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1.  Introduction
A common kind of explanation in cognitive neuroscience might be called function-
theoretic: with some target cognitive capacity in view, the theorist hypothesizes that 
the system computes a well-defined function (in the mathematical sense) and explains 
how computing this function constitutes (in the system’s normal environment) the 
exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ 
approach in philosophy of science have argued that a model of a cognitive capacity is 
explanatory only to the extent that it reveals the causal structure of the mechanism 
underlying the capacity. If they are right, then a cognitive model that resists a transparent 
mapping to known neural mechanisms fails to be explanatory. I argue that a function-
theoretic characterization of a cognitive capacity can be genuinely explanatory even 
absent an account of how the capacity is realized in neural hardware.

2.  Function-Theoretic Explanation
Marr’s (1982) theory of early vision purports to explain edge detection by positing 
the computation of the Laplacian of a Gaussian of the retinal array. The mechanism 
takes as input intensity values at points in the image and calculates the rate of intensity 
change over the image. In other words, it computes a particular smoothing function. 
Ullman (1979) hypothesizes that the visual system recovers the 3D structure of moving 
objects by computing a function from three distinct views of four non-coplanar points 
to the unique rigid configuration consistent with the points. Shadmehr and Wise’s (2005) 
computational account of motor control putatively explains how a subject is able to 
grasp an object in view by computing the displacement of the hand from its current 
location to the target location, i.e. by computing vector subtraction. In a well-known 
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example from animal cognition, Gallistel (1990) purports to explain the Tunisian 
desert ant’s impressive navigational abilities by appeal to the computation of the dis-
placement vector to its nest from any point along its foraging trajectory. Seung et al. 
(1996, 1998, 2000) hypothesize that the brain keeps track of eye movements by deploying 
an internal integrator.

These examples illustrate an explanatory strategy that is pervasive in computational 
cognitive science. I call the strategy function-theoretic explanation and the mathematical 
characterization that is central to it function-theoretic characterization.1 (Henceforth, 
I shall abbreviate “function-theoretic” as FT.) Theories employing the strategy explain 
a cognitive capacity by appeal to an independently well-understood mathematical 
function under which the physical system is subsumed. In other words, what gets 
computed, according to these computational models, is the value of a mathematical 
function (e.g., addition, vector subtraction, the Laplacian of a Gaussian, a fast Fourier 
transform) for certain arguments for which the function is defined. For present pur-
poses we can take functions to be mappings from sets (the arguments of the function) 
to sets (its values). A fully specified theory of a cognitive capacity will go on to propose 
an algorithm by which the computation of the value of the function(s) is effected, and 
describe the neural hardware that implements the computation.2

A function-theoretic description provides a domain-general, environment-neutral 
characterization of a mechanism. It prescinds not only from the cognitive capacity that 
is the explanatory target of the theory (vision, motor control, etc.), but also from the 
environment in which the capacity is normally exercised. In fact, the abstract nature of 
the FT characterization—in particular, the fact that as an independently characterized 
mathematical object the function can be decoupled from both the environmental 
context and the cognitive domain that it subserves—accounts for perhaps the most 
significant explanatory virtue of function-theoretic characterization. The mathematical 
functions deployed in computational models are typically well understood independ-
ently of their use in such models. Laplacian of Gaussian filters, fast Fourier transforms, 
vector subtraction, and so on are standard items in the applied mathematician’s toolbox. 
To apply one of these tools to a biological system—to subsume the system under the 
mathematical description—makes sense of what might otherwise be a heterogeneous 
collection of input–output pairs. (“I see what it’s doing . . . it’s an integrator!”)3 And 

1  This sense of function-theoretic characterization is not to be confused with various notions of 
functional explanation in the literature, in particular, with Cummins’ (1975) notion of functional analysis. 
However, a functional analysis of a complex system may involve function-theoretic characterization, in the 
sense explicated in this chapter.

2  The FT characterization, the specification of the algorithm, and the neural implementation correspond, 
roughly, to Marr’s three levels of description—the computational, algorithmic, and implementation, 
respectively. The topmost, computational, level of theory also adverts to general environmental facts 
(‘constraints’) essential to the explanation of the cognitive capacity, as discussed below. See Egan (1995) for 
elaboration and defense of this account of Marr’s computational level.

3  Moreover, theorists typically have at their fingertips various algorithms for computing these functions. 
Of course, the algorithms are hypotheses that require independent support, but the point is that the theorist 
has a ready supply of such hypotheses.
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since the FT characterization specifies the function intensionally, typically in terms of 
an algorithm for computing the function, it provides the basis for predicting the out-
put of the device in a wide range of circumstances that go well beyond the observed 
data set.

But, of course, the theorist of cognition must explain how computing the value of the 
specified function, in the subject’s normal environment, contributes to the exercise of 
the cognitive capacity that is the explanatory target of the theory—for the motor control 
mechanism, the capacity to grasp an object in nearby space, for visual mechanisms, 
the capacity to see “what is where” (as Marr puts it) in the nearby environment. Only in 
some environments would computing the Laplacian of a Gaussian help an organism 
to see. In our environment this computation produces a smoothed output that facili-
tates the detection of sharp intensity gradients across the retina, which, when these 
intensity gradients co-occur at different scales, correspond to physically significant 
boundaries—changes in depth, surface orientation, illumination, or reflectance—in 
the scene. Ullman’s structure-from-motion mechanism succeeds in recovering the 
3D structure of a moving object by computing the unique rigid configuration consistent 
with three distinct views of four non-coplanar points on the object only because, in 
our world, most objects are rigid in translation (the rigidity assumption). Thus, to yield 
an explanation of the target cognitive capacity, the environment-neutral, domain-
general characterization given by the FT description must be supplemented by 
environment-specific facts that explain how computing the value of the specified 
mathematical function, in the subject’s normal environment, contributes to the exercise 
of the target cognitive capacity.

One way to connect the abstract FT characterization to the target cognitive capacity 
is to attribute representational contents that are appropriate to the relevant cognitive 
domain. Theorists of vision construe the mechanisms they posit as representing 
properties of the light, e.g., light-intensity values, changes in light intensity, and, further 
downstream, changes in depth and surface orientation. The inputs and outputs of 
the Laplacian/Gaussian filter represent light intensities and discontinuities of light 
intensity, respectively. Theorists of motor control construe the mechanisms they posit 
as representing positions of objects in nearby space and changes in joint angles. But the 
fact that a mechanism characterized function-theoretically can also be characterized 
in terms of representational contents appropriate to the cognitive domain in question 
does not obviate the explanatory interest of the more abstract, domain-general, 
mathematical characterization that is the focus of this chapter.4

I will have much more to say about function-theoretic explanation as we progress, 
but I have said enough to set up the main issue of the chapter. I turn now to the 
challenge from the new mechanists.

4  In Egan (2014) I argue that representational contents are best construed as part of an explanatory gloss 
on a computational theory, that they serve a variety of pragmatic purposes but are, strictly speaking, theo-
retically optional. The argument in this chapter does not depend on any particular view of representational 
content. (Though see the postscript.)
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3.  The New Mechanistic Philosophy
A mechanism is an object that performs some function in virtue of the operations of its 
component parts and their organization. Mechanistic explanation is the explanation 
of  the capacities of a system by reference to the properties and operations of its 
component parts and their causal organization.5

Proponents of the new mechanistic philosophy claim that all genuine explanation in 
cognitive neuroscience is mechanistic explanation:

The common crux of mechanistic explanation, both in its current form and in forms stretching 
back through Descartes to Aristotle, is to reveal the causal structure of a system. Explanatory 
models are counted as good or bad to the extent that they capture, even dimly at times, aspects 
of that causal structure.   (Piccinini and Craver 2011, 292)

Explanations in computational neuroscience are subject to precisely these same norms [the 
norms of mechanistic explanation]. The cost imposed by departing from this view . . . is the 
loss of a clear distinction between computational models that genuinely explain how a given 
phenomenon is actually produced versus those that merely describe how it might possibly be 
produced . . . And it is precisely by adhering to this distinction (along with a distinction between 
merely describing or saving a phenomenon and explaining it), that one can identify models in 
computational neuroscience possessing explanatory force.  (Kaplan 2011, 346)

Levy (2013) provides a useful gloss on the view that he calls explanatory mechanism: 
“to understand a phenomenon one must look under the hood and discern its under-
lying structure” (107). The idea that a cognitive model has explanatory force just to 
the extent that it reveals the causal structure of an underlying mechanism is expli-
cated in terms of what Kaplan calls a model-mechanism-mapping (3M) constraint on 
explanatory models:

(3M) A model of a target phenomenon explains that phenomenon to the extent that (a) the 
variables in the model correspond to identifiable components, activities, and organizational 
features of the target mechanism that produces, maintains, or underlies the phenomenon, and 
(b) the (perhaps mathematical) dependencies posited among these (perhaps mathematical) 
variables in the model correspond to causal relations among the components of the target 
mechanism.  (Kaplan 2011, 347; see also Kaplan and Craver 2011, 611)

The 3M Constraint is claimed to distinguish genuine explanations in cognitive neuro-
science from mere descriptions and predictive devices (Kaplan 2011, 340). There is no 
doubt that many explanatory models in cognitive neuroscience do conform to the new 
mechanists’ strictures. But if the 3M Constraint is a necessary condition on genuine 
explanation, then many promising cognitive models turn out not to be explanatory.6 

5  For characterization of mechanisms and mechanistic explanation see Bechtel (2008); Bechtel and 
Abrahamsen (2005); Bechtel and Richardson (1993); Craver (2006, 2007).

6  Kaplan intends the 3M Constraint to be both necessary and sufficient for genuine explanation: 
“A central tenet of the mechanistic framework is that the model carries explanatory force to the extent 
that it reveals aspects of the causal structure of a mechanism, and lacks explanatory force to the extent 
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In Sections 4 and 5 I argue that FT models often do not fit the mechanists’ account, yet 
they can be, and often are, genuinely explanatory.

4.  Function-Theoretic Models and Mechanistic 
Explanation

Satisfying the 3M Constraint requires a decomposition of a cognitive system into 
components. How is this crucial notion to be understood? According to Craver (2007) 
“[c]omponents are the entities in a mechanism—what are commonly called ‘parts’ ” (128). 
He goes on to characterize the relationship between mechanisms and their components 
as follows:

Organization is the inter-level relation between a mechanism as a whole and its components. 
Lower-level components are made up into higher-level components by organizing them spatially, 
temporally, and actively into something greater than a mere sum of the parts.  (Craver 2007, 189)

It follows that an entity cannot be a component of itself. Moreover, the components 
(parts) of the system should be distinct structures, or at least, not characterized simply 
in functional terms, on pain of trivializing the mechanists’ requirement on genuinely 
explanatory accounts in neuroscience.7 As Piccinini and Craver (2011) note, the point 
of mechanistic explanation is to reveal the causal structure of a system; this requires 
that the components (parts) over which causal transitions are defined be understood 
as structures of some sort.

Let’s consider the two parts of the 3M Constraint in turn. Condition (a) requires 
that variables in the model correspond to components, activities, and organizational 
features of the target neural mechanism. In the case of FT models the variables range 
over the arguments and values of a mathematical function. But often, perhaps even 
typically, nothing in the function-theoretically characterized system corresponds to 
(states of) components of neural mechanisms.8 The Marrian filter computes a function 
from intensity values at points in the image to the rate of intensity change over the 
image. The Ullman structure-from-motion system calculates the unique rigid structure 
compatible with three distinct views of four non-coplanar points. The presumption, 
of course, is that these mathematically characterized systems are realized in neural 
hardware, but in neither case is the implementing hardware specified at the level of its 
component parts and their organization. Shadmehr and Wise (2005) hypothesize that 

that it fails to describe this structure” (2011, 347). I am not here challenging the sufficiency claim. 
Revealing the causal structure of a mechanism often is explanatory when we wish to understand how a 
particular effect occurs. The point is that the constraint does not account for the explanatory force of an 
important class of cognitive models.

7  Milkowski (2013, 55) argues that a mechanistic analysis must “bottom out” in the constitutive level, the 
level at which “the structures that realize the computation are described.”

8  Since the relevant variables in FT models are mathematical, the 3M constraint should be interpreted 
as requiring a mapping from values of the variables to states of component parts. This is how I will understand 
the constraint.
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the motor control system that computes vector subtraction is realized in a network 
in the pre-motor cortex, but again, nothing in the FT characterization corresponds 
to (states of) components of the network and their organization.9 And Seung et al.’s 
(1996, 1998, 2000) model of oculomotor control posits an internal integrator without 
specifying any correspondence between variables over which the computation is 
defined and (states of) components of implementing neural hardware. I discuss this 
example in more detail below.

Let us turn now to condition (b) of the 3M Constraint, which requires that the 
dependencies among the variables in the model correspond to causal relations among 
components of the target neural mechanism. In the case of FT models the depend-
encies among the variables ranging over the arguments and values of the specified 
function are, of course, mathematical. The presumption that systems characterized in 
FT terms are realized in neural hardware—as they must be if the FT model is to be true 
of the organism—amounts to the idea that there exists a mapping from physical 
state-types to the arguments and values of the specified mathematical function, such 
that causal state transitions among the physical states are interpreted as mathematical 
relations among the arguments and values of the function. A complete computational 

9  I am not denying that computational theorists sometimes attempt to specify correspondences 
between variables in their models and (states of) components of neural mechanisms. In explaining forward 
kinematics—the computation of target location in body-centered coordinates from information about 
eye orientation and retinotopic location of target—Shadmehr and Wise appeal to Zipser and Anderson’s 
(1988) three-layer neural network model of gain modulation. Some nodes in the model’s input layers 
represent (correspond to) eye orientation and others retinotopic location of target; output layers represent 
(correspond to) target location in body-centered coordinates. Zipser and Anderson hypothesized that neurons 
in area LIP and area 7A in the parietal cortex play the relevant computational roles. It is not implausible, 
then, to describe input and output layers in the Zipser-Anderson model as component parts of a neural 
mechanism. Interestingly, the Zipser-Anderson models fails to count as genuinely explanatory by Kaplan’s 
lights. He says:

The real limitations on the explanatory force of the Zipser–Andersen model is that it is dif-
ficult if not impossible to effect a mapping between those elements in the model giving rise 
to gain-modulated hidden unit activity and the neural components in parietal cortex 
underlying gain-modulated responses (arguably, the core requirement imposed by 3M on 
explanatory mechanistic models). (Kaplan 2011, 365–6)

Kaplan cites two reasons why the model fails to be genuinely explanatory: First, it is difficult in general 
to effect a mapping between neural network models and target neural systems. There is typically only 
a loose and imprecise correspondence between network architecture and neural implementation (see, e.g., 
Crick 1989; Smolensky 1988; Kaplan 2011, 366). Secondly, Kaplan notes that there are competing models 
of how gain modulation is implemented in the brain, each enjoying some empirical support, and so, he 
concludes, the Zipser-Anderson model is just a “how possibly” model and not genuinely explanatory.

An interesting question is whether, according to mechanists, the apparent failure of the Zipser-Anderson 
model to satisfy the 3M Constraint thereby undermines the explanatory bona fides of the Shadmehr-Wise 
function-theoretic model that it is supposed to implement. Presumably it does, since variables in the high-level 
characterization do not in fact correspond to components in an explanatory model of neural mechanisms. 
A consequence of the mechanist constraint would seem to be that any breakdown or lacunae in the decom-
position (all the way down to basic physical constituents?) would threaten the explanatory credentials of 
higher-level theories. According to Kaplan (personal correspondence) the 3M constraint requires only that 
some variables are mapped to components, thus allowing for partial or incomplete explanations.
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explanation of a cognitive capacity will specify this mapping. Consider the character-
ization of a device that computes the addition function (Figure 7.1).

A physical system computes the addition function just in case there exists a mapping 
from physical state types to numbers, such that physical state types related by a causal 
state-transition relation ((p1, p2)→p3) are mapped to numbers n, m, and n+m related 
as addends and sums. Whenever the system goes into the physical state specified 
under the mapping as n, and then goes into the physical state specified under the 
mapping as m, it is caused to go into the physical state specified under the mapping 
as n+m.

It follows that the function-theoretic description provides an abstract characterization 
of causal relations among initial and end states of the realizing physical mechanism, 
whatever that happens to be. The physical states [p1 . . . pn] that are characterized as the 
arguments and values of the function (as addends and sums in the above example) 
in the complete computational model may count as components (in the sense expli-
cated above) of the neural mechanism, but there is no reason to assume that they must. 
In precisely those cases where condition (a) of the 3M constraint fails to be satisfied—
where the arguments and values of the specified function do not correspond to 
(states of) components of the neural mechanism—condition (b) will fail to be satisfied 
as well—the dependencies among the variables specified by the mathematical description 
will not correspond to causal relations among (states of) components of the target 
neural mechanism.

Seung’s (1996, 1998) model of oculomotor memory illustrates this failure. It is worth 
examining the case in more detail.

The last forty years has seen a good deal of experimental and theoretical work on 
oculomotor control.10 Saccadic eye movements shift the eyes rapidly from one position 
in the visual field to another. Between saccades the eyes remain stationary; experi-
mental results show that normal humans can hold their eyes still at arbitrary positions 
for twenty or more seconds, even in complete darkness (Becker and Klein 1973; Hess 
et al. 1985). The most plausible explanation is that the brain maintains current eye 
position after a stimulus has gone by employing a short-term memory of eye positions. 
The experimental data support the hypothesis of a multi-stable recurrent network 
located in the brainstem that takes as input transient eye velocities and gives as output 

10  For general discussion see Robinson 1989, Glimcher 1999, and Leigh and Zee 2006.

n, m n + m

p1, p2 p3

Figure 7.1  An adder
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persistent eye positions (see Seung 1996, 1998). It does so by accumulating input 
pulses, adding or subtracting (depending on the direction of movement) new inputs 
from the previous summation. In other words, it performs integration. A second, 
“read-out” network reads the current position and stabilizes the eye by controlling 
the  length–tension relationships of the muscles. Seung (1998) describes the neural 
integrator as follows:

In the oculomotor system, the integrator can be regarded as an internal model. The location of 
this internal model is known, unlike in other motor systems. As a steady eye position can be 
maintained without proprioceptive or visual feedback, the quality of the internal model is 
very good. And physiological studies of this internal model indicate that it is a recurrent neural 
network with a continuous attractor.  (Seung 1998, 1257)

Encoding eye position in neural activity requires a continuous, analog-grade code, 
thus motivating the choice of a continuous attractor network.11 Figure 7.2 illustrates 
the continuous line attractor dynamics of the network. A new stimulus changes the 
state of the network away from a line of fixed points. The network then settles on 
a  new point along the attractor line; this point encodes the current eye position. 
Line  attractor neural networks are posited to underlie a wide variety of motor 
control functions.12

Two features of the neural integrator are of special interest for present purposes. 
In the first place, the network has no proprietary input and output units; each unit 
is interconnected to all other units and can receive external stimuli (that is, pulse 
saccades). Secondly, no single unit or proper subset of total units represents an eye 
position; rather, only the total state of the network at a given time is a candidate 
for encoding a persistent eye position. Points in the state-space portrait (Figure 7.2) 
do not represent the activity of single cells, but rather the collective activity of the 
whole network. At any given moment the network “occupies” a point in the portrait, 
and it “aspires to” the line attractor. Points along the line attractor are collective states 
of the network that represent persistent eye positions.

Let’s consider these two features of the network in light of the mechanists’ 3M con-
straint. The computation effected by the integrator takes as arguments eye-movement 
velocities and gives as values persistent eye positions. Condition (a) of the 3M constraint, 
recall, requires that the variables in the model “correspond to identifiable components, 
activities, and organizational features of the . . . mechanism that . . . underlies the phe-
nomenon” (Kaplan 2011, 347). Arguably, neither variable of the FT model corresponds 
to (states of) components of the network that realizes the computation. With respect to 
the arguments of the function: as noted above, any of the networks’ units can receive 
external stimuli from pulse saccades generating eye velocities. The mechanist may 
respond that eye velocities correspond to (are realized by) states of components of 

11  See Seung (1996, 1998). For general discussion of attractor networks see Amit (1989), Eliasmith and 
Anderson (2003), and Eliasmith (2005).

12  Besides Seung (1996) and Seung et al. (2000), see Shadmehr and Wise (2005).
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the mechanism; they correspond to states of different components for each run of the 
computation. But the mechanist cannot take this line for the values of the function. 
Persistent eye positions correspond to (are realized by) collective states of the whole 
network. On any plausible construal of “component,” collective states of the whole network 
do not count as components of the network. And while it is certainly true that the 
values of the integration do correspond to (are realized by) “activities” and “organiza-
tional features” of the network, a weakened construal of condition (a) of the 3M constraint 
that makes no mention of components and their interactions amounts to nothing 
more than the requirement that the model is realized by neural hardware; in other 
words, it imposes only the requirement that there exist a mapping of the sort depicted 
in Figure 7.1.13

13  Bechtel and Richardson (1993) discuss neural network models where “classical mechanistic 
strategies—and in particular, decomposition and localization—fall short” (203). They leave open whether 
an “explanatory strategy that abandons localization and decomposition . . . constitutes a properly mechan-
istic approach” (203). I want to leave this issue open too. There is no question that the behavior of the 
neural integrator is a function of the interaction of its parts. Thus an account of the operation of the inte-
grator would be mechanistic in some intuitive sense. But the 3M Constraint, which requires a transparent 

Figure 7.2  A state-space portrait for the eye-position memory network. All trajectories in the 
state space of the network flow toward a line attractor (thick line). Each point in the line is a 
persistent state that represents a different eye position.
Source: Seung (1996), 13340. Reprinted with permission of the National Academy of Sciences, U.S.A.
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Turning to condition (b) of the 3M constraint: since condition (a) is not satisfied—the 
arguments and values of the function do not correspond to (states of) components 
of the neural mechanism—condition (b) is not satisfied either. While the FT model 
gives an abstract characterization of causal relations between initial and end states of 
the attractor network, the dependencies among the variables specified by the FT 
description do not correspond to causal relations among components of the network. 
Since attractor networks of the sort that realizes the neural integrator are widespread 
in cognitive neuroscience, the 3M constraint is likely to fail for a wide variety of FT 
cognitive models. The mechanists’ requirements on genuine explanation would have 
the unfortunate consequence of stripping much promising research in cognitive 
neuroscience of its explanatory interest.

To summarize the argument in this section: many FT models fail to satisfy the 
mechanists’ strictures on genuine explanation. They do so for one of two reasons: 
either (1) there is a detailed and well-confirmed account of the neural mechanism 
that realizes the computation, but the relation between the FT description and the 
realizing mechanism is not of the specific type characterized by the 3M constraint, 
viz. a mapping from arguments and values of the computed function to (states 
of)  components of the mechanism; or (2) the neural mechanism that realizes 
the  computation is presently unknown, though theorists may have some idea of 
general features of the mechanism, such as where in the brain it is located. In 
the second sort of case there is obviously much more theoretical work to be done. 
A  computational model is not complete until the algorithm used to compute 
the function and the neural hardware that implements it have been specified. But 
there is no reason to think that the neural realization has to be of the specific type 
favored by mechanists.

In Section 5 I discuss the specific features of FT models that make them explanatory, 
when they are. First, though, a more general point: claims can often be explanatory in 
the absence of realizing details.14 That someone deliberately started a fire can be an 
explanation of a forest fire. Of course, it is not a complete explanation; for that we 
would need to know about the chemical composition of the materials involved in the 
incident, the condition of the prevailing winds, and so on. But, as many have noted, 
explanation is typically interest-relative;15 sometimes the relevant interests are served 
without specifying the realizing details. The special sciences—including the sciences 
that purport to explain cognitive capacities—are continuous with ordinary practice in 
this respect.

mapping between variables in the FT characterization and components of the realizing network, does not 
capture this sense.

14  Mechanists need not deny that there can be other kinds of explanations in science. For example, 
Kaplan (2011, 346, fn. 14) mentions etiological causal explanations, which explain why a phenomenon 
occurs by citing an antecedent cause.

15  See, for example, Putnam (1978), van Fraassen (1980), and Lipton (1991).
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5.  The Explanatory Credentials of Function-Theoretic 
Models

Computational models are proposed to explain our manifest success at some cognitive 
task—seeing 3D structure in the scene, understanding speech, grasping objects in nearby 
space, and so on. Justifying the FT description requires explaining how computing the 
value of the specified function contributes to the exercise of the cognitive capacity in 
question. The model is answerable, primarily, to behavioral data about the performance 
of the system in its normal environment. Thus, the theorist’s first task is to characterize, in 
rough and ready terms, the organism’s competence in the relevant cognitive domain—in 
what circumstances it is successful, and in what, perhaps rare, circumstances, it fails. 
Often the burden will be carried not by details of the realizing neural mechanism, 
about which very little may be known, but by features of the environmental context in 
which the mechanism normally operates. As noted above, Ullman’s structure-from-
motion mechanism is able to recover the 3D structure of a moving object by computing 
the unique rigid interpretation consistent with three distinct views of four non-coplanar 
points only because in our world objects are typically rigid in translation. Appeal to a 
general environmental constraint (rigidity in this case) is crucial to the explanation of 
the organism’s pattern of success and failure. Very little is known about the neural 
mechanism that implements the function (beyond the fact that areas V3/V3A and the 
dorsal parieto-occipital junction appear to be implicated).

As I have noted, an FT characterization of a cognitive mechanism resides at the 
topmost of Marr’s explanatory levels, the so-called theory of the computation. It provides 
a canonical specification of the function computed by the mechanism, hence it answers 
a “what-question”: what, precisely, does the device do? But it also takes the first step in 
specifying how the system computes the cognitive function that is the explanandum of 
the theory: it computes the cognitive function, in its normal environment, by comput-
ing the specified mathematical function.16 However, the FT characterization does not 
“reveal the causal structure of the mechanism,” as Kaplan (2011, 352) requires, except 
at a very high level of abstraction.

By its very nature an FT characterization is multiply realizable—it subsumes both 
natural and artefactual computers. Moreover, much of its explanatory force depends 
on the fact that it is abstract. Our grasp of a mathematical characterization—say a 
characterization of a system as an adder or an integrator—is independent of any 
acquaintance we may have with particular (type or token) physical realizations of the 
mathematical description.

The idea that mental or other “high-level” properties are multiply realized has 
recently come under attack. Opponents of multiple realizability argue that only the 
various structure-specific realizers of putative multiply realized properties count as 

16  So, schematically, a cognitive system S computes x (the cognitive capacity) by computing y (the 
mathematical function specified by FT) in context z (the normal environment).
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genuine explanatory kinds. The dialectical context of these arguments is an attack on 
non-reductive materialism. Materialism (reductive or not) isn’t the point here, but if 
these arguments succeed in undermining the integrity of multiply realized kinds then 
the explanatory bona fides of FT models would be threatened. Deflecting these arguments 
will allow me to highlight some important explanatory features of FT models.

Shapiro (2000) poses a dilemma: either the realizing kinds of a putative higher-level 
multiply realized property share many causally relevant properties or they do not. If the 
realizers share many causally relevant properties, then they are not distinct realizations. 
If they do not share many causally relevant properties, then any generalizations that 
apply to them will be “numbingly dull” (2000, 649). (Shapiro cites as examples of numb-
ingly dull generalizations that all realizers of mousetraps are used to catch mice, and that 
camera eyes and compound eyes both have the function of facilitating sight.) So either 
the higher-level kind is just not multiply realized or there is no motivation for subsuming 
the various distinct physical kinds under a higher-level (multiply realized) kind.17

FT kinds evade both horns of the dilemma. Shapiro says “multiple realizations truly 
count as multiple realizations when they differ in causally relevant properties—when 
they make a difference to how they contribute to the capacity under investigation” 
(p. 644). Corkscrews that differ only in color contribute in identical ways to removing 
corks, but hand calculators and human brains almost certainly differ in relevant causal 
powers, for example, in how they contribute to the system’s capacity to compute the 
addition function. It is very likely that they employ different algorithms that require 
different realizing mechanisms. But the fact that these very different physical systems 
both compute the addition function—the fact that we can specify their behavior over a 
staggeringly large range of input conditions—is hardly “numbingly dull.” So Shapiro’s 
argument fails to show that FT kinds are not genuinely multiply realized.

Klein (2008) argues that there are no cases of genuinely multiply realized kinds in 
science. All putative examples either only support generalizations that are projectible 
within the restricted-realization kind, or, if they appear to support generalizations that 
are projectible across other realization kinds, turn out, on closer examination, to be 
non-actual idealizations, and so involve no ontological commitment to the higher-level 
kind. Materials science provides an example of the first sort of case: it classifies as 
brittle various materials—brittle steel and brittle glass, for example—that otherwise have 
very little in common. Of all that we know about brittleness in steel—that brittleness is 
proportional to hardness, that steel can be made less brittle by tempering, and so on—
almost nothing applies to brittle glass. Discoveries about one realization-restricted 
kind of brittle material are not projectible to other realization-restricted kinds. Klein 
goes on to say:

If there are [multiply realizable] kinds, they must be proper scientific kinds. If they are scientific 
kinds, then we should be able to project generalizations about them across all instances of that 
kind. But there aren’t any such projectable discoveries; it looks like we must therefore abandon 

17  See Kim (1992) for a similar argument.
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MR kinds—and not just in metallurgy, but in all of the special sciences, and psychology in 
particular.  (Klein 2008, 162)

Klein concludes that scientific ontologies should include only realization-restricted 
kinds. The upshot is that FT kinds—which appear to subsume both biological subjects 
and artifacts, and hence are not realization-restricted kinds—should be eliminated; at 
best they are idealizations that do not literally apply to anything.

I will tackle the second disjunct of the dilemma first. FT models are not idealizations, 
in the sense that Klein has in mind. He says:

Idealizing models do not purport to describe the world . . . idealizing models are mere possi-
bilia. Talk about them is false of anything in the actual world. You can’t use them to predict 
anything . . . Idealizations are typically used to explain the ceteris paribus laws that cover the 
(realization-restricted) kinds of particular special sciences. When scientists talk about the ideal 
gas, it is usually in the context of explaining the ceteris paribus laws that cover actual gasses. 
The ideally brittle solid is never cited on its own to explain anything.  (Klein 2008, 173)

To be sure, FT characterization does involve idealization. To describe a hand calculator 
as computing the addition function is to attribute to it a capacity defined on an infinite 
domain. The calculator’s actual capacity is limited by the size of its display. A similar 
point applies to any biological system. And artefactual and biological computers are 
subject to various sorts of noise. They can fail to compute the specified function when 
they overheat or are exposed to harmful substances. Nonetheless, the FT characteriza-
tion is intended to be literally true of the calculator, as is an FT characterization of a 
biological system in a computational psychological model. And, as I have noted, FT 
characterizations allow the prediction of the device’s behavior across a wide range of 
input conditions, viz. those corresponding to the arguments of the specified function. 
So they are not idealizations in Klein’s sense.

The argument against the first disjunct of Klein’s dilemma—that empirical discoveries 
about one class of realizers do not project to other classes of realizers, and so commitment 
to a multiply realized higher-level kind is not scientifically motivated—is somewhat less 
direct. It is true, of course, that what we know about the circuitry of the hand calculator 
is unlikely to be true of the brain (and vice versa). But the fact that lower-level physical 
facts about one class of realizers are not projectible to other classes is beside the point.18 
The understanding we gain of the capacities of a system (whether artefactual or biological) 
from FT models depends on the abstract character of the capacity attributed, not on 
any particular physical realization of that capacity. As I noted above, this explanatory 
payoff of FT characterization depends on the fact that the mathematical functions 
deployed in computational models—addition, integration, Laplacian of Gaussians, 
and so on—are well understood independently of their application in such models, and 
independently of our familiarity with computing devices, which of course is a relatively 

18  Facts about the behavior of the system, under interpretation, are projectible.
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recent development. If this is right then Klein’s case for the elimination of multiply 
realized kinds does not apply to FT kinds.

The upshot is that FT kinds are genuinely multiply realized; in fact they may be sui 
generis multiply realized kinds. They are not only abstract, but they are also normative. 
Theories of cognition are charged with explaining not just behavior, but, more import-
antly, cognitive capacities or competences, and FT models do so by positing further 
(mathematical) competences. In attributing a competence to a physical system—to 
add, to compute a displacement vector, and so on—FT models support attributions 
of correctness and mistakes. Just as the normal functioning of the system—correctly 
computing the specified mathematical function—explains the subject’s success at a 
cognitive task in its normal environment, so a malfunction explains its occasional 
failure. Ingesting too much alcohol can cause neural systems to malfunction in any 
number of ways; one effect is that computational mechanisms may not compute 
their normal functions. One’s hand overshooting the cup because the motor control 
system miscalculated the difference vector is a perfectly good explanation of a motor 
control failure.19

This gives the FT characterization a kind of autonomy—the physical description 
that specifies the realizing neural mechanism does not allow the reconstruction of the 
normative notions of correctness and mistake.20 The FT characterization explains the 
cognitive capacity by appeal to another competence not recoverable from the physical/
causal details alone. But though the normativity inherent in the FT description cannot 
be accounted for at the level of realizing mechanisms there is nothing mysterious here. 
Look again at the adder depicted in Figure 7.1. The bottom span of the figure specifies 
the physical state transitions that characterize the normal operation of the mechanism. 
When conditions are not normal—for example, when a human subject containing the 
neural adder is drunk, or a hand calculator is immersed in water—these physical state 
transitions may be disrupted. In other words, the system may be in the physical state(s) 
that (under the interpretation imposed by the mapping) realizes the arguments of the 
function, but fail to go into the physical state that (under interpretation) realizes the 
value of the function. The specification of physical state transitions (the bottom span 
of Figure 7.1) does not support attributions of correctness or mistake; the normative 
attributions are a consequence of the computational interpretation imposed by the 
mapping to the function.

In summary, the fact that FT characterizations are both abstract and normative (in 
the above sense) explains how FT models can be genuinely explanatory even absent an 
account of their neural realization.

19  Of course, the hand may have overshot the cup for a variety of other reasons. A spasm in the arm 
muscles would be a different kind of malfunction.

20  This is not to deny that accounts of neural mechanisms may advert to such normative notions as well-
functioning and malfunction. But physical/causal descriptions, even when they advert to functional notions, 
do not support attributions of correctness and mistake. They do not allow us to say that the mechanism 
miscalculates (or misrepresents) the vector from hand to cup.



OUP CORRECTED PROOF – FINAL, 11/08/2017, SPi

FUNCTION-THEORETIC EXPLANATION  159

6.  Objections and Replies
I conclude by considering some objections.

Objection (1): FT models are not genuinely explanatory; they are what Craver (2006) 
and Kaplan (2011) call phenomenological models (p-models). P-models “provide descrip-
tions (often highly abstract, mathematical descriptions) of the phenomena for which 
explanations are sought . . . [but they] merely ‘save the phenomena’ to be explained” 
(Kaplan 2011, 349).

Reply: FT characterizations are not p-models—they do not just give a mathematical 
description of an observed regularity; rather they claim that the device computes a 
particular mathematical function and in so doing produces the observed regularity. 
This distinction is important. The motion of the planets can be described (mathematically) 
by Kepler’s laws, but the planets do not compute Kepler’s laws, in the intended sense. 
The explanandum of a computational cognitive theory is a manifest cognitive capacity. 
An FT model is a hypothesis about how the system does it, by exercising a mathemat-
ical competence. The solar system has no manifest cognitive capacities that require 
appeal to mathematical competence. The objection that computational models, in the 
absence of realizing neural details, are just p-models, in other words that they are just 
descriptions of behavior, rests on a misconstrual of these models. The models give an 
abstract characterization of a mechanism that produces the phenomena by computing 
a mathematical function.21

Objection (2): FT models do not describe “the real components, activities, and 
organizational features of the mechanism that in fact produces the phenomena” (Craver 
2006, 361). They are mere “how-possibly” models, rather than “how-actually” models. 
As Kaplan puts it “the cost imposed by departing from [the mechanists’] view . . . is the 
loss of a clear distinction between computational models that genuinely explain how a 
given phenomenon is actually produced versus those that merely describe how it 
might possibly be produced” (2011, 346).

Reply: I doubt that there is a sharp distinction between how-actually and how-possibly 
models. Weiskopf (2011) argues, convincingly to my mind, that the distinction is 
epistemological. As a model that purports to explain a given phenomenon is more fully 
developed and acquires additional empirical support it will typically cross the threshold 
from “how-possibly” to “how-actually,” though the latter verdict is always defeasible. 
But putting aside what kind of distinction this is, FT models are hypotheses about how 
a system in fact exercises a particular cognitive capacity. A well-confirmed account of 
the algorithm used to compute the specified function and the neural structure that 

21  Putnam (1988) and Searle (1993) argue that every physical system computes every function. If every 
physical system does compute every function, in the sense at work in function-theoretic explanation, then 
the distinction between a system being merely describable mathematically and a system actually computing 
a mathematical function collapses, and computational models cannot be genuinely explanatory. The Putnam/
Searle arguments have been widely discussed. For recent responses see Chalmers (2012), Egan (2012), and 
the other papers in the Journal of Cognitive Science, Vol. 12.
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realizes the computation would, of course, increase our confidence that the model 
describes how the brain actually does it.

It should also be emphasized that FT characterizations in the first instance are 
specifications of the function that the device in fact computes; they are, one might say, 
what-explanations. Sometimes the characterization takes the form of a specification 
of an algorithm, in other words, an intensional specification of the function computed. 
In such cases, the algorithm is offered, not as an account of how possibly the device 
computes the function, but of what it computes and how in fact it computes it, as is 
evidenced by the fact that theorists would change the hypothesized algorithm were 
evidence to become available showing that the device is computing a function other 
than the one specified by the algorithm. Initial hypotheses regarding the functions 
computed and the algorithms for computing these functions are selected from the 
computational theorist’s toolbox, but that fact does not undermine the claim that these 
are hypotheses about what the device actually does and how it actually does it. How 
else are theorists supposed to develop theories except by using what they know? These 
initial hypotheses will often be modified in light of new behavioral data, sometimes to 
the point that eventually the device is said to compute a function sufficiently different 
from the well-understood function with which the theorist began that it can only be 
described in task-specific intensional terms.22

Objection (3): FT characterizations are just mechanism sketches. They derive their 
explanatory force in the same way that other mechanistic models do, by specifying the 
underlying mechanism. In this case, the specification is only partial.

Reply: FT characterizations are descriptions of cognitive mechanisms. Since they do 
not fully specify how a cognitive mechanism works, we might call them “mechanism 
sketches.” In any event, construing FT models as mechanism sketches is dispositive 
only if a mechanism sketch is explanatory just to the extent that it issues a promissory 
note for a decompositional mechanistic analysis of the sort specified by the 3M con-
straint. I have argued that the explanatory credentials of an FT model do not depend 
on the existence of a mapping that satisfies the 3M constraint, but rather on the 
FT model providing a canonical specification of the function computed by a cognitive 
mechanism, a crucial first step in an explanation of how the mechanism enables the 
cognitive capacity to be explained. Moreover, the distinctive features of FT models—
their abstract and normative character—are not recoverable from a specification of their 
neural realization, even in cases where the specification does satisfy the 3M constraint. 
An account of the realizing neural architecture would, of course, increase the probability 
that a given FT model is true, but it is not the source of the model’s explanatory force. 
If FT models are mechanism sketches then some mechanism sketches derive their 
explanatory force non-mechanistically.

22  The computational model of natural language processing developed by Marcus (1980) is a case in 
point: the proposed model is an augmentation of a standard LR(k) parser of the sort that one might 
encounter in a graduate-level course in parsing theory. The augmentations are dictated by observed features 
of human linguistic competence, and the resulting model can be characterized only intensionally.
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Objection (4): You say that FT characterization is autonomous. Isn’t this just an 
expression of what Piccinini (2006) has called computational chauvinism, the idea that 
(as Johnson-Laird 1983, 9) put it: “[t]he mind can be studied independently from the 
brain . . . [that] psychology (the study of the programs) can be pursued independently 
from neurophysiology (the study of the machine and the machine code).”

Reply: No, it isn’t computational chauvinism. I have explained the sense in which the 
FT level is autonomous—it characterizes the physical system in abstract terms, as a 
member of a well-understood class of mathematical devices. Moreover, the FT charac-
terization is normative in a particular sense—it supports attributions of correctness 
and mistakes, notions not available at the level of realizing neural mechanisms. I am 
not claiming that we can fully explain cognition without understanding these neural 
mechanisms; in fact, I insist that we cannot. The full explanation requires both an 
account of the realizing mechanism (though, as I have argued, the relation between 
the FT characterization and the realization may not satisfy the 3M constraint) and, 
typically, an account of the environment in which the cognitive capacity is exercised. 
The point is rather that claims of the sort “the hand overshot the cup because the system 
miscalculated the difference vector” enjoy a sort of explanatory autonomy from the 
realization details.

7.  Postscript: Personal and Subpersonal Capacities
My account of FT explanation refers to two kinds of capacities or competences; it is 
useful to clarify the relationship between the two. Cognitive capacities that are the 
explananda of the cognitive sciences—seeing what is where, understanding speech, 
reaching, and pointing—are personal-level capacities. They are achievements of the 
organism, things at which we are generally successful. Personal-level cognitive capaci-
ties, manifest in our behavior, are explained by positing subpersonal mechanisms that 
have mathematical capacities. It is something of a “category mistake” (as philosophers 
used to say) to say that we compute the Laplacian of a Gaussian or integration. Rather, 
mechanisms in our brains do this, and by doing so (in normal conditions) they enable 
us to see, understand speech, manipulate objects, and so on.

I have argued elsewhere (see Egan 2014) that the main job of representational content 
is to connect the subpersonal mechanisms characterized in abstract terms by cognitive 
scientific theories with the manifest personal-level capacities that it is the job of these 
theories to explain. Marr construes the inputs to the Laplacian/Gaussian filter as repre-
senting light intensities and outputs as representing discontinuities of light intensity. 
Shadmehr and Wise construe inputs and outputs of the mechanisms they posit as 
representing positions of objects in nearby space and changes in joint angles. In general, 
the inputs and outputs of FT mechanisms are characterized not only in abstract terms, 
as the arguments and values of the specified mathematical function; they are often 
characterized as representing properties or objects relevant to the cognitive capacity to 
be explained. Characterizing the subpersonal mechanism in terms congruent with the 
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way we think about the personal-level capacity that the mechanism subserves allows 
us to see how the exercise of the mathematical competence contributes to our success 
at these tasks. Representational content is the “connective tissue” linking the subper-
sonal capacities posited in the theory and the manifest personal-level capacities 
(the “phenomena”) that the theory attempts to explain.23
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