”.
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Remark: for the sake of simplicity, our relative consistency proof (here
above) was presented in the model-theoretical style. But it is interesting to

notice that actually the theories
∑

and
∑♦

♦ are mutually interpretable, as
our conditions on

∑
guarantee that we can construct the adequate copies of

the universe in the theory itself.

12 Discussion on Identifications

Our approach leads us to interesting questionnings about equality and
identity, including some cases of Leibniz Law of identity of indiscernibles in-
fraction.

12.1 ”Equalities” and Identifications in
∑♦
♦

In the first-order language of a standard theory, ∈ and = are fundamental.
Now in the theory of Potential, we have introduced the symbol [, the Scott
”equality by the bottom”.

It allows us to compare the content of objects of different nature such as
standard sets (sets with effective content) and hole-sets (sets with potential
content).

So here, we meet several kinds of identities and identifications:

1) in
∑

: EXT: x [ y =⇒ x = y.

In the antecedent, we have the equality by the bottom, defined by means
of ∈: ∀ t ( t ∈ x ⇐⇒ t ∈ y ); in the consequent, we have the ordinary equal-
ity (identification).

2) in
∑♦

♦:
- EXT (for standard, effective, objects).
- EXT♦: ∀ t ( t ∈ x♦p ⇐⇒ t ∈ y♦q ) =⇒ x♦p = y♦q . This is expressed by

axiom 6: x♦p ⊆ y♦q ∧ x♦p ⊇ y♦q =⇒ x♦p = y♦q , the axiom of Extensionality
for hole-sets.

3) The relation [ can be seen as a ”multi-objects” or ”mixed” equality that
applies to ”sets” of the same type or not: it is indeed allowed between x and
y, or between x♦p and y♦q with identification then (respectively by EXT and

by EXT♦), and between x and y♦q but in that case with no identification via =.
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4) a particular case of ”identity of content” is given by axiom 8: ∅♦p [ p.
(they both contain the same elements) despite of the fact that they are dif-
ferent (∅♦p 6= p).

12.2 Divergent Identifications & Leibniz Law of Identity
of Indiscernibles Infraction

We discuss now some rather unexpected phenomena where different ways
of ”identification” possibilities do not coincide.

Case 1: different non empty sets that are potentially identical.

- Proposition 1: If C satisfies (in
∑

) the following hypothesis, that there
exist sets y , z and distinct sets a , b , p , q all in C , realizing:

b = a ∪ { y }
p = a ∪ { z }
q = a ∪ { y , z }

with y /∈ a and z /∈ a,

then a♦p = b♦q .

Proof:
By Axiom 9, a♦p and ”a” are disjoint . But by Axiom 4, a♦p ⊆ p. So, by

the definition of ”p”, a♦p ⊆ { z }. But a♦p cannot be empty because a ⊂ p,

so (by Axiom 2) a♦a ⊂ a♦p . So a♦p [ { z } and by EXT♦ (ordinary equality”)

a♦p = { z }.
An analogous argument shows that b♦p [ { z }, so that a♦p [ b

♦
q and by EXT♦:

a♦p = b♦q (while a 6= b).

Comment: here the potential levels p , q are distinct: p 6= q; to compare
with proposition 2.

- Proposition 2: Take for
∑

the classical theory ZF (with axiom of foun-
dation here), and for C the class of the sets Vα of the Von Neumann hierarchy.

Consider the variant of the model for
∑♦

♦ (as constructed in section 4) where

the role of ”p \x” used to interpret x♦p would now be held by Vα \ Vρx, where
ρx is the classical ”rank of x”, i.e. the smallest ordinal β such that x ⊆ Vβ .
Then there exist distinct sets x , y indiscernible at the same potential level:
x♦α = y♦α .
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Proof: just take x 6= y with ρx = ρy, and α > ρx; then x♦α = y♦α .

Comment: compared to proposition 1, we work here at the same potential
level.

Case 2: identical sets that are potentially different: a = b but a♦p 6= b♦q
with p 6= q.

A contrario to the case 1, sets equal when considered on their effective
aspect (content) can be differentiated when considered on their potential as-
pect. Example: ∅ = ∅ but ∅♦p 6= ∅♦q when p ⊂ q, by axiom 2. The most
remarkable illustration of this is the hierarchy of empty sets. This is of course
a theorem of

∑♦
♦.

Let us note that we cannot have a = b and a♦p 6= b♦p because the equality

relation is a congruence and thus: a = b =⇒ a♦p = b♦p .

13 Solution to the Set’s Ubiquity Puzzle

The trick of the theory of the Potential consists in relying a and a♦p in

such a way that the effective content of a♦p be the potential content of a.

In other words, a♦p is a considered under the angle of its potential content
according to a context p. It is guaranteed by axiom 1.

There are for a set a as many a♦p , a♦q , a♦r ..., as there are different contexts
p, q, r in which a is included.

The problem of the ubiquity of any set is then solved. It is possible to
make the distinction between the different copies of a same set a according to
the set/context in which it is included.

14 Hierarchy of Empty Sets

The initial question, which could be viewed as quite ambitious, was unex-
pectedly found to lead to additional interesting research like the possibility to
introduce and legitimate the use of an operator of potentiality in the language
of a first-order theory.

But the demonstration of the existence of this hierarchy of empty sets
remains an interesting result. According to axiom 8, a hole-empty set ∅♦p is
always identical by the bottom to a level p in the hierarchy of levels, and
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in general to a non-empty set which is the corresponding level. So we have
a hierarchy of hole-empty sets. These non-empty hole-empty sets contain
standard elements x. But according to axiom 1 (switch effective/potential
elements), the potential elements xp♦ belong to the standard empty sets ∅p.
So we have a hierarchy of empty sets according to their potential content.

15 Conclusion

Our initial questionning on the possible existence of a hierarchy of empty
sets led us to introduce the operator of potentiality ♦ into a set theory satis-
fying minimal standard conditions. We saw that the key of the theory is the
notion of context p. It allowed us to build new objects, ghost-elements (xp♦)

and hole-collections (x♦p ). Thanks to them, in addition to the possibility to
build a hierarchy of empty sets, we can solve the puzzle of the ubiquity of
sets and show that sets with same effective content can have different poten-
tial content. Conversely, we can have different non empty sets with the same
potential content.

Our approach lead us to an interesting questionning about equality and
identification. As it applies to two different kinds of objects, the relation of
equality by the bottom [ of the theory of Potential can be seen as a kind of
mixed equality.

We saw that the true empty set is ∅♦∅ , i.e. the only set that contains nei-
ther effective nor potential elements.

It is clear that the operator of potentiality is not modal.

Back to our initial questionnings, let’s stress a fundamental difference in
our approach compared to that of Cantor. In Cantor, the tool (equipotence)
precedes the concept (hierarchy of infinite); in our approach, the concept (hi-
erarchy of empty sets) precedes the tool (operator of potentiality).

Finally a word on two works in progress.

(1) We think that an alternative presentation should be possible. We think
that it should be possible to use a unique relation ∈♦p , on the universe of ef-

fective sets (and x ∈♦p y would so to say correspond, in an adapted way, to

”x ∈ y♦p ” and to ”xp♦ ∈ y”), to introduce reasonable concepts for ”pseudo-

modal” formulas ”♦pϕ” and terms ”{x | ϕ }♦p ”.

(2) We compared (end of section 4) our theory of Potential with the Λ-
theory [17], and wonder whether some common theoretical extensions would
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be possible.
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