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Abstract

The purpose of this article is to present several immediate consequences of

the introduction of a new constant called Lambda in order to represent the ob-
ject “nothing” or “void” into a standard set theory. The use of Lambda will

appear natural thanks to its role of condition of possibility of sets.
On a conceptual level, the use of Lambda leads to a legitimation of the empty

set and to a redefinition of the notion of set. It lets also clearly appear the

distinction between the empty set, the nothing and the ur-elements.
On a technical level, we introduce the notion of pre-element and we suggest a

formal definition of the nothing distinct of that of the null-class. Among other

results, we get a relative resolution of the anomaly of the intersection of a family
free of sets and the possibility of building the empty set from “nothing”. The

theory is presented with equi-consistency results (model and interpretation).

On both conceptual and technical levels, the introduction of Lambda leads to a
resolution of the Russell’s puzzle of the null-class.

Keywords: nothing, void, empty set, null-class.

1 Introduction

1.1 Why

Our aim is to clarify the real puzzle of Russell’s conception of the null class as de-
veloped in the “Principles of Mathematics”[1]: ‘But with the strictly extensional
view of classes propounded above, a class which has no terms fails to be any-
thing at all: what is merely and solely a collection of terms cannot subsist when
all the terms are removed.’; Russell and Whitehead will formally express this
inexistence in “The Principia Mathematica”[2]: ‘` .¬∃ ! Λ’a . Russell could not
accept the existence of the null class and assimilates it to “nothing”, while recog-
nising its technical utility, which is not conceptually satisfying for us. Notice
that in fine Russell conceives the null class as the standard empty set (symbol:
∅): ‘By symbolic logicians, who have experienced the utility of the null- class,
this will be felt as a reactionary view. But I am not at present discussing what
should be done in the logical calculus, where the established practice appears
to me the best, but what is the philosophical truth concerning the null-class’ [3].

Other logicians and mathematicians saw ontological difficulties with a class free
of elements.

aN.B. In Russell, Λ denotes the null-class, which is assimilated to nothing.
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The first of them, Frege[4], strongly inspired Russell with his analytical phi-
losophy approach in general, and his conception of the null-class in particular:
‘When a class is composed of objects, when a set is the collective union of these,
then it must disappear, when these objects disappear. If we burn down all the
trees of a wood, we thereby burn down the wood’.
The fathers of the standard axiomatic set theory agreed with this view. So,
in 1908, Zermelo [5] wrote: ‘There exists a fictitious set, the null set, 0, that
contains no element at all.’. In 1923, Fraenkel [6] added: ‘For purely formal
reasons, i.e. to be able to express some facts in a more simple and adequate
manner, let us introduce here an improper set [uneigentliche Menge], the alleged
set zero [Nullmenge] .../... It is defined by the fact that it does not contain any
element; so it is not really a set, but it must be taken as such and be designed
by 0’.
In his nominalist approach, Lesniewski[7] denies any kind of existence to classes
in general and to the null-class in particular: ‘I have always rejected, .../...,
the existence of theoretical monsters such as the class of squared circles, being
aware that nothing can be constituted of what does not exist’. Lesniewski only
concedes the use of a nominal constant for denoting the nothing.
These quotations show that the doubts about the conceptual legitimacy of the
null-class don’t come only from detractors of set theory like Lesniewski, but
mainly from several fathers themselves of the set theory!

We want to introduce here a clear distinction between the notion of empty set
and the one of “nothing” (or “void”), that we will distinguish from ∅ via the
symbol Λ.b The “nothing” must be conceived as the free space in any set (so
also in the empty set): this is intuitively linked to the naive image of a set, as
a “box” containing “objects” and where this is precisely possible because the
box presents a “free space”. This condition of possibility is also a condition of
possibility in other fields, like the one of numbers and letters, see Pythagoras[8]:
‘The void exists... It is the void which keeps the things distinct, being a kind
of separation and division of things. This is true first and foremost of numbers;
for the void keeps them distinct.’ Here we see that the “nothing” clearly plays
the role of cut.

The naive acceptance of the idea of “set” is then somehow validated in the case
of the empty set: the empty set is a collection of “nothing”.
Furthermore, this will allow the symbolic representation of the “empty space”
that is intuitively present in any set, particularly in the traditional pictures of
sets.

It would be natural to use the terminology of “inclusion” for the fact that the
“empty space” Λ is “in any set”. Nevertheless we show that the same symbol ∈
can be used safely to express the fact of “belonging” to a set, for an object that
is not Λ (and such an object is then called an “element” or a “set”), as well as
the fact to be “the space Λ, present in a set” (“space” called “pre-element”).

More precisely:

bIn the use we make of it, Λ is not a class as in Russell; it is a new object that will be
defined as a pre-element and a condition of possibility of sets, among others of the empty set.
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“x ∈ y” will express that x is an “element” of y only when x 6= Λ (correspond-
ing to the usual way of “belonging”).
“Λ ∈ y” will express that Λ is “present in y”; and we use then the word “pre-
element” instead of “element” to avoid any confusion.

Also, when more complex objects are constructed (via “terms”, see section 2.2),
the same kind of careful distinctions will be taken into account, as several in-
terpretations are available. For example the usual singleton “{ a }” is simply
“standard” in the universe “without Λ”, while in the “completed universe” it
will appear as something like “{ a , Λ}”. This is further discussed in section 2.2).

However, even if the same ∈-symbol is used in our theory, the roles of the ele-
ments/sets and of the unique pre-element are never confused; this immediately
comes from the characteristic properties:

x is an “element” ⇐⇒ ∃ y y ∈ x

x is a “pre-element” ⇐⇒ [ (@ y y ∈ x ) & ( ∀z 6= xx ∈ z ) ]

and these properties are guaranteed by the axioms (see section 1.2).

In addition, if the nothing-void is conceived as a potential, the Lambda theory
is the first step forward to a theory where the notion of “potential membership”
(“potentially belongs to”) can be conceived. In that way, we can hope to handle
the strange “ubiquity property” of the empty set (Theory in development).

Finally, we want to reduce significantly the ontological commitment of set the-
ory. The classical axiom of existence becomes useless: there is no need to pos-
tulate the existence of a set any more (should it be the empty set) as Lambda
(the “Void”, the “Nothing”) can be now seen as a generator of a hierarchy of
standard sets.

Picture of a set and representation of Lambda
Lambda denotes the free zone around the element “a”. The set pictured here
is {a} in the universe V of a standard set theory

∑
. In the universe VΛ of the

Λ-theory
∑

Λ, the set pictured here is {a,Λ} .

b
a

Λ
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1.2 How

Let’s simply use the usual symbol ∈ to express that Λ is “in ∅”, in the same
way as Λ is “in any set x”. Starting from some set theory

∑
(in which the ex-

tensionality axiom holds and where ∅ exists), in the current first-order language
L = (∈,=), we define a new theory

∑
Λ in the expanded language LΛ = (∈,=,Λ)

(where Λ is a new constant symbol). This allows to give several distinct inter-
pretations to the terms conceived in a classical way. Some of these new distinct
interpretations produce interesting results, like: {Λ} = ∅, and relative “solu-
tions” to the well-known “anomaly” of the usual phenomenon: “the intersection
of an empty family is the universal class”. If we call “sets” (in

∑
Λ) all the ob-

jects distinct from Λ, we expect that their behaviour is fundamentally the one
described by

∑
.

The behaviour of Λ will be governed (in
∑

Λ) by the two following axioms:

(1) Axiom of the Pre-Element : ∀x (x 6= Λ ⇒ Λ ∈ x )

(2) Axiom of the Nothing-Void : ∀x (¬ (x ∈ Λ ) ).

Notice that there can only be one “object” such as Λ, as axiom (1) is in con-
tradiction with: ∃ y 6= Λ ∀x¬ (x ∈ y ).

It is easy to construct (in a metatheory like Zermelo-Fraenkel) a model MΛ for∑
Λ, starting from a modelM for

∑
: we just artificially add a new element (“Λ”)

to the universe of M and extend adequately the ∈-relation of M . The axiom of
extensionality will still be applicable in MΛ. It is easy, modulo some minimal
conditions on

∑
, to improve this result, namely to give an interpretation of

∑
Λ

in
∑

(instead of a stricto sensu “model” as just described), and to clarify the
possibility of using Λ as parameter in several comprehension axioms: inter alia
the example of separation, which is valid in MΛ even for LΛ-formulas, once it
is valid in M (for L-formulas).

2 The theory

We start with a set theory
∑

, expressed in L = (∈,=), and assume “>”, “⊥”
(respectively “true”, “false”) as primitive symbols in our (classical) logic.

We expect
∑

to satisfy at least the 3 following conditions:

-
∑
` EXT,

where EXT is the Extensionality axiom: (∀x∀y∀t(t ∈ x⇐⇒ t ∈ y)) =⇒ x = y.

-
∑
` ∃ a ∀x (x /∈ a ); so “∃ ∅”.

-
∑
` ∀ a ∀ b∃ c∀x (x ∈ c ⇐⇒ (x = a ∨ x = b ) );

(the classical “Pairing axiom”).

Our theory
∑

Λ, in the language LΛ = (∈,=,Λ) initially assumes the axioms
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described hereunder (2.1), but can surely be enriched based on the observation
of the model MΛ obtained by modification of M (see section 3). For convenient
purposes, we introduce the following abbreviations:

- “∀∗x” for “∀x 6= Λ”.

- “∃∗x” for “∃x 6= Λ”.

Λ will be called “the Nothing” or “the Void”; and the “sets” are the objects x
such that x 6= Λ.

For ϕ a formula in LΛ (with “>,⊥”, allowed), ϕ∗ will be obtained from ϕ by
replacing in ϕ each ∀ by ∀∗ and each ∃ by ∃∗.

If Γ is a theory (list of axioms), Γ∗ will denote the list of σ∗, with σ in Γ.

2.1 Axioms of
∑

Λ

(1) ∀∗x(Λ ∈ x).

(2) ∀x(x /∈ Λ).

(3) σ∗ for any axiom σ of
∑

(so
∑

Λ “contains”
∑

).

Remarks:

One can easily check that:

-
∑

Λ ` EXT, i.e. EXT is applicable in the “full” universe (sets + Λ).

-
∑

Λ ` ∀x(x ∈ ∅ ⇐⇒ x = Λ), i.e. ∅ is the “singleton” of Λ (cf. hereunder our
discussion about “terms”).

2.2 Interpretations for terms

Usually, the term τ = {x | ϕ} is the name of the (unique via EXT) set b such
that ∀x(x ∈ b ⇐⇒ ϕ). In the theory

∑
Λ however, we can now distinguish

different interpretations for a term τ = {x | ϕ} based on a formula ϕ (in LΛ):

Definitions:

1) τ∗ = {x | ϕ}∗ is the unique set (if it exists) b (so b 6= Λ) such that :
∀∗x(x ∈ b⇐⇒ ϕ∗), or equivalently: (∀x(x ∈ b⇐⇒ ϕ))∗.

2) τΛ = {x | ϕ}Λ is the unique set (if it exists) b (so b 6= Λ) such that :
∀∗x(x ∈ b⇐⇒ ϕ), or equivalently (in

∑
Λ): (∀x(x ∈ b⇐⇒ (ϕ ∨ x = Λ)).

3) τ = {x | ϕ} is the unique object (if it exists) b (it could be Λ) such that :
∀x(x ∈ b⇐⇒ ϕ).
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We will also use these indices “*” and “Λ” for the notations that abbreviate
several classical terms, like:

{ a } : = {x | x = a} (singleton)

{ a , b } : = {x | x = a ∨ x = b} (pair)

℘a : = {x | x ⊆ a} (power set)⋃
a : = {x | ∃ y ∈ a, x ∈ y} (general union)

a ∪ b : = {x | x ∈ a ∨ x ∈ b} (binary union)⋂
a : = {x | ∀ y ∈ a, x ∈ y} (general intersection)

a ∩ b : = {x | x ∈ a ∧ x ∈ b} (binary intersection)

With these clarifications, one can easily check that, in
∑

Λ:

- {Λ} = {Λ}Λ = {Λ}∗ = ∅: the empty set is the singleton of Λ.

- ℘Λ = ℘ΛΛ = ℘∗Λ = ∅: the empty set is the Power set of Λ.

-
⋂

Λ ∅ = ∅: this constitutes a relative solution (Indeed, as we will see in section
4.4, it is the case that

⋂
Λ Λ = V ) to the well known classical “anomaly”

of
⋂
∅ = V , that is in dissymetry with

⋃
∅ = ∅. In the Lambda theory,⋂

Λ ∅ =
⋃

Λ ∅ = ∅.

-
⋂
∅ = Λ. In the same way,

⋃
∅ = Λ. So, once again we have a symetry

between union and intersection of an empty family.

- Notice that
⋂∗ ∅ = V , as in the “classical” situation.

3 Modelisation

3.1 The Idea

Working in Zermelo-Fraenkel as meta-theory, we can start with a model (in the
stricto sensu sense, as in [9]) for

∑
:

M = (UM ,∈M ), where UM is a set and ∈M is a binary relation on M .

The desired model for
∑

Λ is simply MΛ = (UΛ , ∈Λ), where UΛ = UM ∪ {Λ }
and ∈Λ is the obvious extension of ∈M such that: ∀x ∈ UM ( Λ ∈Λ x) and
∀x ∈ UΛ ¬ (x ∈Λ Λ ), where Λ is some chosen element, not in UM .

One can easily check that MΛ models
∑

Λ.
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The initial set theory
∑

should only satisfy the basic conditions described in
section 2. When stronger theories

∑
are considered, new interesting properties

appear in MΛ, for example when
∑

satisfies the Power set Axiom, or other
specific forms of comprehension. For further details, please refer to section 3.3.
Examples: one can take (for

∑
) ZF, or NF (Quine’s New Foundations), or a

“positive set theory” [10]. Furthermore, we can verify that for these “agreeable
theories”, there are corresponding comprehension axioms still applicable in MΛ,
even when the involved formula ϕ is in LΛ (instead of in L). As a consequence,
Λ may appear as a parameter.
For example: the set {x ∈ a | ϕ}∗ exists in MΛ when M is a model of ZF, even
when ϕ is in LΛ; similarly, {x | ϕ}∗ exists in MΛ when M is a model of NF
(and ϕ is stratified): the reason is that by replacing in ϕ any atomic formula
x ∈ Λ,Λ ∈ x, x = Λ, etc. by (the “ad hoc”) ⊥ or >, one gets an equivalent
formula in L, stratified if ϕ was.

3.2 Interpretation of
∑

Λ in
∑

The interpretation of
∑

Λ in
∑

here developed guarantees the equi-consistency
of

∑
and

∑
Λ; the converse interpretation (of

∑
in

∑
Λ) is obviously given

by the initial universe of
∑

. The construction described in 3.1 is the classical
model-theoretic one. However if equi-consistency only is considered, this con-
struction can be improved and we can give a direct interpretation of

∑
Λ in

∑
.

Just take, in the universe U of
∑

, a copy U ′ of that universe, such that U ′ 6= U ;
this allows to choose an object in U \ U ′, and we call this object “Λ”.
The usual technical trick to get such a U ′ and Λ (consider f.ex. U ′ : = U × {∅},
and Λ : = ( ∅ , { ∅ }) is perfectly available here (modulo our conditions on

∑
;

cf. section2).

Of course we transfer isomorphically the ∈-relation on the universe U to the
universe U ′, so that (U ′, ∈′) satisfies

∑
. As universe for our interpretation of∑

Λ in
∑

, we take then the class UΛ : = U ′ ∪ {Λ }, and apply on it the obvious
class-relation ∈Λ defined by:
x ∈Λ y iff [ ( x ∈ U ′ ∧ y ∈ U ′ ∧ x ∈′ y ) ∨ (x = Λ ∧ y ∈ U ′) ].
The conclusion is now similar to the one of 3.1: (UΛ , ∈Λ) interprets

∑
Λ (in∑

).

3.3 Enriched Theories

We already mentioned in 3.1 that MΛ (model in 3.1 or interpretation in 3.2)
presents new interesting properties, when stronger theories

∑
are considered.

This is particularly the case for comprehension schemes, and can be explained
very simply modulo the following technical remarks.

From the construction, it is obvious that, in MΛ, any atomic formula containing
the symbol Λ (x ∈ Λ , Λ ∈ Λ , Λ ∈ x , x = Λ, etc) is equivalent to ⊥ or >, if
the variables are supposed to represent objects distinct from Λ.
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As a consequence, for any sentence σ (sentence: formula without free variable)
in the language LΛ, the sentence σ* is equivalent, in MΛ, to a sentence (σ̃)*,
where σ̃ is obtained from σ by replacing each atomic formula containing the
symbol “Λ” (adequately) by “⊥” or “>”, the choice being determined by the
axioms (concerning Λ) of

∑
(see 2.1).

Examples:

One will replace “x ∈ Λ ”, “Λ ∈ Λ ”, “x = Λ” by “⊥”; and “Λ ∈ x” by “>”.

This elementary fact proves the following technical lemma:

If
∑
` ( σ̃ )*, then MΛ |= σ*.

This has interesting consequences on several so-called “comprehension schemes”;
three examples are described below:

1) stratified comprehension, i.e. the scheme of axioms:

σ (the universal closure of): ∃ a ∀x (x ∈ a ⇐⇒ ψ ), for each stratified formula
ψ.
Let’s consider here even a stratified ψ in LΛ (ψ “stratified” for LΛ is obtained
from a stratified formula in L, where one or more free variables have been re-
placed by “Λ”). Then it is clear that ϕ̃ is again stratified (in L this time).

So, if
∑

is the system NF (cf.[9]), then MΛ |= σ∗, even when σ is a stratified
comprehension axiom with ψ in LΛ.

2) Separation and Replacement (as in ZF):

for σ an instance of one of these classical schemes, with Λ now admitted as
parameter in the involved formulas ψ, we obviously have that σ̃ is again an
instance of the same scheme (in L this time).

Let us briefly detail this for separation (the case of replacement is analogous):

Let’s consider σ (the universal closure of): ∀ b∃ a ∀x (x ∈ a ⇐⇒ (x ∈ b∧ϕ )),
with ϕ in LΛ (our formula ψ here is: x ∈ b ∧ ϕ). Then σ̃ is (the universal
closure of): ∀ b∃ a∀x (x ∈ a ⇐⇒ (x ∈ b ∧ ϕ̃ )), which is again an axiom of
separation (in L).

Conclusion: if
∑

is ZF, then MΛ satisfies the versions of Separation* and re-
placement* that admit Λ as parameter. (i.e. involved formulas ψ in L∧)

3) Positive Comprehension:

several such systems have been proposed and studied; a description and refer-
ences can be found in [9].
The basic idea is to consider comprehension for “positive” formulas, i.e. formu-
las not allowing negation (nor, of course, implication); notice that “⊥” and “>”
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are considered as positive formulas. The corresponding scheme is then made of
sentences σ (universal closure of): ∃ a ∀x (x ∈ a ⇐⇒ ϕ), for any positive ϕ.

Now, let’s allow also positive formulas ϕ in LΛ. It is obvious that ϕ̃ is again
positive (in L), so that σ̃ is still in the same scheme.

So, if
∑

is a positive set theory (one of the existing variants), then MΛ sat-
isfies the version of

∑
* that allows Λ as parameter in the comprehension scheme.

Synthetic conclusion:
Our model/interpretation construction (cf. 3.1, 3.2) gives equiconsistency re-
sults for several “enriched” theories; more precisely:

for
∑

satisfying specific “comprehension schemes” (as described above), we have
the equiconsistency between

∑
and

∑+
Λ , where:

∑+
Λ is

∑
Λ enriched with Γ*,

Γ being one of the types of schemes 1), 2), 3), that admits here Λ as parameter
in the involved formulas ϕ.

4 Interest, Nature & Properties of Λ

4.1 Terminology

From an ontological point of view, we insist on the fact that here (in
∑

Λ), we
clearly distinguish two types of objects:

- the “sets”, elements x characterized (equivalently) by: x 6= Λ; Λ ∈ x.

- the “void” or “nothing” or pre-element Λ characterized by our axioms (1), (2)
(section 1).

4.2 Internal and External Condition of Possibility

Lambda is a condition of possibility of elements (in the state of affairs, sets) in
two ways:
- as an internal condition of possibility, Λ enables a set to contain elements.
Lambda is the fundamental constituent of any set. This is expressed by the
axiom of the pre-element. Indeed, in order for a set to contain other sets, an
available space is necessary. Without the internal condition of possibility Λ, a
set would be an atom, an ur-element, because there would be no way to make
a distinction between the elements of a set.
- as an external condition of possibility, Λ also allows to have different sets.
Indeed, the “Nothing” plays the role of cut, the physical separation between
sets.

Thanks to this statute of condition of possibility, we think that the use of
Lambda in set theory and the construction of

∑
Λ are not artificial.
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4.3 Lambda and the “contradictory property”

The contradictory property is traditionally sufficient to define ∅: {x : x 6= x} =
∅. Here in

∑
Λ, that property offers some more possibilities:

- {x : x 6= x} = Λ.

- {x : x 6= x}Λ = {x : x 6= x}∗ = ∅.

4.4 Lambda versus the Null-Class (or Empty Set ∅)
It is fundamentally clear that Λ is not ∅, as the first is the (unique) pre-element,
while the second is an element (or set) (cf. 4.1). This has, of course, many conse-
quences on their respective behaviours; we give here some interesting examples,
involving cases where they behave in an analogous manner, as well as cases
where they don’t. For the notations (terms): cf. 2.2.

Lambda (Λ) Null Class (∅ = {Λ})⋂
Λ = V

⋂
∅ = Λ.⋂

Λ Λ = V
⋂

Λ ∅ = ∅.⋂∗
Λ = V

⋂∗ ∅ = V .
Λ ∩ ∅ = Λ ∅ ∩ ∅ = ∅.
Λ ∩ Λ = Λ ∅ ∩ ∅ = ∅.
{Λ} = ∅ {∅}@.

As we have announced in section 2.2 as well, the classical anomaly of the in-
tersection reappears at a deeper level, at Lambda level. Nevertheless we find
interesting to see that it does not appear on the level of the sets any more.

4.5 Lambda versus Ur-elements

The use of “nothing” also enables the distinction of the empty set from ur-
elements (or “atoms”), which are generally considered as kinds of empty sets:
with u for an ur-element and x for a set, the expression u ∈ x (which can
be true or false) is syntactically admitted, while the expression x ∈ u is not
syntactically allowed.
Of course, “no thing” belongs to an ur-element, even not Lambda. This is pre-
cisely why an ur-element is a kind of atom. But we can make the distinction
between Lambda and an ur-element too. Lambda belongs to the empty set,
and more, Lambda belongs to every set. As we have defined it, as condition of
possibility of elements, Lambda is a pre-element.
Finally, Lambda is different from the empty set by definition, and by its be-
haviour as we have seen in point 4.4.
Notice that Λ also enables the distinction ∅ from any ur-element.

4.6 Lambda as Generator of Sets

It is “ontologically interesting” to notice that, while we presented here
∑

Λ as
constructed on the basis of

∑
, where “∅” is already present, we can easily give

an autonomous direct presentation of
∑

Λ where ∅ would be “generated” (for
example as {Λ} or ℘Λ, as we have seen) if

∑
Λ assumes the Pairing axiom or
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the Power set axiom.

So it is possible to make redundant the classical axiom of existence; there is
no need any more to postulate the existence of a set. Moreover, we can build
the hierarchy Vω of sets starting from Lambda (assuming the Pairing Axiom),
or even the Von Neumann Hierarchy (of the well-founded sets), if

∑
extends ZF:

- Let V0 be Λ.
- For any ordinal number β, let Vβ+1 be the Power set of Vβ . So, V1 is ℘(Λ) = ∅.
- For any limit ordinal λ, let Vλ be the union of all the V -stages so far:
Vλ :=

⋃
β≤λ Vβ .

The class V is defined as the union of all the V -stages: V :=
⋃
α Vα.

For those who consider the need to postulate some primitive entities to be
problematic, we hope that Lambda will appear as a more attractive entity than
the empty set or any other primitive set. Indeed, in this way, the theory is
completed by the bottom, in a “minimal way” (Lambda being “nothing”), and
is more in adequacy with a possible “mathematical reality” or at least with
“formal possibilities”.

4.7 Lambda and Simplification of the Axiom of Infinity

Another nice consequence of the use of Λ is the possibility - modulo a slight
modification - of simplifying the classical axiom of infinity, as used in ZF.
That axiom starts with an initial set b (often, but not necessarily, ∅) and pos-
tulates the existence of an infinite set (“x”):

∃x(b ∈ x ∧ ∀y ( y ∈ x⇒ y ∪ {y} ∈ x)).

In
∑

Λ, the part “b ∈ x” can be removed, as Λ is “omnipresent” as pre-element
in any set. So that the axiom of infinity can be reformulated as:

∃∗x∀y(y ∈ x ⇒ y ∪ {y} ∈ x).

4.8 Lambda as solution to the Puzzle of the Null-Class

We have seen that the Puzzle of the Null-Class as found in Russell consists in
the dichotomy between the technical legitimacy of the use of the Null-Class and
its ontological illegitimacy.
In the “Principia”, Russell justifies this ontological illegitimacy in two ways:
- the null-class does not exist because it does not contain anything.
- the null-class does not exist because it cannot belong to any class.c

In the “Principles”, Russell did not really succeed in giving conceptual legiti-
macy to the null-class; in the “Principia”, he does not even try to do it. However
he seems to be satisfied in some way with the conceptual use of the “nothing”

cA.N. Whitehead, B. Russell. Principia Mathematica To *56. Ćambridge University
Press, (1997) p.227.

11



since he reduces the null-class to it. Indeed, if the “Nothing” had no legitimacy
at all, the reduction of the null-class to the “Nothing” would make no sense.

The trick of Lambda theory here consists in starting from and exploiting this
conceptual legitimacy of the “Nothing” in order to give it a technical legitimacy
as well.

The way to give technical legitimacy to the “Nothing” is the introduction of
the axiom of the “pre-element”.
While Russell justifies the inexistence of the null-class by denying it the priv-
ilege of belonging to another class, the axiom of the “pre-element” says that
Lambda denotes the “Nothing” because it belongs to any set. In the spirit of
the definition of the inclusion of the empty set in any set, we could say that,
since Lambda denotes the “Nothing”, there is no set to which Lambda cannot
belong. So Lambda belongs to the empty set too.
The empty set becomes the set that contains only Lambda.

The fact that our intuitive wishes about an adequate behaviour of Lambda can
be formally axiomatized and lead to equiconsistency results gives a technical
legitimacy to the notion of “void”.

In this way, not only the null-class seems to acquire complete (conceptual and
technical) legitimacy in set theory, but the “Nothing” does too.

5 Conclusion

“Nothing” is added to set theory. This means: the introduction of the constant
Lambda denoting the “Nothing” (the Void) in the language of set theory does
not imply that some new thing (in the sense of: “new set”) is added to the
theory. The Nothing is subjacent to the standard set theory as a pre-element.
It is a condition of possibility for the elements of the theory. The Nothing has
two functions:
- the first one is the function of internal condition of possibility. This enables a
set to contain elements. Lambda is the fundamental constituent of any set, and
this is expressed by the axiom of the pre-element;
- the second one is the function of external condition of possibility. Lambda
plays the role of the physical space, of cut, between sets and allows to have
distinct sets; this can be more specifically studied by formal ontology.

We believe that, as condition of possibility of sets, Lambda is more fundamental
than sets and should not be reduced to a technical artifice. The Lambda theory
is a natural approach of set theory and probably introduces the smallest, the
minimal constituent that can be added to a set theory.

The use of Lambda leads to several interesting and/or surprising conceptual
and/or technical results.

1) Introducing the Nothing in the language of set theory allows to distinguish
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the Nothing from the empty set, solving what we called the puzzle of Lambda
in Russell’s approach (see section 1.1).

2) The notion of “set” acquires here a real ontological dimension. In the naive
conception of a set, a set is a collection of elements, and therefore it is not easy
to give conceptual legitimacy to the empty set. The Lambda theory legitimates
and gives an emblematic status to the empty set, now defined in a positive way:
it is the only set that contains only Nothing.

3) More generally, the Lambda theory also allows to redefine the concept of set:
a set can contain sets or objects thanks to the free space denoted by Λ. The
naive acceptance of set is in some way validated in the case of the empty set:
the empty set is a collection of “Nothing”.

4) The Lambda theory also allows to build the empty set by means of the axiom
of pairing and also by means of the axiom of the power set applied to Lambda:
∅ = {Λ} = ℘(Λ). In classical ZF set theory, the existence of a set is to be
postulated; in Lambda theory, the first set is built from “Nothing”.

5) In the Lambda theory, the axiom of the existence of the empty set or the con-
struction of the empty set by means of a contradictory property becomes useless.
“Something”, or rather a pre-thing belongs to the empty set: the “Nothing”,
and remember that the empty set is the only set to which only Lambda belongs.

6) It also allows to distinguish the empty set from ur-elements, which are gen-
erally considered as kinds of empty sets. No thing belongs to an ur-element,
not even Lambda. This is why an ur-element is a kind of atom. Now, no thing
belongs to Lambda either. But we can make the distinction between Lambda
and an ur-element: Lambda belongs to the empty set, moreover, Lambda be-
longs to every set.

7) Finally, the Lambda theory is the first step forward to a theory where the
notion of “potential membership” (“potentially belongs to”) can be considered
and formalized.

So, the use of Lambda in set theory appears natural and could even be seen as
necessary.
For the theory, the balance in terms of investment and profits is clearly positive:
the investment is quasi-null, the gains are numerous.
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