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Imprecise probabilities are often modelled with representors, or sets of probability
functions. In the recent literature, two ways of interpreting representors have emerged
as especially prominent: vagueness interpretations, according to which each probabil-
ity function in the set represents how the agent’s beliefs would be if any vagueness
were precisified away; and comparativist interpretations, according to which the set
represents those comparative confidence relations that are common to all probability
functions therein. I argue that these interpretations have some important limitations. I
also propose an alternative—the functional interpretation—according to which rep-
resentors are best interpreted by reference to the roles they play in the theories that
make use of them.

For modelling rational belief, probability functions do an amazing job. Not
perfect, mind you, but still there’s so much they get right. You know what’s

even better than a probability function, though? A whole bunch of probability
functions! Anything that can be represented by means of a single probability
function can be represented with a set of such functions, plus more besides. So if
we switch from modelling beliefs with probability functions over to modelling
them with sets thereof—what many in philosophy call representors, and others call
credal sets—then it seems we’ve got nothing to lose.

Well, maybe something. Aside from surface-level agreement that representors
represent ‘imprecise probabilities’, and frequent appeals to a credal committee
metaphor that’s as apt to mislead as it is to illuminate, there really isn’t much
consensus on what it is that representors are supposed to represent nor how
they’re supposed to represent it. Worse, while everyone seems to agree that not all
of the information built into a representor need reflect something psychologically
real—a genuine property of our beliefs, as opposed to a meaningless artefact of
the formalisation—competing interpretations differ regarding which properties
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of a representor have genuine representational import and which are artefacts,
and hence they differ in non-trivial ways regarding what inferences can be rightly
drawn about an agent’s beliefs from the representation of those beliefs. A better
recipe for confusion you’ll not often find.

There are seven sections to this paper. After some background in §1, I will
outline and discuss the two main ways of reading representors that have become
especially prominent in the recent literature. In §2 and §3, I discuss vagueness
interpretations, according to which each probability function in the representor
is a ‘precisification’ of the subject’s beliefs. In §4 and §5, I discuss comparativist
interpretations, according to which the representor as a whole represents those
comparative confidence relations that are common to all functions therein.1 Both,
I will argue, have important limitations. Finally, after an interlude on mean-
ingfulness and measurement in §6, in §7 I present an alternative: the functional
interpretation.

There are many potential interpretations I won’t be discussing—for instance,
that a representor represents higher-order uncertainty, with each function in the
set corresponding to a way an agent’s first-order beliefs might be given their
limited introspective evidence; or that it represents the ways an ideal agent with
precise beliefs might permissibly respond to inconclusive evidence. I take these
to be more epistemic rather than doxastic interpretations, where the latter are my
topic. But an exhaustive taxonomy of every conceivable interpretation of a set of
probability functions would make for very tedious reading indeed, and would in
any case be besides the point.

My goal isn’t to argue that the functional interpretation is The One True Inter-
pretation, nor even that it’s necessarily better than the vagueness and comparativist
interpretations. It should go without saying that there’s more than one legitimate
way to interpret a set of probability functions as representing something-related-to-
beliefs, and different applications of the same formal objects in different contexts
may call for different interpretations. Rather, my goal is to provide reasons for
taking the functional interpretation seriously as an interesting and distinctive in-
terpretive possibility. I’ve chosen to focus the earlier sections on the vagueness and
comparativist interpretations in part because they are prominent, but moreover
because doing so allows me to set up an illuminating contrast between important
features of the functional interpretation in comparison to these better-known
alternatives. Better to see what my proposal is and why it’s worth considering
when you can more easily compare it with what it’s not.

1. I will also discuss a nearby relative of the comparativist interpretations, according
to which comparative confidence relations are one among a plurality of primitive doxastic
relations that are jointly represented by what’s common to each of the probability functions
within a representor. This pluralist style of interpretation is easier to introduce and explain after
the comparativist interpretations have been discussed.
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1. Background

Representors arose in response to concerns with the traditional single-function
model of belief. Where Ω is a set of possible worlds, and propositions are subsets
of Ω, we let P = {p, q, r, . . . } contain all and only those propositions regarding
which our subject—Sally—has beliefs to some degree or other. We assume that
P is closed under relative complements and binary unions. Then, according to
the traditional model, Sally’s beliefs can be represented using a single measure
µ : P 7→ [0, 1] that satisfies the usual normalisation and additivity constraints—i.e.,
µ(Ω) = 1 and µ(p ∪ q) = µ(p) + µ(q) whenever p ∩ q = ∅.

There’s something strikingly unrealistic about this. We needn’t go into all of
the concerns that have been raised, for they are legion—for discussion, see (Jeffrey
1983), (Seidenfeld 1988), (van Fraassen 1990), (Walley 1991), (Kaplan 1996), (Joyce
2005; 2010), (Sturgeon 2008), (Hájek 2012), (Alon and Lehrer 2014), and (Bradley
2014). But it won’t hurt to briefly consider one example (adapted from Fishburn
1986). Imagine that before you sits an old pack of cards. You’ve been told that
some of the cards are missing, but that’s all you’re told—you know neither how
many are missing nor which. Now consider:

p = The global population in 2100 will be over 12 billion
q = The next card drawn from this old deck will be a heart

If you’re like most people, then (a) you’ll have some positive degree of confidence
regarding each, and (b) you’re unlikely to have exactly as much confidence in p
as you do in q. On those assumptions, the traditional model implies that there’s
going to be a unique real value r such that you’re exactly r times as confident in p
as you are in q. So, question: exactly how much more or less confident are you in
p than you are in q?

You should find that difficult to answer, and not just because there might
be some facts about the strengths of your beliefs that are introspectively hard
to figure out. That may be the case, but the main problem instead seems to be
that such precise values just aren’t very realistic when talking about a squishy
psychological quantity like strength of belief—at least not for people like us.
Whatever it is about us that grounds the facts about our degrees of belief, it’s not
clear that there’s going to be sufficient information down there to determine that
we believe p down to the nth degree for very large n. Indeed, it’s not even obvious
that p and q must stand in determinate relations of more, less, or equal confidence.
Maybe there’s no fact of the matter as to which one you believe more; or maybe
they’re determinately incomparable. You might even be sympathetic to the idea
that your strength of belief in p can be on a par with your strength of belief in q,
where parity is a special symmetric comparative strength relation holding only if
p and q are not believed to exactly the same degree (à la Chang 2002).
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The upshot of the example, in any case, is that there seems to be something
about the way our beliefs are, or a way they might be, that the traditional single-
function model isn’t able to capture. Worry not just yet what that something is
exactly, since that varies from author to author; worry only that it’s missing when
we represent beliefs with a probability function. Maybe it’s several things. Either
way, a more general model of belief seems to be required.

Representors to the rescue! On this new and improved approach, we represent
a system of beliefs by means of a (finite or infinite, but either way non-empty)
set of probability functions, R = {µ, µ′, µ′′, . . . }, all defined on the same space
of propositions P. When the representor contains just a single function, then it
represents the very same beliefs as would have been represented by that function
according to the traditional model. But when the representor contains multiple
functions, on the other hand, then it represents. . . something else.

The credal committee metaphor is frequently used to give the rough idea of
what that ‘something else’ is supposed to be. Imagine that every µ in R gets a
vote on what Sally’s beliefs are going to be like, and the vote passes just when the
committee is unanimous. If every µ votes that Sally’s confidence in p is greater
than her confidence in q, then Sally’s confidence in p really is greater than her
confidence in q—even if there’s no precise value r such that all members of the
committee agree that Sally’s confidence in p is exactly r times her confidence in
q. Likewise, if some members of the credal committee vote that Sally is more
confident in p than she is in q, while others vote that she’s more confident in q
than she is in p, then R as a whole represents neither comparative relation since
the committee failed to reach unanimous agreement on the matter.

(Be warned: the metaphor is not an interpretation, and while it can be useful
for roughly summarising how an interpretation of the model might go, it can
also be misleading. There are some inferences that are naturally suggested by the
metaphor that end up being licensed under some interpretations but not others.
For example, unreflective application of the metaphor will suggest that Sally has
more confidence in p than in q only if every member of her credal committee votes
as such—i.e., only if µ(p) > µ(q) for all µ ∈ R. This holds for some interpretations,
but not all of them. Likewise, the metaphor suggests that Sally has at least as
much confidence in p as she does in q only if every member of her committee
votes as such—i.e., only if µ(p) ≥ µ(q) for all µ ∈ R. Again: true for some
interpretations, not for all. I’ll say more about this below.)

One more thing will be useful before moving on. For any representor R, we
define its summary function, Rs, like so:

Rs(p) = {µ(p) : µ ∈ R}

That is, Rs(p) picks out the set of values that the individual measures µ in R
assign to the proposition p. In some cases, Rs(p) may be an interval; in others,
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Rs(p) may be ‘gappy’. I’ll mostly talk about cases where Rs(p) is an interval, but
nothing hangs on this. More important to note that while summary functions
are useful for describing the spread of values assigned to a proposition by the
‘credal committee’, a summary function is not just another way of representing
a representor. Distinct representors can sometimes determine the very same
summary function, so in some cases there’s loss of information when going from
the former to the latter. One is a set of real-valued functions, the other is a
set-of-reals-valued function, and they shouldn’t be confused.

2. Vagueness Interpretations: The General Idea

Suppose one of us points towards Bruce the cat and says ‘look at Bruce!’ Presum-
ably, there’s some indeterminacy as to what ‘Bruce’ picks out. In the vicinity of
the space where we’re pointing there will be many precise cat-like things, Bruce1,
Bruce2, Bruce3, . . . , differing from one another by molecule here or fraction of a
whisker there. We’re not really referring to any one of them in particular, though
we’re not referring to none of them either. Rather, one might imagine that each
serves as a potential referent for ‘Bruce’ and it’s simply undecided which one it
should be. Or at least that’s a plausible way to look at things. So say that each of
Bruce1, Bruce2, Bruce3, . . . , is a precisification of what we might mean by ‘Bruce’,
the kind of thing we would be referring to if we were to somehow make our
language perfectly precise. Say also, at least to begin, that anything true relative
to all such precisifications of our language is true simpliciter, whereas if something
is true relative to some precisifications and false on others then it’s indeterminate.
Call this the supervaluationist rule.

According to vagueness interpretations, representors represent vagueness
in our degrees of belief, and they do so via the same supervaluationist rule (or
something very much like it). On the simplest versions of the interpretation,
Sally’s representor R contains all and only the probability measures µ such that,
if we were to suitably precisify our language, then µ would characterise Sally’s
beliefs as per the traditional model. For instance, if Rs(p) = [0.4, 0.5], then Sally’s
degree of belief regarding p is determinately between 0.4 and 0.5 inclusive, but
for any more precise degree within that interval it’s going to be indeterminate
whether that is the degree to which Sally believes p. It would be normal in this
case for fans of the vagueness interpretation to say that Sally’s beliefs are “vague
over the [0.4, 0.5] interval”. The presumptions, note, are that (i) each of the µ in
R has independent representational import, and (ii) none them determinately
misrepresents Sally’s beliefs—in the sense that if R = {µ1, µ2, . . . }, then according
to R it’s indeterminate whether µ1 represents her doxastic state, or µ2 does, and
so on. Every function in R represents its own thing, and none of them get things
determinately wrong. (This will be important.)
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Of course there are other ways one could flesh out the details here. Tradi-
tional supervaluationism says that truth is truth-under-all-precisifications, and
something that’s true on some precisifications but false on others will simply lack
a truth-value. Degree-theoretic supervaluationism says that if something is true
on all precisifications then it’s 100% true, 0% true if it’s false on all precisifica-
tions, and some middling degree of truth otherwise. There can also be variation
regarding whether the vagueness is taken to result from semantic indecision, or is
instead a feature of the belief system itself and independent of how we talk about
it. So there isn’t really one vagueness interpretation, but a family of them. The
differences shouldn’t matter for my purposes.

One can find examples of the vagueness interpretation in (van Fraasen 1990;
2006), (Hájek 2003), (Rinard 2015), and (Levinstein 2019). Hájek and Smithson
(2012: §3) and Joyce (2010) also present what could be interpreted as instances of
the vagueness interpretation, at least under some precisifications. One could also
characterise another, strictly broader class of interpretations—the supervaluational
interpretations—characterised by their shared application of some supervalua-
tionist logic or other. For example, Williams (2014) interprets sets of probability
functions as representing the range of precise attitudes one may rationally take
towards a metaphysically indeterminate proposition. Similarly, one might take a
representor to represent the rationally permissible precise belief states relative to
an agent’s evidence, where the facts about rational permissibility are themselves
indeterminate. But these are only superficially similar to what I’m calling the
vagueness interpretations. The difference is that vagueness interpretations are
concerned with representing vagueness or indeterminacy relating directly to de-
grees of belief themselves, as opposed to representing vagueness or indeterminacy
in connection to which precise degrees of belief are rational.

3. Vagueness Interpretations: The Problem

Let me start with a mention of the problem I’m not going to talk much about.
In particular, you might worry that the simple vagueness interpretation is a bit
too simple, and applying the supervaluationist rule too liberally will have some
absurd consequences. After all, every member of the “credal committee” says that
there’s a unique real value r such that Sally is exactly r times more confident in p
than she is in q, provided she has some positive degree of confidence in both. But
this was precisely the sort of thing we were trying to avoid saying!

It’s natural to think that such results are mere artefacts of the formalisation,
an inevitable consequence of using a set of precise functions to represent an
imprecise state and not to be taken seriously. To suppose otherwise smells a
bit like what Lewis once called fanatical supervaluationism, ‘which automatically
applies the supervaluationist rule to any statement whatever, never mind that
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the statement makes no sense that way’ (Lewis 1999: 173). A common response,
therefore, is to restrict the application of the rule when reading a representor
(e.g., Zynda 2000: 49; Rinard 2017: 267). We might say that R represents as
true anything that’s true according to every µ in R, with the exception of those
existential claims where no instances hold according to every such µ.

You may or may not be convinced by that response—see (Smith forthcoming)
for discussion. Either way, since that problem closely relates to a more general and
long-standing issue for supervaluationism that has been thoroughly discussed
elsewhere, I want to pursue something different. My concern relates to those rep-
resentors containing functions that, according to the traditional model, represent
belief states that are very different from one another. In short, the problem here
isn’t so much that the µ in R are precise when the goal was to represent something
imprecise; the problem, rather, it is that the µ in R have little in common with
what they’re supposed to be representing at all.

To get an initial feel for the problem, consider again the precisifications of
‘Bruce’. Each of Bruce1, Bruce2, Bruce3, and so on, has very precise boundaries,
even though one might intuitively think that Bruce does not have precise bound-
aries. So there’s at least one respect in which what’s true for every precisification
is not plausibly true of Bruce. “Not a problem”, some will say, “We’re not com-
mitted to saying that Bruce has precise boundaries, because we’re not committed
to applying the supervaluationist rule to every statement whatever.” Grant that
the response succeeds. Nevertheless—and this is the important part—in all the
ways that really matter, every precisification of ‘Bruce’ is still overall very much
Bruce-like. Each one walks like Bruce, each one meows like Bruce, and not a one
of them, you’ll observe, looks much like a cassowary. If we were to bundle up
all the properties we associate with Bruce, then each of the Brucei would satisfy
the very large majority of them. They all do a good job of playing the Bruce-role,
so they all have a good claim to serve as the extension of that name—that is,
they all make sense qua precisifications of ‘Bruce’. Consequently, whatever the
precisifications of ‘Bruce’ might be, they cannot be radically unlike one another
with respect to their Bruce-y properties.

Keeping that in mind, contrast two representors: Rnarrow and Rwide. The first,
Rnarrow, determines only a narrow spread of values for any of the propositions
in R—let’s say, Rs

narrow(p) = [0.339, 0.341]. Now, I think we have a pretty good
working idea of what Sally would be like if she were to believe such-and-such
propositions to this or that precise degree. Decision theory, for example, gives us
a good sense of how Sally’s degrees of belief impact on her choices. Epistemology
gives us a good sense of how Sally’s evidence affects changes in her beliefs and
hence her decisions conditional on such evidence. We have, in other words, a
reasonable grasp of the main functional role associated with the systems of belief
represented by probability functions as per the traditional model. And where
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two such functions assign similar numerical values, they also tend to play overall
similar roles. There’s not a great deal of difference in most decision-theoretic or
epistemic contexts between believing p to degree 0.339 and believing it to degree
0.341. As such, it’s entirely plausible that Sally could be in a state such that her
behaviour and behavioural dispositions conditional on evidence are similar to but
not quite how we’d expect if she believed p to degree 0.339, and also similar to but
not quite how we’d expect if she believed p to degree 0.341, and likewise for the
many values between. The functions in Rnarrow are all alike to one another, and
so I can imagine that they all might represent precisified versions of a state that’s
simultaneously similar to all of them. Given this, the vagueness interpretation is
clear enough (pun intended) for the case of Rnarrow.

Not so for Rwide, which this time determines a much wider spread of values
for many of the propositions in R—say, Rs

wide(p) = [0, 1]. This is often described
as having beliefs that are “vague over the entire unit interval”—but what could
that mean? As above, I have a good working idea of what Sally’s behaviour
(and behaviour conditional on evidence) would be like if she were absolutely
certain that p. And I have a good working idea of what Sally would be like if she
were absolutely certain that ¬p. There isn’t much similarity between them. And
neither is very similar to the case where Sally has 50% confidence towards p, or
25% confidence. It’s hard to imagine how Sally could be in a state such that she
behaves similar to but not quite how we’d expect if she believed p to degree 0,
and also similar to but not quite how we’d expect if she believed p to degree 1,
and likewise for the many values between. It seems, rather, that to be in any state
such that µ(p) = 1 provides a reasonable precisification thereof is ipso facto to be
in a state such that µ(p) = 0, or µ(p) = 0.5, or µ(p) = 0.25, doesn’t.

Don’t say that where Sally’s beliefs are represented by Rwide, then she’ll be
in a state that causes her to be indeterminately disposed between behaving in the
µ(p) = 1 way, the µ(p) = 0 way, the µ(p) = 0.5 way, and so on. For what could
that really mean other than that Sally isn’t really disposed to behave in any of
those ways at all? Imagine that Sally is considering prices for a dollar bet on p.
We could meaningfully say that she’s equally disposed to accept any price between
$0 and $1 as fair, or we could say that she lacks a disposition one way or the other,
but in either case she’ll be determinately unlike what we’d expect if she had 0%
confidence that p—in that scenario she wouldn’t be willing to pay any price for
the bet! And she’ll be determinately unlike what we’d expect if she had 100%
confidence in p. Or 50% confidence. Or 25%.

Clarification one: the problem isn’t that we have no account of the functional
role associated with a representor like Rwide. The decision-theoretic role of Rwide,
or its epistemic role, will be implicit in those theories in which it figures. The
problem is that, no matter what the role ends up being, it’s hard to make sense of
how all the µ in Rwide can each serve as sensible precisifications of whatever it
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is that Rwide supposedly represents. Those functions are associated with states
that are very different from one another in all the ways that matter vis-à-vis
beliefs. So at least some of the µ in Rwide will seem to determinately misrepresent
Sally’s beliefs, given that each has divergent implications regarding the functional
role of that state that cannot all be close to the truth. Better, surely, to say that
Rwide represents something determinately distinct from anything that might be
represented by its members separately.

Clarification two: there are of course many ways we might conceivably make
sense of a radically indeterminate doxastic state. Functionalists will sometimes
say that an agent could be in a state that occupies the functional role of pain
for her even while that same state occupies the role of pleasure for her population,
and thus there’s simply no fact of the matter as to whether she’s really in a state
of pain or in a state of pleasure. One might imagine saying something like this
about believing p to degree 0 and believing p to degree 1. Or if you buy into quantum
indeterminacy, then we could perhaps construct a Schrödinger’s believer scenario
where Sally is in a superposition of radically different belief states. No doubt
there are other imaginary cases involving broken teletransporters and omnipotent
demons and whatnot. But the point here isn’t that there’s no way to make sense
of extreme indeterminacy in strength of belief. Rather, the point is that it’s
unclear how to make sense of extreme indeterminacy in the cases of interest
to advocates of the vagueness interpretation—and they’re typically interested
in doxastic indeterminacy as a normal response to incomplete or non-specific
evidence, not indeterminacy as a result of this one weird quirk of functionalism
and hypothetical quantum mechanics experiments.

Ramsey pointed out long ago that excessive precision in the measurement of
belief feels a lot like ‘working out to seven places of decimals a result only valid
to two’ (Ramsey 1931: 76). Representors like Rnarrow can capture this thought
nicely. There isn’t much difference, functionally, between believing p to degree
0.339 or to degree 0.341, and any plausible epistemology or decision theory is
going to treat those states of belief as being generally similar to one another in
most respects—and likewise the interval [0.339, 0.341]. So it makes sense to say
that Sally’s beliefs are “vague over the [0.339, 0.341] interval”, in much the same
way it makes easy sense to speak of the boundary for ‘tall’ being vague over
the interval from about 5

′
11

′′ to 6
′
1
′′. But talk of beliefs that are vague over the

entire unit interval sounds a lot like saying the fuzziness of ‘tall’ extends from
the tiniest infants right up to the tallest basketballers. In the case of Rwide, it’s a
lot harder to make sense of indeterminacy as to whether this or that member of
the representor represents Sally’s beliefs, given that what’s represented by those
precisifications are all very dissimilar from one another—and, consequently, at
least some of those precisifications must also represent something determinately
unlike whatever they’re supposedly precisifications of.
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4. Comparativist Interpretations: The General Idea

According to vagueness interpretations, it’s indeterminate which of the µ in R are
supposed to represent Sally’s beliefs. According to comparativist interpretations,
by contrast, in most cases when there’s more than one µ in R, then each of
them will determinately misrepresent Sally’s beliefs in some way or another.
That’s not a problem, because according to this kind of interpretation it’s the
entire set R which does the representing, and no individual µ within R has any
representational import independent of the whole.

But I’m getting ahead of myself. I should start with comparativism, the idea
that numerical degrees of belief are really just a way of representing what are
ultimately nothing more than relations of relative confidence.2 To discuss this,
we’ll need some more notation:

p≿ q iff Sally is at least as confident that p as she is that q
p≻ q iff Sally is more confident that p than she is that q
p∼ q iff Sally is just as confident in p as she is in q
p▽ q iff Sally’s confidence in p is incomparable to her confidence in q

I assume that p▽ q holds whenever p and q are not related by ≿, ≻, or ∼ in
either direction, provided of course they both belong to the relevant algebra P. I
am therefore ignoring the possibility that there may be other non-conventional
forms of comparability, such as parity. I also take it for granted that if either p≻ q
or p∼ q, then p≿ q; that seems analytically true if anything is, and seems to be
common ground among comparativists. (The other direction is not so obvious.)
Given this, p ̸≿ q implies p ̸≻ q and p ̸∼ q, and so it suffices from now on to say:

p▽ q iff p ̸≿ q and q ̸≿ p

Given that, according to the traditional comparativist interpretation of a proba-
bility function µ, that function represents the facts about Sally’s beliefs by virtue
of representing her comparative confidences—specifically:

2. For discussion on comparativism, see (Keynes 1921), (de Finetti 1931), (Koopman 1940b;
1940a), (Fine 1973), (Zynda 2000), (Stefánsson 2017; 2018), and (Elliott 2022a; 2022b). For a
recent and detailed overview on comparativism plus several connected topics, see (Konek 2019).
In Konek’s terminology, the position being discussed at present is the ‘unary measurement-
theoretic view’; the ‘pluralist measurement-theoretic’ version will also be discussed a little
later on. I’ve avoided this terminology because I think it’s misleading: there’s nothing uniquely
measurement-theoretic about comparativism nor any nearby positions. While it is true that
comparativism is traditionally founded on and explicated via the theory of fundamental
extensive measurement, there are forms of measurement other than fundamental extensive
measurement, and as such there are thoroughly non-comparativist perspectives which are just
as ‘measurement-theoretic’ as any version of comparativism might have claim to be. See §6 for
more on these points.
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p≿ q iff µ(p) ≥ µ(q)
p≻ q iff p≿ q and q ̸≿ p
p∼ q iff p≿ q and q≿ p

The important thing to note here is that there’s no possibility of incomparability.
The relation ≥ over the real numbers is complete in the sense that for any two reals
x, y, either x ≥ y or y≥ x; hence, any function µ : P 7→ [0, 1] interpreted as above
automatically represents ≿ as being likewise complete over P.

Representors provide an alternative means of representing comparative con-
fidence relations, with the benefit of allowing for incompleteness and hence for
representing incomparability. Or rather: representors provide several distinct
ways of representing potentially incomplete confidence relations, corresponding
to several varieties of comparativist interpretation. Again, there’s not really a sin-
gle interpretation here, but a family of them. One way to capture the differences is
in terms of which of ≿, ≻ and/or ∼ are treated as definitional primitives. On the
traditional single-function model, it’s typical to let ≿ be the uniquely primitive
confidence relation, and simply define ≻ and ∼ as its asymmetric and symmetric
parts respectively. This is what I did above, but it’s not the only way I could have
done it. I could just as easily have let ∼ and ≻ be the primitive relations, and
then defined ≿ as the disjunction of the two (i.e., p≿ q iff p≻ q or p∼ q). Or I
could have treated ≿ and ≻ as the primitives and used them to define ∼ (e.g.,
p∼ q iff p≿ q and q≿ p, or iff p ̸≻ q and q ̸≻ p). Or I could have let all three be
considered independently primitive. The point is that it doesn’t matter—it’ll make
no difference at all when it comes to reading any real-valued function µ as a
representation of Sally’s comparative confidences. But these choices do make a
difference when we shift over to the representor model.

One comparativist interpretation of a representor treats ≿ as the unique
primitive. On this interpretation we say that R represents that p≿ q just in case
every function in R agrees that p is at least as probable than q, and then we let ∼
and ≻ be defined as the symmetric and asymmetric parts of ≿ as usual. Call this
the ≿-interpretation:

p≿ q iff ∀µ ∈ R : µ(p) ≥ µ(q)
p≻ q iff p≿ q and q ̸≿ p
p∼ q iff p≿ q and q≿ p

Consequence: p≻ q just in case µ(p) ≥ µ(q) for all µ in R, with µ(p) > µ(q) for
at least some but not necessarily all of them. This is probably the most common
way of reading a set of probability functions as a representation of comparative
probability relations. Or, at least, it’s the way that comes up most often in the
literature, to the extent that the intended interpretation is ever explicitly and
unambiguously characterised. See, for example, (Nehring 2009), (Alon & Lehrer
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2014), (Miranda & Destercke 2015) (Harrison-Trainor & Holliday 2016), (Harrison-
Trainor et al. 2018), (Konek 2019), (Ding et al. 2021), and (Eva & Stern 2023). We
can also find a version of the ≿-interpretation in Kaplan’s ‘Modest Probabilism’
(1996; 2002; 2010).3

By contrast, Eva (2019: 394-5) puts forward a distinct (though obviously simi-
lar) comparativist interpretation, according to which ≻ and ∼ are definitionally
primitive and ≿ is their disjunction. Call this the ≻/∼-interpretation:

p≿ q iff p≻ q or p∼ q
p≻ q iff ∀µ ∈ R : µ(p) > µ(q)
p∼ q iff ∀µ ∈ R : µ(p) = µ(q)

But wait—there’s more! Builes et al. (2022) seem to put forward what we can call
the ≿/≻-interpretation:4

p≿ q iff ∀µ ∈ R : µ(p) ≥ µ(q)
p≻ q iff ∀µ ∈ R : µ(p) > µ(q)
p∼ q iff p≿ q and q≿ p

It likely won’t be immediately obvious what the impact of these differences
will be, but an example will help. Imagine that Sally has been given a coin by a
magician, and has been asked to toss it twice. She knows that magicians’ coins
are often biased, though not always, and if it is biased then it’ll be highly variable
in which direction and to what extent. As far as she knows, it could be completely
biased towards heads, or completely biased towards tails, or anything between.

3. Kaplan’s several slightly different statements of ‘Modest Probabilism’ all presuppose
an interpretation of a representor R according to which (i) p∼ q iff ∀µ ∈ R : µ(p) = µ(q), (ii)
p≻ q iff ∀µ ∈ R : µ(p) ≥ µ(q) and ∃µ ∈ R : µ(p) > µ(q), and (iii) (in Kaplan’s words) you are
undecided as to the relative credibility of p and q just in case p ̸∼ q, p ̸≻ q, and q ̸≻ p. Assuming
we can substitute ‘p▽ q’ for ‘you are undecided as to the relative credibility of p and q,’ and
assuming as above that p▽ q implies p ̸≿ q and q ̸≿ p, then (i)–(iii) are just an alternative way of
formulating the ≿-interpretation.

4. In more detail: Builes et al. advocate what they call the ‘Comparative View’, according to
which µ ∈ R iff (i) if p≿ q then µ(p) ≥ µ(q), and (ii) if p≻ q then µ(p) > µ(q). This implies that
p≿ q only if ∀µ ∈ R : µ(p) ≥ µ(q), and likewise p≻ q only if ∀µ ∈ R : µ(p) > µ(q). However,
it doesn’t yet guarantee the converses of those two conditionals, and so we don’t yet have the
≿/≻-interpretation. For example, suppose that p≿ q and q≿ r, but p▽ r. Then the Comparative
View implies that for all µ ∈ R, µ(p) ≥ µ(q) and µ(q) ≥ µ(r), so also µ(p) ≥ µ(r); hence,
without further assumptions, the Comparative View doesn’t imply ∀µ ∈ R : µ(p) ≥ µ(r) only
if p ≿ r. But if we assume that Sally’s comparative confidences are rational in the sense that (a)
they are or otherwise can be extended in a way that’s representable by some representor, and
(b) they do not have any ‘gaps’ that could be filled by a priori reasoning alone (e.g., if p≿ q and
q ≿ r, then it should not be the case that p▽ r since we should have enough to determine that
p ≿ r), then the Comparative View will imply the stronger ≿/≻-interpretation. It’s noteworthy
in any case that the Comparative View diverges from the much more common ≿-interpretation,
under which p≻ q can be true even if it’s not the case that ∀µ ∈ R : µ(p) > µ(q).
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Given this, we might decide to represent Sally’s beliefs by means of a repre-
sentor, call it Rcoin, such that if

p = The coin will land heads on the next toss
q = The coin will land heads on both of the next two tosses

then for all µ in Rcoin,

µ(p) =
√

µ(q)

and

Rs
coin(p) = Rs

coin(q) = [0, 1]

Don’t worry about whether you think this is the right way to represent Sally’s
beliefs in this situation; the important point for the example is that µ(p) = µ(q)
only where µ(p) = 1 or µ(p) = 0, and otherwise µ(p) > µ(q). Now, since every
µ in Rcoin agrees on µ(p) ≥ µ(q), but they don’t all agree on µ(q) ≥ µ(p), then
according to the ≿-interpretation we should read Rcoin as saying:

p≿ q, p≻ q, p ̸∼ q, p ̸▽ q

On the other hand, since neither µ(p) > µ(q) nor µ(p) = µ(q) for all µ in Rcoin,
on the ≻/∼-interpretation we read Rcoin as saying that p and q are incomparable:

p ̸≿ q, p ̸≻ q, p ̸∼ q, p▽ q

And on the other other hand, the ≿/≻-interpretation reads Rcoin as saying:

p≿ q, p ̸≻ q, p ̸∼ q, p ̸▽ q

The foregoing is useful for highlighting the dangers arising from unreflective
reliance on the credal committee metaphor. According to the ≻/∼-interpretation
and the ≿/≻-interpretation, every voter on the committee needs to agree that
p≻ q in order for p≻ q to be true, in line with what the metaphor suggests, but not
so for the ≿-interpretation. Likewise, if every voter agrees that p≿ q, then p≿ q
according to the ≿-interpretation and the ≿/≻-interpretation, but not always
according to the ≻/∼-interpretation. And while all three comparativist interpre-
tations agree that R represents p∼ q just in case everyone on the committee votes
p∼ q, they also all imply that p ̸∼ q inasmuch as a single voter puts their hand
up for either p≻ q or q≻ p—which contrasts with the vagueness interpretations,
according to which p ̸∼ q only when every committee member votes for p≻ q or
q≻ p. Everyone can agree that the metaphor gets some things right and some
things wrong, but good luck getting them to agree on what.
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5. Comparativist Interpretations: The Problem

Distinguish comparativist interpretations from comparativism. The former are just
a way of reading representors, and it’s uncontroversial that representors can
be used to represent incomplete confidence orderings. Comparativists advocate
something stronger: that’s all a representor needs to represent, because those states
of comparative confidence are what ultimately comprise our systems of belief.
What matters is just the ordering: ordinal-equivalence is meaning-equivalence. That, as
they say, is what’s real; aught else is just an artefact of the numerical representation.
The question for us is whether we might reasonably want representors to represent
something more.

One of the most frequently cited motivations for comparativism is the plausi-
ble idea that there seems to be nothing about our beliefs that calls for a unique
numerical representation, or any numerical representation at all for that matter.
Comparativism is in a position to explain this, and that is an explanatory virtue
of the view (see, e.g., Koopman 1940a: 269; Fine 1973: 15; Zynda 2000: 64ff;
Stefánsson 2017). Builes et al. summarise this idea nicely:

Comparativism is based on the intuitive thought that while numerical
probabilities represent belief states, there’s nothing about our belief states
that mandates a unique numerical representation. In other words, there’s
nothing “0.69-ish” about my degree of confidence in p, beyond the fact
that 0.69 can serve as an adequate representation of my degree of confi-
dence within a particular representational system. But 69, for example, or
732.6 for that matter, would work just as well, provided the system was
structured in the right way. (2022: 7)

A similar motivation is that comparativism is able to capture and explain certain
intuitive possibilities that don’t play nicely with traditional real-valued represen-
tations of belief—for instance, (a) that Sally might have more confidence in p than
she does in q, without there being any particular degree to which she has more
confidence in p; and (b) that Sally’s confidence in p need not be more, less, or
equal to her confidence in q, since p and q may be incomparable. Fine briefly
mentions something along these lines as a reason for adopting purely relational
models of belief:

(2) [Comparative probability] provides a wider class of models of random
phenomena than does the usual [i.e., precise, real-valued] quantitative
theory. . . Point (2) refers to the curious phenomenon that there exist
relatively simple examples of what we consider to be valid [comparative
probability] statements that are incompatible with any representation in
the usual quantitative theory. (Fine 1973: 15–6)
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Now all this would provide a very compelling motivation for comparativism
indeed, if comparativism were in a unique position to capture these intuitively
plausible thoughts. But it isn’t. Non-comparativists can say these sorts of things
too, and they often do! The presupposition seems to be that the only theoretical op-
tion besides comparativism is the view that degrees of belief correspond to unique
real numbers literally inscribed somewhere inside the head. In reality, though,
non-comparativists just agree that the particular numbers we use are just one
way among many for numerically representing a qualitative psychological system,
presumably by virtue of some structural similarity. Likewise, non-comparativists
just agree that the qualitative psychological systems being represented need not
always have the kind of structure that allows for representation using precise real
numbers. All this is common ground. What isn’t common ground is whether the
qualitative psychological systems being represented by a (precise or imprecise)
numerical model of belief can be fully characterised in terms of comparative
confidence relations. That’s the debate.5

But there’s an argument for comparativism in the nearby vicinity that’s worth
considering in more detail. Let absolute degrees of belief be the kinds of doxastic
attitudes that relate an agent to a proposition and a degree (which may or may
not be represented numerically); for instance, those attributed when we say that
Sally is very confident that p, is certain that p, or believes p to degree 0.69, and so on.
Premise one: the very notion that there are degrees of belief presupposes a minimal
relational structure—there must at least be a transitive and reflexive ordering
over them, as anything less and we’d be stretching the concept of degrees beyond
recognition. Premise two: any system of absolute degrees of belief immediately
determines a corresponding system of comparative confidences—for instance,
if Sally’s degree of belief in p is greater than her degree of belief in q, then
p≻ q. Premise three: a non-transitive system of comparative confidences seems
to be possible. So there seem to be possible systems of comparative confidence
that correspond to no possible system of absolute degrees of belief. So absolute
degrees of belief are not plausibly more fundamental than comparative confidence;
facts about the latter do not supervene on facts about the former.

5. Here, ‘qualitative’ contrasts with ‘numerical’. Following Tarski (e.g., 1954), let a relational
system be understood as a set with one or more relations defined thereon. This way of using
the terms is usual in the literature on measurement. The idea is that some systems—call
them numerical—are characterised by explicit reference to numbers and numerical relations.
Other systems—call them qualitative—can be characterised without reference to any specific
numbers or explicitly numerical relations. Inasmuch as a qualitative and a numerical system
share a similar relational structure, we can represent (‘measure’) the former by systematically
mapping it into the latter. I’ll say more about this in the next section. Some will want to say
that ‘numerical’ systems are characterised wholly by their structure; hence any ‘qualitative’
system with the same structure instantiates that system and should also count as ‘numerical’
(e.g., Michell 2021). That might be right; but whether qualitative systems instantiate numerical
systems or are merely represented by them, either way the distinction proves useful.
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I’m inclined to accept the conclusion. But that’s not enough yet to conclude
that comparative confidences are more fundamental than absolute degrees of
belief. For one thing, it may be that neither is more fundamental than the other—
perhaps the facts about both fall out simultaneously from the facts about some
third species of doxastic state, such as outright beliefs. Or maybe, as Lewis often
suggested (e.g., 1986: 36–7; 1994: 430), we can see the system of beliefs as a whole
as comprising the fundamental doxastic unit. On this picture—which I’ll advocate
in §7—comparative confidences and absolute degrees of belief both are just ways
of describing salient aspects of a total doxastic state characterised by its functional
role in connection to evidence and behaviour. Or, instead of positing a third
state from which both comparative confidence and absolute degrees of belief
derive, you might suppose that comparative confidence is merely one among a
plurality of primitive kinds of doxastic state. The other primitives may include,
e.g., judgements as to when propositions are evidentially independent of one
another, or states of certainty, or full belief, and so on. Konek (2019: 308ff)
refers to this as the pluralist view—that there’s more than one species of primitive
doxastic state, such that the facts about our beliefs cannot all be reduced just to
facts about comparative confidence. Many have recommended adding at least
a primitive qualitative independence relation alongside comparative confidence as
one of the basic doxastic relations that are normally represented by our precise
probabilistic models of belief (see, e.g., Domotor 1970; Fine 1973; Kaplan & Fine
1977; Luce 1978; Luce & Narens 1978), and Joyce (2010) suggests an interpretation
of representors like this. (I’ll say more about pluralism in the next section.)

So the explanatory motivations that are usually put forward for accepting
comparativism are not very compelling—there are some intuitive possibilities that
comparativism is able to explain, that’s true, but it’s not uniquely positioned to
explain those possibilities. Moreover, a wide range of contemporary theories that
employ (precise or imprecise) numerical representations of belief make regular
appeal to extra-ordinal properties of those representations that cannot be taken
to represent anything expressible wholly in terms of comparative confidence.
Generally speaking, the role played by our numerical representations of belief
in the bulk of current theory requires those representations to carry more than
merely ordinal information. Given this, we have at least some reason for wanting
more from an interpretation than the comparativist interpretations give us.

I cannot discuss every example in detail, but I can look at one very simple
case in decision theory. Let P = {Ω, p,¬p,∅}, and suppose

Ω ≻ p ≻ ¬p ≻ ∅

According to the interpretations I’ve discussed, a representor R will determine
these comparative confidences if (but not in all cases only if), for all µ in R,

1 > µ(p) > µ(¬p) > 0
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This will include any R such that Rs(p) ⊆ (0.5, 1). So according to comparativism,
these representors all represent the same system of beliefs.6 But now take any
decision theory for imprecise probabilities that generalises expected utility theory,
in the sense that it includes that theory as a special case whenever R is singleton.
This covers all the well-known theories—Γ-maximin, E-admissibility, maximality
or interval dominance. (See Troffaes 2007 for an overview.) That theory will entail
that there is a decision-theoretically relevant difference between at least some, if
not all, of these ‘ordinally equivalent’ representors. For instance, imagine that
Sally is choosing between two gambles:

α : receive $1 if p is true, nothing otherwise
β : receive $2 if p is false, nothing otherwise

Which should she choose? Case 1: if min
[
Rs(p)

]
> 2/3, then Sally should prefer

gamble α. Case 2: if max
[
Rs(p)

]
< 2/3, then Sally should prefer gamble β. Case

3: if max
[
Rs(p)

]
> 2/3 > min

[
Rs(p)

]
, then depending on the theory she might

either be indifferent between the two gambles, prefer α to β, prefer β to α, or lack
a preference—either way it’ll differ from either Case 1 or Case 2.

There’s nothing controversial about this. It’s well-known that decision the-
ories for ‘precise’ probabilities usually attribute differential import to ordinally
equivalent representations of belief. Preferences licensed by some probability
function when conjoined with a utility function need not be licensed by another
probability function when conjoined with that same utility function, even if the
two probability functions determine the same confidence ordering. This is true for
normative theories (e.g., expected utility theory, or risk-weighted utility theory)
and descriptive theories (e.g., cumulative prospect theory). The same extends
to decision theories for ‘imprecise’ probabilities. That is: pairs of representors
that determine the same confidence orderings can and often do carry differential
import for some decision situations, according to these theories.

And it’s no different outside of decision theory. Epistemology supplies more
examples—to say nothing yet of game theory, information theory, or linguistics.
Probabilistic independence is centrally important for our theories of evidence and
learning, but it’s long been known that independence cannot generally be defined
in terms of binary comparative confidence. (See Domotor 1970; Kaplan & Fine
1977; Luce & Narens 1978; Joyce 2010: 285ff discusses independence relations
specifically in connection to representors, alongside several other epistemically
important relations that cannot be formulated using comparative probability.)
Theories of peer disagreement require interpersonal comparisons of confidence,

6. There will only be one maximally inclusive representor that corresponds to any ordering
if any representor does, and comparativists may want to say that we should always use the
maximally inclusive representor. The Comparative View (mentioned in fn. 4) builds in this
requirement, for example. This won’t affect the point I’m making, only how it’s made.
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which seem especially tricky for comparativists to explain. (See Elliott 2022b
for the feasibility of interpersonal confidence comparisons within a compara-
tivist framework.) The Principal Principle presupposes extra-ordinal distinctions
between rational belief states, given that there are meaningfully distinct but or-
dinally equivalent objective chance functions. And so on, and on, and on. (And
on.) In short: across a wide range of contexts, in decision theory and elsewhere,
numerical representations of belief are attributed theoretical roles that require
them to carry meaningful extra-ordinal information.

“So what?”, the inevitable interjection goes, before the argument is yet com-
plete. “Aren’t you just presupposing that all these theories are correct in appealing
to this extra-ordinal information, and therefore begging the question against
comparativism? And don’t we have reason already to suppose these theories
often help themselves to more information than they’re entitled, as for instance
when standard decision theories represent decision-makers as having complete
awareness of their state-space? Our current theories are rife with idealisation—so
what’s to stop comparativists from simply saying that inasmuch as these theories
make use of extra-ordinal information, then this is yet another idealisation not to
be taken too seriously?”7

In response, we can focus on the forest or on the trees. Start with the trees.
While it’s clearly true that current theories of belief and decision-making are over-
idealising in many respects when applied to ordinary agents—as when they presume
full awareness, or very precise gradations in degree of belief—those idealisations
nevertheless seem to have a sensible interpretation in scenarios involving idealised
but still possible agents. While we don’t have full awareness of our state-space, it’s
not impossible that someone could. While we might not have very precise degrees
of belief, it’s not impossible that someone could. The ‘extra information’ isn’t
meaningless—it’s not a mere artefact of the representation, but something with a
legitimate role to play in conceivable scenarios. The situation with comparativism
is quite different. Comparativists aren’t saying that there’s information encoded in
a probability function, or in a representor, which makes sense for ideal agents but
not for us. Rather, comparativists are saying that if a theory treats two numerical
models of belief differently even though they determine the same confidence
orderings, then the theory is appealing to meaningless information that doesn’t
have a proper interpretation for any scenario. And while I’ll happily concede that
contemporary theories of decision-making and belief update and whatnot are
unrealistic for agents like us, that fact doesn’t yet give me a reason to suppose
that extra-ordinal information has no meaningful role to play.

Now the forest: the argument begs no questions against comparativism, since
it neither concludes with nor is premised on anything implying the falsity of that
view. Here is a summary of the whole thing, which should help:

7. I’m paraphrasing more than one commentator’s objection here.
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Across a wide range of theoretical contexts, ordinally equivalent represen-
tations of belief are typically attributed differential import. It is (at best)
unclear whether our current theories can be revised so to fit with compar-
ativism without significant loss in terms of, inter alia, fit with empirical
data, fit with reflective intuitions about rationality, explanatory power
and capacity for integration with adjacent theories—the usual theoretical
virtues.8 So, while it’s consistent with these facts that comparativism might
still be correct, given the present state of theorising it is ceteris paribus
reasonable to doubt that numerical representations of belief represent only
comparative confidence orderings.

I said this earlier, and now I’ll say it again: my goal is not to convince you that
comparativism is mistaken. It’s not clear it is mistaken. However, it’s not clear that
comparativism is correct either. That’s the point. The goal is to provide reasons
in favour of an interpretation that’s capable of saying more than comparativism
allows. The general schema of functional interpretation that I propose below is
consistent with the possibility that comparativism is correct, but it’s also consistent
with the opposite possibility—and that’s a good thing.

The fact that our current theories overwhelmingly tend to presuppose the
meaningfulness of extra-ordinal information is a reason to think that such infor-
mation is meaningful. It’s not a conclusive reason by any means, but it’s certainly
not negligible either. By way of analogy, consider John Wheeler’s (1964, 1980)
pregeometry programme. According to Wheeler, our theories of space and time
should be reconstructed in such a manner as ‘breaks loose at the start from all
mention of geometry and distance’ (1980: 3–4)—that is, without presupposing the
meaningfulness of any essentially geometric structures and concepts (even to the
point of giving up the concept of distance), and weakening common assumptions
about the nature of spacetime (such as continuity). There have been some limited
attempts in this direction, such as replacing continuous spacetime in special rela-
tivity theory with a weaker discrete spacetime, with some partial successes. (See
Meschini et al. 2004 for a user-friendly overview.) However, we’re far from having
anything approaching a general theory of spacetime that doesn’t presuppose the
meaningfulness of a very good deal of classical geometric concepts, and at this
stage it’s not at all clear whether such a thing is really feasible. Those facts seem
to suffice for taking very seriously the possibility that certain basic geometric
concepts and assumptions really are essential to our physical theories, and for
adopting such assumptions as reasonable working hypotheses.

8. There has been some limited work towards revising decision theory such that it only
employs comparative confidence relations. Fine (1973: 37ff) shows that some interesting decision
situations can be formulated with only comparative relations. As he notes, though, ‘clearly
much remains to be done’ (1973: 16) before we have anything that can be considered a fully
adequate comparativist decision theory. That is as true today as it was then.
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Back to comparativism. I’ve argued that, as things stand, there don’t seem
to be any interesting possibilities that comparativism is in a unique position to
explain, and moreover comparativism sits ill-at-ease with the fact that numerically
distinct but ordinally equivalent representations of belief are typically afforded
differential import across a very wide range of contemporary theoretical contexts.
These facts may change. Maybe better theories will be developed, which do not
appeal to extra-ordinal information in the numerical representation of belief. Until
such time, I’m going to take the widely presumed meaningfulness of extra-ordinal
information implicit in the bulk of present theorising at face value, as telling us
something important about the nature of belief.

6. Beyond Doxastic Structure

Numerical models of belief are representations of some qualitative psychological
system, presumably by virtue of their possessing some similarity of structure. On
this I agree with the comparativists. The interesting debate is not between those
who do and do not think that the numbers we happen to employ when ascribing
degrees of belief are representations of some underlying psychological structure;
rather, it concerns what that structure is. What, in other words, are the qualitative
psychological properties and relations captured by our numerical representations
of belief, and what, therefore, are the properties of those representations which
must be shared among any alternatives with an equal claim to representational
adequacy?

There’s two main ways we might think about these questions. On the one
hand, we might think that what’s being represented can be fully characterised
in terms of qualitative doxastic concepts and relations. Let’s refer to that as a
qualitative doxastic structure. When comparativists say that probability functions
and representors represent comparative confidence orderings, they’re referring
to a qualitative doxastic structure in this sense. When pluralists say that our
numerical representations of belief represent some other primitive doxastic states
as well, such as qualitative independence relations, they’re positing a richer
qualitative structure but still an essentially doxastic structure. A rather different
approach is to suppose that the numbers represent not so much the internal
structure of the belief system itself, or not only that, but also something about
how our beliefs relate to certain other psychological phenomena—preferences,
actions, evidence, for example. What’s real may in part be a matter of the role the
system of beliefs plays in our broader psychological economy.

That’s all very abstract and not a little vague, and to explain it fully I’ll need
to take a detour through some measurement theory. Consider first the familiar
story of length. Lengths are standardly measured on a ratio scale, which is to
say that transformations between all the normal measures of length (meters, feet,
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miles, parsecs, etc.) always preserve ratios. This is not idle stipulation: ratios of
lengths on these measures have genuine physical meaning, and that meaning can
be appreciated simply by considering how lengths relate to one another—that
is, without considering how lengths relate to other quantities. If Spot the dog is
twice as long as Bruce the cat, then if we were to have two copies of Bruce and
line them up them head-to-tail, their combined length would be as long as Spot.
And if Harry the hamster is two-thirds as long as Bruce, then three copies of Harry
should be as long as two copies of Bruce.

A bit more formally, let ⟨O,≿, ◦⟩ be the qualitative length structure, where O is
the set of physical objects, ≿ is the at least as long relation, and ◦ is a concatenation
operation with a ◦ b = c meaning that if a and b are lined up end-to-end then the
result will be as long as c. The standard measures of length all correspond to
structure-preserving mappings from the qualitative length system ⟨O,≿, ◦⟩ into
the numerical system ⟨R≥0,≥, +⟩, where R≥0 is the non-negative reals and ≥ and
+ have their usual interpretations. That is, φ : O 7→ R≥0 is a structure-preserving
mapping from ⟨O,≿, ◦⟩ into ⟨R≥0,≥, +⟩ when, for all a, b, c in O,

a ≿ b iff φ(a) ≥ φ(b)
a ◦ b = c iff φ(a) + φ(b) = φ(c)

Call this an additive representation, since it maps the concatenation operation into
addition. Ratios are meaningful relative to additive representations of length, and
that meaning is reflected directly in what’s invariant across all such representa-
tions: if φ maps ⟨O,≿, ◦⟩ into ⟨R≥0,≥, +⟩, then so too does ψ just in case ψ and
φ are related by a ratio-preserving transformation.

The important thing to note about the example is that the underlying qual-
itative structure is characterised in terms of relations between lengths, without
reference to any other quantities. As a result, and to put the point roughly, it is
possible to explain the qualitative meaning of length ratios wholly in terms of
how lengths relate to other lengths. So, if Spot is twice as long as Bruce, then
that’s because Bruce ◦ Bruce = Spot; and if Harry is two-thirds as long as Bruce,
then that’s because Bruce ◦ Bruce = Harry ◦ Harry ◦ Harry.
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Comparativists and pluralists alike suppose that the numerical representation
of belief is much like the measurement of length in this respect. On the simplest
versions of traditional comparativism, the idea is that a real-valued measure µ

maps ⟨P,≿⟩ into ⟨R≥0,≥⟩, such that p≿ q iff µ(p)≥ µ(q). More sophisticated
versions of the view add that the union of disjoint propositions behaves a lot like
the concatenation operation in the case of length, and should therefore be mapped
into addition: if p ∩ q = ∅, then µ(p ∪ q) = µ(p) + µ(q). Pluralists enrich the
underlying qualitative system still further with additional doxastic relations to be
captured by the numerical representation—e.g., if ⊥ is a qualitative independence
relation, then p⊥ q should imply µ(p ∩ q) = µ(p) · µ(q). The ‘imprecise’ versions
of these views replace the single measure with a set of measures, and then say
that the qualitative relations represented are those determined in common by all
measures in the set. In all these cases, what’s supposedly being represented is a
qualitative doxastic structure, characterised in doxastic terms and without reference
to other non-doxastic parts of our psychology.

But things don’t have to work this way. The case of length is only one model
by which the measurement of belief might be understood, and it is not always
possible to appreciate what a numerical model of some phenomenon represents
without understanding how that phenomenon systematically interacts with others
as part of a broader system. The theory of conjoint measurement was developed to
explain how relations between quantities can give rise to meaningful information
that’s not apparent when each is considered in isolation (Debreu 1960; Luce &
Tukey 1964; Krantz et al. 1971). Imagine two quantities A and B, lacking in any of
the apparent intrinsic structure had by the qualitative system of lengths. Still we
might consider how A and B trade-off to produce varying levels in some third
quantity, C, and from there extract meaning. For i, j = 1, 2, . . . , let ai, aj be distinct
levels of A and bi, bj distinct levels of B. Furthermore, let ≿ now be a partial order
over C, and let aibj be the level of C produced by ai and bj. Assume that A and
B combine to determine C in an intuitively ‘additive’ way. This assumption can
be rigorously characterised in purely qualitative terms, but basically amounts to
a sequence of independence conditions on the structure of ≿—for example, if
a2bi ≿ a1bi for some bi, then a2bi ≿ a1bi for all bi, so the contribution to C made by
A is independent of the contribution made by B. Given that ≿ has the appropriate
structure, we can then extract an ordering over A: say that a2 is more than a1
just in case a2bi ≻ a1bi for some bi. Moreover, we can define ratios of differences
in A. Suppose that a1b2 ∼ a2b1 ≻ a1b1. We read this as saying that the change
from a1 to a2 (holding B fixed) produces the same effect in C as the change from
b1 to b2 (holding A fixed); hence, the difference between a2b2 and a1b1 is twice
that between a1b2 and a1b1, or between a2b1 and a1b1. Now if a2b2 ∼ a3b1, then
the difference between a1 and a3, in terms of the contribution to C, is twice the
difference between a1 and a2.
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These ratios in relation to A have real meaning, but unlike the case of length
that meaning need not correspond to any natural qualitative operations compre-
hensible in A-terms alone—the meaning is manifest, rather, in the relationships
between A, B and C. For a conjoint measurement of a system like this, the goal will
be to construct two separate functions, φa : A 7→ R and φb : B 7→ R which com-
bine via a specified operation f : R × R 7→ R to determine a function φc : C 7→ R

such that:
aibj ≿ akbl iff f

[
φa(ai), φb(bj)

]
≥ f

[
φa(ak), φb(bl)

]
Any alternative measures in the same representational system must preserve this
relation (as captured by the rule f ) between the three quantities; this constrains
what counts as a permissible transformation of each function individually. Think
of the numerical representations of A, B and C as a package deal; or, better, as
parts of a single representation comprising three functions and a rule linking
them together. What’s meaningful in φa, then, will be tied up in how that function
relates to the rest of the conjoint representation.9

To help illustrate this in the case of belief, consider next a well-known example
from Lyle Zynda (2000). Let actions be represented in the usual way as a functions
(α, β, . . . ) from states (si, i = 1, 2, . . . ) to consequences, and let ≿p be Sally’s
preference relation. We assume that Sally’s preferences are a function of her beliefs
about the state of the world and the desires she has in relation to the consequences
of her actions. A decision-theoretic representation of this system will be a conjoint
representation consisting in a representation of beliefs, a representation of desires,
and a decision rule by which they jointly determine a system of preferences. An
expected-utility representation, for example, will comprise a probability function µ

and a utility function υ such that

α ≿p β iff ∑ µ(si)υ
[
α(si)

]
≥ ∑ µ(si)υ

[
β(si)

]
Now, if the probability-utility pair (µ, υ) represents ≿p in this manner, then

so too does (µ, υ⋆), where
υ⋆(c) = 9υ(c) + 1

Since υ and υ⋆ are related by a linear (interval-preserving) transformation, and
since utilities are typically understood to be measured on an interval scale (like
temperatures in degrees Celsius) the usual response to this fact is that there’s
no meaningful difference between the two functions. They represent the same

9. See (Krantz et al. 1971: 17–20) for more details on the present example. There are, of
course, many other conjoint structures than the one I’ve (very briefly!) outlined here. See
also (Kahneman & Tversky 1979) for an early application of the theory of additive conjoint
measurement in decision theory, whereby they establish that both utilities and decision weights
(roughly: beliefs plus risk attitudes) can be measured on ratio scales under the assumption that
they pairwise determine preferences as described by prospect theory.
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information in different ways—what matters is what’s invariant between them.
And since υ and υ⋆ do not have ratios in common, we should say that ratios are
not meaningful in the measurement of desire. So far so good. What Zynda notes
is that whenever an expected-utility representation (µ, υ) exists, then so too will
another decision-theoretic representation (µ⋆, υ), where

µ⋆(p) = 9µ(p) + 1

The catch is that this time we need to adjust the decision rule by which µ⋆ and υ

jointly determine ≿p:

α ≿p β iff ∑ µ(si)υ
[
α(si)

]
−

[
α(si)

]
≥ ∑ µ(si)υ

[
β(si)

]
−

[
β(si)

]
Call this a valuation-maximising representation. If any expected-utility representa-
tion (µ, υ) of ≿p exists, then a valuation-maximising representation (µ⋆, υ) of ≿p
also exists, and vice versa. And by analogy with υ and υ⋆, one might be tempted to
infer from this something about meaningfulness in µ and µ⋆—namely, that there’s
no meaningful difference between the two functions, that what matters is what’s
invariant. Consequence: ratios are not meaningful in µ, since they’re not invariant
across µ and µ⋆. As Zynda suggests,

One might point out that µ⋆ is simply a linear transformation of µ, and
argue that in the case of probabilities (like utilities and temperatures) this
is a difference that makes no difference. This approach commits. . . to
taking as real properties of degrees of belief at most those properties that
are common to both [µ and µ⋆]. . . According to this solution, people really
have properties that can properly be called “degrees of belief’, though
these are more abstract in nature than subjective probabilities, being purely
qualitative. . . The concept of degree of belief on this strategy becomes a
purely ordinal notion. . . (2000: 64–5, notation altered for consistency)

But there were some leaps there. While the example does highlight something
important about meaningfulness in µ, this is very much not it.

First note that while µ and µ⋆ share their ordinal structure, that’s not all they
share. The linear transformation linking µ and µ⋆ preserves lots of properties, not
just the ordering. Most importantly, the transformation is bijective, so µ(p) ̸= µ(q)
iff µ⋆(p) ̸= µ⋆(q) and consequently if µ1 ̸= µ2 then µ⋆

1 ̸= µ⋆
2 . And in just the same

way that differences between ordinally equivalent but non-identical probability
functions µ1 and µ2 can make a difference for our preferences according to the
expected utility rule, differences between ordinally equivalent but non-identical
µ⋆

1 and µ⋆
2 will likewise matter according to the valuation-maximisation rule. The

same will necessarily be true for any possible ‘redefinition’ of µ. So the example
cannot support treating the concept of degree of belief as ‘a purely ordinal notion’
after all—extra-ordinal information still matters.
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The reader may note that µ(p) ̸= µ(q) iff µ⋆(p) ̸= µ⋆(q) precisely because
linear transformations preserve ratios of differences. But do not place any weight on
this fact, for therein lies the deeper error. Let

µ†(p) = µ⋆(p)2 = 81µ(p) + 18µ(p) + 1

The transformation from µ to µ†, or from µ⋆ to µ†, does not preserve difference
ratios. Nevertheless, whenever Sally’s preferences ≿p can be given an expected-
utility representation (µ, υ), or a valuation-maximising representation (µ⋆, υ),
then they can also be given a schmaluation-maximising representation (µ†, υ) such
that

α ≿p β iff ∑
[√

µ†(si)− 1
]
υ
[
α(si)

]
≥ ∑

[√
µ†(si)− 1

]
υ
[
β(si)

]
In fact, we can even construct ‘equivalent’ decision-theoretic representations
where not even orderings are preserved. For any transformation that takes us from
µ to some other µ∗, then provided the transformation is bijective and therefore
invertible, there will be at least one (potentially very complicated) rule by which
they can be combined to generate the same preferences relative to (µ∗, υ) as the
expected utility rule generates relative to (µ, υ). So there’s approximately nothing
that’s preserved across all the belief functions that might figure in one or another
decision-theoretic representation—aside from the utterly trivial requirement that
different degrees of belief must be assigned different values.

The lesson here is that meaningfulness in the representation of any quantity
is only sensibly defined relative to a fixed choice of representational format.10

Ratios of lengths are meaningful when lengths are represented additively—that is,
when the qualitative length system ⟨O,≿, ◦⟩ is represented in ⟨R≥0,≥, +⟩—but
additive representations are only one among infinitely many ways in which
we might choose to measure length. Hölder (1901) showed that the system of
lengths can be given a multiplicative representation in the system ⟨R≥1,≥,×⟩,
and ratios are never invariant across multiplicative representations. Nor will

10. This can be made more precise as follows. Where X and Y are any sets, R1, R2, . . . are
relations defined on X, and S1, S2, . . . are relations defined on Y, suppose that there exists at
least one structure-preserving mapping from the relational system X = ⟨X, R1, R2, . . . ⟩ into the
system Y = ⟨Y, S1, S2, . . . ⟩. Further, where S is any n-ary relation on Y, let R(S, φ) be the relation
induced on X by S under φ, in the sense that (x1, . . . , xn) ∈ R(S, φ) iff (φ(x1), . . . , φ(xn)) ∈
S. Then we say that S is X -meaningful relative to Y exactly when R(S, φ) doesn’t depend
on the particular choice of mapping: R(S, φ) = R(S, ψ) for any other structure-preserving
mapping ψ from X into Y . This amounts to saying that S is meaningful relative to a choice of
representational format (i.e., choice of representational system Y ) whenever it corresponds to
the same relation on X regardless of how we choose to represent the system X within Y . So
ratios are meaningful in additive measures of length, since the meaning of those ratios doesn’t
depend on the particular choice of additive scale. For more discussion on meaningfulness, see
(Pfanzagl 1968), (Luce 1978), (Narens 1985), and especially (Luce et al. 1990).
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additive and multiplicative representations have any ratios in common. In fact,
approximately nothing is preserved across all possible numerical representations
of length, aside from the utterly trivial requirement that different lengths must be
assigned different values. Not even orderings are preserved across all measures
of length in that sense, but it would be absurd to conclude that orderings are
therefore meaningless.

Likewise for decision-theoretic representations. The fact that ratios vary be-
tween µ and µ⋆ implies nothing whatsoever about the meaningfulness of those
ratios, because expected utility representations and valuation-maximising repre-
sentations involve distinct representational formats. Stronger: what Zynda-style
examples actually establish is that ratios in µ really are meaningful relative to
expected-utility representations, precisely because any transformation of µ that does
not preserve ratios must therefore employ a different form of decision rule. But
the real trick here is in recognising that the qualitative meaning of those ratios
need not be expressible in purely doxastic terms. When we’re modelling beliefs
in a decision-theoretic context, the psychological structure we’re trying to repre-
sent is not necessarily something internal to system of beliefs itself, considered
in isolation from anything else and characterised in purely doxastic terms, but
instead at least partly something about the relations that hold between beliefs,
desires, and preferences. That is why we cannot alter the probabilistic model of
beliefs without making corresponding adjustments to the decision rule: because
the meanings of the probabilities in the model are tied up with how they interact
with the utilities in the production of preferences. Ratios really are meaningful
in the measurement of belief—at least according to expected utility theory—but
we should not presume their meaning can be fully captured in purely qualitative
doxastic terms and without reference to the role beliefs play as part of a broader
psychological system.

This lesson has long been appreciated in the case of utilities. From Ramsey
(1931) through von Neumann & Morgenstern (1944) to Savage (1954), the orthodox
account of why difference ratios in utility functions are meaningful has appealed
to the role that desirabilities play as part of a broader system. Considered wholly
in isolation, there’s no immediate reason to suppose that our desires should be
measured on anything stronger than an ordinal scale: one desires this more than
that. It’s when those desires interact with beliefs in the production of preferences
under conditions of uncertainty that the need for a richer measure is manifest. Two
utility functions may be ordinally equivalent, but if they vary in their difference
ratios then they’ll be differentiated in at least some decision situations—and
therein lies the qualitative meaning of those difference ratios. Given the intimate
connection between desires and beliefs, it’s a mystery that we should have been
inclined to treat the representation of the beliefs any differently.
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7. Functional Interpretations

With so much setup, I can in this final section be mercifully brief. The concern
with the vagueness interpretations was that a representor R sometimes seems
to represent a doxastic state that’s determinately unlike what’s represented by
any of the µ in R. Comparativist interpretations agree on this point: where R
represents an incomplete confidence ordering, then every µ in R will determi-
nately misrepresent that ordering. But comparativist interpretations do not play
nicely with contemporary theories, which overwhelmingly tend to presuppose
the meaningfulness of extra-ordinal information. Pluralists do strictly better on
that front, since they allow that R may carry additional representational import
beyond the comparative confidence orderings it determines. However, pluralists
still presuppose that the psychological structures underwriting our numerical
representations of belief—the structures that ultimately explain what is and is not
meaningful in those representations—are non-conjoint, purely doxastic qualitative
structures. And that’s not obvious either.

So here’s my thought: if it may end up being impossible to appreciate what’s
real versus what’s artefact in a formal model of belief without appreciating the role
those models play in the psychological theories that make use of them, then why
not just take those roles themselves to be what’s real? We do not have to come up
with an interpretation of representors that’s independent of the theories in which
they figure, since the interpretation of R relative to a psychological theory—of
decision making, say, or a theory of belief update, or better still a theory that
combines both—can just be the thing that plays the R-role in that theory.

In more detail, suppose that T is some decision-theory-cum-epistemology in
which representors have a role to play. In the usual functionalist manner (à la
Lewis 1970), we treat representors as theoretical terms implicitly defined by their
role within T. According to T itself, the state that’s designated by a representor
R always perfectly occupies the R-role that T sets out. But T might be mistaken,
such that nothing perfectly occupies the R-role even if something still comes
close to doing so. Thus we take the meaning of R relative to T to be a function
from worlds to whatever it is that does the best job of satisfying the R-role at
that world, if anything does, and provided it does so well enough. The extension
of R relative to T will be whatever the meaning designates at our world. Two
theories T and T′ will typically determine distinct meanings for R, and in that
sense different interpretations of R; though they may also be associated with the
same interpretation in the sense of fixing on the same extension for R.

Two representors R and R′ are meaningfully distinct according to T just in case
R and R′ play distinct roles within that theory. On a (hypothetical) comparativist
decision theory, R and R′ ought to play the same role just in case they determine
the same confidence relations. For the theories we actually have, this won’t be
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true. Of course, whether we actually ought to treat R and R′ as designating
distinct doxastic states depends on what we take the most plausible theories to
be—there’s not much point worrying about whether R and R′ are meaningfully
distinct according to this or that theory, if we don’t have much reason to think
those theories are plausible. Thus, I claim, we have reason to treat R and R′ as
meaningfully distinct simpliciter inasmuch as our best theories of rational belief
and decision-making posit distinctive roles for R and R′.

Eriksson & Hájek (2007: 204ff) once proposed something much like what I
have in mind here. What they propose is that degrees of belief are those things
that play the kinds of roles numerical probabilities are supposed to play in the
best systematisations of our ideas and intuitions about rational belief and decision-
making. They called their view primitivism, but they also note that their proposal
is very much in the spirit of functionalism—the main difference being that the
functionalist will want to say that our theories implicitly define what ‘degrees of
belief’ are via their distinctive roles, whereas they question whether this should
really be counted as a ‘definition’ (see Eriksson & Hájek 2007: 210). They prefer
instead to say that the concept of ‘degrees of belief’ is a theoretical primitive, and
we get a handle on the concept by understanding the roles it plays in the theories
that make use of them. It is a difference that makes little difference. The essence
of Eriksson & Hájek’s proposal is functionalism, broadly construed, and in that
respect is closely related to mine.

But not quite the same. Eriksson & Hájek’s proposed primitives are absolute
degrees of belief. That makes sense inasmuch as we’re modelling beliefs in the
traditional manner, since everything a probability function says about a total
belief state can be derived from what it says about the particular degree of belief
it associates with each proposition. But when dealing with representors, we’d be
wise not to take absolute degrees of belief as our ‘theoretical primitives’. What a
representor represents cannot always be captured merely by specifying what it
says about the (imprecise) degree to which the agent believes each proposition.
That is what the summary function Rs does, but a summary function can omit
information relevant to the role played by the representor it summarises. Rcoin
assigns the very same maximally imprecise interval to p and to q, but it would
be a mistake to say that Sally’s attitudes towards p and q are the same. Better
instead to let the entire system of beliefs be our primitive, represented by R, and
characterise that total system of beliefs by the functional role played by R in the
best theories we have that make use of such models.

The important point is that the functional interpretation carries no presup-
position that meaningful differences between the systems of belief represented
by R and R′ must be explicable by reference to purely doxastic qualitative
structures—in terms of comparative confidences, say, give or take some other
doxastic relations, and without reference to the relations between belief and the
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rest of our psychology. We can still say, of course, that if ∀µ ∈ R : µ(p) > µ(q)
and ∀µ ∈ R′ : µ(p) < µ(q), then R represents greater confidence in p than q while
R′ represents the reverse. The functional interpretation is not committed to the
meaninglessness of such relations—quite the opposite. But it’s not committed to
saying that everything meaningful in a representor can be expressed in a similar
fashion. Sometimes, the most we might be able to say in purely qualitative terms
is that R and R′ just represent different systems of belief—as evidenced by their
distinctive roles in the production of preferences for instance, or how they give
rise to divergent choice behaviour conditional on evidence. That is what sets the
functional interpretation apart, and it’s a thing worth having.
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