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Abstract

The purpose of this paper is to show that the dual notions of elements & distinctions are
the basic analytical concepts needed to unpack and analyze morphisms, duality, and universal
constructions in the Sets, the category of sets and functions. The analysis extends directly to
other concrete categories (groups, rings, vector spaces, etc.) where the objects are sets with a
certain type of structure and the morphisms are functions that preserve that structure. Then
the elements & distinctions-based de�nitions can be abstracted in purely arrow-theoretic way
for abstract category theory. In short, the language of elements & distinctions is the conceptual
language in which the category of sets is written, and abstract category theory gives the abstract
arrows version of those de�nitions.
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1 Elements & Distinctions Analysis

1.1 Introduction

The purpose of this paper is to show that the dual notions of "elements & distinctions" are the basic
analytical concepts needed to unpack and analyze morphisms, duality, and universal constructions in
the Sets, the category of sets and functions. The analysis extends directly to other concrete categories
(groups, rings, vector spaces, etc.) where the objects are sets with a certain type of structure and the
morphisms are functions that preserve or re�ect that structure. Then the elements & distinctions-
based de�nitions can be abstracted in purely arrow-theoretic way for abstract category theory.

One way to approach the concepts of "elements" and "distinctions" is to start with the category-
theoretic duality between subsets and quotient sets (= partitions = equivalence relations): "The dual
notion (obtained by reversing the arrows) of �part�[subobject] is the notion of partition." [8, p. 85].
That leads to the two dual forms of mathematical logic: the Boolean logic of subsets and the logic of
partitions ([3]; [4]). If partitions are dual to subsets, then what is the dual concept that corresponds
to the notion of elements of a subset? The notion dual to the elements of a subset is the notion of
the distinctions of a partition (pairs of elements in distinct blocks of the partition).

1.2 The elements & distinctions analysis of canonical maps

The canonical maps and the unique factor morphisms in the universal mapping properties in Sets
are always constructed in the two ways that maps are canonically constructed with subsets and
partitions. In the Boolean algebra of subsets } (U) of U , the partial order is the inclusion relation
S � T for S; T � U , which induces the canonical injection S ! T . That�s the way canonical injective
maps are de�ned using subsets.

In the dual algebra of partitions �(U) on U , the partial order is the re�nement relation between
partitions and it induces a canonical map using re�nement. A partition � = fB;B0; :::g on U is a
set of subsets of U (called blocks, B;B0; :::) that are mutually exclusive (i.e., disjoint) and jointly
exhaustive (i.e., whose union is U). Given another partition � = fC;C 0; :::g on U , a partition � is
said to re�ne � (or � is re�ned by �), written � - �, if for every block B 2 �, there is a block
C 2 � (necessarily unique) such that B � C. If we denote the set of distinctions or dits of a partition
(ordered pairs of elements in di¤erent blocks) by dit (�), the ditset of �, then just as the partial
order in } (U) is the inclusion of elements, so the re�nement partial order on �(U) is the inclusion
of distinctions, i.e., � - � i¤ (if and only if) dit (�) � dit (�). And just as the inclusion ordering on
subsets induces a canonical map between subsets, so the re�nement ordering on partitions induces
a canonical surjection between partitions, namely � ! � where B 2 � is taken to the unique C 2 �
where B � C. That�s the way canonical surjective maps are de�ned using partitions.

The claim that all "canonical" maps in Sets arise in these two ways (or by compositions of them)
cannot be proven since "canonical" is an intuitive notion. But we will show that all the canonical
maps and unique factor maps in the universal constructions (limits and colimits) in Sets arise in
this way from the partial orders of the dual lattices (or algebras) of subsets and partitions.

The top of the partition algebra �(U) is the discrete partition 1 = ffuggu2U of all singletons
and the bottom is the indiscrete partition 0 = fUg with only one block U . Since every partition �
is re�ned by 1, i.e., � - 1, there is the canonical surjection 1 ! � that takes the singleton fug to
the unique block B such that u 2 B. And similarly the top of the Boolean algebra } (U) is U , where
each subset S � U induces the canonical injection S ! U .
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Dualities Subset logic Partition logic

�Elements� Elements u of S Dits (u; u0) of �
Partial order Inclusion S � T � - �: dit (�) � dit (�)
Canonical map S ! T � ! �

Top of partial order U all elements dit(1) = U2 ��, all dits
Bottom of partial order ; no elements dit(0) = ;, no dits

Table 1: Elements and distinctions in the dual logics

1.3 Quantitative measures of elements & distinctions

The quantitative (normalized) counting measure of the elements in a subset gives the classical
Laplacian notion of �logical�probability.

The quantitative (normalized) counting measure of the distinctions in a partition gives the notion
of logical entropy that underlies the Shannon notion of entropy (which is not a measure in the sense
of measure theory) ([2]; [5]; [6]).

That realizes the idea expressed in Gian-Carlo Rota�s Fubini Lectures [9] (and in his lectures at
MIT), where he noted that in view of duality between partitions and subsets, the �lattice of partitions
plays for information the role that the Boolean algebra of subsets plays for size or probability� [7,
p. 30] or symbolically:

information
partitions �

probability
subsets.

Since �Probability is a measure on the Boolean algebra of events� that gives quantitatively the
�intuitive idea of the size of a set�, we may ask by �analogy�for some measure to capture a property
for a partition like �what size is to a set.�The answer is the number of distinctions. The logical
entropy h(�) = jdit(�)j

jU�U j of a partition � on a �nite set U is that measure on the lattice of partitions
on U , i.e., the normalized counting measure on the isomorphic lattice of partition relations (=
ditsets), the binary relations that are the complements of the equivalence relations on U �U . Since
the logical entropy h (�) is also a normalized measure, it has a probability interpretation, i.e., h (�)
is the probability that in two independent draws from U , one will get a distinction of �, i.e., �
distinguishes, just as Pr (S) is interpreted as the probability that in one draw from U , one will get
an element of S, i.e., S occurs.

Duality in quant. measures Subset logic Partition logic

�Outcomes� Elements u of U Distinctions (u; u0) 2 U � U
�Events� Subsets S of U Partitions � of U

�Event occurs� u 2 S (u; u0) 2 dit (�)
Logical measure Pr (S) = jSj

jU j h (�) = jdit(�)j
jU�U j

Interpretation Prob. event S occurs Prob. partition � distinguishes
Table 2: Logical measures on elements and distinctions

2 The Elements & Distinctions Characterization of the Mor-
phisms in Sets

2.1 Set functions transmit elements and re�ect distinctions

The duality between elements ("its") of a subset and distinctions ("dits") of a partition already
appears in the very notion of a function between sets. The concepts of elements and distinctions
provide the natural notions to specify the binary relations, i.e., subsets R � X � Y , that de�ne
functions f : X ! Y .
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A binary relation R � X � Y transmits elements if for each element x 2 X, there is an ordered
pair (x; y) 2 R for some y 2 Y .

A binary relation R � X � Y re�ects elements if for each element y 2 Y , there is an ordered
pair (x; y) 2 R for some x 2 X.

A binary relation R � X � Y transmits distinctions if for any pairs (x; y) and (x0; y0) in R, if
x 6= x0, then y 6= y0.

A binary relation R � X � Y re�ects distinctions if for any pairs (x; y) and (x0; y0) in R, if
y 6= y0, then x 6= x0.

The dual role of elements and distinctions can be seen if we translate the usual characterization
of the binary relations that de�ne functions into the elements-and-distinctions language. In the usual
treatment, a binary relation R � X � Y de�nes a function X ! Y if it is de�ned everywhere on X
and is single-valued. But "being de�ned everywhere" is the same as transmitting (or "preserving"
elements, and being single-valued is the same as re�ecting distinctions so the more natural de�nition
is:

a binary relation R is a function if it transmits elements and re�ects distinctions.

What about the other two special types of relations, i.e., those which transmit (or preserve)
distinctions or re�ect elements? The two important special types of functions are the injections and
surjections, and they are de�ned by the other two notions:

a function is injective if it transmits distinctions, and
a function is surjective if it re�ects elements.

Given a set function f : X ! Y with domain X and codomain Y , a subset of the codomain is
determined as the image f(X) of an injective function f , and a partition on the domain is determined
as the coimage (or inverse-image) ff�1(y)gy2Y of a surjective function f .

2.2 Abstracting to arrow-theoretic de�nitions

One of our themes is that the concepts of elements and distinctions unpack and analyze the basic
category theoretic concepts in the basic category Sets, and they are abstracted into purely arrow-
theoretic de�nitions in abstract category theory. For instance, the elements & distinctions de�nitions
of injections and surjections yield "arrow-theoretic" characterizations which can then be applied in
any category to provide the usual category-theoretic dual de�nitions of monomorphisms (injections
for set functions) and epimorphisms (surjections for set functions).

Two set functions f; g : X � Y are di¤erent, i.e., f 6= g, if there is an element x of X such that
their values f (x) and g (x) are a distinction of Y , i.e., f (x) 6= g (x). Hence if f and g are followed by
a function h : Y ! Z, then the compositions hf; hg : X ! Y ! Z must be di¤erent if h preserves
distinctions (so that the distinction f(x) 6= g (x) is preserved as hf (x) 6= hg (x)), i.e., if h is injective.
Thus in the category of sets, h being injective is characterized by: for any f; g : X � Y , "f 6= g
implies hf 6= hg" or equivalently, "hf = hg implies f = g" which is the general category-theoretic
de�nition of a monomorphism.

In a similar manner, if we have functions f; g : X ! Y where f 6= g, i.e., where there is an
element x of X such that their values f (x) and g (x) are a distinction of Y , then suppose the
functions are preceded by a function h : W ! X. Then the compositions fh; gh : W ! X ! Y
must be di¤erent if h re�ects elements (so that the element x where f and g di¤er is sure to be in
the image of h), i.e., if h is surjective. Thus in the category of sets, h being surjective is characterized
by: for any f; g : X � Y , "f 6= g implies fh 6= fg" or "fh = gh implies f = g" which is the general
category-theoretic de�nition of an epimorphism.

Hence the dual interplay of the notions of elements & distinctions can be seen as yielding
the arrow-theoretic characterizations of injections and surjections which are lifted into the general
categorical dual de�nitions of monomorphisms and epimorphisms.
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2.3 Duality interchanges elements & distinctions

The reverse-the-arrows duality of category theory is the abstraction from the reversing of the roles
of elements & distinctions in dualizing Sets to Setsop. That is, a concrete morphism in Setsop

is a binary relation, which might be called a cofunction, that preserves distinctions and re�ects
elements�instead of preserving elements and re�ecting distinctions. Thus with every binary relation
f � X�Y that is a function f : X ! Y , there is a binary relation fop � Y �X that is a cofunction
fop : Y ! X.

The interchange of elements and distinctions means that the coimage of a function becomes the
image of a cofunction and the image of a function becomes the coimage of a cofunction. For the
universal constructions in Sets, the interchange in the roles of elements and distinctions interchanges
each construction and its dual: products and coproducts, equalizers and coequalizers, and in general
limits and colimits. That is then abstracted to make the reverse-the-arrows duality in abstract
category theory.

This begins to illustrate our theme that the language of elements & distinctions is the conceptual
language in which the category of sets and functions is written, and abstract category theory gives
the abstract-arrows version of those de�nitions. Hence we turn to universal constructions for further
analysis.

3 The Elements & Distinctions Analysis of Products and Co-
products

3.1 The coproduct in Sets

Given two sets X and Y in Sets, the idea of the coproduct is to create the set with the maximum
number of elements starting with X and Y . Since X and Y may overlap, we must make two copies of
the elements in the intersection. Hence the relevant operation is not the union of sets X [Y but the
disjoint union XtY . To take the disjoint union of a set X with itself, a copy X� = fx� : x 2 Xg of X
is made so that X tX can be constructed as X [X�. In a similar manner, if X and Y overlap, then
X t Y = X [ Y �. Then the inclusions X;Y � X t Y , give the canonical injections iX : X ! X t Y
and iY : Y ! X t Y .

The universal mapping property for the coproduct in Sets is that given any other maps f : X !
Z and g : Y ! Z, there is a unique map f t g : X t Y ! Z such that X

iX! X t Y ftg! Z = X
f! Z

and Y
iY! X t Y ftg! Z = Y

g! Z.

X
iX�! X t Y iY � Y
&f 9! #ftg g .

Z
Coproduct diagram

For the universal constructions with the pre�x "co-" (the "co-constructions") as in coproduct or
coequalizer, the unique factor maps in Sets are generated by partition re�nements. From the data
f : X ! Z and g : Y ! Z, we need to construct the unique factor map X t Y ! Z. The map f
contributes the coimage (or inverse-image) f�1 partition on X and g contributes g�1 on Y so the
blocks of f�1 together with the blocks of g�1 make up a partition f�1 t g�1 on X t Y:To de�ne
the unique factor map f t g : X t Y ! Z, we use the re�nement relation f�1 t g�1 - 1XtY . For
each element singleton in the discrete partition 1XtY on X t Y , there is a unique block f�1 (z) or
g�1 (z) in f�1 t g�1 containing it, so the element in the singleton gets mapped to the corresponding
z, and the factor mapping property automatically holds.
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3.2 The product in Sets

Given two sets X and Y in Sets, the idea of the product is to create the set with the maximum
number of distinctions starting with X and Y . The product in Sets is usually constructed as the
set of ordered pairs in the Cartesian product X �Y . But to emphasize the point about distinctions,
we might employ the same trick of �marking�the elements of Y , particularly when Y = X, with an
asterisk. Then an alternative construction of the product in Sets is the set of unordered pairsX�Y =
ffx; y�g : x 2 X; y� 2 Y �g which in the case of Y = X would beX�X = ffx; x�g : x 2 X;x� 2 X�g.
This alternative construction of the product (isomorphic to the Cartesian product) emphasizes the
distinctions formed from X and Y so the ordering in the ordered pairs of the usual construction
X � Y is only a way to make the same distinctions.

The set X de�nes a partition �X on X�Y whose blocks are Bx = f(x; y) : y 2 Y g = fxg�Y for
each x 2 X, and Y de�nes a partition �Y whose blocks are By = f(x; y) : x 2 Xg = X�fyg for each
y 2 Y . Since �X ; �Y - 1X�Y , the induced surjections are the canonical projections pX : X�Y ! X
and pY : X � Y ! Y .

The universal mapping property for the product in Sets is that given any other maps f : Z ! X

and g : Z ! Y , there is a unique map hf; gi : Z ! X � Y such that Z
hf;gi! X � Y pX! X = Z

f! X

and Z
hf;gi! X � Y pY! Y = Z

g! Y .

Z
.f 9! #hf;gi g &

X
pX � X � Y pY�! Y
Product diagram

For the universal constructions without the pre�x "co-" (the "non-co-constructions") as in
product or equalizer, the unique factor maps in Sets are generated by set inclusions. From the
data f : Z ! X and g : Z ! Y , we need to construct the unique factor map Z ! X � Y .
The map f contributes the image f (U) subset of X and g contributes the image g (U) subset
of Y so we have the subset f (U) � g (U) of the product X � Y where for each z 2 Z, gives
the pair (f (z) ; g (z)) 2 f (U) � g (U). To de�ne the unique factor map hf; gi : Z ! X � Y , we
use the inclusion relation f (U) � g (U) � X � Y . Each element z 2 Z determines the element
(f (z) ; g (z)) 2 f (U) � g (U) so by the inclusion, we have the map hf; gi : Z ! X � Y where
z 7�! (f (z) ; g (z)) 2 X � Y , and the factor mapping property automatically holds.

4 The Elements & Distinctions Analysis of Equalizers and
Coequalizers

4.1 The coequalizer in Sets

For the equalizer and coequalizer, the data is not just two sets but two parallel maps f; g : X � Y .
Then each element x 2 X, gives us a pair f (x) and g (x) so we take the equivalence relation �
de�ned on Y that is generated by f (x) � g (x) for any x 2 X. Then the coequalizer is the quotient
set C = Y= � . When � is represented as a partition on Y , then it is re�ned by the discrete partition
1Y on Y , and that re�nement de�nes the canonical map can: : Y ! Y= �.

For the universality property, let h : Y ! Z be such that hf = hg. Then we need to show there
is a unique re�nement-de�ned map h� : Y= �! Z such that h�can: = h.

X
f

�
g

Y
can:! Y= �

&h 9! #h�

Z
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Coequalizer diagram

We already have one partition � on Y which was generated by f (x) � g (x). Since hf = hg,
we know that hf (x) = hg (x) so the coimage or inverse-image h�1 has to at least identify f (x) and
g (x) (and perhaps identify other elements) which means that h�1 -�. Hence for each element of
Y= �, i.e., each block b in the partition �, there is a unique block h�1 (z) containing that block, so
induced map is h� (b) = z. Commutativity requires h�1 -� so the map h� thereby de�ned Y= �! Z
is thereby unique to make the triangle commute.

4.2 The equalizer in Sets

The data for the equalizer construction is the same two parallel maps f; g : X � Y . The equalizer
is the E = fx 2 X : f (x) = g (x)g � X so the map induced by that inclusion is the canonical map
can: : E ! X.

The universal property is that for any other map h : Z ! X such that fh = gh;then 9!h� : Z !
E such that h�can: = h.

E
can:! X

f

�
g

Y

9! "h� h%
Z
Equalizer diagram

The image of h(Z) must satisfy fh (z) = gh (z) for all z 2 Z, so all the elements h (z) 2 X where f
and g agree give h (Z) � E; and thus the factor map h� is induced by that inclusion. That inclusion
is implied by the fh = gh condition so the factor map is unique.

5 The Elements & Distinctions Analysis of Cartesian and
Co-Cartesian Squares

5.1 The pushout or co-Cartesian square in Sets

It is a standard theorem of category theory that if a category has products and equalizers, then it has
all limits, and if it has coproducts and coequalizers, then it has all colimits. Since we have presented
the elements & distinctions analysis of products and coproducts, and of equalizers and coequalizers,
the analysis extends to all limits and colimits. However, the theme would be better illustrated by
considering some more complicated limits and colimits such as Cartesian and co-Cartesian squares,
i.e., pullbacks and pushouts.

For the pushout or co-Cartesian square, the data are two maps f : Z ! X and g : Z ! Y

so we have the two parallel maps Z
f! X

iX :! X t Y and Z
g! Y

iY :! X t Y and then we can take
their coequalizer C formed by the equivalence relation � on the common codomain X t Y which is
the equivalence relation generated by x � y if there is a z 2 Z such that f (z) = x and g (z) = y.
The canonical maps X ! X t Y= � and Y ! X t Y= � are just the canonical injections into the
disjoint union followed by the canonical map of the coequalizer construction analyzed above. As the
composition of a canonical injection with a canonical surjection, those canonical maps need not be
either injective or surjective.

Z
f! X = X

g # & #can::
Y

can:! C = X t Y= � #h
q 9! &h�

Y
h0! U
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Pushout or co-Cartesian square diagram

For the universal mapping property, consider any h : X ! U and h0 : Y ! U such that hf = h0g.
Then h�1 is a partition on X and h0�1 is a partition on Y so let h�1 t h0�1 be the partition on
X t Y with the blocks h�1 (u) t h0�1 (u) for some u 2 U . The condition that for any z 2 Z,
hf (z) = h0g (z) = u for some u 2 U means that h�1 t h0�1 must make at least the identi�cations of
the coequalizer (and perhaps more) so that h�1 t h0�1 is re�ned by � as partitions on X t Y . Each
block in h�1 t h0�1 has the form h�1 (u) t h0�1 (u) for some u and h�1 t h0�1 -� so each block b
in � is contained in a block of the form h�1 (u) t h0�1 (u) of h�1 t h0�1. Hence that block b of � is
mapped by h� to u, and the commutativity properties follow automatically.

5.2 The pullback or Cartesian square in Sets

For the Cartesian square or pullback, the data are two maps f : X ! Z and g : Y ! Z. We then have
two parallel maps X � Y � Z (the projections followed by f or g) so we take the pullback as their
equalizer E. The canonical maps E ! X and E ! Y are the compositions of the canonical injective
map E ! X � Y followed by the canonical projections pX : X � Y ! X and pY : X � Y ! Y . As
the composition of a canonical injection with a canonical surjection, those canonical maps need not
be either injective or surjective.

U
h! X

9! &h� q
#h0 E � X � Y can:! X

#can: #f
Y = Y

g! Z
Pullback or Cartesian square diagram

For the universality property, consider any other maps h : U ! X and h0 : U ! Y such that
fh = gh0. We know that h0 (u) and h (u) are elements such that (h (u) ; h0 (u)) 2 E so for the images,
there is the inclusion h (U) � h0 (U) � E. Hence that inclusion gives the uniquely de�ned map
h� : U ! h (U) � h0 (U) � E where u 7�! (h (u) ; h0 (u)) 2 E so that the commutativity property
automatically holds.

6 Speculative Concluding Remarks

We shown how the dual concepts of elements & distinctions can be used to account for the notion of
morphism, duality, and for the universal constructions in Sets�which are then abstracted in abstract
category theory. This suggests that the notions have some broader signi�cance. One possibility is they
are respectively mathematical versions of the old metaphysical concepts of matter (or substance)
and form (as in in-form-ation). The matter versus form idea [1] can be illustrated by comparing the
two lattices of subsets and partitions on a set�the two lattices that we saw de�ned the canonical
morphisms and unique factor maps in the universal constructions of Sets.

For U = fa; b; cg, start at the bottom and move towards the top of each lattice.
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Figure 1: Moving up the subset and partition lattices.

At the bottom of the Boolean subset lattice is the empty set ; which represents no substance
(no �its�). As one moves up the lattice, new elements of substance are created that are always fully
formed until �nally one reaches the top, the universe U . Thus new substance is created in moving
up the lattice but each element is fully formed and thus distinguished from the other elements.

At the bottom of the partition lattice is the indiscrete partition or "blob" 0 = fUg (where the
universe set U makes one block) which represents all the substance or matter but with no distinctions
to in-form the substance (no �dits�). As one moves up the lattice, no new substance is created but
distinctions are created that in-form the indistinct elements as they become more and more distinct.
Finally one reaches the top, the discrete partition 1, where all the elements of U have been fully
formed. A partition combines inde�niteness (within blocks) and de�niteness (between blocks). At
the top of the partition lattice, the discrete partition 1 = ffug : fug � Ug is the result making all
the distinctions to eliminate any inde�niteness. Thus one ends up at the "same place" (universe U
of fully formed entities) either way, but by two totally di¤erent but dual �creation stories�:

� creating elements (as in creating fully-formed matter out of nothing) versus

� creating distinctions (as in starting with a totally undi¤erentiated matter and then in a �big
bang�start making distinctions, e.g., breaking symmetries, to give form to the matter).

Moreover, we have seen that:

� the quantitative increase in substance (normalized number of elements) moving up in the
subset lattice is measured by logical probability, and

� the quantitative increase in form (normalized number of distinctions) moving up in the parti-
tion lattice is measured by logical information ([2]; [5]).
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