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Abstract

The purpose of this paper is to show that the mathematics of quantum mechanics (QM) is the
mathematics of set partitions (which specify indefiniteness and definiteness) linearized to vector
spaces, particularly in Hilbert spaces. The key analytical concepts are definiteness versus in-
definiteness, distinctions versus indistinctions, and distinguishability versus indistinguishability.
The key machinery to go from indefinite to more definite states is the partition join operation at
the set level that prefigures at the quantum level projective measurement as well as the forma-
tion of maximally-definite state descriptions by Dirac’s Complete Sets of Commuting Operators
(CSCOs). The mathematics of partitions is first developed in the context of sets and then lin-
earized to vector spaces where it is shown to provide the mathematical framework for quantum
mechanics. This development is measured quantitatively by logical entropy at the set level and
by quantum logical entropy at the quantum level. This follow-the-math approach supports the
Literal Interpretation of QM-as advocated by Abner Shimony among others which sees a reality
of objective indefiniteness that is quite different from the common sense and classical view of
reality as being “definite all the way down.”

Keywords: partitions, direct-sum-decompositions, partition join, objective indefiniteness,
definite-all-the-way-down..
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1 Introduction

After a century of proliferating interpretations of quantum mechanics (QM), it is time to ask the
simple question: “Where does the math of quantum mechanics come from?”.! The purpose of this
paper is to show that the mathematics of quantum mechanics comes from the mathematics of set
partitions (the mathematical tools to describe indefiniteness and definiteness) linearized to vector
spaces, particularly Hilbert spaces.

Classical physics exemplified the common-sense idea that reality had definite properties “all the
way down.” At the logical level, i.e., Boolean subset logic, each element in the Boolean universe set
is either definitely in or not in a subset, i.e., each element either definitely has or does not have a
property. Each element is characterized by a full set of properties, a view that might be referred
to as “definite all the way down.” This view of reality was expressed by Leibniz’s principle of the
identity of indiscernible. If one could always dig deeper into a definite reality to find attributes to
distinguish entities, then entities that were completely indistinguishable would logically have to be
identical. However, if there is no digging deeper to find distinctions, then any remaining indefiniteness
is objective.

It is now rather widely accepted that this common-sense always-definite view of reality is not
compatible with quantum mechanics (QM). If we think in terms of only two positions, here and
there, then in classical physics a particle is either definitely here or there, while in QM, the particle
can be objectively “neither definitely here nor there.” [48, p. 144] Paul Feyerabend asserted that
“inherent indefiniteness is a universal and objective property of matter.” [24, p. 202] This is not an
epistemic or subjective indefiniteness of location; it is an ontological or objective indefiniteness. The
indefiniteness or indistinguishability cannot be resolved by digging deeper with more precision. The
notion of objective indefiniteness in QM has been most emphasized by Abner Shimony.

From these two basic ideas alone — indefiniteness and the superposition principle — it
should be clear already that quantum mechanics conflicts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an indefinite value in that quantum state is objectively indefinite; its value is not
merely unknown by the scientist who seeks to describe the system. ...Classical physics
did not conflict with common sense in these fundamental ways.[40, p. 47]

Since our natural common sense view of the world is “definite all the way down” (as in classical
physics), how can we describe an indefinite actuality? The basic mathematical, indeed logical, concept
that describes indefiniteness and definiteness is the notion of a partition on a set. It is the purpose
of this paper to show that the mathematics of quantum mechanics is essentially the mathematics
of partitions linearized to (Hilbert) vector spaces. This substantiates that key analytical concepts
in QM are indefiniteness and definiteness, indistinction and distinction, and indistinguishability and
distinguishability. Key machinery of QM such as projective measurement and the specification of

1The slogan “Follow the money” means that finding the source of an organization’s or person’s money may reveal
their true nature. In a similar sense, we use the slogan “Follow the math!” to mean that finding “where the mathematics
of QM comes from” reveals a good deal about the key concepts and machinery of the theory.



maximally definite states by Dirac’s Complete Sets of Commuting Operators (CSCOs) will also be
seen as the linearization of the corresponding machinery in the logic of partitions.

2 Partitions: The logical concept to describe indefiniteness
and definiteness

Given a universe set U = {u1,...,un}, a partition m = {Bn, ..., B} is a set of subsets B; C U (for
j =1,...,m) called blocks that are disjoint and whose union is U.2 A distinction (or dit) of a partition
7 is an ordered pair of elements (u;,u) € U x U in different blocks of 7, and dit (7) C U x U is the
set of all distinctions, called the ditset of 7. An indistinction (or indit) of 7 is an ordered pair of
elements in the same block of U, and the set of all indistinctions indit (7) C U x U, called an indit
set, is the equivalence relation associated with 7 where the blocks are the equivalence classes. The
ditset and indit set of a partition are complements, i.e., they are disjoint and their union is U x U.

Each block B; € 7 of a partition should be thought of as being indefinite or indistinct between
its elements u;,u; € B;. Partitions naturally arise as the inverse-images = {f_l (y)}yef(U) of
functions f : U — Y. In particular, a numerical attribute is a function f : U — R into some set
of values which we can take as the real numbers R. Each block f~!(r) in the partition f~! then
represents the constant set of all elements u; € U taking the value f (u;) =r € R. When the set U
is taken as the outcome set or sample space of a finite probability distribution [with equiprobable
points or point probabilities p; = Pr (u;)], then the numerical attribute is a random variable. As an
aid to intuition, these simple concepts at the logical level might be seen as the elementary forms of
the more developed mathematical concepts of quantum mechanics as illustrated in Table 1. These
connections will be further developed in the later section on the Yoga of Linearization.

’ Logical concept \ QM concept ‘

Block of a partition | Eigenspace
Elements in a block | Eigenvectors with same eigenvalue
Numerical attribute | Observable (self-adjoint operator)

Elements of U Basis eigenvectors of an observable
Values of attribute | Eigenvalues of an observable
Partition on a set Direct-sum decomposition of eigenspaces

Table 1: Partition logical precursors for QM math concepts

Subsets of a set and partitions on a set are mathematically dual concepts [31]. The Boolean
logic of subsets (usually presented in the special case of “propositional logic”) thus has a dual
mathematical logic, the logic of partitions [15]. The “logical” concepts that prefigure the mathematics
of QM are those of the logic of partitions.

In the Boolean logic of subsets, the powerset o (U) (all subsets of U) forms a lattice where the
partial order is set inclusion, the join (least upper bound) and meet (greatest lower bound) are union
and intersection respectively, and the top and bottom of the lattice are the universe set U and the
empty set () respectively.

In the dual logic of partitions, the set II (U) of partitions on U also forms a lattice where the
partial order is refinement. Given another partition o = {C1, ..., C;y } on U, the partition o is refined
by 7, written, o X 7, if for every block of 7, there is a block of o containing it. Intuitively, the blocks
of m can be obtained by chopping up the blocks of o. If 7 and ¢ are the inverse images of random
variables f : U — R and g : U — R respectively, the ¢ = 7m means that the random variable f is
sufficient for g, i.e., the value of f determines the value of g.

2Since our purpose is conceptual clarity, not mathematical generality, we will stick to the finite sets and dimensions
throughout.



The join mV o (least upper bound in the refinement ordering) is the partition of U whose
blocks are all the non-empty intersections B; N Cj:. To form the meet m A o (greatest lower bound
in the refinement ordering), think of two intersecting blocks B; and Cj as two overlapping blobs
of mercury that unify to make a larger blob. Doing this for all overlapping blocks, the blocks of
the meet are the subsets of U that are a union of certain blocks of © and simultaneously a union
certain blocks of o (and are minimal in that respect). The top of the lattice of partitions II (U) is the
maximally distinguished discrete partition 1y = {{u1}, ..., {un}} whose blocks are all the singletons
of the elements of U and the bottom is the minimally distinguished indiscrete partition 0y = {U}
(nicknamed the “Blob”) which blobs all the elements together into one indefinite “superposition.”?
The join operation is the only one we will need as it prefigures a projective measurement in quantum
mechanics.

Underlying the duality between subsets (e.g., images of functions) and partitions (inverse-images
of functions) is the duality between elements of subsets and distinctions of a partitions, the ‘its and
dits’ duality. In the Boolean lattice p (U) of subsets, the partial order S C T for S,T € p (U) is the
inclusion of elements. In the lattice of partitions II (U), the refinement partial order o = 7 is just
the inclusion of distinctions, i.e., o 3 7 if and only if (iff) dit (o) C dit (7). Moreover, wherever the
logical partial order holds, there is an induced logical map. If S C T, then there is the canonical
injection S »— T, and if o = 7, then there is the canonical surjection m — o that carries each block
Bj € 7 to the unique block C}, € o such that B; C Cy.* The top 1y of the partition lattice includes
all possible distinctions, i.e., dit (1y) = U x U — A [where A is the diagonal of self-pairs (u;, u;)],
just as the top U of the the subset lattice thus includes all possible elements. The bottom Oy of the
partition lattice has no distinctions, i.e., dit (0y) = @, just as the bottom @ of the subset lattice has
no elements. The ditset of the join in the partition lattice is the union of the distinctions just as the
join in the lattice of subsets is union of the elements of the subsets. This duality between elements
and distinctions is illustrated in Table 2.

Dualities H Subset logic ‘ Partition logic ‘
Its or dits Elements u of S Distinctions (u,u’) of 7
Partial order || Inclusion S C T o 3w, dit (o) C dit ()
Logical maps S—T T—>0
All All elements U All distinctions 1y
None No elements () No distinctions O¢
Join SuT dit (7 V o) = dit (7) U dit (o)

Table 2: Its & Dits duality

Following Heisenberg,® we might express this duality by going back to the ancient Greek meta-
physical notions of substance (or matter) and form [1]. At this simple level, one can still discern two
‘creation stories’ corresponding to the classical (definite all the way down) and the quantum (objec-
tive indefiniteness) versions. These two stories can be represented by moving from the bottom up the
two logical lattices illustrated in Figure 1 where the universe now consists three states U = {a, b, c}.

Classical creation story: In the Beginning was the Void (no substance) and then fully definite
elements (Its”) were created until the universe U was created.

Quantum creation story: In the Beginning was the Blob—all substance (energy) with no form—
and then, in a Big Bang, distinctions (”Dits”) were created (e.g., symmetries were broken) as the

3Many of the older texts [5] presented the “lattice of partitions” upside down, i.e., with the opposite partial order,
so the join and meet as well as the top and bottom were interchanged.

4In (18], it is shown that the maps in the category of Sets that are considered “canonical” are the maps induced
from the given data by these logical maps in the two logical lattices that play symmetrical mathematical roles.

5In his sympathetic interpretation of Aristotle’s treatment of substance and form, Heisenberg refers to the substance
as: “a kind of indefinite corporeal substratum, embodying the possibility of passing over into actuality by means of
the form.”[27, p. 148] Heisenberg’s “potentiality” “passing over into actuality by means of the form” should be seen
as the actual indefinite “passing over into” the actual definite by being objectively in-formed through the making of
distinctions.
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Figure 1: The two creation stories illustrated by the dual lattices

substance was increasingly in-formed to reach the universe U.

3 Intuitive imagery for superposition

How should one imagine a quantum superposition? The most misleading imagery in QM is the
classical interpretation of superposition (Figure 2) as the addition of two definite waves to get
another definite wave.

2+

Figure 2: Imagery for classical superposition

But there seem to be no actual physical waves in QM, much to the disappointment of Schrédinger
and others. The complex numbers are the natural mathematics to describe waves so the misleading
wave formalism is always there.

Such analogies have led to the name ‘Wave Mechanics’ being sometimes given to quantum
mechanics. It is important to remember, however, that the superposition that occurs
in quantum mechanics is of an essentially different nature from any occurring in the
classical theory, as is shown by the fact that the quantum superposition principle demands
indeterminacy in the results of observations in order to be capable of a sensible physical
interpretation. The analogies are thus liable to be misleading. [11, p. 14]



The complex numbers are needed in the mathematics of QM (among other reasons) since they
are the algebraically-complete extension of the reals so the real-valued observables will have a full
set of eigenvectors, not because there are any physical waves.

The quantum (as opposed to classical) interpretation of superposition is the addition of two
definite states to get a new state indefinite between the definite states—mot the ‘double-exposure’
image (e.g., not being simultaneously here and there as in so much of the popular science literature)
suggested by the wave interpretation.® In Figure 3, the superposition of the two definite isosceles
triangles is the indefinite triangle which is indefinite on where the two definite triangles are distinct
(the labeling of the equal sides) and is definite on where the two triangles do not differ (the aA-axis).”

a a a a

¢/ \B . B/ \C _ B/ \E
bxc <A b A Exb

Figure 3: Imagery for Quantum Superposition

The intuitions in the theater of our minds have evolved to think in terms of a macroscopic spatial
world, so one should not expect to have fully definite classical imagery for indefinite quantum states.
The best to expect is probably a set of image ‘crutches’ to illustrate one aspect or another as in
Figure 3.

At the simplest logical level, the pure and mixed quantum states for a single particle can be
illustrated by partitions as in Figure 4. There are four possible eigenstates for a particle represented
by a, b, c, and d. The pure state of all those eigenstates superposed is represented by the indiscrete
partition {{a,b,c,d}} (written in shorthand as {abed}) and then distinctions are made (i.e., ‘mea-
surements’ are made) to get the other partition representations of the mixed states of ‘orthogonal’
(disjoint) superpositions such as {{a,c}, {b,d}} (or in shorthand {ac, bd}).

In terms of sets (as in Figure 4), the superposition of the eigenstates {a} and {c} is the state {a, c},
which is the state indefinite between {a} and {c}; not definitely {a} and not definitely {c}, but
definitely not {b} or {d}. A distinction between {a} and {c}, e.g., in the join {ac,bd} V {a.bed} =

6The indefiniteness interpretation of qubit a|0) + b|1) is more routine in quantum information and computation
theory [34] as opposed to the being simultaneously |0) and |1) version of superposition.

"There is at least an analogy between superposition in QM and abstraction in mathematics. In Frege’s example
of a set of parallel directed line segments oriented in the same way, the abstraction “direction” is definite on what is
common between the lines and indefinite on how they differ [19]. In QM, the emphasis is on the indefiniteness between
the definite eigenstates (glass half-empty) while in abstraction, the emphasis is on the common definiteness between
the instances (glass half-full).

{ab,c.d} <—— C(lassical 'state’

{a,bc,d} {adb,c} {abdc} {acb,d} ({abcd} {ab,cd}
A ¢ Non-classical
mixed 'states'

{ad,bc} {a,bcd} {abd,c} {ac,bd} {abc,d} {acd,b} {ab,cd}

{abcd} <€—— Pure 'state’

Figure 4: Lattice of partitions on 4 elements with labelled states



{a,bd, c}, would reduce the superposition {a,c} to a mixture of the eigenstates {a} and {c}, e.g., in
the mixed state {a, bd, c}. In contrast to the misleading superposition of waves imagery, these simple
examples illustrate that the superposition {a, c} is not a definite state but is an indefinite state that
could reduce (e.g., with distinctions supplied by {a.bed}) to a mixture of the definite eigenstates {a}

or {c}.

4 Logical entropy: the measure of distinctions

Since partitions are the mathematical concept to represent distinctions and indistinctions (or defi-
niteness and indefiniteness), there should be a quantitative measure (in the sense of measure the-
ory) to quantify distinctions. Since U is a finite set and the set of distinctions of a partition 7
is finite, the obvious notion to measure distinctions is simply the cardinality of the set of distinc-
tions dit () € U x U normalized by the size of U x U. Hence the logical entropy of a partition
m ={Bj,..., By} for equiprobable points in U is:

— ldit(m)] _ |UXU|=|U; BixXBj| _ 1B;|* _ 2

h(m) = Tosaor = %01 =1-%; o =1-X;Pr(B))
where Pr(B;) = |B;|/|U| is the probability that a random draw from U gives an element of B;
([14], [20], [21]). When the points of U have the probabilities p; for ¢ = 1, ..., n, then:

hm) =1-3,Pr(B;)’

where Pr(B;) = ZuieB]- p;. The logical entropy of m has an immediate interpretation; it is the
probability that in two independent random draws from U, one will obtain a distinction of m—just
as the probability of a subset S C U, Pr(.S) is the probability that in one random draw from U, one
will obtain an element of S. Since the indiscrete partition makes no distinctions, its logical entropy
is zero, h(0y) = 0. The discrete partition makes all possible distinctions so its logical entropy is
h(ly)=1-Y1, p?, which, in the equiprobable case, is 1 — %, the probability that the second draw
is not the same as the first draw.

This definition of logical entropy fulfills a program of Gian-Carlo Rota that begins with the
idea: “The lattice of partitions plays for information the role that the Boolean algebra of subsets
plays for size or probability.” [30, p. 30] In Rota’s Fubini Lectures (and in his lectures as MIT), he
argued that since partitions are dual to subsets, then quantitatively, information is to partitions as
probability is to subsets:

Information ., Probability
Partitions ~ ~ Subsets

Since “Probability is a measure on the Boolean algebra of events” that gives quantitatively the
“intuitive idea of the size of a set”, we may ask by “analogy” for some measure “which will capture
some property that will turn out to be for [partitions] what size is to a set.” He then asks:

How shall we be led to such a property? We have already an inkling of what it should
be: it should be a measure of information provided by a random variable. Is there a
candidate for the measure of the amount of information? [38, p. 67]

The underlying duality of elements and distinctions answers that question. The lattice of partitions
is isomorphic to the lattice of ditsets partially ordered by inclusion (since refinement is just inclusion
of ditsets), and the normalized size of subsets and ditsets (equiprobable case) gives the notions of

probability Pr(S) = % and logical entropy h (7) = %—as summarized in Table 3.



’ H Logical Probability Theory \ Logical Information Theory

‘Outcomes’ Elements v € U finite Dits (u,u’) € U x U finite
‘Events’ Subsets S C U Ditsets dit () CU x U
Equiprobable points Pr(S) = % h(m) = %
Point probabilities Pr(S)=> {pj:u; € S} h(m)=>"{pjpr : (uj,u) € dit (7)}
Interpretation Pr(S) = one-draw prob. of S-element | h (7) = two-draw prob. of m-distinction

Table 3: Classical logical probability theory and ‘classical’ logical information theory.

When the point probabilities on U are given by the probability distribution p = (py, ..., pr ), then
the logical entropy h (7) is the product probability measure p x p (defined on U x U) of the ditset
dit (m) € U x U. Logical entropy is the measure of information-as-distinctions. Since the logical
entropy is the value of a measure in the sense of measure theory (unlike Shannon entropy [20]),
the compound notions of logical entropy are naturally defined in the usual Venn diagram manner
as illustrated in Figure 5 which includes the conditional logical entropy h(o|r) (the measure of the
distinctions in o that were not in 7) and the mutual logical information m (7, o) (the measure of
the distinctions common to 7w and o).

h(r) h(nvo) h(c)

\

h(o) |m(me) hicl)

UxU

Figure 5: h(wr Vo) =h(n)+ h(o) —m(m,0) =h(rx|o) + h(o|7) +m (7, 0)

The compound notion of logical entropy that we will make later use of in the analysis of quantum
measurement is the logical entropy h (7 V o) of the join 7V o which is the probability measure p X p
on dit (7 V o) = dit (7) U dit (o).

5 Formulation using density matrices

In quantum mechanics, the state of a system can be represented by state vectors or by density ma-
trices [34, p. 102]. The best form for our purposes is density matrices because the relevant machinery
developed above about partitions and logical entropy can be reformulated using ‘classical’ density
matrices over the reals.

Given a partition 7 = {By, ..., B,y } on U = {uy, ..., u, } with point probabilities p = (p1, ..., Pn),
an n x n density matrix p (B;) can be defined for each block B; € 7 as follows:



ik 0 otherwise

where Pr(Bj) = >, ¢ B, Pi- Then these density matrices for the blocks are combined to form the
density matrix p (7) representing the partition =

p(m) =252 Pr(By) p(B))

so the entries are:

p(m), = { VPibk if (us,uy) € indit (7)
ik 0 otherwise ’
These density matrices over the reals are symmetric and have trace (sum of diagonal elements) equal
to 1 since the diagonal elements are \/p;p; = p; for i = 1,...,n. The probability p; of an element
u; is recovered as tr [Py, p (7)) = \/pi\/Pi = pi [where P, is the diagonal projection matrix with
entries X {y,}()] which is the set version of the Born Rule. Assuming only non-zero probabilities, the
non-zero off-diagonal elements indicate the indistinctions of m where elements u; and wuy ‘cohere’
together in the same block of the partition 7 and are called “coherences” in the case of quantum
density matrices ([10, p. 303]; [2, p. 177]). Thus at the logical level, indistinctions prefigure quantum
coherences.

In the formula for logical entropy h (m) =13, Pr (Bj)27 the density matrix replaces the block
probabilities and the trace replaces the summation to give the same result:

h(r)=1-Y,Pr(B;)’ =11t [p(?T)Q].

These real-valued density matrices encapsulate the ‘classical’ treatment of the mathematics of par-
titions that prefigures the quantum treatment. Two of these classical results translate directly into
the corresponding results in quantum mechanics.

The first result is that the projective measurement in QM is classically just the join of partitions.
We start with the partition 7 expressed by the density matrix p () and then we think of the partition
o={C,...,Cpn} on U as being the inverse-image of a numerical attribute or ‘observable’ g : U — R.
In QM, the effect of a projective measurement on a density matrix p is given by the Liders mizture
operation ([2, p. 279]; [33]). For each block C} € 7, let Pc; be the projection matrix that is a diagonal
matrix with the diagonal elements given by the characteristic function x¢, : U — 2 = {0,1} of Cj.
Then the Liiders mixture operation transforms the density matrix p (7) into the density matrix p ()
according to the formula:

p (1) = S, cp Po,p(m) P,
Classical Liiders Mixture Operation

Theorem 1 j(7) =p (7 Vo).

Proof: A nonzero entry in p () has the form p (7),, = \/pip iff there is some block B € 7 such that
(ui,up) € B x B, i.e., if u;,ux € B. The matrix operation Pg,p (7) will preserve the entry \/pipx
if u; € Cj, otherwise the entry is zeroed. And if the entry was preserved, then the further matrix
operation (PC]. p(w)) Pg,; will preserve the entry /pipx if ux € Cj, otherwise it is zeroed. Hence
the entries /p;pr in p (m) that are preserved in Pg,p () Pc, are the entries where both u;, ux € B
for some B € m and u;,ur, € Cj. Recall that dit (7 Vo) = dit () U dit (¢) so indit (7 Vo) =
indit (7) Nindit (o)—since the join of partitions is just the partition corresponding to the equivalence
relation resulting from intersecting two equivalence relations (indit sets). These are the entries in
p(mV o) corresponding to the blocks B N C; for some B € 7, so summing over C; € o gives the

result: Yo o, Po,p(m) Po, = p(m) =p(7 Vo). O



Our theme is that the vector space mathematics of QM is prefigured at the logical level by the
mathematics of partitions on sets. The above Theorem shows that the standard partition operation
of join is essentially the set version of the projective measurement operation in QM. Note that
partitions have two separate roles in this set-based example; 7 represents the state being measured
and o represents the numerical attribute (or observable) being measured on that state. The join
operation creates more distinctions since dit (7 V o) = dit (7) U dit (¢). The off-diagonal non-zero
entries in the density matrices represent indistinctions, so the distinctions that are created by joining
o with 7 will be indicated by those non-zero entries in p (7) that are zeroed in p (7)) = p(7 Vo).
Logical entropy measures information-as-distinctions so the non-zero off-diagonal entries that are
zeroed, the indistinctions that become distinctions (i.e., the coherences that are decohered in the
quantum case), will be measured by the increase in logical entropy.

Corollary 1 The sum of all the squares p;pr of all the entries \/p;px that were zeroed in the Liiders
mizture operation that transforms p () into p(7) =3 ¢ e, Po;p(m) Po, = p(7 Vo) is h(w Vo) —
h(m) = h(o]m).

Proof: All the entries \/p;py, that got zeroed were for ordered pairs (u;, ux) that were indits of 7 but
not indits of 7 V o, i.e., (u;,ux) € indit (7) Nindit (7 V o) = dit (7)° Ndit (7 Vo) = dit (7 Vo) —
dit (7). The sum of products p;py for those pairs (u;,uy) is just the product probability measure
on that set dit (7 V o) — dit (7) which is h (7 V o|r). And since dit (7) C dit (7 V o), the measure
on dit (r Vo) —dit(n) is h(rVao|lr) = h(rVo) — h(r) = h(o|r) (see Figure 5) which is the
information-as-distinctions that o added to the information in 7. OJ

Example: If the four elements of U = {a,b,c,d} were equiprobable, the real-valued density
matrix of the partition {abe, d} is:

p ({abe, d}) =

[ PNENNTENTES

O =
O =
m=O O O

The main partition operation representing going from an indefinite state or partition to a more
definite (i.e., more refined) one is the join operation, for instance: {ac, bd} Vv {abc, d} = {ac, b, d} as
in Figure 6:

{aﬂbﬁc’d}

a,be,d} {adb,c} {abdc} {acbd} {abcd} {ab,cd}

{ad,bc} {a,bcd} {abd,c} {ac,bd} {abc,d} {acd,b} {ab,cd}

{abcd}

Figure 6: Partition join: {ac, bd} V {abc,d} = {ac,b,d}

The QM-version of the partition join is a projective measurement described by the Liiders mixture
operation. Since {ac,bd} is being joined to {abc,d}, we need the projection matrices to {a,c} and
to {b,d} which are:

10



P{mc} = and P{b,d} =

SO O
O O OO
o= O O
OO OO
O O OO
o o = O
OO OO
_ oo o o

The Liiders mixture operation pre- and post-multiplies the pre-measurement density matrix p ({abe, d})
by these two projection matrices and the result sums to yield the post-measurement density matrix

P

—
)
>

Ks)
QU

—

A= Pare( ) Pacy + Ppayp ({abe,d}) Pypay
1000%%%01000 10 10
00 0 O %%%0 00 0 0 (0 0 0 O
001 0f|3 3 3 O[[o0o 1o | 0130
00 0 0J][0 0 0 4[]0 0 0 0 00 0 0]
'0000"%%%0"0000’ [0 0 0 0]
0100}y 4 40 01 00 |0 %00
000 Of|3 7 3 0[|00 OO0 (0 O0O0O
000 1[0 0 0 [0 00 1] [0 0 0 %
10 10 00 00 10 20
0000+0i00_0§00
1010 000 0 |2 01310
00 00 00 o0 1 00 0 2
p = p({ac,bd} v {abc,d}) = p ({ac, b, d}).
The logical entropy of p ({abc,d}) is
h(p({abe,d})) =1 - tr [p ({abe,d})’| =1- 1 = ¢
and the logical entropy of p = p ({ac,b,d}) is
B (p({ac,b,d}) = 1= tr |p({ac,b,d})?| =1 % = 2.
In the transition from p ({abc,d}) to p = p({ac,b,d}), there were four entries of 1 that were
zeroed, so the sum of their squares is: 4 x % = i which by the Corollary equals the increase in

logical entropy; g — % = %.

Repeated joins, i.e., repeated intersections of blocks of different partitions, may eventually reach
the discrete partition 1y whose density matrix is diagonal having no non-zero off-diagonal elements,
i.e., all possible distinctions have been made (like a completely decomposed mixed state in QM).
A set of partitions on U whose join is the discrete partition is said to be complete, and it is the

partition-logical analogue of Dirac’s complete set of commuting observables (CSCO) [11].

6 The Yoga of Linearization: From Sets to Vector Spaces

Our thesis is that the mathematics of QM is essentially the mathematics of partitions linearized
to (Hilbert) vector spaces. There is a semi-algorithmic method—part of the folklore of mathematics
(see Weyl’s use of it below) to linearize concepts using sets (e.g., partitions) to the corresponding
concepts over vector spaces—a method that Gian-Carlo Rota might call a “yoga” [37, p. 251]. The
idea is based on taking the vector space concept corresponding to the notion of a set as a basis set
of the space. Then the yoga is:

11



For any given set-concept, apply it to a basis set
and whatever is linearly generated is the corresponding vector space concept.
The Yoga of Linearization.

In applying the Yoga, we take U as being first a set and then a basis set of a vector space over a
field k.® For instance, the set concept of a subset S when applied to a basis set generates a subspace
[S]. The cardinality of the U gives the dimension of the space [U] generated by the basis set U as
shown in Table 4.

’ Set concept \ Vector-space concept ‘
Universe set U U basis set of a space [U] =V over k
Cardinality of the set U Dimension of the space V
Subset S of the set U Subspace [S] of the space V

Table 4: Some initial applications of the Yoga.

In particular, a singleton subset (representing an eigenstate as in Figure 4) generates a one-dimensional
ray. The previous set example of joining the definite states {a} and {c} to form the indefinite su-
perposition {a,c} would linearize to the superpositions that we might represent as k |a) + k" |c) for
k, k" € k. It should also be noted that the treatment of a basis element as definite and a linear
combination of basis vectors as indefinite is always a description relative to that basis. If the vector
space V has inner products like a Hilbert space, then we will assume U is an orthonormal basis.

The Yoga may sometimes require a choice. Consider the set concept of a numerical attribute
f U — k taking values in a field k. Taking U as a basis set for a vector space V over k, it defines
both a linear functional f : V — k and a diagonalizable linear operator: F' : V. — V generated by
Fu; = f(u;)u; on the basis vectors u; € U. The numerical attribute f : U — k is recovered from
the linear operator as the eigenvalue function assigning eigenvalues to the eigenvector basis set U.

For the purposes of extending the mathematics of set partitions to vector spaces to obtain the
mathematical tools of QM, it is the operator F that is used in the Yoga, not the linear functional. The
elements of the basis set U are a basis of eigenvectors and the values of the numerical attribute are the
eigenvalues of the operator F'. Two numerical attributes defined on the same set U would generate
two linear operators that commute with the basis set U as a basis of simultaneous eigenvectors as
illustrated in Table 5.

| Set concept | Vector-space concept \
f:U—=k F:V —=>Vby Fu=f(u)u
g:U—k G:V—oVbyGu=g(uu
f,g on same set U | F,G commuting with basis U of simult. eigenvectors

Table 5: Operators corresponding to numerical attributes.

The inverse-image of f : U — k is a partition on U where each block f~! (k) is associated with
a distinct k£ € f(U) C k. What is the vector-space version of a set partition? If we had taken the
vector-space analog of f : U — k as the linear functional f : V' — k, then the corresponding vector
space concept would be the inverse-image of the functional which is a special type of set partition
on V called a commuting or permutable partition (much studied by Gian-Carlo Rota and earlier by
Dubreil and Dubreil-Jacotin [12]).

Following our choice, the vector-space notion of a partition is a direct-sum decomposition.® Each
block in the set partition { ft (k)} ke f(U) generates a subspace which is just the eigenspace Vj, of

8There is the linearization map (functor) which takes a set U to the vector space CY where u lifts to the basis
vector 6y = Xy} : U — C, but we apply the Yoga to many different concepts.

9n view of the duality between subsets and set partitions, there is the induced duality between subspaces and
direct-sum decompositions. Hence the Birkhoff-von-Neumann quantum logic of subspaces [6] has a dual quantum logic
of DSDs [17].
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the linear operator F': V — V determined by the eigenvalue k € f (U) C k, and the vector space V
is the direct sum of the eigenspaces V' = @yc rv) Vi-

A direct-sum decomposition (DSD) {Vi},c ) is characterized by the fact that every nonzero
vector v € V can represented in exactly one way as the sum v = Zkef(U) v of nonzero vectors
v € Vi. The vectors v, are the projections Py (v) of v to the subspaces Vi,. What happens if we run
the Yoga backwards? Does that property of DSDs also characterize set partitions? A set partition is
usually defined as a set of nonempty subsets { By, Ba, ..., B, } that are disjoint and jointly exhaustive.
Each block B, defines a projection operator B; N () : p (U) — p(U) on the powerset p (U) as a
vector space Z§ over Zy (with set addition as the symmetric difference [16]) down to the subspace
o (Bj). Then we have the result:

{Bi1, Ba, ..., By, } is a set partition of U
if and only if
every nonempty subset S C U, is uniquely expressed as the union of subsets of the B;, j =1,...,m
if and only if
{9 (Bj)};~, is a DSD of p (U) = Z3.

This running of the Yoga backwards raises the question of what is the set-analogue of the notion
of an eigenvector and eigenvalue. For £ € k and S C U, let “kS” stand for “the value k assigned to
the elements of S”. Then we have:

The eigenvector/eigenvalue equation for f: U — k:
f 1S =ES in analogy with F'u = ku.

Thus the set-notion of an eigenvector is just a constant set and the set notion of an eigenvalue is
that constant value on a constant set as illustrated in Table 6.

A characteristic function xs : U — {0,1} C k applied to a basis set for V linearizes to a
projection operator Pg) : V' — V defined by Pgju = x5 (u)u. The constant sets of ys are S
and ¢ = U — S and the eigenspaces of Pg) are [S] and [S¢] with the respective eigenvalues of
1 and 0. In general, f : U — k linearized to F' defined by Fu = f (u)wu with the eigenspaces of
F being Vi, = [f~' (k)] for k € f(U). If P, : V — V is the projection operator to Vj, then the
spectral decomposition of F' is ), kP and the corresponding ‘spectral decomposition’ for f is:

f = Zkef(U) k‘Xf—l(k) U — k.

’ Set concept \ Vector-space concept ‘
Partition {ffl (k)}kef(U) DSD {Vk}kef(U): V= @kef(U)Vk
ffS:k'S Fui:k‘ui
Constant set S of f Eigenvector u; of F’
Value k£ on constant set S Eigenvalue k of eigenvector u;
Characteristic fen. xyg : U — k Projection op. Pig: V =V
Spectral decomp. f = Zkef(U) kxfg-1x) | Spectral decomp. F' =), kP
Set of k-constant sets p ( ! (k:)) Eigenspace of k-eigenvectors Vj,
Partition join 7V o Liiders op. Zkef(U) PypPy

Table 6: Corresponding concepts based on partition of a set and direct-sum decomposition of a
vector space.

What is the vector space version of the Cartesian or direct product of sets U x U’? One yoga
might say the direct product of vector spaces V' x W. But our Yoga is apply the set concept to basis
sets and see what it generates. Let U be a basis for V and U’ be a basis for W, both over the same
field, then applying the Cartesian product to the basis sets gives U x U’ and it (bi)linearly generates
the tensor product V ® W with the ordered pair (u,u’) elements of U x U’ corresponding to the
basis elements v ® v’ of V @ W as given in Table 7.
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] Set concept \ Vector-space concept \
Cartesian product U x U’ Tensor product V@ W

(u,u) element of U x U’ | Basis element u® v’ of V@ W
Table 7: Cartesian product of sets corresponds to the tensor product of vector spaces.

7 Measurement with Quantum Logical Entropy

We can now use the Yoga to extend the ‘classical’ notion of logical entropy for set partitions to
quantum logical entropy. The set-notion of logical entropy was defined on set partitions determined
by numerical attributes f : U — k, and the corresponding quantum notion of logical entropy is
given by DSDs determined by self-adjoint operators F': V. — V on a Hilbert space V' which have a
basis U of eigenvectors with an eigenvalue function f : U — k where Fu; = f (u;)u;. An ordered
pair of set elements (u;, ug) in the direct product U x U is a distinction or dit if they have different
numerical attributes f (u;) # f (ux), and, similarly, an ordered pair of eigenvectors written u; ® ug
in the tensor product V ® V is a qudit if they have different eigenvalues f (u;) # f (ug). Both the
set version and vector space versions of logical entropy satisfy Andrei Kolmogorov’s dictum:

Information theory must precede probability theory, and not be based on it. By the very
essence of this discipline, the foundations of information theory have a finite combinato-
rial character. [29, p. 39]

In the set version, logical entropy is represented by the finite combinatorial ditset dit (7) C U x U
and in the vector space version, the quantum logical entropy is represented by the finite dimensional
subspace [qudit(F)] C V®V (the subspace generated by the set qudit(F) of qudits u; ®uy, of F'). The
following Table 8 gives the set to vector space correspondence before probabilities are introduced.

’ Classical Logical Information \ Quantum Logical Information ‘
fg:U—=>R Commuting self-adjoint ops. F, G
U={u1,....un} ON basis simultaneous eigenvectors F, G
Values {¢;};", of f Eigenvalues {¢;};_, of F'
Values {v;}7", of g Eigenvalues {v; };”:/1 of G
Partition { /™! (d)i)}zl Eigenspace DSD of F
Partition {g~* (’yJ)};nzll Eigenspace DSD of G
dits of 7 : (up, up) € U2, f (up) # f (up) | Qudits of F: up @ upy € VRV, f(ug) # f (upr)
dits of o : (ug,up) € U2, g (ur) # g (urr) | Qudits of G: up @ upr € VRV, g (ug) # g (up)
dit () CU x U qudit (F)] = subspace gen. by qudits of F'
dit (o) CU x U qudit (G)] = subspace gen. by qudits of G
dit (m)Udit (o) CU x U [qudit (F) Uqudit (G)] CV eV
dit (m) —dit (o) CU x U [qudit (F) — qudit (G)] CV @V
dit () Ndit (o) CU x U [qudit (F) Nquditt (G)] CV @V

Table 8: Ditsets and qudit subspaces without probabilities.

In the set case of logical entropy, we assumed a point probability distribution p on U and then
applied the product distribution p x p to the ditset dit ( f _1) C U x U of the inverse-image partition
{f‘l ((bi)}zl to get the logical entropy h (f_l) =pXDp (dit (f_l)) which was interpreted as the
probability of getting different f-values in two independent samples of the random variable f.

In the quantum case, the probabilities only enter by considering a certain state 1) with a density
matrix p () (represented in the basis of F eigenvectors) and then the density matrix p (1)) ®p (1) on
V ® V. The probability of getting distinct eigenvalues in two independent measurements of the state
¥ by the observable F' is the trace of the projection Plqudit(r)) to the qudit space times the density
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matrix p (1) ® p (¢), which is an n* x n* matrix with the diagonal entries (p (7) ® p (7)) ; 1), (jk) =
p(m);; p (), = pjpk. The quantum logical entropy is then:

h(F : 1) = tr [Puaieryp (V) © p ()]

At the set level, we saw there were one-draw-probability versus two-draw-probability interpre-
tations of logical probability and logical entropy respectively. Thus just as the quantum probability
Pr(¢) = tr[Pyp (¥)] (where Py = projection op. to the eigenspace Vj of the eigenvalue ¢ and p ()
= density matrix of state 1 represented in measurement basis) is the one-measurement probability
of getting the eigenvalue ¢, so the quantum logical entropy tr [Plguait(r)p (¥) ® p (¥)] is the two-
measurement probability of getting different eigenvalues in two independent measurements of the
same state.

Thus the quantum logical entropy h (F : ) is defined in terms of a state 1) and measurements
by the observable F'. But in our previous treatment of density matrices, we saw that the previous

logical entropy of set partitions could also be defined as h(p (7)) = 1 — tr [p (Tl')2i| = h(w). Hence

there is also a quantum notion defined for any density matrix as: h(p) = 1 — tr [p?] [21]. We saw
that the indiscrete partition 0y made no distinctions so h (0y) = 0 and similarly for a pure state
p? =psoh(p)=1—tr[p?] =1—tr[p] =0 since all density matrices have trace 1.

This correspondence is illustrated in Table 9 where F' and G are commuting observables so
they have a basis of simultaneous eigenvectors (which is the analogue of two numerical attributes
fsg: U — k defined on the same set U).

’ ‘Classical’ Logical Entropy \ Quantum Logical Entropy ‘
Pure state density matrix, e.g., p (0y) Pure state density matrix p (¢)
U={u1,....,un} ON basis simultaneous eigenvectors F, G
pxponU xU p()@pW)on VeV
h(0y) =1—tr |p(0y)*| =0 hip(W)=1—tr|p¥)’| =0
h(m) = p x p(dit (7)) h(F : 9) = tr [Pgudiey 2 (¥) © p ()]
h(r,0) =p x p(dit (7) Udit (o)) h(F,G : ) = tr [ Pqudit(F)uqudit(c)1? (%) ® p (¥)
h (’/T|U) =pXp (dlt (ﬂ—) — dit (U)) h (F|G : w) =tr [P[qudit(F)—qudit(G)]p (w) X p (7/))
m (m,0) = p x p(dit (7) N dit (o)) m (F, G : ¢) = tr [Pqudit(F)nqudit(c)] P (V) ® p ()
h(m)=h(r|o)+m(r,0) h(F :¢)=h(F|G:¢9)+m(F,G: )
Pr(¢;) = tr [Pr-15p (f V)] Pr(¢i) = tr[Py,p ()]
Pr (¢;) = one-draw prob. of ¢; Pr (¢;) = one-meas. prob. of ¢;
h ( f _1) = two-draw prob. diff. f-values h(F : 1) = two-meas. prob. diff. F-eigenvalues
p(m) =% Ps,p(0v) Ps, p (W) =>; Pvp(¥) Py, (Liiders)
h(m)=1—tr|p(m)? h(F:p)=1—tr|p(¥)’
h (m) = sum sq. zeroed p (0y) ~ p () h(F : 1) = sum ab. sq. zeroed p (¢) ~ p (¢)

Table 9: Logical entropies with probabilities applied to ditsets and qudit spaces.

The last three lines of Table 9 anticipate the quantum version of the previous results about real-
valued density matrices. One of the main results about density matrices (over the complex numbers
where sz'j||2 is the absolute square of p;;) is:

Proposition 1 tr [p?] =3, lpii || -[22, p. 77]
: . : ; . : 2 /
Proof: A diagonal entry in p? is (p?) . = dim1 PigPyi = 2=y llpisll” so tr PPl = (0%, =

2
2 lpisll™. O

15



In general the quantum logical entropy of a density matrix p is: h(p) = 1 —tr [p?] =1 — > pi 2.
The terms ||,0¢j||2 are the ‘indistinction’ probabilities so h (p) =1 — >, [|lpi; | is, as in the classical
case, the sum of the probabilities of distinctions.

The change in density matrices due to a projective measurement is given by the Liiders mixture
operation. If V; is the eigenspace for the eigenvalue ¢; of F' and Py, is the projection matrix Py, : V —
V to that subspace, then the post-measurement density matrix by the Liiders mixture operation is:

p () =22 Pvip(¥) Py,.

The previous result about the sum of the squares of the non-zero off-diagonal elements of p that
are zeroed in the transition p ~» p carries over to the quantum case of density matrices over the
complex numbers.

Theorem 2 The increase in quantum logical entropy, h(p (¢)) due to the F-measurement of the
pure state 1 is the sum of the absolute squares of the non-zero off-diagonal terms (coherences) in
p (V) (represented in a basis of F-eigenvectors) that are zeroed (decohered) in the post-measurement
Liiders mizture density matriz p (1) = >, Pyv,p (¥) Py,.

Proof: h (5 (1))~h (p (1)) = (1= tx [(@)*] )= (1= tr [p ()] ) = 5,4 (leak @I = 163k ()1
since tr [p?] = Do ||pij||2 is the sum of the absolute squares of all the elements of p. If u; and u
are a qudit of F', then and only then are the corresponding off-diagonal terms in p (1) zeroed by the
Liiders mixture operation Zle Py, p () Py, to obtain p (¢) from p (¢). O

A careful calculation shows that h (F' : ¥) = h (p (¢)) which also equals the sum of the absolute
squares of zeroed terms in the transition p(¢)) ~» p(¥) (since pure states p (¢p) have zero quan-
tum logical entropy). These equalities can be illustrated by working through a simple example of
measuring z-axis spin.

Example: Let [¢) = a4 |[1) + oy [4) = Bj be a pure normalized superposition state of z-

*
spin up and z-spin down so the density matrix is p (¢) = [ap;* oz;ai (where a* is the complex
J g 1
conjugate of a). For the observable F', let the eigenvalue function be f : {|1),]})} — {+1, —1} where
f(1)) =1and f(|})) = —1. Then F : C* — C? is represented by the matrix F' = [(1) _01] The
tensor product p (1) @ p (1) is the 22 x 22 matrix:
p% progo] arajpr  arajora]
pre(¥)  apalp(P)| _ | praged PPy apofagal opalpy
aaip () prp(¥) aaipy  pagogal pupy proa
aajajal  apoipy pLo oy pi

The qudits of F are |[1) ® |}) and |}) ® |1) so the projection matrix to the subspace [qudit (F)] of
C? ® C? generated by those qudits is:

0 0 0 O
01 0 0
0 0 1 0|
0 0 0 O

Hence the quantum logical entropy h (F : 1) = tr [Pguair(ryp (V) @ p ()] is:
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0000 j proapa; aralpy  opafaral
h(F: ) = tr 01 00 pTath plpi ) arajajal O‘Tajpi
0 010 aoipr apofopal PLPt pLoga)
00 00 aafaey apafp) progog pi
0 0 0 0
o pro; DD apapoal  oagpral
oy | [Py Dy rovogalarpladl o

apray aragagal o prpp oqpLo]
0 0 0 0

The second way to calculate the quantum logical entropy of the post-measurement state is using
the Liiders mixture operation. The measurement of that spin-observable F' goes from the pure state

p(¥) to
Prp () Py + Pip(¥) P,

110 J2 CVTOZI 1 0 n 0 0 Py OzTOéj 0 0
10 0] lgaf  pp |0 O 0 1f l[agar  py | [0 1
_pr O
{0 m] )-
The logical entropy of p () is:

h(p(¥) =1—tr [ﬁ(w)ﬂ =1—-pf—p}=2pp, =h(F:).

>

The third way to calculate the quantum logical entropy of p () is to sum the absolute squares of the
non-zero off-diagonal terms in the pure state density matrix p (¢)) that are zeroed in the transition
to the post-measurement density matrix p (¢), i.e.,

p) = | - i D= a)

and that sum is:
2onafajay = 2pypy = h(p (V) = h(F : ).

It might be noted that the Born rule is built into the density matrix formulation, e.g.,

1 0| pr apa)
Pr (1) = tr [Prp (¢ :tr([ H H) = arat = py.
(1) = tr [Prp (¥)] 0 0] lajar  p 1} =py
Quantum measurement creates distinctions, e.g., the distinction between spin-up and spin-down
in the spin example, and quantum logical entropy precisely measures those distinctions. We started
‘classically’ with a universe set of distinct elements

The set can be thought of as being originally fully distinct, while each partition collects
together blocks whose distinctions are factored out. Each block represents elements that
are associated with an equivalence relation on the set. Then, the elements of a block are
indistinct among themselves while different blocks are distinct from each other, given an
equivalence relation. [44, p. 1]

Then the Yoga of Linearization translated the concepts of information-as-distinctions to the
corresponding vector space concept which would be the concepts of quantum information-as-qudits.
One of the founders of quantum information theory, Charles Bennett, captured the target concept of
information as distinctions, differences, and distinguishability: “So information really is a very useful
abstraction. It is the notion of distinguishability abstracted away from what we are distinguishing,
or from the carrier of information...”.[4, p. 155]
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With these concepts in mind, it seems that the extension of this framework of par-
titions and distinctions to the study of quantum systems may bring new insights into
problems of quantum state discrimination, quantum cryptography, and quantum chan-
nel capacity. In fact, in these problems, we are, in one way or another, interested in a
distance measure between distinguishable states, which is exactly the kind of knowledge
the logical entropy is associated with. [44, p. 1]

8 Other quantum mathematics

8.1 Commuting and non-commuting observables

One of the characteristic features of QM mathematics is the possibility that observables (expressed
as self-adjoint operators or matrices) do not commute-which at first does not seem related to the
partition math of indefiniteness. But the vector space version of a partition on a set is a direct-sum
decomposition of a vector space. Given two self-adjoint operators F,G : V — V, let {V;},.; be the
DSD of eigenspaces for F' and {WW; }j < be the DSD of eigenspaces for G. As we saw for quantum
measurement, the relevant partition operation is the join, so we may mimic the join operation with
the two DSDs. This join-like operation yields the set of non-zero vector spaces {V; N W;} which
are the subspaces spanned by the simultaneous eigenvectors of F' and G. The join of two partitions
on the same set yields a partition of that set. Let SE be the subspace of V spanned by the non-
zero subspaces {V; N W;}, i.e., the subspace spanned by the simultaneous eigenvectors of F' and
G. The point is that S€ need not be the whole space. The condition specifying whether F' and
G commute or not is exactly the condition that S€ = V or not. The commutator of F' and G is:
[F,G] = FG— GF :V — V, and as a linear operator on V', the commutator has a kernel ker [F, G|
which is the subspace of vectors v such that [F,G]v = 0.

Proposition 2 S& = ker ([F, G)).

Proof: Let F,G : V — V be two self-adjoint operators on a finite dimensional vector space
V and let v be a simultaneous eigenvector of the operators, i.e., Fv = Av and Gv = pv. Then
[F,G] (v) = (FG — GF) (v) = (A — pA) v = 0 so the space S€ spanned by the simultaneous eigen-
vectors is contained in the kernel ker ([F, G]), i.e., SE C ker ([F, G]). Conversely, if we restrict the
two operators to the subspace ker ([F, G]), then the restricted operators commute on that subspace.
Then it is a standard theorem of linear algebra [28, p. 177] that the subspace ker ([F, G]) is spanned
by simultaneous eigenvectors of the two restricted operators. But if a vector is a simultaneous eigen-
vector for the two operators restricted to a subspace, they are the same for the operators on the
whole space V, since the two conditions F'v = Av and Gv = pw only involves vectors in the subspace.
Hence ker ([F, G]) C S€. O

Since the condition that the operators commute or not is ker ([F, G]) = V or not, it is equivalent
to S& =V or not, so the commutativity condition on operators is captured by the mathematics of
the vector-space version of partitions, i.e., DSDs. And the further condition of the operators being
conjugate is when SE = 0 (the subspace consisting of only the zero vector). The Heisenberg ”un-
certainty” principle is somewhat misnamed since “uncertainty” may imply a subjective uncertainty
instead of objective indefiniteness. The ”indefiniteness principle” or “indeterminacy principle” might
be a better name.'® In any case, since conjugate observables have no (non-zero) simultaneous eigen-
vectors, S€ = 0, if a system is in an eigenstate of one observable, it cannot be in an eigenstate of
the other observable.

Since we have shown how the mathematics of indefiniteness can be translated into vector spaces,
it might be noted this conjugacy is not a peculiarly quantum concept about operators in Hilbert

10Heisenberg’s German word was “Unbestimmtheit” which could well be translated as “indefiniteness” or “indeter-
minacy” rather than ”uncertainty.”
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spaces but can occur in quite simple vector spaces such as p (U) = Z% (where set addition in o (U) is
symmetric difference [16]). In particular, for n an even number as with U = {a, b, ¢, d}, the U-basis
set {{a},{b},{c},{d}} for p (U) = Z3 has a conjugate basis of:

{a} = {b,c,a}, {b} = {a,c,d}, {¢} = {a,b,}, {d} = {a,b,c}

which constitutes the U-basis. Two numerical attributes f:U—=>Randg: U — R with distinct
values on each basis set (e.g., 1,2,3,4) would define the two DSDs on @ (U) = Z3 which, expressed
in the U-basis as the computational basis, are:

DSD for fis {{0,{a}},{0,{0}},{0,{c}},{0,{d}}}
DSD for g is {{0, {b,¢,d}},{0,{a,c,d}},{0,{a,b,d}},{0,{a,b,c}}}.

Clearly, there no non-zero eigenvectors in common between the two DSDs so the numerical attributes
are conjugate. If the state was in an eigenstate of one attribute such as {a}, then it is in an indefinite
superposition {?)} +{¢t+ {d} = {a} according to the conjugate basis (and vice-versa). In Figure 4,
we illustrated the set-level pure and mixed states using the lattice II (U). The conjugate U-basis also
has a similar lattice IT (U) and moving to a more definite state {a} + {b} + {c} = {a,b,¢c} ~ {a}
in the U-basis would correspond to moving to a less definite state in the conjugate basis U , e.g.,
{a,b,c} = {(i} ~ {l;, ¢, CZ} = {a}, as one would expect for conjugate bases.

It might be noted that these numerical attributes cannot be repackaged as linear operators with
the eigenvalues in the base field since the only such linear operators on Z} are projection operators
with eigenvalues 0 or 1. But all the concepts of compatibility, i.e., S€ = V, incompatibility, i.e.,
S& # V, and conjugacy, i.e., S€ = 0, can be defined using the vector-space partitions, i.e., DSDs, in
74. Thus the mathematics behind “non-commutativity” in QM is not about operators per se, but
about the underlying vector space partitions or DSDs—as was to be shown.

Commuting observables are like ordinary numerical attributes on the same set U—in that case
a basis of simultaneous eigenvectors. It is only when S€ = V that the join-like operation taking
non-zero intersections of the eigenspaces can properly be called the join of the DSDs, otherwise it
is a join-like (or proto-join) operation when S€ # V. As Hermann Weyl put it: “Thus combination
[join] of two gratings [vector space partitions| presupposes commutability...”. [49, p. 257]

A set of ordinary set partitions on the same universe U is said to be complete if their join is
the discrete partition 1y = {{u}},c;, where the subsets in the join have cardinality one. Numerical
attributes defined on the same set are compatible, and if they defined a complete set of partitions,
they would be a complete set of compatible attributes (CSCA). If the partitions arose as the inverse-
images of numerical attributes (or random variables), then each element in U would be characterized
by the ordered set of values of the attributes.

Similarly a set of commuting operators is said be complete (a CSCO) [11] if all the non-zero
intersections of all their eigenspaces, i.e., the subspaces in the join, are of dimension one. Then each
of the simultaneous eigenvectors is uniquely characterized by the ordered set of eigenvalues of those
intersected eigenspaces. These results are summarized in Table 10.

Set concept \ Vector-space concept ‘
Set partition Direct-sum decomposition
Partitions on U # U’, |[U| =|U’| | DSDs on V with S€ #V
Partitions on same set U DSDs on V with S€ =V
Join of partitions on same set U | Join of DSDs is DSD of V/
CSCA CSCO

Table 10: Set and vector-space versions of commutativity.

19



8.2 The two types of quantum processes

Quantum concepts need to be ‘seen’ in a certain way to see the underlying mathematics of indef-
initeness and definiteness as shown in the case of non-commuting operators. At first glance, the
Schrédinger equation to describe the evolution of an isolated system seems to have nothing to do
with distinctions. Von Neumann classified quantum processes into Type 1 (measurement) and Type
2 (evolution described by the Schrédinger equation). We have seen that a measurement or Type 1
process creates distinctions so the natural characterization of the Type 2 processes would be ones
that make no distinctions.

The extent to which two quantum states are indistinct or distinct is given by their inner product,
i.e., their overlap. When their inner product is zero, then there is zero indistinctness or zero overlap
between the states, i.e., they are fully distinct. Hence the natural characterization of the Type 2
processes as not changing the indistinctness or distinctness between quantum states would a process
that preserves inner products, i.e., a unitary transformation. Hence the division of quantum processes
into Type 1 and Type 2 is just the division between the processes that makes distinctions and those
that don’t.

What about the Schrédinger equation? The connection between unitary transformations and
the solutions to the Schrddinger equation is given by Stone’s Theorem [43]: there is a one-to-one
correspondence between strongly continuous 1-parameter unitary groups {U;},.p and self-adjoint
operators H (Hamiltonian) on the Hilbert space so that U; = et (solutions of the Schrédinger
equation).

8.3 Measurement and the collapse postulate

We have seen that quantum measurements create distinctions. Richard Feynman was perhaps the
quantum theorist who most emphasized measurement as making distinctions. When a superposition
of eigenstates undergoes an interaction, is there a distinction made in principle between the super-
posed eigenstates in the interaction? If the eigenstates are distinguished by the interaction, then a
measurement takes place, the superposition is reduced (i.e., the so-called ”wave function” collapses),
and the probability of a later final state will add the probabilities (rather than amplitudes) of the
eigenstates leading to the outcome. If there is no differences or distinctions between the superposed
eigenstates undergoing the interaction, then no measurement takes place and the amplitudes are
added.

If you could, in principle, distinguish the alternative final states (even though you do not
bother to do so), the total, final probability is obtained by calculating the probability for
each state (not the amplitude) and then adding them together. If you cannot distinguish
the final states even in principle, then the probability amplitudes must be summed before
taking the absolute square to find the actual probability.[25, p. 3-9]

Feynman thus answers a question posed in the literature where the key concepts of distinguisha-
bility and indistinguishability are not used.

It indeed seems necessary to admit that “measurements” are ubiquitous, and occur
even in places and times where there are no human experimenters. But it also seems hope-
less to think that we will be able to give an appropriately sharp answer to the question
of what, exactly, differentiates the ‘ordinary’ processes (where the usual dynamical rules
apply) from the ‘measurement-like’ processes (where the rules momentarily change). [35,
p. 64]

[I]t seems unbelievable that there is a fundamental distinction between “measurement”
and “non-measurement” processes. Somehow, the true fundamental theory should treat
all processes in a consistent, uniform fashion. [35, p. 245]
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The “fundamental distinction” is between processes where, in the interaction, distinctions are made
or are not made between the eigenstates in the superposition.

Feynman gives an example of a measurement entirely at the quantum level, and thus he un-
dercuts the long and tortured discussion about measurement as involving a macroscopic apparatus.
When a particle scatters off the atoms in a crystal, the question of whether or not it should be
treated as a superposition of scattering off the different atoms or as a mixture of scattering off of
particular atoms with certain probabilities—hinges on distinguishability. If there was no distinction
between scattering off different atoms, then no ‘measurement’ took place in the interaction and the
superposition pure state evolves as a pure state. But if there was some distinction caused by scatter-
ing off an atom, then the result is the mixed state of scattering off the different atoms with different
probabilities. For instance, if all the atoms had spin down and scattering off an atom flipped the
spin, then a distinction was made so that constituted a measurement. It should be noted that this
and other examples of Feynman [25] involve only quantum level interactions and thus have nothing
to do with the ”shifty split” [3] between microscopic and macroscopic, and thus are independent of
the notion of “decoherence” based on interactions with macroscopic systems (e.g., [51]).

For instance in the double-slit experiment, if no distinction is made between the particle going
through one slit or the other (i.e., no detectors at the slits), then the two parts in the superposition
schematically represented by:

|going through slit 1) + |going through slit 2)

evolve unitarily and will show interference effects. The mathematics of the unitary (i.e., no distinc-
tions) evolution over the complex numbers will have a complex-valued “wave interpretation” (Stone’s
Theorem) without there being any physical waves; the interference results from the addition of vec-
tors representing the parts of the evolving superposition.!?

There being no distinctions involved, the evolving indefinite superposition does not reach the
level of definiteness of the particle going through one slit or the other—which conflicts with our
‘classical’ intuitive always-definite view of the particle’s trajectory. A better but still crude intuitive
picture would be to recognize the levels of indefiniteness at the set level in the lattice of partitions
(e.g., Figure 4)—which would prefigure levels of indefiniteness at the quantum level. There is the
completely indefinite state represented by the indiscrete partition at the bottom of the lattice, and
then moving up to partitions with each block representing an equally or more definite superposition,
and finally reaching the discrete partition at the top where each block is a singleton ‘eigenstate’
analogous to the mixed state of fully decomposed eigenstates represented by a diagonal density
matrix.

The difference between an interaction that constitutes a measurement or not is whether or not
any distinction is made between the different superposed eigenstates undergoing the interaction.
Hence Feynman’s implicit rule about state reduction might be paraphrased:

If the interaction would make distinctions, then distinctions are made.

In other words, if the interaction makes a difference between the superposed eigenstates, then the
superposition decoheres with a (indefinite-to-definite) state reduction to one of those eigenstates.

One image for the measurement process is a ‘shapeless’ or indefinite blob of dough which then
passes through a sieve or grating and acquires a definite polygonal shape as illustrated in Figure 7.
This sort of grating or sieve imagery has been used before. In his popular writing, Arthur Eddington
used the sieve metaphor:

In Einstein’s theory of relativity the observer is a man who sets out in quest of truth
armed with a measuring-rod. In quantum theory he sets out armed with a sieve.[13, p.
267)

! This is particularly clear in the pedagogical model of the double-slit experiment in QM over Zy [16] where the
interference in the evolving 0, 1-vectors has no resemblence to waves.

21



/ NN
/TN
/]
[ 4

Y
A HE®

Figure 7: Measurement as an ‘indefinite’ shape passing through a sieve to get a definite polygonal
shape
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Hermann Weyl cited that passage [49, p. 255] in his expositional concept of gratings. Then Weyl,
in effect, used the Yoga of Linearization by taking both set partitions and vector space partitions
(direct-sum decompositions) as the respective types of gratings.[49, pp. 255-257] He started with
a numerical attribute on a set (or “aggregate” in older terminology), e.g., f : U — R, which
defined the set partition or “grating” [49, p. 255] with blocks having the same attribute-value, e.g.,
{f‘l (r)}ref(U). Then he implicitly applied the Yoga to reach the QM case where the universe set,

e.g., U= {uy,..,u,}, or “aggregate of n states has to be replaced by an n-dimensional Euclidean
vector space” [49, p. 256]. Then the notion of a vector space partition or “grating” in QM is a
“splitting of the total vector space into mutually orthogonal subspaces” so that “each vector 7 splits
into r component vectors lying in the several subspaces” [49, p. 256], i.e., a direct-sum decomposition
of the space. After thus referring to a partition and a DSD as a “grating” or ”sieve,” Weyl notes
that “Measurement means application of a sieve or grating” [49, p. 259], i.e., an interaction that
makes distinctions and thus forces an indefinite-to-definite transition, e.g., Figure 7.

Our overall goal has been to show that the mathematics of QM is the mathematics in distinctions
and indistinctions or definiteness and indefiniteness expressed in terms of vector spaces. The vision
of realism based on objective indefiniteness is juxtaposed to our ordinary intuitive idea that reality
is definite-all-the-way-down. One aspect of “the measurement problem” has been the lack of any
mathematical description of how a quantum system goes from an objectively indefinite superposition
state to a more definite state during a measurement. But that question seems to arise out of im-
posing the fully definite framework as if it was only a transition from a perfectly definite but rather
featureless state to another definite state with more discernible features—like classically going from
a blank sheet of paper to a sheet with figures on it. But if quantum reality consists of objectively
indefinite states, why should we expect that sort of definite-to-definite transition between states of
indefiniteness—as opposed to the notion of a genuine quantum jump or leap? Leibniz’s view of reality
as being definite all the way down (expressed in his identity of indiscernible) was also expressed by
the slogan “Natura non facit saltus” (Nature does not make jumps”) [32, Bk. IV, chap. xvi|. Hence
it should not be too surprising to find the opposite phenomena of jumps in a reality that is not
always definite. Thus the unanswered question of the mathematical description of the ‘trajectory of
a quantum jump’ may arise from an implicit assumption that reality is definite all the way down as
in classical physics.
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8.4 Indistinguishability of particles

The classical notion of distinguishability of particles in effect treats partitions (or DSDs) as always
being refineable or definite all the way down, e.g., distinguishing particles by ‘painting different
colors.’

In quantum mechanics, however, identical particles are truly indistinguishable. This is
because we cannot specify more than a complete set of commuting observables for each
of the particles; in particular, we cannot label the particle by coloring it blue. [39, p. 446]

Hence quantum indistinguishability immediately points to objective indefiniteness, as opposed to
“definiteness all the way down.” If definiteness does not go “all the way down,” then the making of
distinctions has to stop at some point at which the remaining indefiniteness has to be objective.

If quantum reality is not definite-all-the-way-down, then at the level where further definiteness
stops (as it were), there are two possibilities. A complete state description (e.g., CSCO-defined) is
sufficient to limit at most a single particle to that state or the complete description is still insufficient
to limit the number of particles in that state—in neither case distinguishing between other particles
of the same type.

This difference can be illustrated by the metaphor of different levels of definiteness in a mailing
address. In a neighborhood of only single-family houses or vacant lots, then an address that is
definite down to the street number would be sufficient to limit one or no families to each address.
But in a neighborhood which had apartment houses, then addresses limited to the street number in
definiteness (i.e., no apartment numbers) would allow many families at the same address.

The mathematics of quantum statistics for the two types of particles can be developed using
the standard combinatorics of balls-in-boxes—which, unlike the usual treatment using symmetric
and anti-symmetric wave functions, brings out the underlying role of distinctions and indistinctions.
There are k balls (or particles) and they are indistinguishable. There are n boxes (or states) and
they are distinguishable. If the complete state description (or address) is sufficient to limit one or
no balls to that state or box, then as each ball finds an empty box, then that box is removed as a
possibility for the next ball so the number of equiprobable placements of balls in boxes is given by
the falling factorial n(n —1)...(n —k + 1) (k terms) as pictured in Figure 8.

Fermions

( X J
"~

State

Figure 8: Fermions fill a state

If, however, there can be many balls in a box, then the placement of each ball creates two
additional ‘slots,” before and after the ball and the number of equiprobable slots increase with each
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placement to give the rising factorial n(n+ 1) ...(n + k — 1) (k terms) as pictured in Figure 9.

Bosons
Slot before,it Slot after it
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Figure 9: Each placement of a boson creates an additional possible slot

In each case, since the balls are indistinguishable, the number of equal possibilities must be divided
by k!. Hence in the k-fold tensor product, the number of equiprobable placements is the dimension
of the subspace of possible states.

e The dimension of the fermionic subspace the usual binomial coefficient:

n\ _ n(n—1)....(n—k+1) _ n(n—-1)...(n—k+1)(n—k)! __ n!
(k:) = a3 = El(n—Fk)! = ®(n—R)l"

The Fermi-Dirac statistics counts each state as having equal probability: 1/ (Z)

e The dimension of the bosonic subspace is:

<n> _ n(n+1)...(n+k—1)
E/ = k! :
The Bose-Einstein statistics counts each state as having equal probability 1/ <Z> [23, p. 40]

An equivalent way to enumerate the number of possible states is to enumerate the number of
functions of a certain type from balls to boxes.

e Fermi-Dirac statistics is based on the number of ways indistinguishable balls (particles) are
allocated to distinguishable boxes (states) using distinction-preserving (i.e., one-to-one) func-
tions (so two numerically distinct balls have to go to distinct boxes), while:

¢ Bose-Einstein statistics is based on the number of ways indistinguishable balls (particles) are
allocated to distinguishable boxes (states) using arbitrary functions.

The classical case of Maxwell-Boltzmann (MB) statistics is where the k balls (particles) are
distinguishable, the n boxes (states) are distinguishable, and the distributions of balls to boxes are
by arbitrary functions. There are k! different linear orders (or permutations) of the k distinguishable
particles but they are grouped into n boxes with the occupation numbers of 64, ...,6, for the n
boxes. How many distributions are there with those occupation numbers? The answer is still k!
independent of the occupation numbers. The proof is illustrated in Figure 10 since the n — 1 ‘walls’
or state-dividers to make the boxes can be put in arbitrarily to get the given occupation numbers
01+ ...+6,=k.

The ordering of the balls within each box does not matter so we need to divide through by the
0;! for i = 1,....,n to get the total number of possible states with those occupation numbers for the
distinguishable boxes. This gives the well-known multinomial coefficient:

(91,.]?.,%) = ﬁ
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k! permutations

Figure 10: The number of ways k balls into n boxes with given occupation numbers is k!

There are n* arbitrary functions distributing the balls in the boxes and each distribution is classically

considered equiprobable so the probability of the given set of occupation numbers in the MB statistics
is:

k k __ k! k
(91,.4.79,)/” = gr.o/n

The difference between MB, BE, and FD statistics can be illustrated by computing the proba-
bility of flipping two coins of the same type. Hence there are k = 2 particles of the same type and

n = 2 states {h,t} like two coins with heads and tails as the states. What is the probability that
one “coin” will be “heads” and the other “tails”?

k k!
e Classical coins: Pryp ({(h,t), (t,h)}) = (61’7‘;;;9") =gl =21
e Boson coins: Prpg ({(h,t),(t,h)}) = m = % =1
e Fermion coins: Prrp ({(h,t), (t,h)}) = m = 2(21) =1.

The Pauli exclusion principle is illustrated by the fact that two fermion coins have to be in
different states (i.e., with probability 1). In the case of bosons, the two classical outcomes (h,t) and
(t, h) differ only by a permutation of particles of the same type so that counts only as one state out
of three equiprobable states. Since the probability of getting the same outcomes (h, h) or (¢,t) is % in
the bosonic case in comparison with the classical MB probability of %, that illustrates the tendency
of bosons to “be more social” (e.g., in terms of our metaphor, live in an apartment house).

8.5 Group representation theory

Group representation theory is a key part of the mathematics of QM. This immediately supports our
thesis since a group representation is essentially a ‘dynamic’ or ‘active’ way to define an equivalence
relation; each group operation transforms an element into an equivalent or symmetric element.
Given a set G indexing (associative) mappings {Ry : U — U}, on a set U, what are the
conditions on the set of mappings so that it is a set representation of a group? Define the binary

relation R on U x U by:
(u,v') € R if 3g € G such that Ry (u) = u'.

Then the conditions that make R, into a group representation are the conditions that imply R is
an equivalence relation:

1. existence of the identity 1y € G implies reflexivity of R;

2. existence of inverses implies symmetry of R; and
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3. closure under products, i.e., for g, ¢’ € G, 3¢” € G such that R;» = Ry R, implies transitivity
of R.

Thus a set representation {Rg}gGG of a group G (or group action on a set) is essentially a
‘dynamic’ way to define an equivalence relation R on the set [7]. The minimal invariant (or irre-
ducible) subsets of the set representation are the orbits, and they are the equivalence classes of the
equivalence relation R or blocks of the orbit partition. The restriction of a set representation of a
group to an orbit is an irreducible representation or irrep.

Let f : U — R be a numerical attribute on U and consider the nxn diagonal matrix f : R" — R”"

with the diagonal entries (f) = f(u;). Let M : R — R™ be any matrix that commutes with f,
fM = MF, ie., the following diagram commutes:

R* 2 R
i L
r* M Re

Then computing the ¢k entries: (fM)lk = f(u;) My = M f (ug) = (Mf)lk Thus [f (u;) — f (ug)] My =

0 so if (u;,uy) is a dit of the partition =1 i.e., f (u;) # f (ug), then My, = 0.2
A numerical attribute f : U — R is said to commute with the set representation R = {R,}
if for any Ry, the following diagram commutes:

geG

v fyop
\f if

Taking R, : R® — R™ as a permutation matrix, then f commuting with R = {Rg}geG means

fRy = R, f so if (u;,u) € dit (f71), then (Ry),, =0 for all g € G. A subset S C U is said to be
invariant under R if R, (S) C S for all g € G. The blocks f~! (r) for r € f (U) for a commuting f
are invariant subsets of U under R. Thus the partition f ! for a commuting f is refined by the orbit
partition since orbits are the minimal invariant subsets. A set of commuting attributes f, g,..., h is
said to be complete if the join f~!'V ¢g~'V ...V h~!is the orbit partition.

Given a finite group G and a finite-dimensional vector space V over C, a wvector space repre-
sentation of the group G is a map R : G — GL (V) (the general linear group of invertible linear
maps on V) where g —> R, : V — V from G to invertible linear maps on V such that Ry = I
and Ry Ry = Ry 4. Using the Yoga to lift set concepts to vector space concepts, the notion of a
minimal invariant subset or orbit yields the notion of a minimal invariant subspace which is called
an irreducible subspace of V. Just as the orbits of a set representation form a partition of U, so the
irreducible subspaces of a vector space representation form a direct-sum decomposition of V. The
restriction of a vector space representation of a group to an irreducible subspace is an irreducible
representation or irrep.

Let {Rg}geG be a set representation of G on a set U that is an ON basis set for V and let
f: U — R be a commuting attribute. Then for any u; € U and any g € G, if Ry (u;) = u, € U,
then by commutativity, f (u;) = f (Rg (u;)) = f (ux). Then a unitary operator F': V — V is defined
by Fu = f(u)u and the group representation R, extends to V from its definition on the basis set
U. Does the operator F' commute with R, in the sense that for each R,, the following diagram
commutes?

121n the general vector space case, for two commuting (diagonalizable) operators, G = GF, if both are represented
in a basis of F-eigenvectors and (u;,ug) is a qudit of F', then G = 0. [45, p. 4]
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Starting with a basis element w; € V' and going around the square clockwise, Ry (u;) = ur, € V
is taken to Fuyp = f (ug)ur € V. Going around the square counterclockwise, Fu; = f (u;)u; and
Ry (f (ui)wi) = f (wi) wp = f (ug) ug so the square commutes. Hence the set-concept of a commuting
f extends by the Yoga to the usual concept of an observable F' commuting with a vector space
representation.'?

The eigenspaces of a commuting F' are invariant under R. Then the DSD of eigenspaces for a
commuting F is refined (defined in the obvious way [17]) by the DSD of irreducible subspaces. A set
of operators commuting with R such as F', G,..., H is said to be complete if the join-like operation
on their DSDs has all its subspaces as irreducible.

Schur’s Lemma (set case): A commuting f restricted to (i.e., f [) an irreducible subset (i.e.,
an orbit) is a constant function.

Schur’s Lemma (vector space case): A commuting F restricted to (i.e., F' |) an irreducible
subspace is a constant operator.

The Yoga of Linearization applied to group representations is illustrated in Table 11.

’ Yoga \ Set representations \ Vector space reps. ‘
Representation | {R,: U = U} o {Ry:V =2V} 4
Min. Invariants | Orbits Irreducible subspaces
Partition Orbit partition DSD of irred. subspaces
Irreps Rep. on orbits Rep. on irred. subspaces
Commuting f:U=R Vg, fRy=f | F:V =V, Vg, FR; = R, F
Invariants f~1(r) commuting f Eigenspaces commuting F'
Schur’s Lemma | Comm. f [orbit const. Comm. F [irred. sp. constant

Table 11: Summary of Yoga of Linearization for group representations.

Example: Consider the Klein four-group written additively: G = Zo xZs = {(0,0),(1,0),(0,1),(1,1)}.
The Cayley group space of that group is the complex vector space {Zs x Zs — C} of all complex-
valued maps on the four-element set Zo x Zo. A basis for the four-dimensional space C* is the set of
maps |¢g’) which take value 1 on ¢’ and 0 on the other g € G. The action of the group on this space is
defined by R, (|9')) = |g + ¢'). The group action just permutes the basis vectors in the Cayley group
space and would be represented by permutation matrices. For the ordering (0,0),(1,0),(0,1), and
(1,1) on Zg X Zs, the non-identity permutation operators have the matrices;

0100 0010 000 1
100 0 000 1 0010
Raoy=1g o o 1|/ fon=11 ¢ o o/’ fan=10 1 0 ol
0010 0100 100 0

The group is Abelian, so each of these operators can be viewed as an observable that commutes with
the Ry for g € G, and then its eigenspaces will be invariant under the group operations.
For R gy, the invariant eigenspaces with their eigenvalues and generating eigenvectors are:

1

1

1 1 1
1

o A=-—1, nE < A=1.
1

-1 -1
1]17]-1
-1 1

-1
-1

13The Yoga is used to generate vector space concepts corresponding to set concepts. There is no implication that
every instance of a vector space concept, e.g., a commuting F', must come from an instance of the set concept, e.g., a
commuting f..
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For Rg,1), they are:

1 1
-1 1
-1’ |-1

1 -1

I~
—_

—A=—1, > A=1.

—
|-
—_

Since the two operators commute, their eigenspace DSDs commute so we can take their join. The
blocks of the join are a DSD and are automatically invariant. Since the blocks of the join are one-
dimensional, those four subspaces are also irreducible and thus the two operators form a complete
set of commuting operators (CSCO). The commuting operators always have a set of simultaneous
eigenvectors, and we have arranged the generating eigenvectors of the eigenspaces so that they are
all simultaneous eigenvectors which can, as usual, be characterized by kets using the respective
eigenvalues;

:|1a]~>;

[
—
=
—_

The restrictions of the group representation to these four irreducible subspaces gives the four
irreducible representations or irreps of the group. Since any vector can be uniquely decomposed
into the sum of vectors in the irreducible subspaces, the representation on the whole space can be
expressed, in the obvious sense, as the direct sum of the irreps.

Moving to non-Abelian groups, not to mention Lie groups, greatly increases the mathematical
complexity. But for our purposes, the point is that the key concepts of group representations for QM
come out of the partitional mathematics of definiteness and indefiniteness. The irreps give all the
different ways that minimal definite alternatives are defined consistent with the indistinction-creating
symmetries of the group. The properties of the eigen-alternatives are determined by the irreps of
the symmetry group of the Hamiltonian or as the elementary particles themselves are determined
by the irreps of groups in particle physics. The irreps fill out the symmetry-adapted possibilities.

Since the group action creates indistinctions as symmetries, moving to the action of a subgroup
means less indistinctions and more distinctions, i.e., symmetry-breaking, which is the second method,
in addition to the join-like operations, to move from an indefinite state to a more definite state, e.g.,
in the description of the Big Bang [36].

Classical physics also has symmetries so groups will play an important role, e.g., the Noether
Theorems. However group representations play a more fundamental role in quantum mechanics
as might be expected from their role in the mathematics of partitions. Partly, this is due to the
objectively indefinite states given by the superposition principle. At a more fundamental level, it is
due to the irreps (the restriction of representations to the irreducible subspaces) of certain group
representations defining the elementary particles at the quantum level.

The reason is fundamentally, that the variety of states is much greater in quantum
theory than in classical physics and that there is, on the other hand, the principle of
superposition to provide a structure for the greatly increased manifold of quantum me-
chanical states. The principle of superposition renders possible the definition of the states
the transformation properties of which are particularly simple. It can in fact be shown
that every state of any quantum mechanical system, no matter what type of interac-
tions are present, can be considered as a superposition of states of elementary systems.
The elementary systems correspond mathematically to irreducible representations of the
Lorentz group and as such can be enumerated. [50, p. 8]
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Prior to the discussion of group representation theory, we started with a given set U of distinct
elements which were then taken as a given basis set for a vector space. But those elementary given
distinct elements or basis vectors are not given in group representation theory; they are instead
determined by the group as the irreducible subspaces and irreducible representations (irreps) of the
representation. The irreps are the elementary symmetry-adapted eigen-alternatives determined by
the group of transformations.

For a certain symmetry group of particle physics, “an elementary particle ‘is’ an irreducible
unitary representation of the group.” [42, p. 149] Thus our partitional approach comports with “the
soundness of programs that ground particle properties in the irreducible representations of symmetry
transformations...” [26, p. 171] These alternatives are carved out by the joins of the vector space
partitions of CSCOs—which constitute a “systematic theory ... established for the rep group based
on Dirac’s CSCO (complete set of commuting operators) approach in quantum mechanics” ([8, p.
211], also [9]; [47]).

This all goes back to the transformations of group representations being ‘dynamic’ or ‘active’
ways to define partitions (equivalence relations) and their vector space versions (DSDs).

9 Concluding remarks
We have taken the mathematics of QM to be sufficiently represented by:

e projective measurement and Liiders mixture operation, the von Neumann (vN) Type I process;
e commuting, non-commuting, and conjugate observables;

e evolution by the Schrodinger equation, the vN Type 2 process;

e measurement and the collapse postulate;

e quantum statistics for indistinguishable particles; and

e group representation theory applied to quantum mechanics.

And we have argued, in each case, that the mathematics of QM is the linearized to (Hilbert) vector
space version of the mathematics of partitions. This is not just a coincidence or an accident. The
mathematics tell us something about the unintuitive reality that QM so successfully describes.

e The key analytical concepts were the notions of definiteness versus indefiniteness, distinctions
versus indistinctions, and distinguishability versus indistinguishability.

e The key machinery for moving from indefinite to more definite states was the partition-join-
like operation of projective measurement—which is also quantitatively measured by quantum
logical entropy (the vector space version of logical entropy at the set level).

e To arrive at a maximally definite state determination of a CSCO, the key operation was the
partition-join operation on commuting DSDs (vector space partitions).

e And at the primordial level (Big Bang), the machinery to move from indefinite to more definite
states was the distinction-creating symmetry-breaking change from an indistinction-creating
symmetry groups to subgroups.

The ‘standard’ reality-oriented interpretations of QM (e.g., Bohmian mechanics, spontaneous
collapse, or many-worlds) make little or no use of those key concepts and machinery. Our ap-
proach of showing the set-level origins of the mathematics of QM takes the formalism as being
complete—without any addition of other variables, other equations, or other-worldly interpretations
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of distinction-preserving (unitary) evolution and distinction-creating measurement. The reality-
agnostic Copenhagen interpretation also takes the formalism of QM as being complete, so the par-
tition mathematics approach could also be viewed as specifying the key concepts and machinery as
well as supplying a dash of realism in the form of simplified images of properties and processes at
the quantum level.

Objective indefiniteness at the quantum level violates our common-sense classical assumption of
reality as being definite all the way down. The usual imagery of a superposition as the combination
of two definite states (or waves) to yield another definite state (or wave) needs to be replaced by
an indefiniteness imagery. The superposition of definite (or eigen) states (e.g., the qubit in quantum
computing) should be seen as a state that is indefinite on the differences between the superposed
states—which can be better understood if one takes the notion (and the underlying partitional math)
of indefiniteness seriously.

These statements ... may collectively be called “the Literal Interpretation” of quantum
mechanics. This is the interpretation resulting from taking the formalism of quantum
mechanics literally, as giving a representation of physical properties themselves, rather
than of human knowledge of them, and by taking this representation to be complete. [41,

pp. 6-7]

The “Follow the Math!” approach shows that the math of QM comes from the math of partitions,
and that picks out the key analytical concepts and machinery—and also allows some imagery, albeit
simplified, of the nature of the physical properties and processes at the quantum level.
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