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88 Leibniz’s Combinatorial Art of Synthesis

23. Under the terms of ‘the play of the world [that] has changed in a unigue
way’, the choice of the properties of inflexion no longq depen(.ls ()p a f;od
but on pure process. Deleuze shows how a theory of synt}lesw partlgular‘
to the monads bears upon modern mathematics: “monads’ test t,he paths
in the universe and enter in syntheses associated with each path’ (TF 81).
The notion of paths that are fested can be seen in the .contcxt of probl‘ems
that ‘escape demonstration’, an experimentation in which 'a.pe.rfor}n.aqge of
thresholds maintaining a ‘baroque equilibrium or disequ.lhbrlqn’l informs
the affective state of the whole in variation. For the discussion of ‘capture of

of capture in the diagram read through Foucault, (F 67).
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Leibniz, Mathematics and
the Monad

Simon Duffy

The reconstruction of Leibniz’s metaphysics that Deleuze undertakes
in The Fold provides a systematic account of the structure of Leibniz’s
metaphysics in terms of its mathematical foundations. However, in doing
50, Deleuze draws not only upon the mathematics developed by Leibniz —
including the law of continuity as reflected in the calculus of infinite
series and the infinitesimal calculus - but also upon developments in
mathematics made by a number of Leibniz’s contemporaries - including
Newton’s method of fluxions. He also draws upon a number of sub-
sequent developments in mathematics, the rudiments of which can
be more or less located in Leibniz’s own work - including the theory
of functions and singularities, the Weierstrassian theory of analytic
continuity, and Poincaré’s theory of automorphic functions. Deleuze
then retrospectively maps these developments back onto the structure
of Leibniz’s metaphysics. While the Weierstrassian theory of analytic
continuity serves to clarify Leibniz’s work, Poincaré’s theory of auto-
morphic functions offers a solution to overcome and extend the limits
that Deleuze identifies in Leibniz’s metaphysics. Deleuze brings this
claborate conjunction of material together in order to set up a math-
cmatical idealisation of the system that he considers to be implicit in
Leibniz’s work. The result is a thoroughly mathematical explication
of the structure of Leibniz's metaphysics. This essay is an exposition
of the very mathematical underpinnings of this Deleuzian account of
the structure of Leibniz’s metaphysics, which, I maintain, subtends the
entire text of The Fold.

Deleuze’s project in The Fold is predominantly oriented by Leibniz’s
insistence on the metaphysical importance of mathematical speculation.
What this suggests is that mathematics functions as an important heu-
ristic in the development of Leibniz’s metaphysical theories. Deleuze

89




90 Leibniz, Mathematics and the Monad

puts this insistence to good use by bringing together the different
aspects of Leibniz’s metaphysics with the variety of mathematical
themes that run throughout his work, principally the infinitesimal cal-
culus. Those aspects of Leibniz’s metaphysics that Deleuze undertakes
to clarify in this way, and upon which this essay will focus, include the
definition of the monad and the theory of compossibility. However,
before providing the details of Deleuze’s reconstruction of the structure
of Leibniz’s metaphysics, it will be necessary to give an introduction to
Leibniz’s infinitesimal calculus and to some of the other developments
in mathematics associated with it.

Leibniz’s law of continuity and the infinitesimal calculus

Leibniz was both a philosopher and a mathematician. His infinitesimal
analysis encompassed the investigation of infinite sequences and series,
the study of algebraic and transcendental curves and the operations of
differentiation and integration upon them, and the solution of differen-
tial equations; integration and differentiation are the two fundamental
operations of the infinitesimal calculus developed by him.

Leibniz applied the calculus primarily to problems about curves and
the calculus of finite sequences, which had been used since antiquity
to approximate the curve by a polygon in the Archimedean approach
to geometrical problems by means of the method of exhaustion. In his
early exploration of mathematics, Leibniz applied the theory of number
sequences to the study of curves and showed that the differences and
sums in number sequences correspond to tangents and quadratures
respectively, and he developed the conception of the infinitesimal cal-
culus by supposing the differences between the terms of these sequences
infinitely small (See Bos 1974, p. 13). One of the keys to the calculus
that Leibniz emphasised was to conceive the curve as an infinitangular

polygon:

I feel that this method and others in use up till now can all be
deduced from a general principle which I use in measuring curvi-
linear figures, that a curvilinear figure must be considered to be the

same as a polygon with infinitely many sides.
(GM V 126)

Leibniz based his proofs for the infinitangular polygon on a law of con-
tinuity, which he formulated as follows: ‘In any supposed transition,
ending in any terminus, it is permissible to institute a general reasoning,
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in which the final terminus may also be included’ (Leibniz 1920, p. 147).
Leibniz also thought the following to be a requirement for continuity:
“Two instances [...] approach each other continuously [if] the difference
between [the] two instances [...] can be diminished until it becomes
smaller than any given quantity whatever’ (L 351). Leibniz used the
adjective continuous for a variable ranging over an infinite sequence of
values. In the infinite continuation of the polygon, its sides become
infinitely small and its angles infinitely many. The infinitangular
polygon is considered to coincide with the curve, the infinitely small
sides of which, if prolonged, would form tangents to the curve; where
a tangent is a straight line that touches a circle or curve at only one
point. Leibniz applied the law of continuity to the tangents of curves as
follows: he took the tangent to be continuous with, or as the limiting
.case (terminus) of the secant. To find a tangent is to draw a straight line
]oiging two points of the curve - the secant — which are separated by
an infinitely small distance or vanishing difference, which he called a
differential. (GM V 223) The Leibnizian infinitesimal calculus was built
upon the concept of the differential. The differential, dx, is the differ-
epce in x values between two consecutive values of the variable at P (See
Figure 4.1), and the tangent is the line joining such points.

The differential relation, that is, the quotient between two differen-
tials of the type dy/dx, serves in the determination of the gradient of
the tangent to the circle or curve. The gradient of a tangent indicates
the slope or rate of change of the curve at that point, that is, the rate

Q
Ay
T /
P R Idy
dx = Ay
X

ligure 4.1 The tangent to the curve at P.
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at which the curve changes on the y-axis relative to the x-axis. Leibniz
thought of the dy and dx in dy/dx as ‘infinitesimal’ quantities. Thus dx
was an infinitely small nonzero increment in x and dy was an infinitely
small nonzero increment in y.

Leibniz brings together the definition of the differential as it operates
in the calculus of infinite series, in regard to the infinitangular triangle,
and the infinitesimal calculus, in regard to the determination of tan-
gents to curves, as follows:

Here dx means the element, that is, the (instantaneous) increment or
decrement, of the (continually) increasing quantity x. It is also called
difference, namely the difference between two proximate x’s which dif-
fer by an element (or by an unassaignable), the one originating from
the other, as the other increases or decreases (momentaneously).

(GM VII 223)

The differential can therefore be understood on the one hand, in rela-
tion to the calculus of infinite series as the infinitesimal difference
between consecutive values of a continuously diminishing quantity,
and on the other, in relation to the infinitesimal calculus as an infini-
tesimal quantity. The operation of the differential in the latter actually
demonstrates the operation of the differential in the former, because the
operation of the differential in the infinitesimal calculus in the determi-
nation of tangents to curves demonstrates that the infinitely small sides
of the infinitangular polygon are continuous with the curve.

In one of his early mathematical manuscripts entitled ‘Justification of
the Infinitesimal Calculus by that of Ordinary Algebra’, Leibniz offers an
account of the infinitesimal calculus in relation to a particular geometri-
cal problem that is solved using ordinary algebra (L 545). An outline of
the demonstration that Leibniz gives is as follows (Figure 4.2):! since the
two right triangles, ZFE and ZHJ, that meet at their apex, point Z, are
similar, it follows that the ratio y/x is equal to (Y - y)/X. As the straight
line EJ approaches point F, maintaining the same angle at the variable
point Z, the lengths of the straight lines FZ and FE, or y and x, steadily
diminish, yet the ratio of y to x remains constant. When the straight
line FJ passes through F, the points E and Z coincide with F, and the
straight lines, y and x, vanish. Yety and x will not be absolutely nothing
since they preserve the ratio of ZH to HJ, represented by the proportion
(Y - y)/X, which in this case reduces to Y/X, and obviously does not
equal zero. The relation y/x continues to exist even though the terms
have vanished since the relation is determinable as equal to Y/X. In this
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Figure 4.2 Leibniz’s example of the infinitesimal calculus using ordinary algebra.

algebraic calculus, the vanished lines x and y are not taken for zeros
since t‘hey still have an algebraic relation to each other. ‘And so [Leibniz
argues], they are treated as infinitesimals, exactly as one of the elements
which [...] differential calculus recognises in the ordinates of curves for
r.nornentary increments and decrements’ (L 545). That is, the vanished
lines x and y are determinable in relation to each other only insofar as
they can be replaced by the infinitesimals dy and dx, by making the sup-
position that the ratio y/x is equal to the ratio of the infinitesimals, dy/dx

When the relation continues even though the terms of the relatio'n havé
Q1§appeared, a continuity has been constructed by algebraic means that
is instructive of the operations of the infinitesimal calculus.

_ What Leibniz demonstrates in this example are the conditions accord-
ing to which any unique triangle can be considered as the extreme case
of two similar triangles opposed at the vertex. Deleuze argues that, in
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the case of a figure in which there is only one triangle, the other triangle
is there, but it is there only virtually (CGD 22 April 1980). The virtual
triangle has not simply disappeared, but rather it has become unassign-
able, all the while remaining completely determined. The hypotenuse
of the virtual triangle can be mapped as a side of the infinitangular
polygon, which, if prolonged, forms a tangent line to the curve. There
is therefore continuity from the polygon to the circle, just as there is
continuity from two similar triangles opposed at the vertex to a single
triangle. Hence this relation is fundamental for the application of dif-
ferentials to problems about tangents.

In the first published account of the calculus, Leibniz defines the ratio
of infinitesimals as the quotient of first-order differentials, or the associ-
ated differential relation. He says that ‘the differential dx of the abscissa
x is an arbitrary quantity, and that the differential dy of the ordinate y is
defined as the quantity which is to dx as the ratio of the ordinate to the
subtangent’ (Boyer 1959, p. 210) (see Figure 4.1). Leibniz considers dif-
ferentials to be the fundamental concepts of the infinitesimal calculus,
the differential relation being defined in terms of these differentials.

Newton’s method of fluxions and infinite series

Newton began thinking of the rate of change, or fluxion, of continuously
varying quantities, which he called fluents such as lengths, areas,
volumes, distances, temperatures, in 1665, which predates Leibniz
by about ten years. Newton regarded his variables as generated by
the continuous motion of points, lines, and planes, and offered an
account of the fundamental problem of the calculus as follows: ‘Given
a relation between two fluents, find the relation between their flux-
ions, and conversely’ (Newton 1736). Newton thinks of the two vari-
ables whose relation is given as changing with time, and, although he
does point out that this is useful rather than necessary, it remains a
defining feature of his approach and is exemplified in the geometrical
reasoning about limits, which Newton was the first to come up with.
Put simply, to determine the tangent to a curve at a specified point, a
second point on the curve is selected, and the gradient of the line that
runs through both of these points is calculated. As the second point
approaches the point of tangency, the gradient of the line between the
two points approaches the gradient of the tangent. The gradient of
the tangent is, therefore, the limit of the gradient of the line between
the two points as the points become increasingly close to one another
(Figure 4.3).
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tangent

X

Fifurgt4.3 Newton’s geometrical reasoning about the gradient of a tangent as
a limit.

He conceptualised the tangent geometrically, as the limit of a sequence
of lines between two points, P and Q, on a curve, which is a secant. As
the distance between the points approached zero, the secants beca;me
progressively smaller, however they always retained ‘a real length’. The
secant therefore approached the tangent without reaching it. When this
diftance ‘got arbitrarily small (but remained a real number)’ (Lakoff,
Naiez 2000, p. 224), it was considered insignificant for practical pur:
poses, and was ignored. What is different in Leibniz’s method is that he
‘hypothesized infinitely small numbers - infinitesimals - to designate
the size of infinitely small intervals.’ (ibid.) (See Figure 4.1) For Newton
on the contrary, these intervals remained only small, and therefore;
real. When performing calculations, however, both approaches yielded
the same results. But they differed ontologically, because Leibniz had
hypothesised a new kind of number, a number Newton did not need
§inFe ‘his secants always had a real length, while Leibniz’s had an,
mflnitesimal length’ (ibid.). Leibniz’s symbolism also treats quantities
mdependently of their genesis, rather than as the product of an explicit
functional relation.

Deleuze uses this distinction between the methods of Leibniz and
Newton to characterise the mind-body distinction in Leibniz’s account of
the monad. Deleuze distinguishes according to the distinction canvassed
earlier between the functional definition of the Newtonian fluxion and
the Leibnizian infinitesimal as a concept. ‘The physical mechanism of
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bodies (fluxion) is not identical to the psychic mechanism of perception
(differentials), but the latter resembles the former’ (TF 98). So Deleuze
maintains that ‘Leibniz’s calculus is adequate to psychic mechanics
where Newton'’s is operative for physical mechanics’ (ibid.), and here
again draws from the mathematics of Leibniz’s contemporaries to deter-
mine a distinction between the mind and body of a monad in Leibniz’s
metaphysics.

Both Newton and Leibniz are credited with developing the calculus
as a new and general method, and with having appreciated that the
operations in the new analysis are applicable to infinite series as well
as to finite algebraic expressions. However, neither of them clearly
understood nor rigorously defined their fundamental concepts. Newton
thought his underlying methods were natural extensions of pure geom-
etry, while Leibniz felt that the ultimate justification of his procedures
lay in their effectiveness. For the next 200 years, various attempts were
made to find a rigorous arithmetic foundation for the calculus; one
that relied on neither the mathematical intuition of geometry, with its
tangents and secants, (perceived as imprecise because its conception of
limits was not properly understood); nor the vagaries of the infinitesi-
mal, which cannot be justified either from the point of view of classical
algebra or from the point of view of arithmetic; the latter made many
mathematicians wary, so much so that they refused the hypothesis out-
right despite the fact that Leibniz ‘could do calculus using arithmetic
without geometry — by using infinitesimal numbers’ (Lakoff, Nunez
2000, pp. 224-5).

The emergence of the concept of the function

Seventeenth-century analysis was a corpus of analytical tools for the
study of geometric objects, the most fundamental object of which,
(thanks to the development of a curvilinear mathematical physics by
Huygens) was the curve, or curvilinear figures generally. The latter were
understood to embody relations between several variable geometrical
quantities defined with respect to a variable point on the curve. The
variables of geometric analysis referred to geometric quantities, which
were conceived not as real numbers, but rather as having a dimension:
for example, ‘the dimension of a line (e.g. ordinate, arc length, sub-
tangent), of an area (e.g. the area between curve and axis) or of a solid
(e.g. the solid of revolution)’ (Bos 1974, p. 6). The relations between
these variables were expressed by means of equations. Leibniz actu-
ally referred to these variable geometric quantities as the functiones of a
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curve,? and thereby introduced the term ‘function’ into mathematics.
However, it is important to note the absence of the fully developed
concept of function in the Leibnizian context of algebraic relations
between variables. Today, a function is understood to be a relation that
uniquely associates members of one set with members of another set.
For Leibniz, neither the equations nor the variables are functions in
this modern sense, rather the relation between x and y was considered
to be one entity. The curves were thought of as having a primary exist-
ence apart from any analysis of their numeric or algebraic properties. In
seventeenth-century analysis, equations did not create curves, curves
rather gave rise to equations (Dennis, Confrey 1995, p. 125). Thus
the curve was not seen as a graph of a function but rather as ‘a figure
embodying the relation between x and y’ (see Bos 1974, p. 6). In the
first half of the eighteenth century, a shift of focus from the curve and
the geometric quantities themselves to the formulas which expressed
the relations among these quantities occurred, thanks in large part
to the symbols introduced by Leibniz. The analytical expressions involv-
ing numbers and letters, rather than the geometric objects for which they
stood, became the focus of interest. It was this change of focus towards
the formula that made the emergence of the concept of function pos-
sible. In this process, the differential underwent a corresponding change;
it lost its initial geometric connotations and came to be treated as a
concept connected with formulas rather than with figures.

With the emergence of the concept of the function, the differential
was replaced by the derivative, which is the expression of the differ-
ential relation as a function, first developed in the work of Euler. One
significant difference, reflecting the transition from a geometric analy-
sis to an analysis of functions and formulas, is that the infinitesimal
sequences are no longer induced by an infinitangular polygon standing
for a curve, according to the law of continuity as reflected in the infini-
tesimal calculus, but by a function, defined as a set of ordered pairs of
real numbers.

Subsequent developments in mathematics: The problem
of rigour

The concept of the function however did not immediately resolve the
problem of rigour in the calculus. It was not until the late nineteenth
century that an adequate solution to this problem was found. It was Karl
Weierstrass who ‘developed a pure nongeometric arithmetization for
Newtonian calculus’ (Lakoff, Nunez 2000, p. 230), which provided the
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rigour that had been lacking. The Weierstrassian programme determined
that the fate of calculus need not be tied to infinitesimals, and could
rather be given a rigorous status from the point of view of finite rep-
resentations. Weierstrass’s theory was an updated version of an earlier
account by Augustin Cauchy, which had also experienced problems
conceptualising limits.

It was Cauchy who insisted on specific tests for the convergence of
series, so that divergent series could henceforth be excluded from being
used to try to solve problems of integration because of their propensity
to lead to false results (see Boyer 1959, p. 287). Extending sums to an
infinite number of terms caused problems to emerge if the series did not
converge, since the sum or limit of an infinite series is only determina-
ble if the series converges. It was considered that reckoning with diver-
gent series, which have no sum, would therefore lead to false results.

Weierstrass considered Cauchy to have actually begged the question
of the concept of limit in his proof.? In order to overcome this problem
of conceptualising limits, Weierstrass ‘sought to eliminate all geometry
from the study of [...] derivatives and integrals in calculus’ (Lakoff,
Nafiez 2000, p. 309). In order to characterise calculus purely in terms of
arithmetic, it was necessary for the idea of a curve in the Cartesian plane
defined in terms of the motion of a point, to be completely replaced
with the idea of a function. The geometric idea of ‘approaching a limit’
had to be replaced by an arithmetised concept of limit that relied on
static logical constraints on numbers alone. This approach is commonly
referred to as the epsilon-delta method (see Potter 2004, p. 85). The
calculus was thereby reformulated without either geometric secants and
tangents or infinitesimals; only the real numbers were used.

Because there is no reference to infinitesimals in this Weierstrassian
definition of the calculus, the designation ‘the infinitesimal calculus’
was considered to be ‘inappropriate’ (Boyer 1959, p. 287). Weierstrass’s
work not only effectively removed any remnants of geometry from
what was now referred to as the differential calculus, but it eliminated
the use of the Leibnizian-inspired infinitesimals in doing the calculus
for over half a century. It was not until the late 1960s, with the develop-
ment of the controversial axioms of non-standard analysis by Abraham

Robinson, that the infinitesimal was given a rigorous foundation (see
Bell 1998), thus allowing the inconsistencies to be removed from the
Leibnizian infinitesimal calculus without removing the infinitesimals
themselves.* Leibniz’s ideas about the role of the infinitesimal in the
calculus have therefore been be ‘fully vindicated” (Robinson 1996, p. 2),
as Newton’s had been thanks to Weierstrass.®
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In response to these developments, Deleuze brings renewed scrutiny
to the relationship between the developments in the history of math-
ematics and the metaphysics associated with these developments
yvhich were marginalised as a result of efforts to determine the rigoroust
foundations of the calculus. This is a part of Deleuze’s broader project
of constructing an alternative lineage in the history of philosophy
that tracks the development of a series of metaphysical schemes that
r§3p0nd to and attempt to deploy the concept of the infinitesimal. The
aim of the project is to construct a philosophy of difference as an alter-
native speculative logic that subverts a number of the commitments of
the Hegelian dialectical logic which supported the elimination of the
infinitesimal in favour of the operation of negation, the procedure of

which postulates the synthesis of a series of contradictions in the deter-
mination of concepts.®

The theory of singularities

Another development in mathematics, the rudiments of which can be
.tound in the work of Leibniz is the theory of singularities. A singular-
ity or singular point is a mathematical concept that appears with the
Qevelopment of the theory of functions, which historians of mathemat-
ics consider to be one of the first major mathematical concepts upon
which the development of modern mathematics depends. Even though
the theory of functions does not actually take shape until later in the
cighteenth century, it is in fact Leibniz who contributes greatly to this
development. Indeed, it was Leibniz who developed the first theory
of singularities in mathematics, and, Deleuze argues, it is with Leibniz
that the concept of singularity becomes a mathematico-philosophical
concept. (CGD 29 April 1980) However, before explaining what is
ph}losophical in the concept of singularity for Leibniz, it is necessary to
offer an account of what he considers singularities to be in mathemat-
ic_s, and of how this concept was subsequently developed in the theory
Qt analytic functions, which is important for Deleuze’s account of
(l;l)compossibility in Leibniz, despite it not being developed until long
after Leibniz’s death.

The great mathematical discovery that Deleuze refers to is that sin-
gularity is no longer thought of in relation to the universal, but rather
in relation to the ordinary or the regular (CGD 29 April 1980). In
classical logic, the singular was thought of with reference to the uni-
versal, however that does not necessarily exhaust the concept since in
mathematics, the singular is distinct from or exceeds the ordinary or
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regular. Mathematics refers to the singular and the ordinary in terms
of the points of a curve, or more generally concerning complex curves
or figures. A curve, a curvilinear surface, or a figure includes singular
points and others that are regular or ordinary. Therefore, the relation
between singular and ordinary or regular points is a function of curvi-
linear problems which can be determined by means of the Leibnizian
infinitesimal calculus.

The differential relation is used to determine the overall shape of
a curve primarily by determining the number and distribution of its
singular points or singularities, which are defined as points of articula-
tion where the shape of the curve changes or alters its behaviour. For
example, when the differential relation is equal to zero, the gradient of
the tangent at that point is horizontal, indicating, for example, that the
curve peaks or dips, determining therefore a maximum or minimum
at that point. These singular points are known as stationary or turning
points.

The differential relation characterises not only the singular points
which it determines, but also the nature of the regular points in the imme-
diate neighbourhood of these points, that is, the shape of the branches
of the curve on either side of each singular point. Where the differential
relation gives the value of the gradient at the singular point, the value of
the second-order differential relation, that is if the differential relation is
itself differentiated and which is now referred to as the second derivative,
indicates the rate at which the gradient is changing at that point. This
allows a more accurate approximation of the shape of the curve in the
neighbourhood of that point.

Leibniz referred to the stationary points as maxima and minima
depending on whether the curve was concave up or down respectively.
A curve is concave up where the second-order differential relation is
positive and concave down where the second-order differential relation
is negative. The points on a curve that mark a transition between a
region where the curve is concave up and one where it is concave down
are points of inflexion. The second-order differential relation will be
zero at an inflexion point. Deleuze distinguishes a point of inflexion,
as an intrinsic singularity, from the maxima and minima, as extrinsic
singularities, on the grounds that the former ‘does not refer to coordi-
nates [but rather] corresponds’ to what Leibniz calls an ‘ambiguous sign’
(TF 15), that is, where concavity changes, the sign of the second-order
differential relation changes from + to —, or vice versa.

The value of the third-order differential relation indicates the rate at
which the second-order differential relation is changing at that point.
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point of inflexion

stationary point//

Figure 4.4 The singular points of a curve.

In fact, the more successive orders of the differential relation that can
be evaluated at the singular point, the more accurate the approximation
of the shape of the curve in the ‘immediate’ neighbourhood of that
point. Leibniz even provided a formula for the nth-order differential
relation, as n approaches infinity. The nth-order differential relation at
the point of inflexion would determine the continuity of the variable
curvature in the immediate neighbourhood of the inflexion with the
curve. Because the point of inflexion is where the tangent crosses the
curve (see Figure 4.4) and the point where the nth-order differential
relation is continuous with the curve, Deleuze characterises the point

of inflexion as a point-fold; which is the trope that unifies a number of
the themes and elements of The Fold.”

Subsequent developments in mathematics:
Weierstrass and Poincaré

The important development in mathematics, the rudiments of which
Deleuze considers to be in Leibniz’s work and that he retrospec-
tively maps back onto Leibniz’s account of (in)compossibility is the
Weierstrassian theory of analytic continuity. The Leibnizian method
(‘)t approximation using successive orders of the differential relation is
formalised in the calculus according to Weierstrass’s theory by a Taylor
series or power series expansion. A power series expansion can be writ-
ten as a polynomial, the coefficients of each of its terms being the suc-
cessive derivatives evaluated at the singular point. The sum of such a
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series represents the expanded function provided that any remainder
approaches zero as the number of terms becomes infinite; the polyno-
mial then becomes an infinite series which converges with the func-
tion in the neighbourhood of the singular point.® This criterion of
convergence repeats Cauchy’s earlier exclusion of divergent series from
the calculus. A power series operates at each singular point by succes-
sively determining the specific qualitative nature of the function at that
point, that is, the shape and behaviour of the graph of the function or
curve. The power series determines not only the nature of the function
at the point in question, but also the nature of all of the regular points
in the neighbourhood of that singular point, such that the specific
qualitative nature of a function in the neighbourhood of a singular
point insists in that one point. By examining the relation between the
differently distributed singular points determined by the differential
relation, the regular points which are continuous between the singular
points can be determined, which in geometrical terms are the branches
of the curve. In general, the power series converges with a function by
generating a continuous branch of a curve in the neighbourhood of a
singular point. To the extent that all of the regular points are continu-
ous across all of the different branches generated by the power series
of the singular points, the entire complex curve or the whole analytic
function is generated.

The mathematical elements of this interpretation are most clearly
developed by Weierstrassian analysis, according to the theorem on the
approximation of analytic functions. According to Weierstrass, for any
continuous analytic function on a given interval, or domain, there
exists a power series expansion which uniformly converges to this
function on the given domain. Given that a power series approximates
a function in such a restricted domain, the task is then to determine
other power series expansions that approximate the same function in
other domains. An analytic function is differentiable at each point of
its domain, and is essentially defined, for Weierstrass, from the neigh-
bourhood of a singular point by a power series expansion which is con-
vergent with a ‘circle of convergence’ around that point. A power series
expansion that is convergent in such a circle represents a function that
is analytic at each point in the circle. By taking a point interior to the
first circle as a new centre, and by determining the values of the coetfi-
cients of this new series using the function generated by the first series,
a new series and a new centre of convergence are obtained, whose circle
of convergence overlaps the first. The new series is continuous with
the first if the values of the function coincide in the common part of
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the two circles. This method of ‘analytic continuity’ allows the gradual
construction of a whole domain over which the generated function is
continuous. At the points of the new circle of convergence which are
exterior to, or extend outside the first, the function represented by the
second series is then the analytic continuation of the function defined
by the first series; this is defined by Weierstrass as the analytic continu-
ation of a power series expansion outside its circle of convergence. The
domain of the function is extended by the successive adjunction of
more and more circles of convergence. Each series expansion which
determines a circle of convergence is called an element of the function.
In this way, given an element of an analytic function, by analytic con-
tinuation one can obtain the entire analytic function over an extended
domain. The domain of the successive adjunction of circles of conver-
gence, as determined by analytic continuity, actually has the structure
of a surface. The analytic continuation of power series expansions can
be continued in this way in all directions up to the points in the imme-
diate neighbourhood exterior to the circles of convergence where the
series obtained diverge.

Power series expansions diverge at specific ‘singular points’ or ‘singu-
larities” that may arise in the process of analytic continuity. A singular
point or singularity of an analytic function, as with a curve, is any point
which is not a regular or ordinary point of the function or curve. They
are points which exhibit remarkable properties and thereby have a domi-
nating and exceptional role in the determination of the characteristics of
the function, or shape and behaviour of the curve. The singular points
of a function, which include the stationary points, where dy/dx = 0, and
points of inflexion, where d?y/dx? = 0, are ‘removable singular points’,
since the power series at these points converge with the function.
A removable singular point is uniformly determined by the function and
therefore redefinable as a singular point of the function, such that the
function is analytic or continuous at that point. The specific singulari-
ties of an analytic function where the series obtained diverge are called
‘poles’. Singularities of this kind are those points where the function no
longer satisfies the conditions of regularity which assure its local conti-
nuity, such that the rule of analytic continuity breaks down. They are
therefore points of discontinuity. A singularity is called a pole of a func-
tion when the values of the differential relation, that is, the gradients
of the tangents to the points of the function, approach infinity as the
function approaches the pole. The function is said to be asymptotic to
the pole, it is therefore no longer differentiable at that point, but rather
remains undefined, or vanishes. A pole is therefore the limit point of



104 Leibniz, Mathematics and the Monad

a function. The poles that arise in the process of analytic continuity
necessarily lie on the boundaries of the circles of convergence of power
series. The effective domain of an analytic function determined by
the process of the analytic continuation of power series expansions is
therefore limited to that between its poles. The poles of the two discon-
tinuous analytic functions are non-removable, thus analytic continuity
between the two functions is not able to be established.

This is the extent of the Weierstrassian theory of analytic continuity
that Deleuze retrospectively maps onto Leibniz’s theory of singulari-
ties and that he deploys in his account of Leibnizian incompossibility,
which is explicated in the following section. A singularity is a distinc-
tive point on a curve in the neighbourhood of which the second-order
differential relation changes its sign. This characteristic of the singular
point is extended into or is continuous with the series of ord_inary
points that depend on it, all the way to the neighbourhood.ot sub-
sequent singularities. It is for this reason that Deleuze maintmns that
the theory of singularities is inseparable from a theory or an activity of
continuity, where continuity, or the continuous, is the extension of a
singular point into the ordinary points up to the neighbourhood of the
subsequent singularity. And it is for this reason that Deleuze considers
the rudiments of the Weierstrassian theory to be in the work of Leibniz,
and that it is therefore able to be retrospectively mapped back onto the
work of Leibniz.

Weierstrass did recognise a means of solving the problem of the
discontinuity between the poles of analytic functions by postulating
a potential function, the parameters of the domain of which is deter-
mined by the poles of the two discontinuous analytic functions, and by
extending his analysis to meromorphic functions.” A function is said to
be meromorphic in a domain if it is analytic in the domain determined
by the poles of analytic functions. A meromorphic function .is deter-
mined by the quotient of two arbitrary analytic functions, which ha.Ve
been determined independently on the same surface by the point-wise
operations of Weierstrassian analysis. Such a function is defined by the
differential relation:

dy Y

dx X
Figure 4.5 The meromorphic function.

where X and Y are the polynomials, or power series of the two local‘
functions. The meromorphic function is the differential relation of
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the function between the two discontinuous analytic functions. The
expansion of the power series determined by the repeated differentia-
tion of the meromorphic function generates the graph of a composite
function that consists of curves with infinite branches, because the
series generated by the expansion of the meromorphic function is diver-
gent. The representation of such curves however posed a problem for
Weierstrass, which he was unable to resolve, because divergent series fall
outside the parameters of the differential calculus, as determined by the
epsilon-delta approach, since they defy the criterion of convergence.

Henri Poincaré took up this problem of the representation of compos-
ite functions, by extending the Weierstrassian theory of meromorphic
functions into what was called ‘the qualitative theory of differential
equations’, or theory of automorphic functions (Kline 1972, p. 732).
While such divergent series do not converge to a function, in the
Weierstrassian sense, they may indeed furnish a useful approximation
to a function if they can be said to represent the function asymptoti-
cally. When such a series is asymptotic to the function, it can represent
an analytic or composite function even though the series is divergent.
The determination of a composite function requires the determina-
tion of a new singularity in relation to the poles of the local functions
of which it is composed. Poincaré called this new kind of singularity
an essential singularity. Poincaré distinguished four types of essen-
tial singularity, which he classified according to the behaviour of the
function and the geometrical appearance of the solution curves in the
neighbourhood of these points: the saddle point or dip (col); the node
(nceud); the point of focus (foyer); and, the centre (Barrow-Green 1997,
p. 32; DR 177). Singularities develop increasingly complex relations
with the increasing complexity of curves. The subsequent developments
that the Weierstrassian theory of analytic continuity undergoes, up to
and including Poincaré’s theory of automorphic functions, is the mate-
rial that Deleuze draws upon to offer a solution to overcome and extend
the limits of Leibniz’s metaphysics. The details of this critical move on
Deleuze’s part are examined in the final section of the essay.

Deleuze’s ‘Leibnizian’ interpretation of the theory
of compossibility

What then does Deleuze mean by claiming that Leibniz determines
the singularity in the domain of mathematics as a philosophical
concept? A crucial test for Deleuze’s mathematical reconstruction of
Leibniz’s metaphysics is how to deal with his subject-predicate logic.
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Deleuze maintains that Leibniz’s mathematical account of continuity is
reconcilable with the relation between the concept of a subject and its
predicates. The solution that Deleuze proposes involves demonstrating
that the continuity characteristic of the infinitesimal calculus is isomor-
phic to the series of predicates contained in the concept of a subject.
An explanation of this isomorphism requires an explication of Deleuze’s
understanding of Leibniz’s account of predication as determined by the
principle of sufficient reason.

For Leibniz, every proposition can be expressed in subject-predicate
form. The subject of any proposition is a complete individual sub-
stance that is a simple, indivisible, dimensionless metaphysical point
or monad. Of this subject it can be said that ‘every analytic proposition
is true’, where an analytical proposition is one in which the predicate
is identical with the subject. Deleuze suggests that if this principle of
identity is reversed, such that it reads: ‘every true proposition is neces-
sarily analytic’, then this amounts to a formulation of Leibniz's princi-
ple of sufficient reason (CGD 15 April 1980). According to this principle
each time a true proposition is formulated, it must be understood to
be analytic, that is, every true proposition is a statement of identiﬁy
whose predicate is wholly contained in its subject. It follows that if a
proposition is true, then the predicate must be either reciprocal with the
subject or contained in the concept of the subject. That is, everything
that happens to, everything that can be attributed to, everything that
is predicated of a subject — past, present and future — must be contained
in the concept of the subject. So for Leibniz, all predicates, that is, the
predicates that express all of the states of the world, are contained in the
concept of each and every particular or singular subject.

There are however grounds to distinguish truths of reason or essence,
from truths of fact or existence. An example of a truth of essence would
be the proposition 2+2=4, which is analytic, therefore, there is an
identity of the predicate, 2+2, with the subject, 4. This can be proved
by analysis, that is, in a finite or limited number of quite determinate
operations, it can be demonstrated that 4, by virtue of its definition,
and 2+2, by virtue of their definition, are identical. So, the identity of
the predicate with the subject in an analytic proposition can be demon-
strated in a finite series of determinate operations. While 2+2=4 occurs
in all time and in all places, and is therefore a necessary truth, the prop-
osition that ‘Adam sinned’, is specifically dated, that is, Adam will sin in
a particular place at a particular time. It is therefore a truth of existence,
and as we shall see, a contingent truth. According to the principle of
sufficient reason, the proposition ‘Adam sinned’ must be analytic. If we
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pass from one predicate to another to retrace all the causes and follow
up all the effects, this would involve the entire series of predicates con-
tained in the subject Adam, that is, the analysis would extend to infin-
ity. So, in order to demonstrate the inclusion of ‘sinner’ in the concept
of ‘Adam,’ an infinite series of operations is required. However, we are
not capable of completing such an analysis to infinity.

While Leibniz is committed to the idea of potential ‘syncategore-
matic’ infinity, that is, to infinite pluralities such as the terms of an
infinite series which are indefinite or unlimited, he ultimately accepted
that in the realm of quantity infinity could in no way be construed
as a unified whole by us. As Bassler clearly explains: ‘So if we ask how
many terms there are in an infinite series, the answer is not: an infinite
number (if we take this either to mean a magnitude which is infinitely
larger than a finite magnitude or a largest magnitude) but rather: more
than any given finite magnitude’ (Bassler 1998, p. 65). The performance
of such an analysis is indefinite both for us, as finite human beings,
because our understanding is limited, and for God, since there is no
end of the analysis, that is, it is unlimited. However, all the elements
of the analysis are given to God in an actual infinity. We cannot grasp
the actual infinite, nor reach it via an indefinite intuitive process. It is
only accessible for us via finite systems of symbols that approximate
it. The infinitesimal calculus provides us with an ‘artifice’ to operate
a well-founded approximation of what happens in God’s understand-
ing. We can approach God’s understanding thanks to the operation of
infinitesimal calculus, without ever actually reaching it. While Leibniz
always distinguished philosophical truths and mathematical truths,
Deleuze maintains that the idea of infinite analysis in metaphysics has
‘certain echoes’ in the calculus of infinitesimal analysis in mathemat-
ics. The infinite analysis that we perform as human beings in which
sinner is contained in the concept of Adam is an indefinite analysis,
just as if the terms of the series that includes sinner were isometric with
1/2+1/4+1/8, etc., to infinity. In truths of essence, the analysis is finite,
whereas in truths of existence, the analysis is infinite under the above-
mentioned conditions of a well-determined finitude.

So what distinguishes truths of essence from truths of existence is that
a truth of essence is such that its contrary is contradictory and therefore
impossible, that is, it is impossible for 2 and 2 not to equal 4. Just as the
identity of 4 and 2+2 can be proved in a series of finite procedures, so
too can the contrary, 2+2 not equalling 4, be proved to be contradic-
tory and therefore impossible. While it is impossible to think what 2+2
not equalling 4 or a squared circle may be, it is possible to think of an
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Adam who might not have sinned. Truths of existence are therefore
contingent truths. A world in which Adam might not have sinned is a
logically possible world, that is, the contrary is not necessarily contra-
dictory. While the relation between Adam sinner and Adam non-sinner
is a relation of contradiction since it is impossible that Adam is both
sinner and non-sinner, Adam non-sinner is not contradictory with the
world where Adam sinned, it is rather incompossible with such a world.
Deleuze argues that to be incompossible is therefore not the same as
to be contradictory, it is another kind of relation that exceeds the con-
tradiction.!® Deleuze characterises the relation of incompossibility as
‘a difference and not a negation’ (TF 150). Incompossibility conserves
a very classical principle of disjunction: it is either this world or some
other one. So, when analysis extends to infinity, the type or mode of
inclusion of the predicate in the subject is compossiblity. What inter-
ests Leibniz at the level of truths of existence is not the identity of the
predicate and the subject, but rather the process of passing from one
predicate to another from the point of view of an infinite analysis, and
it is this process that is characterised by Leibniz as having the maximum
of continuity. While truths of essence are governed by the principle of
identity, truths of existence are governed by the law of continuity.

Rather than discovering the identical at the end or limit of a finite
series, infinite analysis substitutes the point of view of continuity for
that of identity. There is continuity when the extrinsic case, for exam-
ple, the circle, the unique triangle or the predicate, can be considered
as included in the concept of the intrinsic case, that is, the infinitan-
gular polygon, the virtual triangle, or the concept of the subject. The
domain of incompossibility is therefore a domain different from that of
the identity/contradiction. There is no logical identity between sinner
and Adam, but there is a continuity. Two elements are in continuity
when an infinitely small or vanishing difference is able to be assigned
between these two elements. Here Deleuze shows in what way truths of
existence are reducible to mathematical truths.

Deleuze offers a ‘Leibnizian’ interpretation of the difference between
compossibility and incompossibility ‘based only on divergence or con-
vergence of series’ (TF 150). He proposes the hypothesis that there is
compossibility between two singularities when their ‘series of ordinaries
converge’, that is, when the values of the ‘series of regular points that
derive from two singularities [...] coincide, otherwise there is discon-
tinuity. In one case, you have the definition of compossibility, in the
other case, the definition of incompossibility’ (CGD 29 April 1980). If
the series of ordinary or regular points that derive from singularities
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diverge, then you have a discontinuity. When the series diverge, when
you can no longer compose the continuity of this world with the con-
tinuity of this other world, then it can no longer belong to the same
world. There are therefore as many worlds as divergences. All worlds are
possible, but they are incompossibles with each other. God conceives
an infinity of possible worlds that are not compossible with each other,
from which He chooses the best of possible worlds, which happens to
be the world in which Adam sinned. A world is therefore defined by its
continuity. What separates two incompossible worlds is the fact that
there is discontinuity between the two worlds. It is in this way that
Deleuze maintains that compossibility and incompossibility are the
direct consequences of the theory of singularities.

Overcoming the limits of Leibniz’s metaphysics

When Deleuze makes the comment that ‘[t|he differential relation thus
acquires a new meaning, since it expresses the analytical extension of
one series into another, and no more the unity of converging series
that would not diverge in the least from each other’ (TF 8), this should
be understood in relation to what is presented in this essay as the
Weierstrassian development of the meromorphic function as a differen-
tial relation. Poincaré’s subsequent development of the Weierstrassian
meromorphic function means that a continuity can be established
across divergent series. What this means is that the Leibnizian account
of compossibility as the unity of convergent series, which relies on the
exclusion of divergence, is no longer required by the mathematics. The
mathematical idealisation has therefore exceeded the metaphysics, so,
in keeping with Leibniz’s insistence on the metaphysical importance
of mathematical speculation, the metaphysics requires recalibration.
Leibniz’s metaphysics is limited by the part-whole or one-multiple
structure according to which this unity of convergent series is funda-
mentally determined, whether in terms of the one monad containing
the infinite series of predicates which express all of the states of the
world, as determined by the principle of sufficient reason; or in terms
of one God establishing the harmony of a multiplicity of monads, as
determined by the pre-established harmony.

What Poincaré’s theory of automorphic functions does is offer a way
for the part-whole structure of Leibniz’s metaphysics to be problema-
tised and overcome. Post Poincaré, the infinite series of states of the
world is no longer contained in each monad. There is no pre-established
harmony. The continuity of the states of the actual world and the
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discrimination between what is compossible and what is incompossible
with this world is no longer pre-determined. The logical possibilities of
all incompossible worlds are now real possibilities, all of which have the
potential to be actualised by monads as states of the current world. As
Deleuze argues ‘To the degree that the world is now made up of diver-
gent series (the chaosmos), [...] the monad is now unable to contain the
entire world as if in a closed circle that can be modified by projection’
(TF 137). So while the Weierstrassian theory of analytic continuity is
retrospectively mappable onto the Leibnizian account of the unity of
convergent series, the subsequent developments by Poincaré provide
a solution that can be understood to overcome the explicit limits of
Leibniz’s metaphysics. It is these aspects of Deleuze’s project in The Fold
that foreshadow the ‘new Baroque and Neo-Leibnizianism’ (TF 136)
that Deleuze explores elsewhere in his body of work — the mathematical
account of which is offered most explicitly in Difference and Repetition.

Notes

1. The lettering has been changed to reflect more directly the isomorphism
between this algebraic example and Leibniz's notation for the infinitesimal
calculus.

2. Leibniz, ‘Methodus tangentium inversa, seu de fuctionibus’ (1673), see Katz
(2007, p. 199), seu de fuctionibus’ (1673), see Katz (2007, p. 199).

3. For an account of this problem with limits in Cauchy, see Potter (2004,
pp. 85-6).

4. The infinitesimal is now considered to be a hyperreal number that exists in
a cloud of other infinitesimals or hyperreals floating infinitesimally close to
each real number on the hyperreal number line (Bell 2005, 262). The devel-
opment of non-standard analysis however has not broken the stranglehold
of classical analysis to any significant extent, however this seems to be more
a matter of taste and practical utility rather than of necessity (Potter 2004,
p. 85).

5. Non-standard analysis allows ‘interesting reformulations, more elegant proofs
and new results in, for instance, differential geometry, topology, calculus of
variations, in the theories of functions of a complex variable, of normed lin-
ear spaces, and of topological groups’ (Bos 1974, p. 81).

6. For a more extensive discussion of this aspect of Deleuze’s project, see Dufty
(2006a).

7. 1n addition to several mathematical examples of the inflexion as a point-fold,
including the transformations of Ren¢ Thom and the continuously deferred
inflexion of the Koch curve (TF 16-7), Deleuze offers an example drawn from
baroque architecture, according to which an inflexion serves to hide or round
out the right angle, which is figured in the Gothic arch that has the geometri-
cal shape of an ogive.
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8. Fk(:r a more extensive account of Deleuze’s deployment of the Weierstrassian
theory of analytic continuity and the role of power seri
20060, p es, see Duffy
9. It was Charles A. A. Briot and Jean-Claude Bouquet who introduced the term

‘meromorphic’ for a function which possessed just poles in th .
(Kline 1972, p. 642). J p at domain

10. Deleuze characterises this as ‘vice-diction’ (TF 59).
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