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In the paper “Math Anxiety,” Aden Evensexplores the manner by means of which con-
cepts are implicated in the problematic Idea
according to the philosophy of Gilles Deleuze.
The example that Evens draws from Difference
and Repetition in order to demonstrate this
relation is a mathematics problem, the elements
of which are the differentials of the differential
calculus. What I would like to offer in the
present paper is an historical account of the
mathematical problematic that Deleuze deploys
in his philosophy, and an introduction to the
role that this problematic plays in the develop-
ment of his philosophy of difference. One of the
points of departure that I will take from the
Evens paper is the theme of “power series.”2

This will involve a detailed elaboration of the
mechanism by means of which power series
operate in the differential calculus deployed by
Deleuze in Difference and Repetition. Deleuze
actually constructs an alternative history of
mathematics that establishes an historical conti-
nuity between the differential point of view of
the infinitesimal calculus and modern theories of
the differential calculus. It is in relation to the
differential point of view of the infinitesimal
calculus that Deleuze determines a differential
logic which he deploys, in the form of a logic of
different/ciation, in the development of his proj-
ect of constructing a philosophy of difference.

the differential point of view of the
infinitesimal calculus

The concept of the differential was introduced
by developments in the infinitesimal calculus
during the latter part of the seventeenth century.
Carl Boyer, in The History of the Calculus and
its Conceptual Development, describes the early

stages of this development as being “bound up
with concepts of geometry […] and with expla-
nations of […] the infinitely small.”3 Boyer de-
scribes the infinitesimal calculus as dealing with
“the infinite sequences […] obtained by continu-
ing […] to diminish ad infinitum the intervals
between the values of the independent variable.
[…] By means of [these] successive subdivisions
[…] the smallest possible intervals or differen-
tials” are obtained (CB 12). The differential can
therefore be understood to be the infinitesimal
difference between consecutive values of a con-
tinuously diminishing quantity. Boyer refers to
this early form of the infinitesimal calculus as
the infinitesimal calculus from “the differential
point of view” (CB 12). From the differential
point of view of the infinitesimal calculus, Boyer
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argues that “the derivative would […] be defined
as the quotient of two such differentials, and the
integral would then be the sum of a number
(perhaps finite, perhaps infinite) of such differ-
entials” (CB 12).
The infinitesimal calculus consists of two

branches which are inverse operations: differen-
tial calculus, which is concerned with calculating
derivatives, or differential relations; and integral
calculus, which is concerned with integration, or
the calculation of the infinite sum of the differ-
entials. The derivative, from the differential
point of view of the infinitesimal calculus, is the
quotient of two differentials, that is, a differen-
tial relation, of the type dy/dx. The differential,
dy, is an infinitely small quantity, or what
Deleuze describes as “a vanishing quantity”:4 a
quantity smaller than any given or givable quan-
tity. Therefore, as a vanishing quantity, dy, in
relation to y, is, strictly speaking, equal to zero.
In the same way dx, in relation to x, is, strictly
speaking, equal to zero; that is, dx is the vanish-
ing quantity of x. Given that y is a quantity of
the abscissa, and that x is a quantity of the
ordinate, dy� 0 in relation to the abscissa, and
dx� 0 in relation to the ordinate. The differen-
tial relation can therefore be written as dy/
dx� 0/0. However, although dy is nothing in
relation to y, and dx is nothing in relation to x,
dy over dx does not cancel out, that is, dy/dx is
not equal to zero. When the differentials are
represented as being equal to zero, the relation
can no longer be said to exist since the relation
between two zeros is zero, that is 0/0� 0; there
is no relation between two things which do not
exist. However, the differentials do actually ex-
ist. They exist as vanishing quantities in so far as
they continue to vanish as quantities rather than
having already vanished as quantities. Therefore,
despite the fact that, strictly speaking, they
equal zero, they are still not yet, or not quite
equal to, zero. The relation between these two
differentials, dy/dx, therefore does not equal
zero, dy/dx � 0, despite the fact that dy/dx� 0/
0. Instead, the differential relation itself, dy/dx,
subsists as a relation. “What subsists when dy
and dx cancel out under the form of vanishing
quantities is the relation dy/dx itself” (DSS).
Despite the fact that its terms vanish, the rela-

tion itself is nonetheless real. It is here that
Deleuze considers seventeenth-century logic to
have made “a fundamental leap,” by determin-
ing “a logic of relations” (DSS). He argues that
“under this form of infinitesimal calculus is
discovered a domain where the relations no
longer depend on their terms” (DSS). The con-
cept of the infinitely small as vanishing quanti-
ties allows the determination of relations
independently of their terms. “The differential
relation presents itself as the subsistence of the
relation when the terms vanish” (DSS). Accord-
ing to Deleuze, “the terms between which the
relation establishes itself are neither determined,
nor determinable. Only the relation between its
terms is determined” (DSS). This is the logic of
relations that Deleuze locates in the infinitesimal
calculus of the seventeenth century.
The differential relation, which Deleuze char-

acterises as a “pure relation” (DSS) because it is
independent of its terms, and which subsists in
so far as dy/dx � 0, has a perfectly expressible
finite quantity designated by a third term, z,
such that dy/dx equals z. Deleuze argues that
“when you have a [differential] relation derived
from a circle, this relation doesn’t involve the
circle at all but refers [rather] to what is called a
tangent” (DSS). A tangent is a line that touches
a circle or curve at one point. The gradient of a
tangent indicates the rate of change of the curve
at that point, that is, the rate at which the curve
changes on the y-axis relative to the x-axis. The
differential relation therefore serves in the deter-
mination of this third term, z, the value of which
is the gradient of the tangent to the circle or
curve.
When referring to the geometrical study of

curves in his early mathematical manuscripts,
Leibniz writes that “the differential calculus
could be employed with diagrams in an even
more wonderfully simple manner than it was
with numbers.”5 Leibniz presents one such dia-
gram in a paper entitled “Justification of the
Infinitesimal Calculus by that of Ordinary Alge-
bra,” when he offers an example of what had
already been established of the infinitesimal cal-
culus in relation to particular problems before
the greater generality of its methods was devel-
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Fig. 1.

infinitesimals dy and dx, by making the suppo-
sition that the ratio y/x is equal to the ratio of
the infinitesimals, dy/dx. In the first published
account of the calculus, Leibniz defines the ratio
of infinitesimals as the quotient of first-order
differentials, or the differential relation. He says
that “the differential dx of the abscissa x is an
arbitrary quantity, and that the differential dy of
the ordinate y is defined as the quantity which is
to dx as the ratio of the ordinate to the subtan-
gent” (CB 210). Leibniz considers differentials to
be the fundamental concepts of the infinitesimal
calculus, the differential relation being defined
in terms of these differentials.

a new theory of relations

Leibniz recognised integration to be a process
not only of summation but also of the inverse
transformation of differentiation, so the integral
is not only the sum of differentials but also the
inverse of the differential relation. In the early
nineteenth century, the process of integration as
a summation was overlooked by most mathe-
maticians in favour of determining integration,
instead, as the inverse transformation of differ-
entiation. The main reason for this was that by
extending sums to an infinite number of terms,
problems began to emerge if the series did not
converge. The value or sum of an infinite series
is determinable only if the series converges.
Divergent series have no sum. It was considered
that reckoning with divergent series would there-
fore lead to false results. The problem of inte-
gration as a process of summation from the
differential point of view of the infinitesimal
calculus did, however, continue to be explored.
It was Augustin Cauchy (1789–1857) who first
introduced specific tests for the convergence of
series, so that divergent series could henceforth
be excluded from being used to try to solve
problems of integration because of their propen-
sity to lead to false results (CB 287).
The object of the process of integration in

general is to determine from the coefficients of
the given function of the differential relation the
original function from which they were derived.
Put simply, given a relation between two differ-

oped.6 An outline of the example that Leibniz
gives is shown in Fig. 1.
Since the two right triangles, ZFE and ZHJ,

that meet at their apex, point Z, are similar, it
follows that the ratio y/x is equal to (Y – y)/X.
As the straight line EJ approaches point F,
maintaining the same angle at the variable point
Z, the lengths of the straight lines FZ and FE, or
y and x, steadily diminish, yet the ratio of y to
x remains constant. When the straight line EJ
passes through F, the points E and Z coincide
with F, and the straight lines, y and x, vanish.
Yet y and x will not be absolutely nothing since
they preserve the ratio of ZH to HJ, represented
by the proportion (Y – y)/X, which in this case
reduces to Y/X, and obviously does not equal
zero. The relation y/x continues to exist even
though the terms have vanished since the rela-
tion is determinable as equal to Y/X. In this
algebraic calculus, the vanished lines x and y are
not taken for zeros since they still have an
algebraic relation to each other. “And so,” Leib-
niz argues, “they are treated as infinitesimals,
exactly as one of the elements which […] differ-
ential calculus recognises in the ordinates of
curves for momentary increments and decre-
ments” (PPL 545). That is, the vanished lines x
and y are determinable in relation to each other
only in so far as they can be replaced by the
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entials, dy/dx, the problem of integration is how
to find a relation between the quantities them-
selves, y and x. This problem corresponds to the
geometrical method of finding the function of a
curve characterised by a given property of its
tangent. The differential relation is thought of as
another function which describes, at each point
on an original function, the gradient of the line
tangent to the curve at that point. The value of
this “gradient” indicates a specific quality of the
original function; its rate of change at that point.
The differential relation therefore indicates the
specific qualitative nature of the original func-
tion at the different points of the curve.
The inverse process of this method is differen-

tiation, which, in geometrical terms, determines
the differential relation as the function of the
line tangent to a given curve. Put simply, to
determine the tangent of a curve at a specified
point, a second point that satisfies the function
of the curve is selected, and the gradient of the
line that runs through both of these points is
calculated. As the second point approaches the
point of tangency, the gradient of the line be-
tween the two points approaches the gradient of
the tangent. The gradient of the tangent is,
therefore, the limit of the gradient of the line
between the two points.
It was Newton who first came up with this

concept of a limit. He conceptualised the tangent
geometrically, as the limit of a sequence of lines
between two points on a curve, which he called
a secant. As the distance between the points
approached zero, the secants became progres-
sively smaller; however, they always retained “a
real length.” The secant therefore approached
the tangent without reaching it. When this dis-
tance “got arbitrarily small (but remained a real
number),”7 it was considered insignificant for
practical purposes, and was ignored. What is
different in Lebniz’s method is that he
“hypothesized infinitely small numbers –
infinitesimals – to designate the size of infinitely
small intervals” (LN 224). For Newton, on the
contrary, these intervals remained only small,
and therefore real. When performing calcula-
tions, however, both approaches yielded the
same results. But they differed ontologically,
because Leibniz had hypothesised a new kind of

number, a number Newton did not need, since
“his secants always had a real length, while
Leibniz’s had an infinitesimal length” (LN 224).
For the next two hundred years, various at-

tempts were made to find a rigorous arithmetic
foundation for the calculus. One that did not
rely on either the mathematical intuition of ge-
ometry, with its tangents and secants, which was
perceived as imprecise because its conception of
limits was not properly understood; or on the
vagaries of the infinitesimal, which made many
mathematicians wary, so much so that they re-
fused the hypothesis outright, despite the fact
that Leibniz “could do calculus using arithmetic
without geometry – by using infinitesimal num-
bers” (LN 224–25). It was not until the late
nineteenth century that an adequate solution to
this problem of rigour was posed. It was Karl
Weierstrass (1815–97) who “developed a pure
nongeometric arithmetization for Newtonian cal-
culus” (LN 230), which provided the rigour that
had been lacking. “Weierstrass’s theory was an
updated version of Cauchy’s earlier account”
(LN 309), which had also had problems concep-
tualising limits. Cauchy actually begs the ques-
tion of the concept of limit in his proof.8 In
order to overcome this problem of conceptualis-
ing limits, Weierstrass “sought to eliminate all
geometry from the study of […] derivatives and
integrals in calculus” (LN 309). In order to
characterise calculus purely in terms of arithme-
tic, it was necessary for the idea of a function, as
a curve in the Cartesian plane defined in terms
of the motion of a point, to be completely
replaced with the idea of a function that is,
rather, a set of ordered pairs of real numbers.
The geometric idea of “approaching a limit” had
to be replaced by an arithmetised concept of
limit that relied on static logical constraints on
numbers alone. This approach is commonly re-
ferred to as the epsilon-delta method. Deleuze
argues that:

It is Weierstrass who bypasses all the interpre-
tations of the differential calculus from Leibniz
to Lagrange, by saying that it has nothing to
do with a process […] Weierstrass gives an
interpretation of the differential and
infinitesimal calculus which he himself calls
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static, where there is no longer fluctuation
towards a limit, nor any idea of threshold.9

The calculus was thereby reformulated without
either geometric secants and tangents or
infinitesimals; only the real numbers were used.
Because there is no reference to infinitesimals

in this Weierstrassian definition of the calculus,
the designation “the infinitesimal calculus” was
considered to be “inappropriate” (CB 287).
Weierstrass’s work not only effectively removed
any remnants of geometry from what was now
referred to as the differential calculus but it also
eliminated the use of Leibniz-inspired
infinitesimal arithmetic in doing the calculus for
over half a century. It was not until the late
1960s, with the development of the controversial
axioms of non-standard analysis by Abraham
Robinson (1918–74), that the infinitesimal was
given a rigorous foundation,10 and a formal the-
ory of the infinitesimal calculus was constructed,
thus allowing Leibniz’s ideas to be “fully vindi-
cated,”11 as Newtown’s had been thanks to
Weierstrass.
It is specifically in relation to these develop-

ments that Deleuze contends that, when under-
stood from the differential point of view of that
infinitesimal calculus, the value of z, which was
determined by Leibniz in relation to the differ-
ential relation, dy/dx, as the gradient of the
tangent, functions as a limit. When the relation
establishes itself between infinitely small terms it
does not cancel itself out with its terms but
rather tends towards a limit. In other words,
when the terms of the differential relation van-
ish, the relation subsists because it tends towards
a limit, z. Since the differential relation ap-
proaches closer to its limit as the differentials
decrease in size, or approach zero, the limit of
the relation is represented by the relation be-
tween the infinitely small. Of course, despite the
geometrical nature of the idea of a variable and
a limit, where variables “decrease in size” or
“approach zero,” and the differential relation
“approaches” or “tends towards” a limit, they
are not essentially dynamic, but involve purely
static considerations, that is, they are rather “to
be taken automatically as a kind of shorthand
for the corresponding developments of the epsi-

lon-delta approach” (LN 277). It is in this sense
that the differential relation between the
infinitely small refers to something finite. Or, as
Deleuze suggests, it is in the finite itself that
there is the “mutual immanence” (DSS) of the
relation and the infinitely small.
Given that the method of integration provides

a way of working back from the differential
relation, the problem of integration is, therefore,
how to reverse this process of differentiation.
This can be solved by determining the inverse of
the given differential relation according to the
inverse transformation of differentiation. Or, a
solution can be determined from the differential
point of view of the infinitesimal calculus by
considering integration as a process of sum-
mation in the form of a series, according to
which, given the specific qualitative nature of a
tangent at a point, the problem becomes that of
finding not just one other point determinative of
the differential relation but a sequence of points,
all of which together satisfy, or generate, a curve
and therefore a function in the neighbourhood of
the given point of tangency, which therefore
functions as the limit of the function.
Deleuze considers this to be the base of the

infinitesimal calculus as understood or inter-
preted in the seventeenth century. The formula
for the problem of the infinite that Deleuze
extracts from this seventeenth-century under-
standing of the infinitesimal calculus is that
“something finite consists of an infinity under a
certain relation” (DSS). Deleuze considers this
formula to mark “an equilibrium point, for sev-
enteenth-century thought, between the infinite
and the finite, by means of a new theory of
relations” (DSS). It is the logic of this theory of
relations that provides a starting point for the
investigation into the logic that Deleuze deploys
in Difference and Repetition as a part of his
project of constructing a philosophy of differ-
ence.

the logic of the differential

Having located the logic of the differential from
the differential point of view of the infinitesimal
calculus in the work of Leibniz, the subsequent
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developments that this logic undergoes will now
be examined in relation to the work of some of
the key figures in the history of this branch of
the infinitesimal calculus. These figures are im-
plicated in an alternative lineage in the history of
mathematics by means of which the differential
point of view of the infinitesimal calculus is
aligned with the differential calculus of contem-
porary mathematics. The logic of the differential
from the differential point of view of the
infinitesimal calculus is then implicated in the
development of Deleuze’s project of constructing
a philosophy of difference. The manner by
means of which the figures in the history of the
differential point of view of the infinitesimal
calculus are implicated in an alternative lineage
in the history of mathematics will now be exam-
ined.
Ironically, one of the mathematicians who

contributed to the development of the differen-
tial point of view of the infinitesimal calculus is
Karl Weierstrass, who considers the differential
relation to be logically prior to the function in
the process of determination associated with the
infinitesimal calculus; that is, rather than deter-
mining the differential relation from a given
function, the kinds of mathematical problems
that Weierstrass dealt with involved investigat-
ing how to generate a function from a given
differential relation. Weierstrass develops a the-
ory of integration as the approximation of func-
tions from differential relations according to a
process of summation in the form of series.
Despite Weierstrass having eliminated both ge-
ometry and the infinitesimal from the calculus,
Deleuze recovers this theory in order to restore
the Leibnizian perspective of the differential, as
the genetic force of the differential relation, to
the differential point of view of the infinitesimal
calculus, by means of the infinitesimal axioms of
non-standard analysis.
According to Deleuze’s reading of the

infinitesimal calculus from the differential point
of view, a function does not precede the differen-
tial relation, but rather is determined by the
differential relation. The differential relation is
used to determine the overall shape of the curve
of a function primarily by determining the num-
ber and distribution of its distinctive points,

which are points of articulation where the nature
of the curve changes or the function alters its
behaviour. For example, in geometrical terms,
when the differential relation is zero, the gradi-
ent of the tangent at that point is horizontal,
indicating that the curve peaks or dips, therefore
determining a maximum or minimum at that
point. These distinctive points are known as
stationary or turning points. The differential
relation characterises or qualifies not only the
distinctive points which it determines but also
the nature of the regular points in the immediate
neighbourhood of these points, that is, the shape
of the branches of the curve between each dis-
tinctive point. Where the differential relation
gives the value of the gradient at the distinctive
point, the value of the derivative of the differen-
tial relation, that is, the second derivative, indi-
cates the rate at which the gradient is changing
at that point, which allows a more accurate
approximation of the nature of the function in
the neighbourhood of that point. The value of
the third derivative indicates the rate at which
the second derivative is changing at that point.
In fact, the more successive derivatives that can
be evaluated at the distinctive point, the more
accurate will be the approximation of the func-
tion in the immediate neighbourhood of that
point.
This method of approximation using success-

ive derivatives is formalised in the calculus ac-
cording to Weierstrass’s theory by a Taylor
series or power series expansion. A power series
expansion can be written as a polynomial, the
coefficients of each of its terms being the suc-
cessive derivatives evaluated at the distinctive
point. The sum of such a series represents the
expanded function provided that any remainder
approaches zero as the number of terms becomes
infinite; the polynomial then becomes an infinite
series which converges with the function in the
neighbourhood of the distinctive point.12 This
criterion of convergence repeats Cauchy’s earlier
exclusion of divergent series from the calculus.
A power series operates at each distinctive point
by successively determining the specific qualita-
tive nature of the function at that point. The
power series determines not only the specific
qualitative nature of the function at the distinc-
tive point in question but also the specific qual-
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itative nature of all of the regular points in the
neighbourhood of that distinctive point, such
that the specific qualitative nature of a function
in the neighbourhood of a distinctive point in-
sists in that one point. By examining the relation
between the differently distributed distinctive
points determined by the differential relation,
the regular points which are continuous between
the distinctive points, that is, in geometrical
terms, the branches of the curve, can be deter-
mined. In general, the power series converges
with a function by generating a continuous
branch of a curve in the neighbourhood of a
distinctive point. To the extent that all of the
regular points are continuous across all of the
different branches generated by the power series
of the other distinctive points, the entire com-
plex curve or the whole analytic function is
generated.
So, according to Deleuze’s reading of the

infinitesimal calculus, the differential relation is
generated by differentials and the power series
are generated in a process involving the repeated
differentiation of the differential relation. It is
due to these processes that a function is gener-
ated to begin with. The mathematical elements
of this interpretation are most clearly developed
by Weierstrassian analysis, according to the the-
orem on the approximation of analytic functions.
An analytic function, being secondary to the
differential relation, is differentiable, and there-
fore continuous, at each point of its domain.
According to Weierstrass, for any continuous
function on a given interval, or domain, there
exists a power series expansion which uniformly
converges to this function on the given domain.
Given that a power series approximates a func-
tion in such a restricted domain, the task is then
to determine other power series expansions that
approximate the same function in other do-
mains. An analytic function is differentiable at
each point of its domain, and is essentially
defined for Weierstrass from the neighbourhood
of a distinctive point by a power series expansion
which is convergent with a “circle of conver-
gence” around that point. A power series expan-
sion that is convergent in such a circle
represents a function that is analytic at each
point in the circle. By taking a point interior to

the first circle as a new centre, and by determin-
ing the values of the coefficients of this new
series using the function generated by the first
series, a new series and a new centre of conver-
gence is obtained, whose circle of convergence
overlaps the first. The new series is continuous
with the first if the values of the function co-
incide in the common part of the two circles.
This method of “analytic continuity” allows the
gradual construction of a whole domain over
which the generated function is continuous. At
the points of the new circle of convergence
which are exterior to or extend outside of the
first, the function represented by the second
series is then the analytic continuation of the
function defined by the first series – what Weier-
strass defines as the analytic continuation of a
power series expansion outside its circle of con-
vergence. The domain of the function is ex-
tended by the successive adjunction of more and
more circles of convergence. Each series expan-
sion which determines a circle of convergence is
called an element of the function.13 In this way,
given an element of an analytic function, by
analytic continuation one can obtain the entire
analytic function over an extended domain. The
analytic continuation of power series expansions
can be continued in this way in all directions up
to the points in the immediate neighbourhood
exterior to the circles of convergence where the
series obtained diverge.
Power series expansions diverge at specific

“singular points” or “singularities” that may
arise in the process of analytic continuity. A
singular point or singularity of an analytic func-
tion is any point which is not a regular or
ordinary point of the function. They are points
which exhibit distinctive properties and thereby
have a dominating and exceptional role in the
determination of the characteristics of the func-
tion.14 The distinctive points of a function,
which include the turning points, where dy/
dx� 0, and points of inflection, where d2y/
dx2� 0, are “removable singular points,” since
the power series at these points converge with
the function. A removable singular point is uni-
formly determined by the function and therefore
redefinable as a distinctive point of the function,
such that the function is analytic or continuous
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at that point. The specific singularities of an
analytic function where the series obtained di-
verge are called “poles.” Singularities of this
kind are those points where the function no
longer satisfies the conditions of regularity which
assure its local continuity, such that the rule of
analytic continuity breaks down. They are there-
fore points of discontinuity. A singularity is
called a pole of a function when the values of the
differential relation, that is, the gradients of the
tangents to the points of the function, approach
infinity as the function approaches the pole. The
function is said to be asymptotic to the pole; it
is therefore no longer differentiable at that point
but rather remains undefined, or vanishes. A
pole is therefore the limit point of a function,
and is referred to as an accumulation point or
point of condensation. A pole can also be re-
ferred to as a jump discontinuity in relation to a
finite discontinuous interval both within the
same function, for example periodic functions,
and between neighbouring analytic functions.
Deleuze writes that “a singularity is the point of
departure for a series which extends over all the
ordinary points of the system, as far as the
region of another singularity which itself gives
rise to another series which may either converge
or diverge from the first” (DR 278). The singu-
larities whose series converge are removable
singular points, and those whose series diverge
are poles.
The singularities, or poles, that arise in the

process of analytic continuity necessarily lie on
the boundaries of the circles of convergence of
power series. In the neighbourhood of a pole, a
circle of convergence extends as far as the pole
in order to avoid including it, and the poles of
any neighbouring functions, within its domain.
The effective domain of an analytic function
determined by the process of the analytic con-
tinuation of power series expansions is therefore
limited to that between its poles. With this
method the domain is not circumscribed in ad-
vance but results rather from the succession of
local operations.
Power series can be used in this way to solve

differential relations by determining the analytic
function into which they can be expanded.
Weierstrass developed his theory alongside the

integral conception of Cauchy, which further
developed the inverse relation between the dif-
ferential and the integral calculus as the funda-
mental theorem of the calculus. The
fundamental theorem maintains that differen-
tiation and integration are inverse operations,
such that integrals are computed by finding
anti-derivatives, which are otherwise known as
primitive functions. There are a number of
rules, or algorithms, according to which this
reversal is effected.
Deleuze presents Weierstrass’s theorem of ap-

proximation as an effective method for deter-
mining the characteristics of a function from the
differential point of view of the infinitesimal
calculus. The mathematician Albert Lautman
(1908–44) refers to this process as integration
from “the local point of view,” or simply as
“local integration.”15 This form of integration
does not involve the determination of the primi-
tive function, which is generated by exercising
the inverse operation of integration. The devel-
opment of a local point of view, rather, requires
the analysis of the characteristics of a function at
its singular points. The passage from the analytic
function defined in the neighbourhood of a
singular point to the analytic function defined in
each ordinary point is made according to the
ideas of Weierstrass, by analytic continuity. This
method was eventually deduced from the
Cauchy point of view, such that the Weier-
strassian approach was no longer emphasised.
The unification of both of these points of view,
however, was achieved at the beginning of the
twentieth century when the rigour of Cauchy’s
ideas, which were then fused with those of Georg
Riemann (1826–66), the other major contributor
to the development of the theory of functions,
was improved. Deleuze is therefore able to cite
the contribution of Weierstrass’s theorem of ap-
proximation in the development of the differen-
tial point of view of the infinitesimal calculus as
an alternative point of view of the differential
calculus to that developed by Cauchy, and
thereby establish an historical continuity be-
tween Leibniz’s differential point of view of the
infinitesimal calculus and the differential cal-
culus of contemporary mathematics, thanks to
the axioms of non-standard analysis which allow
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the inclusion of the infinitesimal in its arithmeti-
sation.

the development of a differential
philosophy

While Deleuze draws inspiration and guidance
from Salomon Maı̈mon (1753–1800), who
“sought to ground post-Kantianism upon a Leib-
nizian reinterpretation of the calculus” (DR
170), and “who proposes a fundamental refor-
mation of the Critique and an overcoming of the
Kantian duality between concept and intuition”
(DR 173), it is in the work of Höené Wronski
(1778–1853) that Deleuze finds the established
expression of the first principle of the differen-
tial philosophy. Wronski was “an eager devotee
of the differential method of Leibniz and of the
transcendental philosophy of Kant” (CB 261).
Wronski made a transcendental distinction be-
tween the finite and the infinitesimal, deter-
mined by the two heterogeneous functions of
knowledge, namely understanding and reason.
He argued that:

finite quantities bear upon the objects of our
knowledge, and infinitesimal quantities on the
very generation of this knowledge; such that
each of these two classes of knowledge must
have laws proper [to them], and it is in the
distinction between these laws that the major
thesis of the metaphysics of infinitesimal quan-
tities is to be found.16

It is imperative not to confuse “the objective
laws of finite quantities with the purely subjec-
tive laws of infinitesimal quantities” (HW 36,
158). He claims that it is this

confusion that is the source of the inexactitude
that is felt to be attached to the infinitesimal
Calculus […] This is also [why] geometers,
especially those of the present day, consider
the infinitesimal Calculus, which nonetheless
they concede always gives true results, to be
only an indirect or artificial procedure. (HW
36, 159)

Wronski is referring here to the work of Joseph-
Louis Lagrange (1736–1813) and Lazarre Carnot
(1753–1823), two of the major figures in the
history of the differential calculus, whose at-

tempts to provide a rigorous foundation for the
differential calculus involved the elimination of
the infinitesimal from all calculations, or, as
Wronski argued, involved confusing objective
and subjective laws in favour of finite quantities
(see HW 36, 159). Both of these figures count as
precursors to the work of Cauchy and Weier-
strass. Wronski argued that the differential cal-
culus constituted “a primitive algorithm
governing the generation of quantities, rather
than the laws of quantities already formed” (CB
262). According to Wronski, the differential
should be interpreted “as having an a priori
metaphysical reality associated with the gener-
ation of magnitude” (CB 262). The differential is
therefore expressed as a pure element of quan-
titability, in so far as it prepares for the determi-
nation of quantity. The work of Wronski
represents an extreme example of the differential
point of view of the infinitesimal calculus which
recurs throughout the nineteenth century.
Another significant figure in this alternative

history of mathematics that is constructed by
Deleuze is Jean-Baptiste Bordas-Demoulin
(1798–1859), who also champions the
infinitesimal against those who consider that
infinitesimals had to be eliminated in favour of
finite quantities. Bordas-Demoulin does not ab-
solve the differential calculus of the accusation
of error but rather considers the differential
calculus to have this error as its principle. Ac-
cording to Bordas-Demoulin, the minimal error
of the infinitesimal “finds itself compensated by
reference to an error active in the contrary sense.
[…] It is in all necessity that the errors are
mutually compensated.”17 The consequence of
this mutual compensation “is that one differen-
tial is only exact after having been combined
with another” (BD 414). Deleuze repeats these
arguments of Wronski and Bordas-Demoulin
when he maintains that it is in the differential
relation that the differential is realised as a pure
element of quantitability. Each term of the rela-
tion, that is, each differential, each pure element
of quantitability, therefore “exists absolutely
only in its relation to the other” (DR 172), that
is, only in so far as it is reciprocally determined
in relation to another.
The question for Deleuze then becomes: “in
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what form is the differential relation determin-
able?” (DR 172). He argues that it is determin-
able primarily in qualitative form, in so far as it
is the reciprocal relation between differentials;
and then secondarily, in so far as it is the
function of a tangent whose values give the
gradient of the line tangent to a curve, or the
specific qualitative nature of this curve, at a
point. As the function of a tangent, the differen-
tial relation “expresses a function which differs
in kind from the so-called primitive function”
(DR 172). Whereas the primitive function, when
differentiated, expresses the whole curve di-
rectly,18 the differential relation, when differenti-
ated, expresses rather the further qualification of
the nature of the function at, or in the immedi-
ate neighbourhood of, a specific point. The
primitive function is the integral of the function
determined by the inverse transformation of dif-
ferentiation, according to the differential cal-
culus. From the differential point of view of the
infinitesimal calculus, the differential relation, as
the function of the tangent, determines the exist-
ence and distribution of the distinctive points of
a function, thus preparing for its further
qualification. Unlike the primitive function, the
differential relation remains tied to the specific
qualitative nature of the function at those dis-
tinctive points, and, as the function of the tan-
gent, it “is therefore differentiable in turn” (DR
172). When the differential relation is differenti-
ated repeatedly at a distinctive point generating
a power series expansion, what is increasingly
specified is the qualitative nature of the function
in the immediate neighbourhood of that point.
Deleuze argues that this convergence of a power
series with an analytic function, in its immediate
neighbourhood, satisfies “the minimal condi-
tions of an integral” (DR 174), and characterises
what is for Deleuze the process of
“differentiation” (DR 209).
The differential relation expresses the qualita-

tive relation between not only curves and
straight lines but also between linear dimensions
and their functions, and plane or surface dimen-
sions and their functions. The domain of the
successive adjunction of circles of convergence,
as determined by analytic continuity, actually
has the structure of a surface. This surface is

constituted by the points of the domain and the
direction attached to each point in the domain,
that is, the tangents to the curve at each point
and the direction in which the curve goes at that
point. Such a surface can be described as a field
of directions or a field of vectors. A vector is a
quantity having both magnitude and direction.
It is the surface of such a vector field that
provides the structure for the local genesis of
functions. It is within this context that the exam-
ple of a jump discontinuity in relation to a finite
discontinuous interval between neighbouring an-
alytic or local functions is developed by Deleuze,
in order to characterise the generation of another
function which extends beyond the points of
discontinuity which determine the limits of these
local functions. Such a function would character-
ise the relation between the different domains of
different local functions. The genesis of such a
function from the local point of view is deter-
mined initially by taking any two points on the
surface of a vector field, such that each point is
a pole of a local function determined indepen-
dently by the point-wise operations of Weier-
strassian analysis. The so determined local
functions, which have no common distinctive
points or poles in the domain, are discontinuous
with each other; each pole being a point of
discontinuity, or limit point, for its respective
local function. Rather than simply being con-
sidered as the unchanging limits of local func-
tions generated by analytic continuity, the limit
points of each local function can be considered
in relation to each other, within the context of
the generation of a new function which encom-
passes the limit points of each local function and
the discontinuity that extends between them.
Such a function can be understood initially to be
a potential function, which is determined as a
line of discontinuity between the poles of the
two local functions on the surface of the vector
field. The potential function admits these two
points as the poles of its domain. However, the
domain of the potential function is on a scalar
field, which is distinct from the vector field in so
far as it is composed of points (scalars) which are
non-directional; scalar points are the points onto
which a vector field is mapped. The potential
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function can be defined by the succession of
points (scalars) which stretch between the two
poles. The scalar field of the potential function is
distinct from the vector field of the local func-
tions in so far as, mathematically speaking, it is
“cut” from the surface of the vector field.
Deleuze argues that “the limit must be con-
ceived not as the limit of a [local] function but
as a genuine cut [coupure], a border between the
changeable and the unchangeable within the
function itself […] the limit no longer presup-
poses the ideas of a continuous variable and
infinite approximation. On the contrary, the con-
cept of limit grounds a new, static and purely
ideal definition” (DR 172), that of the potential
function. To cut the surface from one of these
poles to the next is to generate such a potential
function. The poles of the potential function
determine the limits of the discontinuous do-
main, or scalar field, which is cut from the
surface of the vector field. The “cut” of the
surface in this theory renders the structure of
the potential function “apt to a creation” (ALI
8). The precise moment of production, or gene-
sis, resides in the act by which the cut renders
the variables of certain functional expressions
able to “jump” from pole to pole across the cut.
When the variable jumps across this cut, the
domain of the potential function is no longer
uniformly discontinuous. With each “jump,” the
poles which determine the domain of discontinu-
ity, represented by the potential function sus-
tained across the cut, seem to have been
removed. The more the cut does not separate the
potential function on the scalar field from the
surface of the vector field, the more the poles
seem to have been removed, and the more the
potential function seems to be continuous with
the local functions across the whole surface of
the vectorial field. It is only in so far as this
interpretation is conferred on the structure of
the potential function that a new function can be
understood to have been generated on the sur-
face. A potential function is generated only when
there is potential for the creation of a new
function between the poles of two local func-
tions. The potential function is therefore always
apt to the creation of a new function. This new
function, which encompasses the limit points of

each local function and the discontinuity that
extends between them, is continuous across this
structure of the potential function; it completes
the structure of the potential function, in what
can be referred to as a “composite function.”
The connection between the structural com-
pletion of the potential function and the gener-
ation of the corresponding composite function is
the act by which the variable jumps from pole to
pole. When the variable jumps across the cut,
the value of the composite function sustains a
determined increase. Although the increase
seems to be sustained by the potential function,
it is this increase which actually registers the
generation or complete determination of the
composite function.
The complete determination of a composite

function by the structural completion of the
potential function is not determined by Weier-
strass’s theory of analytic continuity. A function
is able to be determined as continuous by ana-
lytic continuity across singular points which are
removable, but not across singular points which
are non-removable. The poles that determine the
parameters of the domain of the potential func-
tion are non-removable, thus analytic continuity
between the two functions, across the cut, is not
able to be established. Weierstrass, however,
recognised a means of solving this problem by
extending his analysis to meromorphic func-
tions.19 A function is said to be meromorphic in
a domain if it is analytic in the domain deter-
mined by the poles of analytic functions. A
meromorphic function is determined by the quo-
tient of two arbitrary analytic functions, which
have been determined independently on the
same surface by the point-wise operations of
Weierstrassian analysis. Such a function is
defined by the differential relation:

dy
dx

�
Y
X
,

where X and Y are the polynomials, or power
series, of the two local functions. The meromor-
phic function, as the function of a differential
relation, is just the kind of function which can
be understood to have been generated by the
structural completion of the potential function.
The meromorphic function is therefore the dif-
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ferential relation of the composite function. The
expansion of the power series determined by the
repeated differentiation of the meromorphic
function should generate a function which con-
verges with a composite function. The graph of
a composite function, however, consists of
curves with infinite branches, because the series
generated by the expansion of the meromorphic
function is divergent. The representation of such
curves posed a problem for Weierstrass, which
he was unable to resolve, because divergent se-
ries fall outside the parameters of the differential
calculus, as determined by the epsilon-delta ap-
proach, since they defy the criterion of conver-
gence.

the qualitative theory of differential
equations

Henri Poincaré (1854–1912) took up this prob-
lem of the representation of composite functions
by extending the Weierstrass theory of mero-
morphic functions to what was called “the qual-
itative theory of differential equations” (MK
732). In place of studying the properties of
complex functions in the neighbourhood of their
singularities, Poincaré was occupied primarily
with determining the properties of complex
functions in the whole plane, that is, the proper-
ties of the entire curve. This qualitative method
involved the initial investigation of the geometri-
cal form of the curves of functions with infinite
branches – only then was the numerical determi-
nation of the values of the function able to be
made. While such divergent series do not con-
verge, in the Weierstrassian sense, to a function,
they may indeed furnish a useful approximation
to a function if they can be said to represent the
function asymptotically. When such a series is
asymptotic to the function, it can represent an
analytic or composite function even though the
series is divergent.
When this geometrical interpretation was ap-

plied to composite functions, Poincaré found the
values of the composite function around the
singularity produced by the function to be unde-
termined and irregular. The singularity of a
composite function would be the point at which

both the numerator and denominator of the
quotient of the meromorphic function determi-
native of the composite function vanish (or equal
zero). The peculiarity of the meromorphic func-
tion is that the numerator and denominator do
not vanish at the same point on the surface of
the domain. The points at which the two local
functions of the quotient vanish are at their
respective poles. The determination of a com-
posite function therefore requires the determi-
nation of a new singularity in relation to the
poles of the local functions of which it is com-
posed. Poincaré called this new kind of singular-
ity an essential singularity. Observing that the
values of a composite function very close to an
essential singularity fluctuate through a range of
different possibilities without stabilising, Poin-
caré distinguished four types of essential singu-
larity, which he classified according to the
behaviour of the function and the geometrical
appearance of the solution curves in the neigh-
bourhood of these points. The first type of
singularity is the saddle point or dip (col),
through which only two solution curves pass,
acting as asymptotes for neighbouring curves. A
saddle point is neither a maximum nor a mini-
mum, since it either increases or decreases de-
pending on the direction taken away from it.
The second kind of singularity is the node
(nœud), which is a point through which an
infinite number of curves pass. The third type of
singularity is the point of focus (foyer), around
which the solution curves turn and towards
which they approach in the same way as logarith-
mic spirals. And the fourth, called a centre, is a
point around which the curves are closed, envel-
oping one another and the centre (see Fig. 2).
The type of essential singularity is determined

by the form of the curves constitutive of the
meromorphic function. Whereas the potential
function remains discontinuous with the other
functions on the surface from which it is cut,
thereby representing a discontinuous group of
functions, the composite function, on the con-
trary, overcomes this discontinuity in so far as it
is continuous in the domain which extends
across the whole surface of the discontinuous
group of functions. The existence of such a
continuous function, however, does not express
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Fig. 2. 20

Weierstrassian theory of approximation when he
writes that:

No doubt the specification of the singular
points (for example, dips, nodes, focal points,
centers) is undertaken by means of the form
of integral curves, which refer back to the
solutions for the differential equations. There
is nevertheless a complete determination with
regard to the existence and distribution of
these points which depends upon a completely
different instance – namely, the field of vectors
defined by the equation itself. The complemen-
tarity of these two aspects does not obscure
their difference in kind – on the contrary. (DR
177)

The equation to which Deleuze refers is the
meromorphic function, which is a differential
equation or function of a differential relation
determined according to the Weierstrassian ap-
proach, from which the essential singularity and
therefore the composite function are determined
according to Poincaré’s qualitative approach.
This form of integration is again characterised
from the local point of view, and is characterised
by what Deleuze describes as “an original pro-
cess of differenciation” (DR 209). Differencia-
tion is the complete determination of the
composite function from the reciprocally deter-
mined local functions or the structural com-
pletion of the potential function. It is the process
whereby a potential function is actualised as a
composite function.
Deleuze states that “actualisation or differen-

ciation is always a genuine creation,” and that to
be actualised is “to create divergent lines” (DR
212). The expanded power series of a meromor-
phic function is actualised in the composite
function in so far as it converges with, or creates,
the divergent lines of the composite function.
Differenciation, therefore, creates an essential
singularity, whose divergent lines actualise the
specific qualitative nature of the poles of the
group of discontinuous local functions, repre-
sented by a potential function, in the form of a
composite function. These complex functions
can be understood to be what Poincaré called
“Fuschian functions,” which, as Georges Valiron
points out, “are more often called automorphic
functions.”22 The discontinuous group of local

any less the properties of the domain of disconti-
nuity which serves to define it. The discontinu-
ous group of local functions and the continuous
composite function attached to this group exist
alongside each other, the transformation from
one to the other being determined by the process
of the generation and expansion of the meromor-
phic function. The potential function is actu-
alised in the composite function when the
variable jumps from one pole to the other. Its
trajectory, in the form of a solution curve, is
determined by the type of essential singularity
created by the meromorphic function. The es-
sential singularity determines the behaviour of
the composite function, or the appearance of the
solution curve, in its immediate neighbourhood
by acting as an attractor for the trajectory of the
variable across its domain. It is the value of this
function which sustains a determined increase
with each jump of the variable. In so far as the
trajectory of each variable is attracted to the
same final state represented by each of the dif-
ferent essential singularities, these essential sin-
gularities can be understood to represent what
Manuel DeLanda describes as the “inherent or
intrinsic long-term tendencies of a system, the
states which the system will spontaneously tend
to adopt in the long run as long as it is not
constrained by other forces.”21

Deleuze distinguishes this differential point of
view of the infinitesimal calculus from the
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functions can therefore also be understood to be
Fuschian groups. Poincaré’s pioneering work in
this area eventually led to the definitive found-
ing of the geometric theory of analytic functions,
the study of which “has not yet been completely
carried out” (GV 173) but continues to be devel-
oped with the assistance of computers.
Benoit Mandelbrot (b. 1924) considers Poin-

caré, with his concept of essential singularities,
to be “the first student of fractal (‘strange’)
attractors,” that is, of the kinds of attractors
operative in fractals which occur in mathematics,
and cites certain theories of Poincaré as having
“led [him] to new lines of research,” specifically
“the theory of automorphic functions,” which
made Poincaré and Felix Klein (1849–1925) fa-
mous.23

Deleuze does not consider this process of
differenciation to be arrested with the generation
of a composite function, but rather to continue,
generating those functions which actualise the
relations between different composite functions,
and those functions which actualise the relations
between these functions, and so on. The concep-
tion of differenciation is extended in this way
when Deleuze states that “there is a differencia-
tion of differenciation which integrates and
welds together the differenciated” (DR 217);
each differenciation is simultaneously “a local
integration,” which then connects with others,
according to the same logic, in what is character-
ised as a “global integration” (DR 211).
The logic of the differential, as determined

according to both differentiation and differencia-
tion, designates a process of production, or gen-
esis, which has, for Deleuze, the value of
introducing a general theory of relations which
unites the Weierstrassian structural consider-
ations of the differential calculus to the concept
of “the generation of quantities” (DR 175). “In
order to designate the integrity or the integrality
of the object,” when considered as a composite
function from the differential point of view of
the infinitesimal calculus, Deleuze argues that
“we require the complex concept of different/ci-
ation. The t and the c here are the distinctive
feature or the phonological relation of difference
in person” (DR 209). Deleuze argues that differ-
enciation is “the second part of difference” (DR

209), the first being expressed by the logic of the
differential in differentiation. Where the logic of
differentiation characterises a differential philos-
ophy, the complex concept of the logic of differ-
ent/ciation characterises Deleuze’s “philosophy
of difference.”
The differential point of view of the

infinitesimal calculus represents an opening, pro-
viding an alternative trajectory for the construc-
tion of an alternative history of mathematics; it
actually anticipates the return of the
infinitesimal in the differential calculus of con-
temporary mathematics, thanks to the axioms of
non-standard analysis. This is the interpretation
of the differential calculus to which Deleuze is
referring when he appeals to the “barbaric or
pre-scientific interpretations of the differential
calculus” (DR 171). Deleuze thereby establishes
an historical continuity between the differential
point of view of the infinitesimal calculus and
modern theories of the differential calculus
which surpasses the methods of the differential
calculus that Weierstrass uses in the epsilon-
delta approach to support the development of a
rigorous foundation for the calculus. While
Weierstrass is interested in making advances in
mathematics to secure the development of a
rigorous foundation for the differential calculus,
Deleuze is interested in using mathematics to
problematise the reduction of the differential
calculus to set theory, by determining an alterna-
tive trajectory in the history of mathematics, one
that retrospectively allows the reintroduction of
the infinitesimal to an understanding of the op-
eration of the calculus. According to Deleuze,
the “finitist interpretations” of the calculus
given in modern set-theoretical mathematics –
which are congruent with “Cantorian finitism,”24

that is, “the idea that infinite entities are […]
considered to be finite within set theory”25 (JS
66) – betray the nature of the differential no less
than Weierstrass, since they “both fail to capture
the extra-propositional or sub-representative
source […] from which calculus draws its
power” (DR 264).
In constructing this theory of relations charac-

teristic of a philosophy of difference, Deleuze
draws significantly from the work of Albert
Lautman, who refers to this whole process as
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“the metaphysics of logic” (ALI 3). It is in
Difference and Repetition that Deleuze formu-
lates a “metaphysics of logic” that corresponds
to the logic of the differential from the differen-
tial point of view of the infinitesimal calculus.
However, he argues that “we should speak of a
dialectics of the calculus rather than a metaphys-
ics” (DR 178), since:

each engendered domain, in which dialectical
Ideas of this or that order are incarnated,
possesses its own calculus. […] It is not
mathematics which is applied to other domains
but the dialectic which establishes […] the
direct differential calculus corresponding or
appropriate to the domain under consider-
ation. (DR 181)

Just as he argued that mathematics:

does not include only solutions to problems; it
also includes the expression of problems rela-
tive to the field of solvability which they define.
[…] That is why the differential calculus
belongs to mathematics, even at the very
moment when it finds its sense in the revel-
ation of a dialectic which points beyond math-
ematics. (DR 179)

It is in the differential point of view of the
infinitesimal calculus that Deleuze finds a form
of the differential calculus appropriate to the
determination of a differential logic. This logic is
deployed by Deleuze, in the form of the logic of
different/ciation, in the development of his proj-
ect of constructing a philosophy of difference.
The relation between the finite and the

infinitesimal is determined according to what
Lautman describes as “the logical schemas which
preside over the organisation of their edifices.”26

Lautman argues that “it is possible to recover
within mathematical theories, logical Ideas incar-
nated in the same movement of these theories”
(ALII 58). The logical Ideas to which Lautman
refers include the relations of expression be-
tween the finite and the infinitesimal. He argues
that these logical Ideas “have no other purpose
than to contribute to the illumination of logical
schemas within mathematics, which are only
knowable through the mathematics themselves”
(ALII 58). The project of the present paper has
been to locate these “logical Ideas” in the math-

ematical theory of the infinitesimal calculus from
the differential point of view, in order then to
determine how Deleuze uses
these “logical Ideas” to de-
velop the logical schema of a
theory of relations character-
istic of a philosophy of differ-
ence.

notes
I would like to thank Daniel W. Smith for his
generous comments when reviewing an early
version of this paper.

1 It is in Anti-Oedipus that Deleuze coins the
phrase “schizophrenic mathematics” (Gilles
Deleuze and Félix Guattari, Anti-Oedipus: Capital-
ism and Schizophrenia 372), which I have bor-
rowed and shortened to “Schizo-Math” in order
to expand upon some of the themes introduced
in the paper “Math Anxiety” by Aden Evens
(Angelaki 5:3 (2000): 105).

2 Gilles Deleuze, Difference and Repetition 114.
Hereafter DR.

3 Carl Benjamin Boyer, The History of the Calculus
and its Conceptual Development 11. Hereafter CB.

4 Gilles Deleuze, “Sur Spinoza,” 17 Feb. 1981.
Hereafter DSS.

5 Gottfried Wilhelm Leibniz, The Early Mathemat-
ical Manuscripts 53.

6 Leibniz, “Letter to Varignon, with a Note on
the ‘Justification of the Infinitesimal Calculus by
that of Ordinary Algebra’” 545. Hereafter PPL.

7 George Lakoff and Rafael E. Nafiez, Where
Mathematics Comes From: How the Embodied Mind
Brings Mathematics into Being 224. Hereafter LN.

8 For a thorough analysis of this problem with
limits in Cauchy, see CB 281.

9 Deleuze, “Sur Leibniz,” 22 Feb. 1972.

10 See J.L. Bell, A Primer of Infinitesimal Analysis.

11 Abraham Robinson, Non-Standard Analysis 2.

12 Given a function, f(x), having derivatives of all
orders, the Taylor series of the function is given
by

��
k � 0

f (k)(a)
k!

(x � a)k,
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where f (k) is the kth derivative of f at a. A
function is equal to its Taylor series if and only if
its error term Rn can be made arbitrarily small,
where

Rn � �f(x) � ��
k � 0

f (k)(a)
k!

(x � a)k�.
The Taylor series of a function can be repre-
sented in the form of a power series, which is
given by

��
n � 0

anxn � a0 � a1x � a2x2 � … � anxn � …,

where each a is a distinct constant. It can be
shown that any such series either converges at
x � 0, or for all real x, or for all x with –R � x � R
for some positive real R. The interval (–R, R) is
called the circle of convergence, or neighbour-
hood of the distinctive point. This series should
be thought of as a function in x for all x in the
circle of convergence. Where defined, this func-
tion has derivatives of all orders. See H.J. Rein-
hardt, Analysis of Approximation Methods for
Differential and Integral Equations.

13 See Morris Kline, Mathematical Thought from
Ancient to Modern Times 643–44. Hereafter MK.

14 Deleuze argues that “It was a great day for
philosophy when […] Leibniz proposed […] that
there is no reason for you simply to oppose the
singular to the universal. It’s much more interest-
ing if you listen to what mathematicians say, who
for their own reasons think of ‘singular’ not in
relation to ‘universal’, but in relation to ‘ordi-
nary’ or ‘regular’” (Deleuze, “Sur Leibniz,” 29
Mar. 1980).

15 Albert Lautman, Essai sur les notions de struc-
ture et d’existence en mathématiques 38; my trans.
Hereafter ALI.

16 Höené Wronski, La Philosophie de l’infini: Con-
tenant des contre-refléxions sur la métaphysique du
calcul infinitesimal 35; large sections of this text,
translated by M.B. DeBevoise, appear in Michel
Blay (ed.), Reasoning with the Infinite: From the
Closed World to the Mathematical Universe 158.
Hereafter HW. Page references will be given to
the French and the English translation respect-
ively.

17 Jean-Baptiste Bordas-Demoulin, Le Cartésian-
isme ou la véritable rénovation des sciences, suivi de
la théorie de la substance et de celle de l’infini 414;
my trans. Hereafter BD.

18 Note: the primitive function f(x)dx, expresses
the whole curve f(x).

19 It was Charles A.A. Briot (1817–82) and
Jean-Claude Bouquet (1819–85) who introduced
the term “meromorphic” for a function which
possessed just poles in that domain (MK 642).

20 June Barrow-Green, Poincaré and the Three
Body Problem 32.

21 Manuel DeLanda, Intensive Science and Virtual
Philosophy 15.

22 Georges Valiron, “The Origin and the Evol-
ution of the Notion of an Analytic Function of
One Variable” 171. Hereafter GV.

23 Benoit B. Mandelbrot, The Fractal Geometry of
Nature 414. Mandelbrot qualifies these state-
ments when he says of Poincaré that “nothing I
know of his work makes him even a distant
precursor of the fractal geometry of the visible
facets of Nature” (ibid. 414).

24 Penelope Maddy, “Believing the Axioms” 488.

25 Jean-Michel Salanskis, “Idea and Destination”
71.

26 Albert Lautman, Essai sur l’unité des sciences
mathématiques dans leur développement actuel 58;
my trans. Hereafter ALII.
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Paris: Hermann, 1938.

Leibniz, Gottfried Wilhelm. The Early Mathemat-
ical Manuscripts. Trans. J.M. Childs. Chicago:
Open Court, 1920.

Leibniz, Gottfried Wilhelm. “Letter to Varignon,
with a Note on the ‘Justification of the
Infinitesimal Calculus by that of Ordinary Alge-
bra.’” Philosophical Papers and Letters. Trans.
Leroy E. Loemker. Dordrecht: Reidel, 1969.

Leibniz, Gottfried Wilhelm. Die Philosophischen
Schriften von G. W. Leibniz. Berlin: Weidmannsche,
1875–90.

Maddy, Penelope. “Believing the Axioms.” Journal
of Symbolic Logic 53.2 (1988): 481–511.

Mandelbrot, Benoit B. The Fractal Geometry of
Nature. San Francisco: Freeman, 1982.

Reinhardt, H.J. Analysis of Approximation Methods

for Differential and Integral Equations. New York:
Springer, 1985.

Robinson, Abraham. Non-Standard Analysis. Re-
vised ed. Princeton Landmarks in Mathematics and
Physics. Princeton: Princeton UP, 1996.

Salanskis, Jean-Michel. “Idea and Destination.”
Deleuze: A Critical Reader. Ed. Paul Patton. Ox-
ford: Blackwell, 1996.

Valiron, Georges. “The Origin and the Evolution
of the Notion of an Analytic Function of One
Variable.” Great Currents of Mathematical Thought.
Ed. François Le Lionnais. Vol. I. New York:
Dover, 1971.
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