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Abstract
This paper is concerned with counterfactual logic and its implications for the modal
status of mathematical claims. It is most directly a response to an ambitious pro-
gram by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics
is committed to its own necessity. I demonstrate that their assumptions collapse the
counterfactual conditional into the material conditional. This collapse entails the suc-
cess of counterfactual strengthening (the inference from ‘If A were true, then C would
be true’ to ‘If A and B were true, then C would be true’), which is controversial within
counterfactual logic, and which has counterexamples within pure and applied mathe-
matics. I close by discussing the dispensability of counterfactual conditionals within
the language of mathematics.
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1 Introduction

Mathematical truths necessarily obtain.1 While it is possible for Hillary Clinton to
have won the 2016 presidential election, it is necessary that 2 + 2 = 4; while the Axis
powers could have won World War II, it could not be that negative numbers have real
square roots; and while there are some possible worlds in which everyone has brown
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eyes, there are none in which all Fermat numbers are prime. History might have
progressed far differently from the way that it actually did, and the laws of physics
might even have diverged wildly from what they actually are, but, the received wis-
dom goes, pure mathematics concerns what is necessarily true—it may even be the
paradigmatic example of a realm of necessary truths.

This much is uncontroversial (or, at least, as uncontroversial as anything ever is in
philosophy), but there is currently no consensus on the foundations for the necessity
of mathematics. In virtue of what do these truths, rather than others, hold necessarily?
Are we justified in our collective confidence that they could not have been otherwise?
Is there a division of labor, such that mathematics provides the truths and philosophy
the necessity, or is mathematics itself committed to the necessity of its claims?

Numerous proposals are available in the literature. According to one, the necessity
of mathematics is secured by the strength of our intuitions.2 Perhaps conceivability
is a guide to possibility; the fact that it is conceivable that p is evidence that it is pos-
sible that p, and the fact that it is inconceivable that p is evidence that it is impossible
that p. If so, then our inability to conceive of a way for two and two to make five
is evidence that it is impossible for two and two to make five. If all mathematical
falsehoods are similarly inconceivable, we can be confident in the necessity of math-
ematical truths. Of course, this strategy does not determine the metaphysical basis
for the necessity of mathematics, but it could explain why our belief in that necessity
is justified. Alternatively, according to neologicists—who maintain that arithmetic is
reducible to logic—the necessity of mathematics results from the necessity of logic.3

Arguably, the necessity of logic is as reasonable a starting point as any in modal
inquiry, so if arithmetic is reducible to logic, then logical truths generate arithmetic
truths that necessarily obtain. However, in light of Gödel’s incompleteness theorem,
neologicists typically aim only to establish the necessity of a fragment of mathemat-
ics.4 Still others argue that we ought not be nearly so confident in the necessity of
mathematics as we currently are.5 Mathematicians are standardly content to prove

2See [2]. For a more general discussion of the connection between conceivability and possibility
(especially in light of the [27] development of the necessary a posteriori), see [13].
3See, for example, [17].
4Yli-Vakkuri and Hawthorne claim “the neologicist strategy has inherent limitations. It can, at best, estab-
lish only the necessity of those mathematical truths that are provable in whatever axiomatic system it uses.
By Gödel’s first incompleteness theorem, we know that these cannot even include all truths of first-order
arithmetic” (pg. 4). I find this modesty premature. It is worth recalling, as philosophers are often prone to
forget, that arithmetic is only incomplete on the assumption that its axioms ought to be decidable—that
is, that an infinitely large computer with an infinite amount of time ought to be able to determine whether
a given formula is an axiom. There are numerous complete, albeit undecidable, axiomatizations of arith-
metic. Whether decidability is an appropriate restriction depends largely on our theoretical aims. I see no
reason why axioms ought to be decidable when the subject is the reduction of arithmetic to logic; all that
is required is that each axiom be a principle of logic. For example, the ω-rule, according to which one may
infer ∀xFx after infinitely many steps determining that Fa, Fb, ... is undecidable but arguably a principle
of logic (minimally, it seems as plausibly a principle of logic as Hume’s Principle, according to which
the number of Fs = the number of Gs just in case there is a one-to-one correspondence between the Fs
and Gs, something neologicists often assume). I suspect that this humility arises because neologicists are
typically committed not only to the reduction of arithmetic to logic in general, but to [12]’s derivation in
particular. This strategy inevitably inherits the incompleteness of Peano arithmetic.
5See, for example, [18].
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that something is true; they seldom bother to prove that it is necessarily true. Indeed,
terms like ‘necessity’ and ‘possibility’ are conspicuously absent from the vast major-
ity of mathematical texts. Philosophers, some claim, step in when mathematicians’
work is complete and (perhaps erroneously) attribute necessity to the results of their
theorems.

Yli-Vakkuri and Hawthorne [46] provide a novel defense for the necessity of
mathematics. They argue that counterfactual logic and mathematical practice jointly
entail that mathematics is committed to its own necessity: that, for any sentence S
within the language of pure mathematics, if S is true, then S is necessarily true. Their
assumptions entail that mathematics is committed not merely to the necessity of its
claims but to an S5 modal logic in particular.6 Its modal commitments run deep.

When I first encountered this paper, I was captivated by its result. It seemed to me
that—at long last—we had no need to rely on the strength of intuition or the dubi-
ous program of neologicism. A rigorous derivation could take their place. Perfectly
innocuous assumptions about counterfactual logic entail that mathematics is commit-
ted to its own necessity. Indeed, I suspected that this would eventually be seen as one
of the most significant contributions to the philosophy of mathematics in many years.

My doubts have since developed. I no longer believe that this program succeeds.
This paper principally consists of two worries for Yli-Vakkuri and Hawthorne’s argu-
ment and its relation to the formal system they develop. In my mind, these worries
are simply that: worries. They are troubling enough to undermine confidence in this
program’s success—they do not ensure its failure. Nevertheless, much would need
to be done to restore confidence in their result. The first problem I raise is that their
assumptions entail the success of counterfactual strengthening—the inference from
‘If A were true, then C would be true’ to ‘If A and B were true, then C would be
true.’ Many deny the felicity of counterfactual strengthening in ordinary modal con-
texts. Indeed, the [41]/[28] semantics for counterfactual conditionals, which remains
dominant in the discipline at large, allows for counterfactual strengthening to fail.
Whether Yli-Vakkuri and Hawthorne’s assumptions are tenable depends (at least par-
tially) on whether the problematic implications of strengthening can be derived in the
language of mathematics. This requires a more precise account of what constitutes
pure mathematics than is currently available. The second problem is the reemergence
of an objection they address: mathematical counterfactuals are entirely dispensable.
Their assumptions entail that the counterfactual conditional collapses into the mate-
rial conditional—so every instance of a mathematical counterfactual can be replaced
with its material analog. If mathematical counterfactuals are entirely dispensable,
they seem powerless to underwrite weighty modal consequences.

2 The Necessity of Mathematics

Yli-Vakkuri and Hawthorne’s program fits broadly within a reorientation occurring
in metaphysics. Following the formalization of modal logic in the 1960s, and the

6The modal commitments of Yli-Vakkuri and Hawthorne actually surpass the commitment to S5. As I
mention below, they are committed to TRIV: the strongest consistent modal logic.
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apparent theoretical uses for modality that ensued, many took possibility or neces-
sity to be primitive, and defined other modal notions (such as the counterfactual
conditional) in terms of them. In contrast, some contemporary philosophers main-
tain that the counterfactual conditional ought to be taken as primitive, and necessity
and possibility defined in terms of it.7 The crucial definition of necessity in terms of
counterfactuality is the following:

�A =df ¬A� ⊥

The claim that it is necessary that A amounts to the claim that if A were false,
then the absurd would obtain. This definition receives support on several fronts. It is
partially motivated by the Stalnaker/Lewis semantics for counterfactual conditionals,
according to which sentences of the form ‘If A were true, then B would be true’ hold
just in case the closest possible worlds in which A is true are also possible worlds in
which B is true.8 But perhaps the most compelling defense of this principle occurs
in [45], who demonstrates that it follows from a K modal logic—the weakest modal
logic standardly available—and the following two principles:

NECESSITY: �(A → B) → (A� B)

POSSIBILITY: (A� B) → (♦A → ♦B)

These assert, respectively, that if it is necessary that if A then B, then if A were
to obtain then B would obtain, and that if it is the case that if A were to obtain
then B would obtain, then if it is possible that A then it is possible that B. With
the counterfactual definition of necessity at hand, possibility can be defined in the
standard way:

♦A = df ¬�¬A9

With an eye toward the necessity of mathematics, Yli-Vakkuri and Hawthorne
appeal to counterfactual conditionals occurring in mathematical texts. Sentences like

7See [45]. This trend is in its infancy; it remains to be seen whether it will stand the test of time. Part of
the motivation for this approach is that, Williamson maintains, we have more direct epistemic access to
counterfactual conditionals than we have to necessity and possibility. While scientific experiments may
inform us of what would happen if electrons were to pass through an open slit, it is not obvious that
they inform us that water is necessarily H2O. However, for alternate accounts of our epistemic access to
modality, see, for example, [16, 21, 33].
8This is a rough gloss on their views, which differ in philosophically important ways. In particular, Stal-
naker’s similarity relation selects a unique, most-similar w′ for each possible world w and determines the
truth of counterfactuals by what occurs in it. Lewis, in contrast, evaluates counterfactuals by truth at the
closest possible worlds (plural) and does not assume that there is a unique most-similar world. Each ver-
sion has benefits over the other. For example, it is a consequence of Lewis’s—but not Stalnaker’s—view
that the Counterfactual Excluded Middle (A� B∨A� ¬B) fails. I take it that these debates, important
though they are, have no bearing on the current project.
9Those operating with an intuitionist modal logic would probably reject this definition of possibility—see,
for example, [5]. For the purposes of this paper, I follow Yli-Vakkuri and Hawthorne in assuming classical
logic.
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“[If] there were a machine computing t [then] it would have some number k of
states” [6] regularly appear, and are naturally interpreted as counterfactual condi-
tionals. Given that the truth-values of these sentences depend upon merely possible
situations, mathematics is plausibly committed to a wide modal scope.

There is a natural objection to this interpretation that ought to be set aside.
Arguably, counterfactual conditionals with necessary or impossible antecedents are
defective. A counterfactual with a necessary antecedent may collapse into the mate-
rial conditional (because the closest world in which the antecedent obtains is the
actual world), and counterfactuals with impossible antecedents may be vacuously
true (because there are no worlds in which the antecedent obtains).10 Given the
charitable assumption that mathematicians’ assertions are neither trivial nor vacu-
ous, some might reasonably prefer alternate interpretations of Boolos, Burgess and
Jeffrey’s sorts of claims.

There are several ways to assuage this concern. Some of Yli-Vakkuri and
Hawthorne’s imagined interlocutors are those who maintain that mathematical truths
are contingent; they cannot object by appealing to the inadmissibility of coun-
terfactuals with necessary or impossible antecedents, because they do not believe
that mathematical counterfactuals have necessary or impossible antecedents. Oth-
ers, however, maintain that mathematical truths are necessary (and that mathematical
falsehoods are impossible), but do not identify the source of that necessity with
mathematical counterfactuals. Such philosophers might deny that �A is equivalent to
¬A� ⊥, on the grounds that ¬A� ⊥ may be a false counterpossible (depending
upon the content of A)—that is, a false counterfactual conditional whose antecedent
could not possibly obtain. However, as will soon become clear, Yli-Vakkuri and
Hawthorne do not actually depend upon the equivalence of �A and ¬A � ⊥
in its full generality: all that their argument depends upon is the inference from
¬A � ⊥ to �A, and this inference is relatively uncontroversial; even if there are
false counterpossibles, it may be that if ¬A� ⊥ is true, then �A is true as well.11

Yli-Vakkuri and Hawthorne assume that the language of pure mathematics is at
least equipped with sentences (which are denoted by ‘A,’ ‘B,’ etc. for individual
sentences and by ‘Γ,’ Π,’ etc. for collections of sentences), the classical logical con-
nectives, the counterfactual connective�, the absurdity operator ⊥, and a symbol
for informal provability �. The least familiar of these is, presumably, the notion
of informal provability. Informal proofs are mathematically rigorous; the main dif-
ference between informal and formal proofs is that the results of informal proofs
are universally true, while falsehoods are formally provable in systems with false
axioms or unsound inferential rules. Additionally, the notion of informal provability
is sensitive to mathematical practice: the fact that mathematicians regularly license a
particular kind of inference is evidence that it is admissible in informal proofs.

10This is the standard Stalnaker/Lewis line. There has, however, been a sustained defense of counterpos-
sibles: substantive counterfactual conditionals with impossible antecedents. See, for example, [3, 7, 8, 15,
19, 34]. Nevertheless, I note that Yli-Vakkuri and Hawthorne do not avoid the collapse of the counterfac-
tual conditional into the material conditional. As I mention below, it is provable on their assumptions that
A� B iff A → B.
11For their discussion of this point, see [46, pg. 14].
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Yli-Vakkuri and Hawthorne make the following assumptions:

CLASSICAL CONSEQUENCE Γ � A whenever A follows from Γ by classical
logic.

MODUS PONENS Γ, A ⇒ B, A � B where ⇒ is either the
counterfactual or material conditional.

CUT If Γ � A1, ..., An and Π, A1, ..., An � B
then Π, Γ � B.

COUNTERFACTUAL DEDUCTION If Γ, A � B, then Γ � A� B.

DEDUCTION THEOREM If Γ, A � B, then Γ � A → B.

Classical Consequence, Modus Ponens, Cut and Deduction Theorem are all, they
claim, uncontroversial. The novel assumption is Counterfactual Deduction. But there
is plenty of textual evidence that mathematicians assume that it is true. Take, for
example:

Let us designate the set of all such Gödel numbers by R, and let us suppose that R
is recursively enumerable. Then, since R /= ∅, there would exist a recursive function
f (n) whose range is R. [9, pg. 78]

Davis recognizes that, under the assumption that R is recursively enumerable, it
is provable that there is a function whose range is R. What he concludes, then, is a
counterfactual: if R were recursively enumerable, then there would be a function with
R as its range. This is an instance of Counterfactual Deduction.

Or consider an elementary proof that there are infinitely many prime numbers.
Suppose, for reductio, that there were only finitely many primes. In this case, these
primes would have a product n. The number n + 1 would not be evenly divisible
by any prime number (except the number 1, depending on whether 1 is regarded as
prime) and would therefore be prime. However, n+1 is not a factor of n, because it is
larger than n. Therefore, n would not be the product of all primes, which contradicts
the former claim that it is the product of all primes.

Several counterfactuals occurred in this proof. The relevant inference occurs
from what is provable from the claim that there are finitely many primes to what
would occur were there finitely many primes. This too is an instance of Counterfac-
tual Deduction. Notably, the other principles Yli-Vakkuri and Hawthorne rely upon
receive no sustained defense or discussion.

With such principles at hand, the derivation of the necessity of mathematics is
as follows. Let A be an arbitrary sentence in the language of mathematics. From
Classical Consequence, we have:

A,¬A � ⊥

Counterfactual Deduction then entails:

A � ¬A� ⊥
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The counterfactual definition of necessity then gives us:

A � �A

Deduction Theorem then entails:

∅ � A → �A

This does not simply assert that if a sentence is true, then it is necessarily true;
it makes the stronger claim that it is provable that if A is true, then it is necessarily
true.12

Replacing A with �A and ♦A yields:

4: � �A → ��A

5: � ♦A → �♦A
Classical Consequence, Deduction Theorem, Modus Ponens, and Cut collectively

imply that:
� (¬A� ⊥) → A

From the counterfactual definition of necessity, we then have:

T: � �A → A

Additionally, the K axiom

� �(A → B) → (�A → �B)

and the necessitation rule
� A →� �A

are both theorems. These suffice to axiomatize S5 modal logic. And so, Yli-Vakkuri
and Hawthorne conclude, mathematics is committed not only to its own necessity but
to an S5 system in particular. But although S5 forms a lower bound on the modal logic
of mathematics (in that every theorem of S5 expressible in the language of mathe-
matics is a theorem in mathematics), it is not an upper bound on that logic—there
are theorems of modal logic that can be proven in the language of mathematics and
cannot be proven purely from S5. Because it is provable that � A ↔ �A, the upper
bound on the modal logic of mathematics is, in fact, TRIV. Why maintain that TRIV
forms the upper bound? Because it is the strongest consistent modal logic, and math-
ematics is consistent. And so, far from being agnostic about its modal commitments,
mathematics determines the system of modal logic that governs its theorems’ results.

3 A Worry Concerning Counterfactual Strengthening

I hope that this (admittedly somewhat cursory) overview conveys both the struc-
ture and the initial appeal of Yli-Vakkuri and Hawthorne’s argument. This argument

12Note that this need not conflict with the incompleteness of various mathematical systems. There may
be many sentences A in the language of pure mathematics such that A is true but � A is false. What this
asserts is that, even in these cases, � A → �A remains true.
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is incontrovertibly valid, so any disagreement must emanate from challenging their
assumptions—assumptions that strike me as prima facie plausible.

As it turns out, these seemingly innocuous assumptions have surprising implica-
tions. In particular, they entail that the counterfactual conditional collapses into the
material conditional; within the language of pure mathematics, ‘A → B’ holds just
in case ‘A� B’ holds. The derivation of the collapse is as follows:
1. A → B, A � B Modus Ponens

2. A → B � A� B 1, Counterfactual Deduction

3. � (A → B) → (A� B) 2, Deduction Theorem

4. A� B, A � B Modus Ponens

5. A� B � A → B 4, Deduction Theorem

6. � (A� B) → (A → B) 5, Deduction Theorem

7. � (A → B) ↔ (A� B) 3, 6 Cut and Classical Consequence

For example, it is provable that ‘If 2+2 = 4, then 2+3 = 5’ obtains if and only if ‘If
it were the case that 2+2 = 4, then 2+3 would equal 5’ obtains. While this particular
example is seemingly unproblematic, the collapse has undesirable implications. In
particular, it forces our hand on a contentious debate between the following three
principles of counterfactual logic:

SUBSTITUTION OF EQUIVALENTS If A is logically equivalent to B, then if
A� C then B� C.

SIMPLIFICATION If (A ∨ B)�C, then A�C and B�C.

FAILURE OF COUNTERFACTUAL It is not the case that A� C entails
STRENGTHENING (A ∧ B)� C.

Each of these principles has received some measure of support. The Substitu-
tion of Equivalents is often defended on theoretical grounds. If two sentences are
logically equivalent, it is difficult to see how any difference between them could
affect the truth-values of counterfactuals they occur within. After all, they hold in
precisely the same possible situations. Additionally, it is an immediate consequence
of the Stalnaker/Lewis semantics for counterfactual conditionals that the Substitu-
tion of Equivalents holds. The closest possible worlds in which a sentence obtains
are invariably the closest possible worlds in which equivalent sentences obtain, so
accounts that rely upon the closeness of worlds do not distinguish between equivalent
expressions. Even when the commitment to a particular semantics for counterfactual
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conditionals is dropped, many endorse a principle allowing for the substitution of
equivalent expressions.13

Simplification is often defended by appeal to ordinary reasoning.14 It would be
strange to assert ‘If Jack or Jill were to come to the party, then the party would be
fun, and if Jack were to come to the party, it would not be fun.’ Similarly, it seems
reasonable for someone to deny ‘If it were to rain or not to rain, then the street would
be wet’ on the grounds that they deny ‘If it were not to rain, then the street would be
wet.’ Both of these examples involve appeals to Simplification.

The Failure of Counterfactual Strengthening is often defended by appeal to the
intuitive consistency of Sobel sequences.15 It may be that if Tim were to take the
aspirin, he would be fine, but if Tim were to take the aspirin and the cyanide, he
would not be fine, and it may be that if the Federal Reserve were to lower the interest
rate, the economy would grow, but if the Federal Reserve were to lower the interest
rate and the European markets were to collapse, the economy would not grow. If
these sentences are consistent, as they seem to be, then counterfactual strengthening
fails at least some of the time. Notably, this is a respect in which the counterfactual
conditional appears to diverge from the material conditional. It is straightforward to
establish that the material analog of Counterfactual Strengthening universally holds;
that is, if A → C, then (A ∧ B) → C.

Despite these three principles’ initial appeal, one must be abandoned, for they are
mutually inconsistent. The conflict between them can be brought out in the following
way:

1. A� C Supposition

2. A ∨ (A ∧ B)� C 1, Substitution of Equivalents

3. (A ∧ B)� C 2, Simplification

If Substitution of Equivalents and Simplification are both true, it follows that coun-
terfactual strengthening universally succeeds. The two collectively entail that if ‘If
Sarah were to work hard, she would get a raise’ is true, then ‘If Sarah were to work
hard and slap her boss, she would get a raise’ is true as well.

While it is indisputable that these principles are incompatible, what we ought to do
in light of this incompatibility is a matter of heated debate. Arguably, the most popu-
lar option is to retain the Substitution of Equivalents and the Failure of Counterfactual
Strengthening, and to abandon Simplification. This option is forced upon us by the
Stalnaker/Lewis semantics for counterfactuals. As mentioned before, this semantics
licenses the Substitution of Equivalents, because equivalent expressions are true in

13For an extended discussion of how substitution coheres with natural-language modals, see [23–26].
14This was independently noticed by [10] and [36] in response to [28]. For a response to Nute, see [31],
and for the ensuing discussion about disjunctive antecedents in counterfactual conditionals more generally,
see [1, 30, 37].
15See [40]. For canonical discussions of Sobel sequences, see [28, 29, 41].



S.Z. Elgin

the same possible situations. It also provides an intuitive explanation for the Failure
of Counterfactual Strengthening. It may be that the closest worlds in which Sarah
works hard are ones in which she gets a raise, but the closest worlds in which Sarah
both works hard and slaps her boss are not ones in which she gets a raise, because
the closest worlds in which she works hard are not ones in which she slaps her boss.
Simplification fails when only one disjunct is relevant to the most-similar possible
worlds. Perhaps all of the closest worlds in which either Jack or Jill come to the party
are ones in which Jill comes to the party. In this case, the closest worlds in which
Jack comes to the party are not relevant in determining the truth-value of ‘If Jack
or Jill were to come to the party, then the party would be fun.’ Admittedly, aban-
doning Simplification is a theoretical cost, but the pertinent cases can arguably be
accommodated pragmatically, rather than semantically.16

Others disagree. Fine [11] provides a hyperintensional semantics for counter-
factual conditionals—one that preserves both Simplification and the Failure of
Counterfactual Strengthening and abandons the Substitution of Equivalents. Santorio
[39] advocates abandoning both the Substitution of Equivalents and Simplification,
but preserving the Failure of Counterfactual Strengthening. Kocurek [22] provides
independent reasons to abandon the Substitution of Equivalents. All counterpossi-
bles have equivalent antecedents, and few license the substitution of any impossible
antecedent with another. If substitution principles fail for counterpossibles, it is rea-
sonable to expect them to fail for ordinary counterfactuals as well. And there is a
growing literature by those who reject the Failure of Counterfactual Strengthening.
von Fintel [42], Gillies [14] and Willer [44], for example, argue that the order in
which Sobel sequences are expressed often affects how felicitous they seem.17 Some
might claim ‘If Luke were to go to the concert, he would see the singer’ before claim-
ing ‘If Luke were to go to the concert and stand behind someone tall, he would not
see the singer,’ but changing the ordering of the sentences sounds odd—it would be
strange to claim ‘If Luke were to go to the concert and stand behind someone tall,
he would not see the singer’ and then assert ‘If Luke were to go to the concert, he
would see the singer.’ But the Stalnaker/Lewis semantics for counterfactuals is insen-
sitive to the order in which these sentences occur; if a Sobel sequence is admissible,
the reverse sequence ought to be as well. On the alternate, dynamic semantics that
von Fintel, Gillies and Willer provide, Counterfactual Strengthening universally suc-
ceeds, and the inadmissibility of Sobel sequences is explained by contextual shifts.
And so, debate rages on. While the Stalnaker/Lewis line remains prominent (mini-
mally, given the enduring popularity of this semantics, it is an option many are tacitly
committed to), the fact that it forces our hand on this debate counts among its most
controversial implications.

Yli-Vakkuri and Hawthorne’s assumptions also force our hand in this debate, but
force it differently than Stalnaker and Lewis do. Due to the collapse of the coun-
terfactual conditional into the material conditional, their assumptions entail that the

16For pragmatic accounts of this phenomenon, see, for example, [20].
17For a response to this type of argument, see [35]. Others attempt to account for the relative felicity of
Sobel sequences pragmatically—see [32, 43].
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Substitution of Equivalents and Simplification are both true. Consequently, these
assumptions entail that Counterfactual Strengthening universally succeeds.

The derivation of the Substitution of Equivalents is as follows:
Suppose that A is logically equivalent to B.

1. B � A Classical Consequence

2. A� C, A � C Modus Ponens

3. A� C, B � C 1, 2, and Cut

4. A� C � B� C 3, Counterfactual Deduction

5. � (A� C) → (B� C) 4, Deduction Theorem

The derivation of Simplification is as follows:

6. A � A ∨ B Classical Consequence

7. (A ∨ B)� C, A ∨ B � C Modus Ponens

8. (A ∨ B)� C, A � C 6, 7, and Cut

9. (A ∨ B)� C � A� C 8, Counterfactual Deduction

10. � ((A ∨ B)� C) → (A� C) 9, Deduction Theorem

As with the derivation of the necessity of mathematics, not only does it follows
that the Substitution of Equivalents and Simplification hold, but it is always provable
that they hold. As we have already seen, these principles, in turn, entail the success of
Counterfactual Strengthening. Therefore, Yli-Vakkuri and Hawthorne’s assumptions
entail that every instance of Counterfactual Strengthening expressible in the language
of pure mathematics succeeds.

How troubling is this result? Presumably, this depends (at least partially) on what
can be expressed within the language of pure mathematics. If Sobel sequences are
expressible, then the assumptions may have untenable implications. Determining the
viability of this program thus requires an account of what constitutes pure mathe-
matics. Without one, it is challenging to determine whether Sobel sequences can be
expressed. However, there is reason to suspect that they face such a worry—that the
language they are concerned with has the resources to express Sobel sequences.

Some purely mathematical cases seem innocuous. It seems reasonable to accept
that ‘If 2 were prime, there would be an even prime’ and ‘If 2 were prime and 3 were
prime, there would be an even prime’ are both perfectly true. However, other cases are
much more suspect. Consider, for example, the simple arithmetic statement ‘If 6 were
added to 7, the result would be 13.’ This sentence does not entail ‘If 6 were added to 7
and 5 were subtracted, the result would be 13.’ After all, the result would be 8, not 13.
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And yet the second sentence is the strengthened version of the first; if counterfactual
strengthening holds, the latter ought to be true if the former is. Consider, also, the
relation between ‘If there were a Turing machine in state T , then two steps later it
would be in state T ′’ and ‘If there were a Turing machine in state T and a 0 were
changed to a 1, then two steps later it would be in state T ′.’ The first of these sentences
may be true while the second may be false. Once again, however, the second sentence
is a strengthened version of the first, so if counterfactual strengthening holds, then
the truth of the first ought to guarantee the truth of the second.

These examples are even more troubling than Sobel sequences typically are. As
previously mentioned, there are some who endorse Counterfactual Strengthening on
the grounds that the order in which Sobel sequences are expressed impacts their
felicity.18 While someone might reasonably claim ‘If kangaroos lacked tails, they
would fall over, and if kangaroos lacked tails and had crutches, they would not fall
over,’ it would be odd to assert ‘If kangaroos lacked tails and had crutches, they
would not fall over, and if kangaroos lacked tails, they would fall over.’ If reverse
Sobel sequences are inadmissible, then perhaps Counterfactual Strengthening never
fails after all. However, this type of response is inapplicable to examples of Sobel
sequences that occur in the language of pure mathematics; the felicity of such sen-
tences does not turn on their ordering. ‘If 6 were added to 7 and 5 were subtracted,
the result would be 13’ is false regardless of what sentences occur before or after it.

But perhaps Yli-Vakkuri and Hawthorne would claim that these examples miss
their mark. On a somewhat narrow reading of their paper, they do not defend the
necessity of mathematics as such but merely claim that the practice of mathemati-
cians commits them to the necessity of mathematical results. If there is to be a debate
about whether mathematical truths are contingent, this is a debate about whether
mathematical practice ought to be revised.19 Perhaps these examples indicate that
mathematicians ought to revise their practice, but arguably have no implications
about what the commitments of practicing mathematicians actually are.

This reply concedes too much. If mathematical practice were committed to Coun-
terfactual Deduction, Classical Consequence, Modus Ponens, Cut, and Deduction
Theorem, then that practice would be committed to Counterfactual Strengthening—
to the inference from ‘If there were a Turing machine in state T and a 0 were changed
to a 1, then two steps later it would be in state T ′’ to ‘If there were a Turing machine
in state T , then two steps later it would be in state T ′.’ But mathematicians are not
committed to this inference. Therefore, mathematicians are not committed to the con-
junction of Counterfactual Deduction, Classical Consequence, Modus Ponens, Cut,
and Deduction Theorem.

When I first considered this problem, it seemed to me there was an addi-
tional interpretive puzzle for Yli-Vakkuri and Hawthorne: it is not at all obvious

18See, again, [14, 42, 44].
19They claim, for example, “Granted, certain proponents of the view that there are false counterpossibles
may take the further radical step of rejecting COUNTERFACTUAL DEDUCTION. We are not going to
engage with such radicalism, except to remind the reader that we have argued that COUNTERFACTUAL
DEDUCTION is a part of the practice of mathematics, and so, if we are right, the radical step is tantamount
to revisionism about that practice” (pg. 26).
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what the semantics underlying mathematical counterfactuals is. The Stalnaker/Lewis
semantics requires Simplification to be false, while Yli-Vakkuri and Hawthorne’s
assumptions entail that Simplification is true. The Stalnaker/Lewis approach remains
the dominant interpretation of counterfactuals in philosophy (and beyond). Without
the ability to appeal to it, another ought to take its place. Absent any semantics for
mathematical counterfactuals at all, it is unclear what, precisely, they mean.

However, there is an interpretation of these counterfactuals that has the logical
attributes Yli-Vakkuri and Hawthorne desire. This interpretation is referred to as a
‘strict counterfactual implication,’ and predates the Stalnaker/Lewis semantics.20 On
this view, the counterfactual conditional A� B is synonymous with �(A → B). The
claim that if A were true, then B would be true amounts to the claim that it is necessary
that if A is true, then B is true. This interpretation can then be supplemented by the
standard Kripke semantics for necessity and possibility (or any other such semantics)
to furnish a semantics for counterfactual conditionals. The reason this interpretation
is amenable to Yli-Vakkuri and Hawthorne’s program arises firstly from the fact that
the counterfactual conditional collapses into the material conditional (i.e., that (A�
B) iff (A → B)) and, secondly, from the fact that every truth within their language is
necessarily true (i.e., that (A → B) iff �(A → B)).

Although this approach renders mathematical counterfactuals meaningful, it does
so at a cost. The semantics underlying mathematical counterfactuals differs from the
semantics of ordinary counterfactual conditionals. Those who deny the felicity of
Counterfactual Strengthening in ordinary modal contexts must claim that mathemati-
cal counterfactuals operate differently from ordinary counterfactuals. After all, many
reject the strict interpretation precisely because it licenses Strengthening: it entails ‘If
Julia were to take the bus, she would save money’ implies that ‘If Julia were to take
the bus and buy a Ferrari, she would save money.’ After all, in order for the first sen-
tence to be true, it must be necessary that if Julia takes the bus, then she saves money.
This approach thus requires the semantics for mathematical counterfactuals to come
apart from the semantics of ordinary counterfactuals—the two types of expressions
mean different things. What’s more, this is not peculiar to the strict interpretation
of counterfactual conditionals. Because Yli-Vakkuri and Hawthorne’s assumptions
entail that the logic of mathematical counterfactuals differs from the logic of ordi-
nary counterfactuals, any semantics for mathematical counterfactuals must likewise
diverge from a semantics for ordinary counterfactuals.21 So while it may be possi-
ble for Yli-Vakkuri and Hawthorne to supplement their view with a semantics, any
they appeal to will require that counterfactuals occurring in mathematical contexts
mean something different from counterfactuals occurring in ordinary contexts. This
raises difficulties for the interpretation of sentences that conjoin a purely mathemat-
ical counterfactual with an ordinary counterfactual, as there is a shift in meaning
between the two.

20This type of view was endorsed by, for example, [38]. How extensive its history is is a matter of debate.
Peirce attributes this sort of view to the Hellenistic logician Philo. However, [4] prefers an alternate
interpretation of Philo’s work.
21More precisely, any semantics for which their assumptions are both sound and complete will not be a
semantics for which the logic of ordinary counterfactual conditionals is sound and complete—at least on
the assumption that Counterfactual Strengthening fails for ordinary counterfactuals.
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4 A Worry Concerning the Dispensability of Mathematical
Counterfactuals

Perhaps surprisingly, in Yli-Vakkuri and Hawthorne’s view, counterfactual condi-
tionals are dispensable to mathematics. Recall that their assumptions entail that the
counterfactual conditional collapses into the material conditional; for arbitrary sen-
tences A and B within the language of pure mathematics, A → B holds just in
case A � B holds as well. Therefore, every mathematical counterfactual could be
replaced with its material analog salva veritate.22

This is borne out by examples that Yli-Vakkuri and Hawthorne discuss. Every
mathematical counterfactual that they mention could be replaced by a material
conditional without impacting the mathematical results. Some examples (chosen
effectively at random) are the following:

“If there were another system of the conjugate Sylow p-groups, then its members
would be transformed into each other by B in systems of transitivity whose degree
would be divisible by p” (pg. 6)

could be rephrased as

If there is another system of the conjugate Sylow p-groups, then its members are
transformed into each other by B in systems of transitivity whose degree would be
divisible by p.

While

“Let us designate the set of all such Gödel numbers by R, and let us suppose that F
is recursively enumerable. Then, since R /= ∅, there would exist a recursive function
f (n) whose range is R” (pg. 9)

contains the same information as

Let us designate the set of all such Gödel numbers by R, and let us suppose that
F is recursively enumerable. Then, since R /= ∅, there is a recursive function f (n)
whose range is R.

And

“If it were the case that, for some plane separated into contiguous regions, there is
no function f from the regions to a four-membered pure set such that, for all pairs
x, y of contiguous regions f (x) /= f (y), then it would be the case that ⊥” (pg. 17)

amounts to the claim that

If it is the case that, for some plane separated into contiguous regions, there is no
function f from the regions to a four-membered pure set such that, for all pairs x, y
of contiguous regions f (x) /= f (y), then it is the case that ⊥.

22And, indeed, every material conditional could be replaced with its counterfactual analog instead.
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Why is the dispensability of mathematical counterfactuals significant? At least
partially because others have argued that at least some mathematical counterfac-
tuals are indispensable—that mathematics employs counterfactual conditionals that
cannot be replaced with their material counterparts. One example occurs in “Coun-
terpossibles in Science: The Case of Relative Computability” [19]. Jenny argues
that counterpossibles are integral to the theory of relative computability—a branch
of mathematics that addresses whether solutions to some problems would generate
solutions to others.23

A set is said to be algorithmically decidable just in case there is some algorithm
that, after finitely many steps, determines whether an arbitrary entity is a member of
that set. For example, the set of propositional tautologies is algorithmically decid-
able (in that there is an algorithm that determines in finitely many steps whether an
arbitrary sentence of propositional logic is a tautology), while the set of predicatively
valid sentences is not (in that there is no algorithm that determined in finitely many
steps whether an arbitrary sentence of predicate logic is valid). This is referred to
interchangeably as the ‘validity problem’ and the ‘decision problem.’ Additionally,
the set of arithmetic truths is undecidable (in that there is no algorithm that deter-
mines whether an arbitrary sentence is an arithmetic truth) as is the set of algorithms
that eventually halt—(i.e., there is no algorithm that determines whether an arbitrary
algorithm will halt after finitely many steps).

Although neither the validity problem nor the halting problem is decidable, math-
ematicians investigate what would happen if they were. In particular, they investigate
what would follow if there were an algorithm that solved the validity problem. As it
turns out, if the validity problem were decidable, then the halting problem would be
as well. Any solution to the validity problem could be used to generate a solution to
the halting problem. The sentence ‘If there were a solution to the validity problem,
then there would be a solution to the halting problem’ appears to be a counterfac-
tual and, Jenny argues, is indispensable to relative computability theory. However,
counterfactuals in relative computability theory cannot be replaced by their mate-
rial analogs, precisely because they do not allow for counterfactual strengthening.
Consider, for example, the sentence:

Even if the validity problem were decidable, then the arithmetic problem would
not be decidable.

Mathematicians maintain that this sentence is true on the grounds that, while a
solution to the validity problem could be used to generate a solution to the halting
problem, a solution to the validity problem could not be used to generate a solution
to the arithmetic problem. However, mathematicians deny a strengthened version of
this counterfactual:

Even if the validity problem were decidable and the arithmetic problem were
decidable, then the arithmetic problem would not be decidable.

23For an introduction to relative computability theory, see [9].
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After all, if there were a solution to the arithmetic problem, then there would triv-
ially be a solution to the arithmetic problem—arithmetic truth is computable relative
to itself. The counterfactual conditional diverges from the material conditional in this
case—the inference from ‘If the validity problem is decidable, the arithmetic problem
is not decidable’ to ‘If the validity problem is decidable and the arithmetic problem
is decidable, then the arithmetic problem is not decidable’ is legitimate: both are true
because they are material conditionals with false antecedents. If Jenny is correct (in
claiming that at least some mathematical counterfactuals are distinct from their mate-
rial analogs), then Yli-Vakkuri and Hawthorne err in collapsing the counterfactual
conditional to the material conditional.

The dispensability of mathematical counterfactuals is troubling for further rea-
sons. If every instance of a mathematical counterfactual conditional could be replaced
by a material conditional, it is difficult to see what or how these counterfactuals
add to our body of knowledge. Nothing modally substantive follows from material
conditionals used by mathematicians, and Yli-Vakkuri and Hawthorne’s assumptions
ensure that mathematicians could exclusively employ the material conditional. So,
why think that these dispensable conditionals ought to be used to derive modally
substantive results?

Although they do not address the collapse of one conditional to the other, Yli-
Vakkuri and Hawthorne discuss the dispensability objection at length. They claim:

Counterfactuals are absolutely indispensable to what mathematics contributes to
our total body of knowledge...Note first that myriad applications of mathematics
to the hustle and bustle of both everyday life and engineering require our knowing
that mathematical truths would remain true even if things had gone differently
in various ways. For example, in justifying a particular engineering solution, one
often appeals to mathematical truths in reasoning about how things would have
gone if one had opted for an alternative solution. In doing so one assumes—and if
one is successful, one knows—that those mathematical truths would have been true
even if one had opted for the alternative solution. Note second that, as the queen
of the sciences, mathematics is primed for application in any area of objective
inquiry, whether it be the science of electromagnetism, the theory of rook and pawn
endings, or natural language semantics. (pg. 14)

This passage strongly suggests that mathematical counterfactuals occur in disci-
plines ranging from engineering to electromagnetism to natural-language semantics.
After all, if the language of mathematics is incapable of expressing these counter-
factuals, how could they lend support for the indispensability of counterfactuals in
mathematics? Sobel sequences are derivable in every discipline they mention. An
engineer may claim that, if a pulley were to double in size, it could lift a heavy box,
but may deny that if a pulley were to double in size and be made of twine, it could
lift a heavy box. A physicist might conclude that if an electron were to be placed
in a field, it would accelerate, but deny that if an electron were to be placed in a
field and an equal-but-opposite force were to be introduced, it would accelerate. Both
the engineer and physicist thus deny the felicity of Counterfactual Strengthening in
the counterfactuals they appeal to. Yli-Vakkuri and Hawthorne’s assumptions, which
entail that Counterfactual Strengthening succeeds, are at odds with this practice.
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Of course, it might be claimed that sentences occurring in engineering, physics,
and the like are not pure mathematics. Yli-Vakkuri and Hawthorne’s argument for
the indispensability of mathematical counterfactuals is arguably an appeal to applied
mathematics—not to pure mathematics. As such, these sentences fall outside of the
scope of their program; they need not claim that Counterfactual Strengthening is
admissible in these types of cases, because these sentences are not within the lan-
guage of pure mathematics. However, once it is claimed that these sentences do
not count as purely mathematical, the dispensability objection returns. After all, it
may be that counterfactuals are indispensable to applied mathematics, but are they
indispensable to pure mathematics? And so, we arrive at a crossroads. If coun-
terfactual conditionals that appear in applied mathematics fall within the scope of
Yli-Vakkuri and Hawthorne’s project, then their assumptions err in licensing coun-
terfactual strengthening. And if these counterfactuals do not fall within that scope,
what reason is there to think that mathematical counterfactuals are indispensable?
The examples they propose would, in that case, fall outside of their intended scope.

5 Conclusion

I have presented two related concerns for Yli-Vakkuri and Hawthorne’s program: that
their assumptions illicitly give rise to counterfactual strengthening, and that counter-
factuals are entirely dispensable to mathematics. Both arise from the collapse of the
counterfactual to the material conditional, which is provable on the assumptions that
they make.

And for both, the same response is available. Because there is no account of
what pure mathematics consists of, Yli-Vakkuri and Hawthorne may simply say that
the intended examples fall outside of their intended scope. But with each retreat,
the project becomes less ambitious. Problematic examples arise in arithmetic, com-
putability theory, and numerous applied fields. In order for counterfactual logic to
secure the foundations for the necessity of mathematics, we require an account of
what pure mathematics consists of—an account that evades the problems gener-
ated by counterfactual strengthening and that accounts for how it is dispensable
counterfactuals furnish the resources for the necessity of mathematics.
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