
Chapter 11
AI-Completeness: Using Deep Learning
to Eliminate the Human Factor

Kristina Šekrst

Abstract Computational complexity is a discipline of computer science and math-
ematics which classifies computational problems depending on their inherent diffi-
culty, i.e. categorizes algorithms according to their performance, and relates these
classes to each other. P problems are a class of computational problems that can be
solved in polynomial timeusing a deterministicTuringmachinewhile solutions toNP
problems can be verified in polynomial time, but we still do not know whether they
can be solved in polynomial time as well. A solution for the so-called NP-complete
problemswill also be a solution for any other such problems. Its artificial-intelligence
analogue is the class of AI-complete problems, for which a complete mathematical
formalization still does not exist. In this chapter we will focus on analysing computa-
tional classes to better understand possible formalizations of AI-complete problems,
and to see whether a universal algorithm, such as a Turing test, could exist for allAI-
complete problems. In order to better observe how modern computer science tries
to deal with computational complexity issues, we present several different deep-
learning strategies involving optimization methods to see that the inability to exactly
solve a problem from a higher order computational class does not mean there is
not a satisfactory solution using state-of-the-art machine-learning techniques. Such
methods are compared to philosophical issues and psychological research regarding
human abilities of solving analogousNP-complete problems, to fortify the claim that
we do not need to have an exact and correct way of solving AI-complete problems
to nevertheless possibly achieve the notion of strong AI.

11.1 Learning How to Multiply

The notion of computation has existed in some form since the dawn of mankind,
and in its usual meaning, the term itself refers to a way of producing an output from
a set of inputs in a finite number of steps. Computation is not just a practical tool
for everyday life but also a major scientific concept since computational experts

K. Šekrst (B)
University of Zagreb, Zagreb, Croatia
e-mail: ksekrst@ffzg.hr

© Springer Nature Switzerland AG 2020
S. Skansi (ed.), Guide to Deep Learning Basics,
https://doi.org/10.1007/978-3-030-37591-1_11

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37591-1_11&domain=pdf
mailto:ksekrst@ffzg.hr
https://doi.org/10.1007/978-3-030-37591-1_11

118 K. Šekrst

realized that many natural phenomena can be interpreted as computational processes
[2]. Computational complexity theory classifies computational problems in line with
their inherent difficulty. In computational complexity theory, a decision problem
is a problem that gives a yes/no answer for the input values, for example, given a
number x , decide if x is a prime number. Decision problems that can be solved by
an algorithm are decidable. Some ways of solving a problem are better, i.e. more
efficient, than others.

Let us start with a simple problem of basic multiplication: given two inte-
gers, compute their product. We can just repeat addition, for example, 5 × 4 =
4 + 4 + 4 + 4 + 4. But things are getting complicated with examples such as
4575852 × 15364677. Usually people think that the grade-school method is the only
one, but this is far from the truth. Historically, computers have used shift-and-add
algorithms for multiplication issues, but their computing powers needed to get faster
since the complexity of many computational problems amounts to the speed of mul-
tiplication. The grade-school method is carried out in n2 steps, for n number of
digits, which becomes an issue for everyday computations of millions of digits. In
1960, Andrey Kolmogorov conjectured that the standard multiplication procedure
requires a number of elementary operations proportional to n2, i.e. O(n2) in the big
O notation,1 which describes how the running time of algorithms grows as their input
size grows. It is easy to calculate n2 if n = 2, but it is not that fast if n has a billion
digits. At the Moscow State University, Kolmogorov had organized a seminar on
computational problems and introduced his famous conjecture, but within a week,
Anatoly Karatuba, then a 23-year-old student, disproved it by finding an algorithm
that multiplies two n-digit numbers in O(n log2 3) ≈ (n1.585) elementary steps [14].

Karatsuba’s method uses a divide-and-conquer approach by dividing the problem
into sub-problems, solving the sub-problems, and combining the answer to solve the
original problem. First, we take numbers x and y, for example, 58 × 63, with their
bases B:

x = x1 × B + x2 y = y1 × B + y2
x = 58 y = 63

x = 5 × 10 + 8 y = 6 × 10 + 3

Theproduct nowbecomes x × y = (x1 × B + x2)(y1 × B + y2),whichweare split-
ting into smaller computational blocks:

a = x1 × y1
b = x1 × y2 + x2 × y1

c = x2 × y2

1A typical usage of the big O notation is asymptotical and refers to the largest input value since its
contribution grows the fastest and makes other inputs irrelevant.

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 119

Fig. 11.1 We would like a
graph of our
computational-problem
algorithm to run as low as
possible such that there is a
huge step for our resources
from O(n2) to O(n log n),
which means there is a
significantly smaller number
of operations for the input of
size n. Source www.
commons.wikimedia.org,
CC BY-SA 4.0

Karatsuba discovered that bmay be shortened to b = (x1 + x2)(y1 + y2) − a − c,
which is a key step that now gives us two multiplications less, instead of b = x1 ×
y2 + x2 × y1!

a = 5 × 6 = 30

b = (5 + 8) × (6 + 3) − 5 × 6 − 3 × 8 = 63

c = 3 × 8 = 24

x × y = a × B2 + b × B + c

x × y = 30 × 102 + 63 × 10 + 24 = 3654

Karatsuba’s approach made way for even better methods, such as Schönhage and
Strassen’s method [20], whose runtime is O(n log n log log n) for n-digit numbers,
which uses fast Fourier transforms. In 2019, Harvey and van der Hoeven [11] proved
that you can achieve integer multiplication in O(n log n).2 This example illustrates
how even small modifications can be crucial to lower the computational complexity
of an algorithm (Fig. 11.1).

Computational complexity theory deals with the resources required during com-
putation to solve a computational problem, both temporal (how many steps we need
to solve a problem) and spatial (how much memory we need to solve a problem).
Problems of classP are those that can be solved using a deterministic Turingmachine
in a polynomial amount of time (for example, n2, but not exponential 2n). On the

2Caveat: it only performs faster than other algorithms for numbers with over 24096 digits, i.e. bits,
which is seldom practical even for big-data purposes.

www.commons.wikimedia.org
www.commons.wikimedia.org

120 K. Šekrst

other hand, NP problems have solutions that can just be verified in polynomial time
but we still do not know whether they can also be calculated in polynomial time.
NP-complete problems are the hardest NP problems, and an algorithm that can solve
such a problem in polynomial time, can also solve any other NP problem in polyno-
mial time. Usually, NP-complete problems require exponential time, for example,
O(2n), which is easy when n is small but has rapid big jumps when n increases. For
instance, consider a program that runs in 210 hours, which amounts to 42.6 days. But
if we increase n to 11, the result is 85 days, and if we increase n to 20, the program
will finish in 119.6 years.

NP-hard problems are at least as hard as the hardest problems in NP. Usually,
this amounts to NP-complete problems, but there are NP-hard problems which are
not NP-complete, for example, the halting problem (“given a program and its input,
will a program run forever?”), which is a decision problem that is undecidable.3

The most famous NP-complete problems comprise, for example, Boolean satisfia-
bility problem (“is there an interpretation that satisfies a given Boolean formula?”),
travelling-salesman problem (“given a length L , decide whether the graph of cities
and distances has any tour shorter than L?”), knapsack problem (“given a set of
items with some weights and values, can a value of at least V be achieved without
exceeding the weightW?”), and graph-colouring problem (“can we colour the graph
vertices such that no two adjacent ones are of the same colour?”). A major unsolved
problem in computer science is the P versus NP problem, which asks whether every
problem whose solution can be verified in polynomial time can also be solved in
polynomial time, i.e. quickly.

11.2 AI-Complete

Analogous to NP-complete problems, the most difficult problems in the field of
artificial intelligence are known as AI-complete, the term first coined by Fanya
Montalvo [18]. Assuming intelligence is computational, to solve one of such prob-
lems would be equal to solving the central artificial intelligence problem, i.e. strong
AI: the intelligence of a machine that has a human-like capacity to understand or
learn any intellectual task. AI-complete problems usually include problems from
computer vision or natural language understanding, along with automated reason-
ing, automated theorem proving, and dealing with unexpected circumstances while
solving real-world problems. However, unlike the exact formalization of computa-
tional complexity classes in computer science,AI-complete problems have not been
completely mathematically formalized.

3Presuppose we have a computable function (that solves the halting problem). That function runs
a subroutine which detects whether our function will halt, and if that subroutine returns true, it
should loop forever. If the function fulfils the condition of halting and returns true, then it will loop
forever and never halt. However, if it returns false and does not halt, it will not loop forever, so it
will immediately halt. These two contradictions then bring down the presupposition that it was a
computable function.

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 121

Ahn et al. [1] presented a possible formalization by defining an AI problem as
a triple P = (S, D, f), where S is a set of problem instances, D is probability
distribution over the problem set S, and f :S �→ {0, 1}∗ answers the instances. A
function f maps problem instances to their set memberships, i.e. recognizing if the
property in question has some given patterns. The authors give a caveat that defining
an AI problem should not be inspected with a philosophical eye since they are not
trying to capture all the problems that fall under the domain of AI. Nonetheless, they
switch the focus to the AI community, that should agree on what hard AI problems
really are. However, that does not mean that people have to be able to solve such
tasks, but a crucial characteristic is that a certain fraction of a human population can
solve it, without a temporal restriction.

Yampolskiy [27] has defined AI-complete problems using a Human Oracle (HO)
function capable of computing any function computable by the union of all human
minds, i.e. any cognitive ability of any human whatsoever can be repeatable by the
HO. Hence, a problem C is AI-complete if it has two properties:

1. it is in the set of AI problems (Human-Oracle solvable) and
2. any AI problem can be converted into C by some polynomial-time algorithm.

A problem H is AI-hard if and only if there is an AI-complete problem C that
is polynomial-time Turing reducible to H. And AI-easy problems are solvable in
polynomial time by a deterministic Turing machine with an oracle for some AI
problems. Yampolskiy shows that a Turing test problem is AI-complete since it is
HO-solvable (which trivially follows from the definition of the test itself). For the
second condition, it is needed to show that any problem solvable by the HO function
could be encoded as an instance of the Turing test, which is a condition parallel
to AI-complete problems, whose polynomial-time solutions could also be solutions
to any NP problem. By taking the input as a question used in the Turing test, and
output as an answer, any HO-solvable problem could be reduced in polynomial time
to an instance of a Turing test. This kind of heuristics can be generalized in such a
way that we can check whether all the information in questions that could be asked
during a Turing test could be encoded as an instance of our current AI problem.
That heuristics, for example, eliminates chess as an AI-complete problem since only
limited information can be encoded in starting positions on a standard chessboard.
Yampolskiy classifies question answering and speech understanding asAI-complete
problems as well.

11.3 The Gap

Unlike in [1], we believe that defining an AI problem should be inspected with a
philosophical eye and that it already has been inspected with a philosophical eye
outside the formal context. We have stated that solving such problems would be
equal to solving the strong-AI problem. Philosophy has been walking hand-to-hand
with modern AI development since Norbert Wiener, a mathematician and a philoso-

122 K. Šekrst

pher, who theorized that all intelligent behaviour, as a result of different feedback
mechanisms, could be simulated by a machine. However, philosophers were also
debating that consciousness and perception cannot be explained by mechanical pro-
cesses: Leibniz proposed a thought experiment in which a brain could be enlarged
to the size of a mill, and we would still not be able to find anything to explain, for
example, perception. Leibniz’s gap refers to the problem that mental states cannot be
observed by just examining brain processes, which is connected to the hard problem
of consciousness in philosophy of mind.4 The latter invokes the scientific method
which we use to explain all the structural and functional properties of the mind, but
we still cannot answer why sentient beings have subjective phenomenal experiences.
Chalmers [4] states that the easy problems of consciousness explain the following
phenomena:

• the ability to discriminate, categorize and react to environmental stimuli,
• the integration of information by a cognitive system,
• the reportability of mental states,
• the ability of a system to access its own internal states,
• the focus of attention,
• the deliberate control of behaviour and
• the difference between wakefulness and sleep.

All of these problems can be explained using computational or neural mechanisms,
but the really hard problem of consciousness is the problem of experience, i.e. the
subjective aspect of it,5 which still remains an explanatory gap. One’s sensation
of eating a chocolate bar may be different from another man’s, and one can enjoy
Stravinsky’s The Rite of Spring and the other person may hate it. The hard problem
of consciousness is the modern version of the centuries-old mind–body problem in
philosophy: how to connect our thoughts and consciousness with the brain and the
physical body.

Searle’s [21] Chinese Room argument6 states that syntax by itself is not sufficient
for semantics since a computer can fool a person that it knowsChinese just by follow-
ing the programmed instructions without knowing it for real, i.e. pure manipulation
of symbols may never be true understanding. Unlike the mentioned weak AI system
that simulates understanding, the strong-AI position states that AI systems can be
used to explain the mind and that the Turing test is adequate to test for the existence
of mental states. If we would solve one of AI-complete problems, we would have a
way to claim we have reached the strong-AI status, or at least crossed a significant

4That is, material things like brains, and hence computers, cannot have mental states.
5The subjective experiences are usually known in philosophy as qualia.
6Suppose that wewere able to succeed in constructing a computer that seems to understand Chinese.
The computer takes Chinese characters as input, follows the programmed instructions and produces
other Chinese symbols as an output. Suppose that it does it so competently that it passes the Turing
test and convinces a humanwho speaks Chinese that the program is a humanChinese speaker. Searle
then asks the question does the machine really understand Chinese, or it is merely simulating that
ability.

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 123

barrier. Using Yampolskiy’s [27] formalization, it has been shown that in that frame-
work any problem solvable by a human oracle could be encoded as an instance of the
Turing test, so passing the Turing test seems to be the main step towards achieving
the artificial general intelligence. However, according to Searle, the computer may
still not truly understand the given task.

11.4 The Walkaround

Shapiro [23] states that solving a problem of one of the main AI-problem areas is
equivalent to solving the entireAI problem, i.e. producing a generally intelligent com-
puter program. These areas include natural language, problem-solving and search,
knowledge representation and reasoning, learning, vision, and robotics. However,
we can see that philosophers and AI researchers managed to pinpoint several key
concepts of artificial general intelligence, without the need for statistical calcula-
tions of what percentage of AI researchers agrees on what difficult problems are,
which is an informal part of AI-problem formalization in [1]. Generally, solving
the AI-complete problems using computational methods would certainly fall under
the umbrella of weak AI, but it would be still open to philosophical interpretations
whether such solutions do constitute real understanding, i.e. strong AI.

Strong AI does not have to be superintelligent, only human-like. For example,
Trazzi and Yampolskiy [24] introduced artificial stupidity, i.e. in order to completely
mimic human understanding, supercomputers should not have supercomputer pow-
ers, such as the maximum number of operations per second. That means that in order
to mimic a human brain, we could pose, for example, that the mentioned O(n2)
method for multiplication needs a comeback since it is a human standard of calcu-
lating. Still, as they note, the brain has evolved to achieve some very specific tasks
useful for evolution, but nothing guarantees that the complexity of these processes is
algorithmically optimal, so the artificial general intelligence could possess a structure
that is more optimized for computing than the human brain.

It is interesting to note that humans performwell on someNP-complete problems.
For example, the travelling-salesman problem which consists in finding the shortest
path through a set of points and returning to the initial position7 was tested on humans,
and their solutions were either closed to best-known solutions or were an order of
magnitude better than well-known heuristical methods [17]. Even more interesting,
an aggregate set of proposed solutions from a group seems to be better than the
majority of individual solutions [30], which was tested on a travelling-salesman
problem aswell. One could posit that combining different machine-learningmethods
may be close to a human-like solution.

Shahaf and Amir [22] went through a similar path and worked on switching the
computational burden between a human and a machine. The complexity of execut-
ing an algorithm with a machine MH is a pair 〈φH (MH), φM(MH)〉, which is a

7That is, the decision version tests whether the given route is the shortest route or not.

124 K. Šekrst

combination of the complexity of the human part of the work and of the machine’s
part. For example, optical character recognition is the conversion of printed or hand-
written text into machine-encoded text, which is a part of computer-vision issues.
Deep-learning methods are usually used for intelligent character or word recog-
nition, where different font styles and different handwriting styles can be learned
by a computer during the process. The final complexity of optical character recog-
nition is likely to be 〈O(1), poly(n)〉. Turing test, which Yampolskiy used as the
first step towards reducibility, is reproduced by an n-sentence conversation, which
has complexity 〈O(n), O(n)〉 where the oracle remembers the previous history,
〈O(n), O(n2)〉 where the whole conversation history needs to be retransmitted, or
〈O(n2), O(n2)〉 if along with the previous step, a person takes linear time to read the
query.

11.5 The Bridge

Let us return to Shapiro’s mainAI-complete areas. First, the goal of natural-language
area in AI is to create a program that can use a human language which would be
as competent as a human speaker. Unlike natural-language processing, which also
encompasses parsing and text-mining methods unrelated to AI-complete problems,
natural-language understanding deals with reading comprehension, and Yampolskiy
considers it an AI-hard problem. Methods of solving natural-language-processing
problems have been based on shallow models such as support vector machine and
logistic regression, trained on high-dimensional and sparse features, but recently
deep-learning frameworks based on dense vector representations produce superior
results [31]. For example, for text classification (categorizing text into groups) convo-
lutional neural networks, which are very successful in computer vision, were used as
well. Themain idea is to use feature extraction8 and classification9 as a joint task, and
to use as many layers as (usefully) possible, along with a hierarchical representation,
which can be used to learn the hierarchy of complete sentences [5]. Conneau et al.
managed to outperform all previous neural-networkmodels using convolutional neu-
ral networks with 29 layers in sentence classification using news and online reviews
to extract topics, sentiment analysis and news/ontology categorization.

8Feature extraction consists of finding the most informative and yet compact set of properties or
characteristics for a given problem.
9Classification is giving a discrete class/category label.Ourmapping function needs to be as accurate
as possible so that whenever there is a new input data x , we can predict the output variable y, for
example, for a picture of a cat, we can put it in a category cat and not dog. In supervised machine
learning, where we are training on one (usually larger) dataset and then checking our performance
on another dataset, there is also regression, where the output variable is numerical or continuous,
for example, “the price of this bike is $1500”.

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 125

Convolutional neural networks10 have been a bragging point of computer-vision
world, so let us examine the state of solving such problems using deep-learning
methods. Convolutional neural networks and deep-learning techniques have been
successfully used to solve problems in computer vision, especially regarding object
recognition, which deals with finding and identifying different objects in images or
videos. The usual issues include background noise, occlusions, translations and rota-
tions, but using deep-learning methods these objects still can be recognized. Region-
based convolutional neural networks were used by Gu et al. [10] by bridging the gap
between image classification and object detection. They focused on localizing objects
using a deep network and training the model with only a small quantity of annotated
data. The first issue was solved by using the recognition-using-regions methods, in
which regions are described by a rich set of cues such as shapes, colours and textures
inside them, and then different region weights are learned. Such a solution presents
a unified technique for object detection, segmentation and classification.

However, such methods need to be further optimized for more difficult problems.
Girschick [9] addressed the deep-learning limitations:

1. training is a multistage pipeline,
2. training is expensive in space and time and
3. object detection is slow.

Even though we are solving computer-vision problems, we are still left with the
shackles of computational complexity, both because features that are extracted
require hundreds of gigabytes of storage, and because the process may take, for
example, 2.5 GPU days for 5000 images and detection takes around a minute for an
image using a GPU [15].

Thus, one of the main issues of neural networks is training time. Judd [13] had
posited the following question in 1988: given a general neural network and a set
of training examples, does there exist a set of edge weights for the network so that
the network produces the correct output for all the training examples? Judd has also
shown that a problem remains NP-hard even if the network needs to produce the
correct output for just two-thirds of the training examples. Five years later, Blum and
Rivest [3] gave us even worse news: for a 2-layer (3-node n-input) neural network,
finding the weights that are the best fit for the training set is NP-hard, and it is NP-
complete to decide whether there are weights and thresholds for the three nodes of
the network to produce a correct output learned from a trained set. So, even a simple
network is NP-hard to train. However, that does not mean we cannot achieve satis-
factory results. The usual methods [16] that enable successful training are changing
the activation function (which defines the output of the node given the set of inputs),
over-specification (it seems to be easier to train larger than needed networks) and

10Multilayer networks. For example, in computer vision, in face detection, the first layer in a neural
network may find regions or edges, the second may find eyes, nose and mouth, the third will make
a face contour, etc.

126 K. Šekrst

regularization (regularizing the weights so we reduce overfitting11) so deep-learning
methods are still used to achieve decent results.

So, since the optimization problem for general neural networks is NP-hard, the
optimization of such a neural network to produce a solution in polynomial time may
still seem too far. Contrary to this sceptical news, can we really use deep-learning
methods to solveNP-complete andAI-complete problems efficiently? As amatter of
fact yes, for example, gradient-descent12 methods can provide us with local minima
that are good enough, the same way people can solve NP-complete problems on
a reasonable scale with a satisfactory solution, not optimal. And optimization is
just one of the possible things we can do—we can add more machines (thus, more
memory =more space) and use better hardware such as GPUs.Why are we requiring
that AI does better than we can while at the same time taking human capacities as
the epitome of intelligence?

11.6 Multiplying the Multiplication

Milan et al. [19] have shown that using recurrent neural networks by learning from
approximate examples produces highly accurate results with minimal computational
costs. RNNs are a class of artificial neural networks that learn from prior inputs while
producing outputs, while in traditional neural networks we assume that inputs and
outputs are independent of each other. But that is not an optimal solution for many
natural-language-understanding or image-processing problems, since, for example,
if we want to train a model to predict the next word or a phrase in a sentence,
we would gain a lot from data regarding previous words. So, recurrent means that
for every element the same task is performed and the output depends on previous
computations; the same way anAI-complete problem can be reduced to a Turing test
that has a memory of all previous conversations, which influences the next answer
to a tester’s question.

Deep-learning andmachine-learningmethods share one common property, which
may also be a common limitation. We want to define how close is our prediction to
a correct solution using a loss function and our goal is to minimize the loss. The
change of strategy in [19] was not to focus on minimizing the goal function since
it may not reflect the network’s performance at all in some problems, but to use
a problem-specific objective. For example, while solving the travelling-salesman
problem, it is not guaranteed that a path that is more similar to the shortest path
provides us with a shorter length, since we can replace two short edges in an optimal

11Overfitting is when a model corresponds too closely to a particular dataset, which usually means
it will fail on more general examples since it contains too many specific parameters. For example, if
we were to train a model that can recognize animal and human faces, using pictures of cats, which
we described thoroughly to form our relevant attributes, our model could look for pointy ears as a
relevant property, and work on cats but not on other animals nor humans (maybe it would work on
Vulcans and Elves).
12Gradient descent is an optimization algorithm for finding the minimum of a function.

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 127

travelling-salesman path, and come up with a solution that has a small loss, but also
gives us a non-optimal path. So, a problem-specific objective in a supervised manner
is computed at each iteration of gradient descent for the approximate solution and
our prediction, and in this method the gradient is propagated only if the proposed
solution gives a better objective than our predicted solution.

Weston et al. [26] attacked theAI-complete problem of question answering using
long short-term memory recurrent neural networks (specialized for sequential data)
andmemory networks (performingmatching and inference over previousmemories),
and have shown that memory networks outperform the other methods, especially
taking into account that they performwell at the question answering. They did achieve
accuracy over 95% for most of the problems, but they still failed at a number of tasks,
and some of these failures were expected due to the insufficient modelling power,
such as they perform only two operationsmaximally, so they cannot handle questions
with more than two supporting facts.

The last two scenarios show that problem-specific models outperform general
solutions, the same way that some neural networks are better for some problems. It
was also demonstrated that people seem to provide better solutions to NP-complete
problems when viewed as a group, and the common averaged solution outperforms
the individual ones. A similar experiment is Google’s PathNet, whose task is to
discover which parts of the network to reuse for new tasks while learning the user-
defined task as efficiently as possible. Fernando et al. [7] claim that for artificial
general intelligence it would be efficient if multiple users trained the same giant
neural network, without catastrophic forgetting, and with parameter reuse.

Unlike NP-complete problems, AI-complete problems are not mathematically
defined yet although we have mentioned some formalizations. However, using deep-
learning methods specialized for different types of problems, modern computing
methods, especially using deep learning, are producing highly accurate results and
sometimes failing because of specific model restrictions, which seems to mimic
human performance as well.

For example, in 2003 Ahn et al. [1] developed CAPTCHA, completely automated
public Turing test to tell computers and humans apart, where a user types out the
letters of a distorted image. Ye et al. [29] used generative adversarial networks,
which are useful when we do not have large training datasets, so the GAN produces
lookalike data. Their method solved CAPTCHAswith a 100% accuracy on a number
of sites and the algorithm can solve a CAPTCHAwithin 0.05 of a second on a regular
PC. In 2003, Ahn et al. [1] have stated that any program with a high success over a
CAPTCHA can be used to solve an unsolved AI problem, so deep-learning methods
seem to be on the right track. Either we are still far away from finding a general
deep-learning solution for all the problems, or finding a specific solution for distinct
problems may be a part of a general solution as well. Learning how to tweak neural
networks, how to train them effectively, and which type of propagation to use is,
after all, the most human way of solving problems, which may be transferred to
self-learning and self-correcting deep-learning methods as well.

Hard AI-problems are often similar to NP-hard problems, and often NP-hard
problems coincide with some of the sub-problems of artificial general intelligence.

128 K. Šekrst

However, we still do not know if there is an optimal way of solving such problems,
but we do know that people and computers, especially using machine-learning and
deep-learning methods, can produce sufficiently accurate results for NP-complete
problems, and that groups of people have greater accuracy than single agents. AI
problems seem to be easy for humans, but difficult for machines, and deep-learning
methods have shown that neural networks are producing highly accurate results
for natural-language understanding and computer-vision problems. For instance,
CAPTCHA-type tests relied on computer inability to produce pattern-recognition
tasks as accurate as humans can, but recent development shows that deep-learning
models can perform with a 100% accuracy. However, due to human error, this does
not have to be the case for humans too. The same way that humans differ in their
mental abilities, different machine-learning methods differ in their ability to solve a
certain problem as well. It seems that the search for universal intelligence is already
hard to define for a human level of understanding, let alone for a computer level,
which brings us back to the need of inspecting our definitions and formalizations
with a philosophical eye.

11.7 Eliminating the Human Factor

AI-complete-method solvers are still far away from measuring or detecting internal
states, since, for example, feeling pain and knowing about pain are not the same
internal states [28]. In Jackson’s article [12], the knowledge argument is used to
argue against physicalism, which reduces mental phenomena to physical properties.
Jackson provides a thought experiment in which a neurophysiologist Mary investi-
gates the world from a black and white room using a black and white monitor and
she learns everything about colours and vision, but if she is released from her room,
our intuition goes towards the fact that she will actually learn something new, and
that all the physical properties are not enough to explain the experience of colour.
Computers are getting better atAI-complete problems and inNP-complete problems
as well, but that notion of experience (like to actually see the colour in the previous
example) is still miles away from being tackled. Yampolskiy [28] postulates that
a new category should be devoted to problems of reproducing internals states of a
human mind artificially, and he calls that group of problems consciousness-complete
or C-complete. Such a human oracle would take input as AI-complete human ora-
cle, but would not produce any output besides the novel internal state of the oracle.
SAT had been shown to be the first NP-complete problem and Yampolskiy [27] has
conjectured that the Turing test is the first AI-complete problem, so he suspects that
consciousness will be shown to be the first C-complete problem.

Hence, deep-learning methods are constantly improving in different sub-areas
of AI-complete problems. An example of CAPTCHA has shown that we do not
need a human factor at all to solve an AI-hard problem, just by using deep-learning
methods and in optimal computational complexities, since the amount of data was
low enough for exponential-rise issues, but high enough for everyday practical pur-

11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor 129

poses. Recently, researchers [25] used machine-learning methods to train a model
on abstracts of scientific (material science) papers. Using word associations, the pro-
gram was able to predict thermoelectric candidates even though it had not learned
the definition of a thermoelectric material. Word2vec13 was used to analyse relation-
ship between words that were acquired while parsing over three million abstracts.
The model was also tested on historical papers and it managed to predict scientific
discoveries before they had happened. Therefore, even though we had not achieved
artificial general intelligence, it may seem that computers in some areas that include
a form of understanding do perform as well as we do, and may be able to make
discoveries that humans had missed.

Context awareness, unexpected scenarios, Bongard problems14 and similar issues
are stillAI-hard problems that are getting lots of attention. The only problem that had
effectively seen zero progress is even greater than AI-complete problems and that
seems to be the old philosophical hard problem of consciousness. Dennett [6] states
that if Mary from our knowledge argument is really omniscient regarding colour
vision, then she already knows how her brain will react and predict the feelings
when seeing coloured flowers, having seen neural correlates in other people’s brains.
So, perhaps, if we would be able to train the network on a large enough amount of
data, the notion of experiencewould be instantly reachable.Hence, even thoughBlum
and Rivest [3] have shown that training a 3-node neural network isNP-complete, too
little attention has been directed towards computational complexity, while defining
AI and general-AI issues, and it seems to be the only limiting factor towards achieving
artificial general intelligence, a machine that has the capacity to understand or learn
any intellectual task a human can. Or, as we have seen in [25], maybe even better.

References

1. Ahn LV, Blum M, Hopper N, Langford J (2003) Using hard AI problems for security. In:
EUROCRYPT, CAPTCHA

2. Arora S, Barak B (2009) Computational complexity: a modern approach. Cambridge Univer-
sity Press, Cambridge

3. Blum A, Rivest R (1992) Training a 3-node neural network is NP-complete. Neural Netw
5(1):117–127

4. ChalmersD (1995) Facing up to the problemof consciousness. JConscious Stud 2(3):200–219
5. Conneau A, Schwenk H, LeCun Y (2017) Very deep convolutional networks for text classi-

fication. In: Proceedings of the 15th Conference of the European chapter of the Association
for computational linguistics: vol I, Long papers. Association for Computational Linguistics,
Valencia, Spain, pp 1107–1116

6. Dennett D (1991) Consciousness explained. Little, Brown and Co., Boston
7. FernandoC et al (2017) Pathnet: evolution channels gradient descent in super neural networks.

arXiv:1701.08734

13These are two-layer neural networks that are trained to reconstruct the context. If you remove a
word, it can predict what the words next to it could be, and finally, as a result, words that share
common contexts are close together in the vector space.
14Two diagrams, where one has a common attribute that is lacking in the other, see [8].

http://arxiv.org/abs/1701.08734

130 K. Šekrst

8. Foundalis H, Phaeco: a cognitive architecture inspired by Bongard’s problems. PhD thesis
9. Girshick R (2015) Fast R-CNN. In: Proceedings of the 2015 IEEE International conference

on computer vision (ICCV), ICCV ’15. IEEE Computer Society, Washington, DC, USA, pp
1440–1448

10. Gu C et al (2009) Recognition using regions. In: 2009 IEEE Conference on computer vision
and pattern recognition

11. Harvey D, van der Hoeven J (2019) Integer multiplication in time O(n log n). hal-02070778,
https://hal.archives-ouvertes.fr/hal-02070778

12. Jackson F (1982) Epiphenomenal qualia. Philos Q 32:127–136
13. Judd S (1988) Learning in neural networks. In: Proceedings of the First annual workshop

on computational learning theory, COLT ’88. Morgan Kaufmann Publishers Inc, Cambridge,
MA, USA, pp 2–8

14. Karatsuba AA (1995) The complexity of computations. Proc Steklov Inst Math 211:169–183
15. Khan S et al (2018) A guide to convolutional neural networks for computer vision. Morgan

& Claypool
16. Livni R, Shalev Shwartz S, Shamir O (2014) On the computational efficiency of training

neural networks. In: Proceedings of the 27th International conference on neural information
processing systems - vol 1, NIPS ’14. MIT Press, Cambridge, MA, USA, pp 855–863

17. MacGregor J, Ormerod T (1996) Human performance on the traveling salesman problem.
Percept Psychophys 58(4):527–539

18. Mallery JC (1988) Thinking about foreign policy: finding an appropriate role for artificially
intelligent computers. Paper presented on the 1988 annualmeeting of the International Studies
Association

19. Milan A, Rezatofighi SH, Garg R, Dick A, Reid I (2017) Learning in neural networks. In: Pro-
ceedings of the First annual workshop on computational learning theory, AAAI ’17. Morgan
Kaufmann Publishers Inc, San Francisco, CA, USA, pp 1453–1459

20. Schönhage A, Strassen V (1971) Schnelle Multiplikation großer Zahlen. Computing 7:281–
292

21. Searle J (1980) Minds, brains and programs. Behav Brain Sci 3(3):417–457
22. Shahaf D, Amir E (2007) Towards a theory of AI completeness. In: Commonsense 2007, 8th

International symposium on logical formalizations of commonsense reasoning
23. Shapiro SC (ed) (1992) Artificial intelligence. In: Encyclopedia of artifical intelligence, 2nd

edn. Wiley, New York, pp 54–57
24. Trazzi M, Yampolskiy R (2018) Building safer AGI by introducing artificial stupidity.

arXiv:1808.03644
25. Tshitoyan V et al (2019) Unsupervised word embeddings capture latent knowledge from

materials science literature. Nature 571:7
26. Weston J et al (2015) Towards AI-complete question answering: a set of prerequisite toy tasks.

arXiv:1502.05698
27. Yampolskiy R, AI-complete, AI-hard, or AI-easy: classification of problems in artificial intel-

ligence. In: The 23rdMidwest artificial intelligence and cognitive science conference, Cincin-
nati, OH, USA

28. Yampolskiy R, Turing test as a defining feature of AI-completeness. In: Yang X-S (ed) Arti-
ficial intelligence, evolutionary computing and metaheuristics

29. Ye G et al (2018) Yet another text captcha solver: a generative adversarial network based
approach. In: Proceedings of the 2018 ACM SIGSAC conference on computer and commu-
nications security, CCS ’18. ACM, New York, NY, USA, pp 332–348

30. Yi SKM, Steyvers M, Lee M, Dry M (2012) The wisdom of the crowd in combinatorial
problems. Cogn Sci 36:452–470

31. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural
language processing. IEEE Comput Intell Mag 13(3):55–75

https://hal.archives-ouvertes.fr/hal-02070778
http://arxiv.org/abs/1808.03644
http://arxiv.org/abs/1502.05698

	11 AI-Completeness: Using Deep Learning to Eliminate the Human Factor
	11.1 Learning How to Multiply
	11.2 AI-Complete
	11.3 The Gap
	11.4 The Walkaround
	11.5 The Bridge
	11.6 Multiplying the Multiplication
	11.7 Eliminating the Human Factor
	References

