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Abstract: This paper proposes substitutional definitions of logical truth
and consequence in terms of relative interpretations that are extensionally
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1 Introduction

This paper investigates the applicability of relative interpretations in a substi-
tutional account of logical truth and consequence. We introduce definitions
of logical truth and consequence in terms of relative interpretations and
demonstrate that they are extensionally equivalent to the model-theoretic
definitions as developed in (Tarski & Vaught, 1956) for any first-order lan-
guage (including equality). The benefit of such a definition is that it could
be given in a meta-theoretic framework that only requires arithmetic as ax-
iomatized by PA. Furthermore, we investigate how intensional constraints
on logical truth and consequence force us to extend our framework to an
arithmetical meta-theory that itself interprets set-theory. We will argue that
such an arithmetical framework still might be in favor over a set-theoretical
one.

The basic idea behind our definition is both to generate and evaluate
substitution instances of a sentence ϕ by relative interpretations. A relative
interpretation rests on a function f that translates all formulae ϕ of a language
L into formulae f(ϕ) of a language L′ by mapping the primitive predicates
P of ϕ to formulae ψP of L′ while preserving the logical structure of ϕ
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and relativizing its quantifiers by an L′-definable formula. In that sense, the
application of translation functions boils down to the uniform substitution
of predicates by complex formulae, which was the method used by Quine
(1970) to give a substitutional definition of logical truth and consequence.

Substitutional definitions of logical truth and consequence play an im-
portant role in the history of logic. As it appears, a substitutional criterion
has been traditionally the preferred choice for an analysis of what a logical
truth is. However, since the seminal work of Tarski (1936) on the concept
of logical truth and consequence, substitutional definitions were considered
obsolete in the 20th Century by most of the logicians. An important ex-
ception to that is, as mentioned, Quine, who was interested in avoiding the
ontological commitments of set-theory, which is the required meta-theory for
a model-theoretic definition.1 Still, it might seem perplexing to any modern
logician that the most basic notion in logic, the notion of logical consequence,
needs to be explained in the opulent realm of set-theory. At least, let it be our
motivation to take up Quine’s project to give a substitutional definition of
logical consequence in order to avoid the use of set-theory as far as possible.

Another motivation for considering a substitutional definition of logical
truth and consequence instead of a model-theoretic one stems from the
alleged problem of truth preservation in a model-theoretic setting. In this
context “truth preservation” means that from the logical truth of a sentence
one can infer its truth simpliciter. It has been claimed that a model-theoretic
setting fails to give a so-called “intended” interpretation of a language2 by
the notion of truth-in-a-model. Thus, an adequate explanation of “truth
simpliciter” is missing in a model-theoretic setting. A discussion of that issue
and a substitutional definition that trivially seems to fulfill truth preservation
has been recently given by Halbach (2018). In the present paper, however,
we will only focus on the aspect of avoiding a set-theoretic meta-theory for
logical consequence.

The paper proceeds as follows: Section 2 gives a short outline of Tarski’s
reasons to reject substitutional definitions of logical truth and consequence
as well as Quine’s idea of how to improve substitutional definitions. By
pointing out the limits of his definition in (Quine, 1970), we also try to
motivate our framework of relative interpretations. Section 3 introduces

1For an outline of the development of Quine’s conception of logical truth and consequence,
see (Wagner, 2019).

2One example mentioned by Halbach (2018) is that in a model-theoretic framework the
universal quantifier has to be evaluated as a set. For a set-theoretic language, however, this
seems to be inadequate since the collection of all sets is a class and not a set.
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a definition of logical truth and consequence and proves its extensional
adequacy. The framework of this definition can be seen to only require PA
if the antecedent-set of a logical consequence is assumed to be recursively
enumerable. Nevertheless, we have to point out that this definition might
be considered inadequate from an intensional perspective as compactness
is used to define consequence and a corresponding notion of satisfaction is
not available. Subsequently, Section 4 considers another definition that is
extensionally adequate but also meets the mentioned intensional constraints.
However, the required meta-theory for that definition itself interprets set-
theory. Section 5 discusses in how far these results still can be considered as
a method of avoiding set-theory in the meta-theory of logical consequence.

2 Substitutional Definitions of Logical Consequence:
Tarski and Quine

A definition of logical truth and consequence on the basis of the substitution
of syntactic particles in sentences is apparently close to an informal character-
ization of logical truth and consequence. Traditionally, the understanding of
a logical consequence is reflected in criteria of truth preservation in virtue of
form, wherein it is suggested to explain “form” in terms of substitution. As is
well known, even Tarski considered a substitutional criterion for an adequate
analysis of logical consequence in (Tarski, 1936). There he states a condition
(F), which aims to characterize a logical consequence in the following way:

(F) If, in the sentences of the class K and in the sentence X ,
the constants—apart from the purely logical constants—are
replaced by any other constants (like signs are being everywhere
replaced by like signs) and if we denote the class of sentences
thus obtained from K by K ′, and the sentence obtained from X
by X ′, then the sentence X ′ must be true provided only that all
sentences of the class K ′ are true.3

Tarski considered condition (F) to be necessary for any definition of logical
consequence. However, he proceeds with the claim:

The condition (F) could be regarded as sufficient for the sentence
X to follow from the class K only if the designations of all
possible objects occurred in the language in question. This
assumption, however, is fictitious and can never be realized.

3Translation of (Tarski, 1936) in (Tarski, 1956, pp. 409–420) by J.H.Woodger.

3



Mirko Engler

Here, Tarski indicates that a substitutional characterization of logical con-
sequence cannot deal with a language that has not enough non-logical ex-
pressions in order to make a true but non-logical true conclusion false by a
substitution. Whereas in a model-theoretic setting it would be possible to vary
the evaluation of the non-logical constants over the domain of a certain model
to eliminate this problem. The assumption that no substitutional method
can compete with a set-theoretic method might seem plausible. Notably, the
antinomies of Russell and Grelling show that there are formulae that don’t
determine a set as well as sets that cannot be determined by any formula.
Nevertheless, it will turn out as a misconception that a substitutional method
cannot be adequate for any language.

Quine’s improvement of the substitutional method rests on the idea of a
uniform substitution of predicates by complex formulae of a language, which
provides an increased range of possible substitution instances. If a first-
order relational language L (without equality) is strong enough4 to express
elementary arithmetic, then - Quine claimed - such a substitutional notion of
logical consequence can be extensionally equivalent to the model-theoretic
notion. An accessible presentation of that idea can be found in (Ebbs &
Goldfarb, 2018).

Nonetheless, Quine’s remarkable achievement is evidently still of minor
generality compared to the model-theoretic treatment as it leaves out lan-
guages that cannot express elementary arithmetic or languages that consider
equality as a logical constant. A crucial hurdle for any substitutional defini-
tion of logical truth and consequence is the treatment of the equality relation.
For any language L that considers “=” as a logical constant we have (con-
tingent) sentences without non-logical symbols (like “∃v1∃v2(v1 6= v2)”).
Consequentially, no symbol can be substituted since all symbols are logical
ones. So the difficult question would be how to generate substitution in-
stances that can come out false in the language L—especially if L is required
to express elementary arithmetic.

Another problem for Quine but in general for any substitutional account
that considers the preservation of truth under substitution arises from the
notion of truth itself. Any definition of an adequate notion of truth for
a language L that expresses elementary arithmetic cannot be given in the
arithmetical language L. Any language L+ that is capable of expressing
the notion of truth for L must have expressive power exceeding that of L.

4This means that the language contains, inter alia, predicates that can be evaluated in a
structure as the basic arithmetic relations of being the number zero, being the successor of a
number, the sum of two numbers and the product of two numbers.
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For that reason, a substitutional definition of logical consequence, where the
notion of truth for L is defined in L+, would not be applicable to L+. As
is well known, Tarski’s original account of logical consequence in (Tarski,
1936) was also confronted with that problem, which led him to the model-
theoretic framework of (Tarski & Vaught, 1956). While the definition of
logical consequence is given in the language of set-theory, the definition
is applicable to the language of set-theory itself. If “truth” is not taken as
primitive, then the challenge for any substitutional definition will be not to fall
back to the use of model-theory while preserving its universal applicability.
Conclusively, we will critically have to review to what extent our definition
is able to master this challenge.

3 Interpretations and Logical Truth and Consequence

The first improvement of our substitutional definition is based on the sub-
stitution of the predicate symbols of a language L by complex syntactic
particles from another language. In addition to Quine’s improvement of the
substitution of predicates by complex formulae, we also allow these formulae
to be taken (uniformly) from another language. We choose the arithmetical
language of L[PA]. Thereby, we again extend the range of the available sub-
stitution instances for a language to a sufficient level and bypass the problem
of excluding languages that are not rich enough to express arithmetic from
the definition (in the sense explained above).

A convenient way of generating these substitution instances for any
language is to use relative translation functions as they first appeared in
(Tarski, Mostowski, & Robinson, 1953) to define relative interpretations.5

To keep things simple, we only want to consider relational languages to be
translated. Nevertheless, all results also apply to languages with constant
and function symbols due to their relational eliminability and of course, the
translating language may always contain constant and function symbols.

5A relative interpretation of a theory S in a theory T is a relative translation function f (as
explained in Section 1) from L[S] to L[T ] s.t. T proves all the translated theorems of S. For
that, we shortly write S ≺f T and S ≺ T if there is a translation function f s.t. S ≺f T .
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Definition 1 (Substitution Function) Let L be a relational language of
first-order logic with equality. Then a substitution function f for L is given
by a function I : L→ L[PA] assigning a formula of L[PA] in n variables to
every n-ary predicate symbol of L and a formula δ(v) of L[PA] with exactly
one free variable v such that:

1. f(vin = vim) =̇ (vin = vim)6

2. f(Pvi1 ...vin) =̇ I(P )(vi1 ...vin)7

3. f(¬ϕ) =̇ ¬f(ϕ) and f(ϕ→ ψ) =̇ f(ϕ)→ f(ψ)

4. f(∀viϕ) =̇ ∀vi(δ(vi)→ f(ϕ))

5. PA ` ∃vδ(v)

A substitution function is simply a relative translation function where the
translating language is L[PA] and the formula δ, which defines in L[PA] the
domain for evaluating the quantifier, can be proven to be non-empty in PA
(condition 5).8 This condition ensures that a substitution function preserves
logical truth in PA, which is the subject of Lemma 1 below.

The advantage of a translation function that can relativize quantifiers
comes into effect when we require an adequate treatment of “=”. As men-
tioned, a substitutional definition of logical truth and consequence for a
language including “=” as a logical constant is confronted with the prob-
lem of defining substitution instances for (contingent) sentences without
non-logical symbols (like “¬∀v1∀v2(v1 = v2)”). Since we cannot sub-
stitute any symbol in those sentences in order to generate a substitution
instance that is unsatisfiable, the relativization of quantifiers offers a pos-
sibility to deal with that problem. For instance, a substitution function f
where δ(v) equals “v = 0”9 translates the sentence “¬∀v1∀v2(v1 = v2)”
to “¬∀v1(v1 = 0 → ∀v2(v2 = 0 → v1 = v2))”. Trivially, PA ` ∃vδ(v),

6The symbol “=̇” denotes equality in the meta-language.
7The substitution of the variables in I(P ) by vi1 , ..., vin may cause a collision of variables,

which means that variables which were free in the original formula are bound by quantifiers in
I(P ). In such a case we rename the bounded variables of I(P ) by vim+1 , ..., vim+k

, where
m is the maximum of the indices of the variables vi1 , ..., vin .

8Sometimes a similar condition can be found in definitions of relative interpretability, namely
that the interpreting theory should prove the relativization δ of a translation f to be non-empty.
However, if f is a relative interpretation, then the interpreting theory trivially proves “∃vδ(v)”
for it has to interpret “∃vv = v” as a theorem of logic.

9The symbol “0” is an individual constant of L[PA] which is meant to denote 0.
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so we gave a substitution function f such that the substitution instance of
“¬∀v1∀v2(v1 = v2)” is not provable in arithmetic. Moreover, its negation
will be provable and we have got sufficient means to classify the sentence
“¬∀v1∀v2(v1 = v2)” as not logically true by our substitutional method.

The second improvement of our definition is based on using relative
interpretations in order to omit the problem of explaining the notion of truth
for any language. Instead of considering the invariance of truth under substi-
tution, we consider the invariance of interpretability in PA under substitution
for the classification of a logical truth. That this turns out to be sufficient
is due to Lemma 2 below, which roughly states that for a consistent set of
sentences Γ one can define in PA a model for Γ by assuming the formal
consistency of Γ. Usually, one considers theories as the objects that are inter-
preted. However, we can extend the range of relative interpretations to sets
of sentences if we take care of the fact that they are not always deductively
closed. To define a logical consequence in this framework, we utilize that
consequence can be classified in terms of logical truth due to the compactness
of logical consequence. In that respect, our definition also resembles Quine’s
definition in (Quine, 1970).

Definition 2 (Logical Truth and Consequence) Let ϕ be any sentence of
a relational language L of first-order logic with equality, Γ a set of L-
sentences;

1. LTr(ϕ) :⇔ \∀f(subst(f)⇒ PA ` f(ϕ))10

2. LConseq(Γ, ϕ) :⇔ ∃∃Γ′(Γ′ is finite 1 Γ′ ⊆ Γ 1 LTr(
∧

Γ′ → ϕ))

Lemma 1 (Correctness) Let ϕ be any sentence of a relational language L
of first-order logic with equality, then |= ϕ⇒ \∀f(subst(f)⇒ PA ` f(ϕ)).

Proof. Assume |= ϕ and let f be a substitution function. Define a mono-
tone operator Π on sets of L-sentences considering a usual list of logical
axioms and rules of inference for first-order logic such that the logical truths
are the smallest set which is closed under Π, i.e., |= ϕ is equivalent to
\∀X(Π(X) ⇒ ϕ ∈ X) and it holds that \∀X(Π(X) ⇒ (|= ϕ ⇒ ϕ ∈ X)).
Let Y := {ϕ ∈ SentL | PA ` f(ϕ)}. It can be easily shown that Π(Y )
holds and so PA ` f(ϕ).

10We use double-lined logical symbols like “\∀” for the logical constant of the meta-language
and “subst(f)” as a shorthand for “f is a substitution function”.
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Lemma 2 (Formalized Completeness) Let T be a consistent extension of
PA in L[PA], Γ be a set of sentences of a relational language L of first-
order logic with equality s.t. its deductive closure is numerated11in T by an
L[PA]-formula γ, then Γ ≺ T + Conγ .12

Corollary 1 Let Γ be a consistent set of sentences of a relational language
L of first-order logic with equality s.t. its deductive closure is numerated in
PA by an L[PA]-formula γ, then ∃∃f(subst(f) 1 Γ ≺f PA + Conγ).

Proof. By Lemma 2, it immediately follows that there is a relative translation
function f : L → L[PA] such that PA ` f(ψ) for all sentences ψ s.t.
Γ ` ψ. The proof of Lemma 2 which can be found in (Lindström, 1997, §6)
shows that already PA ` ∃vδ(v), where δ is the relativization of a relative
translation that interprets Γ in PA + Conγ .

Proposition 1 Let ϕ be any sentence of a relational language L of first-
order logic with equality and Γ a set of L-sentences, then;

1. |= ϕ⇔ LTr(ϕ)

2. Γ |= ϕ⇔ LConseq(Γ, ϕ)

Proof. (1.) : Follows from (2.) for Γ = ∅.
(2. ⇒) : Assume that Γ |= ϕ. Therefore, there is a finite subset Γ′ of

Γ such that |=
∧

Γ′ → ϕ. By Lemma 1, it follows that \∀f(subst(f) ⇒
PA ` f(

∧
Γ′ → ϕ)). So LConseq(Γ, ϕ).

(2. ⇐) : Assume there is a finite subset Γ′ of Γ s.t. \∀f(subst(f) ⇒
PA ` f(

∧
Γ′ → ϕ)) and Γ 6|= ϕ. From the latter assumption it follows

that Γ ∪ {¬ϕ} is consistent. Furthermore, Γ′ ∪ {¬ϕ} is consistent. Since
Γ′ ∪ {¬ϕ} is finite, its deductive closure can be numerated in PA by a
formula γ∗ in Σ0

1. By Corollary 1, there is a substitution function f s.t.
PA + Conγ∗ ` f(

∧
Γ′ ∧ ¬ϕ)). By definition, f(

∧
Γ′ ∧ ¬ϕ) is equivalent

to ¬f(
∧

Γ′ → ϕ). By assumption, however, PA + Conγ∗ ` f(
∧

Γ′ → ϕ),
which means that PA + Conγ∗ is inconsistent. As we assume PA to be
consistent, it holds that PA ` ¬Conγ∗ . This is a contradiction as Γ′∪ {¬ϕ}
is consistent and PA is assumed to be Σ0

1-sound.13 So Γ |= ϕ.
11An L[PA]-formula γ numerates a set Γ in T iff ϕ ∈ Γ ⇔ T ` γ(pϕq) for all ϕ,

where pϕq denotes the gödelnumeral of ϕ. γ bi-numerates Γ in T if additionally, it holds that
ϕ /∈ Γ⇔ T ` ¬γ(pϕq) for all ϕ.

12Originally, see (Feferman, 1960, Theorem 6.2).
13This means PA ` ϕ implies N |= ϕ if ϕ ∈ Σ0

1. The Σ0
1-soundness of PA is equivalent to

its 1-consistency, a purely syntactical notion, which is ω-consistency restricted to p.r. formulas.
For more details, see, e.g., (Smorynski, 1977, §4).
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Proposition 1 shows that it is possible to give a substitutional definition of
logical truth and consequence which is extensionally equivalent to the model-
theoretic definition and only seems to require arithmetic as a meta-theory.
Apart from that we will have to relativize this claim in the last section, it
can be already pointed out that the definition still has some obvious flaws on
the intensional level. For instance, if we expect the notion of logical truth
defined in terms of relative interpretations to behave in the same way as its
counterpart defined in terms of models, this might include the request that
giving a structure which satisfies ¬ϕ in order to show that ϕ is not a logical
truth corresponds to giving a substitution function f such that PA ` f(¬ϕ).
This is to request that ¬¬Ltr(ϕ) ⇔ ∃∃f(subst(f) 1 PA ` f(¬ϕ)). As a
reason for that, one could think of this equivalence as a feature of logical truth
that ensures its semantical character. However, by definition of ¬¬Ltr(ϕ),
we only know that there is a substitution function f such that PA 6` f(ϕ).
But since PA is incomplete, this cannot be equivalent to PA ` f(¬ϕ) for
any sentence ϕ of L[PA].14

This fact corresponds to the observation that we cannot have a definition
of the notion of satisfaction in terms of relative interpretations in PA (or in any
consistent, recursively enumerable extension of PA). Any adequate notion of
satisfaction would have to fulfill that ϕ being not a logical consequence of Γ
is equivalent to the satisfiability of Γ + ¬ϕ. For our substitutional definition
of logical consequence, this also fails for reasons of incompleteness. The
conclusion we can draw from this is that an adequate substitutional definition
of logical truth and consequence should come with a corresponding notion
of satisfaction.

Another point, which has been originally made by Boolos (1975), is
that a substitutional definition of logical consequence is of minor generality
compared to the model-theoretic one if the compactness of the consequence
relation is built-in to its definition—like in our case. Moreover, it may turn
out that if the consequence relation is defined without built-in compactness,
compactness doesn’t hold for a so defined consequence relation.15 Both
issues, that of a corresponding notion of satisfaction and that of compactness
will be taken care of in the following section.

14For a counterexample, consider a sentence ϕ that expresses in L[PA] the inconsistency of
PA. Trivially, ϕ is not a logical truth and ¬ϕ, which expresses the consistency of PA, is not
interpretable in PA (see Feferman, 1960).

15See (Eder, 2016) for an outline of that discussion.
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4 Interpretations, Satisfaction and Compactness

To meet the requirements which were brought up in the previous section,
we restrict the following substitutional definition of satisfaction and logical
consequence to arithmetically definable sets16of assumptions and extend
our arithmetical background by the set Tr(Π0

n+1) for a given n, which
characterizes in L[PA] the set of L[PA]-sentences that are of complexity
Π0
n+1 and true in the standard model. Thereby, we have got an arithmetical

theory which proves the consistency of any consistent set of sentences that is
arithmetically definable in Π0

n. It is important to note that the set Tr(Π0
n+1)

can be defined purely syntactically and we don’t have to refer to the model-
theoretic definition of satisfaction.17

Definition 3 Let ϕ be a sentence of a relational language L of first-order
logic with equality and Γ a set of L-sentences s.t. the deductive closure
of Γ is arithmetically definable by an L[PA]-formula in Π0

n (if n > 0, Σ0
1

otherwise), then

1. Satn(Γ) :⇔ ∃∃f(subst(f) 1 Γ ≺f PA + Tr(Π0
n+1))

2. LConseqn(Γ, ϕ) :⇔ \∀f(subst(f)⇒ (Γ ≺f PA + Tr(Π0
n+1)⇒

ϕ ≺f PA + Tr(Π0
n+1)))

3. LTr∗(ϕ) :⇔ LConseq0(∅, ϕ)

Corollary 2 Let Γ be a set of sentences of a relational language L of
first-order logic with equality s.t. the deductive closure of Γ is arithmetically
definable by an L[PA]-formula in Π0

n (if n > 0, Σ0
1 otherwise). If Γ is

consistent, then ∃∃f(subst(f) 1 Γ ≺f PA + Tr(Π0
n+1)).

The Corollary follows from Lemma 2, the observation that PA ` ∃vδ(v),
where δ is the relativization of a relative translation that interprets Γ in
PA + Tr(Π0

n+1), and the fact that any arithmetically definable set Γ in Π0
n

can be numerated in PA + Tr(Π0
n+1), which is the subject of the following

Lemma.

Lemma 3 Let Γ be a set of sentences of a relational language L of first-
order logic with equality s.t. Γ is arithmetically definable by an L[PA]-
formula γ in Π0

n, then γ bi-numerates Γ in PA + Tr(Π0
n+1).

16An L[PA]-formula γ arithmetically defines a set of sentences Γ iff ϕ ∈ Γ⇔ N |= γ(pϕq)
for all ϕ, where N denotes the standard model for L[PA].

17For a definition, see, e.g., (Kaye, 1991, § 9.3).
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Proof. Assume there is a γ in Π0
n s.t. ψ ∈ Γ ⇔ N |= γ(pψq). Since

γ(pψq) is in Π0
n, if ψ ∈ Γ, then PA + Tr(Π0

n+1) ` γ(pψq). Assume now
PA + Tr(Π0

n+1) ` γ(pψq) but ψ /∈ Γ, which means that N |= ¬γ(pψq).
Since ¬γ(pψq) is in Σ0

n, we would have PA + Tr(Π0
n+1) ` ¬γ(pψq), which

leads to a contradiction since we assume that PA + Tr(Π0
n+1) is consistent.

Analogously, it follows that γ is a bi-numeration.

The compactness of Satn follows from the following Lemma, which
generalizes Orey’s Compactness Theorem in (Orey, 1961, Theorem 3.1) to
arithmetically definable sets. As he shows in (Orey, 1961, Theorem 3.2),
his Compactness Theorem fails for sets that are not recursively enumerable.
However, this only applies if the interpreting theory is itself recursively
enumerable. The proof is implicit in (Orey, 1961) and (Feferman, 1960).

Lemma 4 (Formalized Compactness) Let T be a consistent extension of
PA + Tr(Π0

1) in L[PA] and Γ an arithmetically definable set of sentences
of a relational language L of first-order logic with equality s.t. its deductive
closure can be numerated in T . Let Γ|k denote the set {ϕ ∈ Γ | pϕq ≤ k},
then \∀k ∈ N : Γ|k ≺ T ⇒ Γ ≺ T .

Proof. We assume that Γ|k ≺ T for every k ∈ N and that γ is a numeration
of the deductive closure of Γ in T . As T is assumed to be consistent,
Γ|k is consistent for every k ∈ N. Therefore, T ` Conγk for every k
(with γk in Σ0

1 numerating the deductive closure of Γ|k in T ). Now define
γ∗(x) := γ(x)∧Conγx (x is free in Conγx ). Along the lines of the proof of
(Lindström, 1997, Theorem 2.7) it follows that T ` Conγ∗ . As γ numerates
the deductive closure of Γ in T and T ` Conγk for every k ∈ N, also γ∗

numerates the deductive closure of Γ in T . Finally, by T ` Conγ∗ and
Lemma 2, we conclude that Γ ≺ T . (Note that the Feferman-consistency
statement Conγ∗ is equally eligible for an application of Lemma 2.)

Proposition 2 Let ϕ be a sentence of a relational language L of first-order
logic with equality and Γ a set ofL-sentences s.t. the deductive closure of Γ is
arithmetically definable by an L[PA]-formula in Π0

n (if n > 0, Σ0
1 otherwise),

then;

1. ∃∃M(structureL(M) 1 M |= Γ)⇔ Satn(Γ)

2. Γ |= ϕ⇔ LConseqn(Γ, ϕ)

3. |= ϕ⇔ LTr∗(ϕ)
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Proof. (1. ⇒): Follows directly from Corollary 2. (1 ⇐): Assume that
Γ ≺ PA + Tr(Π0

n+1). Since PA + Tr(Π0
n+1) is assumed to be consistent,

Γ is also consistent and therefore satisfiable in some L-structure.
(2.⇒): Assume that Γ |= ϕ. Therefore, there exists a finite subset Γ′ of Γ

s.t. |=
∧

Γ′ → ϕ and so (Lemma 1) \∀f(subst(f)⇒ PA ` f(
∧

Γ′ → ϕ)).
Let f be any substitution function and assume that Γ ≺f PA + Tr(Π0

n+1).
Therefore, PA + Tr(Π0

n+1) ` f(
∧

Γ′) and PA + Tr(Π0
n+1) ` f(ϕ). So

LConseqn(Γ, ϕ).
(2. ⇐): Assume that Γ ≺f PA + Tr(Π0

n+1) ⇒ ϕ ≺f PA + Tr(Π0
n+1)

for any substitution function f but Γ 6|= ϕ. Γ ∪ {¬ϕ} is therefore con-
sistent. The deductive closure of Γ is assumed to be arithmetically de-
finable by a formula γ in Π0

n. By Lemma 3, the deductive closure of Γ
is bi-numerated by γ in PA + Tr(Π0

n+1). Therefore, γ(p¬ϕ→ ẋq) (x is
free in γ(p¬ϕ→ ẋq) ) numerates the deductive closure of Γ ∪ {¬ϕ} in
PA + Tr(Π0

n+1). By Corollary 2, there exists a substitution function f
s.t. Γ ∪ {¬ϕ} ≺f PA + Tr(Π0

n+1). In particular, Γ ≺f PA + Tr(Π0
n+1)

so that it follows by assumption that PA + Tr(Π0
n+1) ` f(ϕ)—but also

PA + Tr(Π0
n+1) ` ¬f(ϕ), which is a contradiction as PA + Tr(Π0

n+1) is
assumed to be consistent. So Γ |= ϕ.

(3.): Follows from (2.) for Γ = ∅.

Corollary 3 Let ϕ be any sentence of a relational language L of first-order
logic with equality and Γ a set ofL-sentences s.t. the deductive closure of Γ is
arithmetically definable by an L[PA]-formula in Π0

n (if n > 0, Σ0
1 otherwise),

then ¬¬LConseqn(Γ, ϕ)⇔ Satn(Γ + ¬ϕ).

The Corollary follows directly from Proposition 2 and it demonstrates
that giving a model which satisfies Γ + ¬ϕ in order to show that ϕ is not
a logical consequence of Γ is equivalent to giving a substitution function
f such that PA + Tr(Π0

n+1) ` f(Γ) but PA + Tr(Π0
n+1) ` ¬f(ϕ). In that

respect, our substitutional definition of logical consequence is able to emulate
an important property of its model-theoretic counterpart.

5 Conclusion

We proposed a substitutional definition of logical truth and consequence in
terms of relative interpretations (Definition 2) and demonstrated that it is
extensionally equivalent to the model-theoretic definitions for any relational
first-order language with equality. We also demonstrated that the same result
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can be obtained for a substitutional definition (Definition 3) that comes with
a corresponding notion of satisfaction and compactness is not built-in to the
notion of satisfaction—if we restrict the definition to arithmetically definable
sets of assumptions. As the motivation of this undertaking was to eliminate
the need for set-theory in the meta-theory of logical consequence, we will
now have to review to what extent this has been successful.

First of all, the use of set-theory usually enters (also in our presentation)
the meta-theory of logical consequence not first through the explanation of se-
mantical notions but already in specifying syntactical terms like “language”,
“sentence” and “proof”. However, it is well-known since Gödel that all of
these syntactical notions can be adequately represented in a meta-theory
not extending weak arithmetical theories.18 The same holds for the notions
of “translation function” and “relative interpretation”. Apart from that, we
obviously used set-theoretic terms like “set of sentences” in defining logical
consequence substitutionally. If we want to specify this term purely arith-
metically, we necessarily have to restrict the scope of our definition to sets
of a certain complexity, namely to those which are definable by a first-order
arithmetical formula. However, the notion of arithmetical definability itself
involves the notion of satisfaction in the standard model of arithmetic. To
avoid the use of set-theory in that aspect, we can instead restrict the definition
to sets which can be numerated in an arithmetical theory. As Lemma 3 shows,
this could be done in principle for any arithmetically definable set, but it
requires a correspondingly strong arithmetical theory.

In the case of Definition 2, we don’t need to accept, at first sight, a
meta-theory that exceeds PA.19 Leaving aside its discussed intensional flaws,
if we try to not exceed PA in the framework of Definition 2, we have to
admit that the class of sets which can be numerated in PA covers only the
recursively enumerable ones. Without a doubt, this is a limitation compared
to a model-theoretic setting. However, it could be argued that we don’t lose
much of generality since a non-recursively enumerable set of assumptions
and its set of logical consequences is quite a rare thing to consider.

If we are interested in a substitutional definition that also meets the
discussed intensional constraints, we necessarily have to exceed PA in any
case. Even if we sacrifice the constraint that compactness should not be built-

18For details, see, e.g., (Smorynski, 1977).
19We assume that accepting a theory as a meta-theory implies that also its consistency is

assumed and in case of an arithmetical theory also its ω-consistency, which is a common practice
in Metamathematics. As pointed out, the 1-consistency of PA has to be assumed for Proposition
1 and the consistency of PA + Tr(Π0

n+1) for Proposition 2.
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in to the definition of satisfaction, we still need a meta-theory that involves
PA + Tr(Π0

1) to allow for an adequate substitutional notion of satisfaction.
It could be argued that this fact undermines our intend to eliminate the
need for set-theory in the meta-theory of logical consequence as set-theory
axiomatized by ZF is interpretable in PA + Tr(Π0

1). Still, we want to reply
that Definition 3 offers a philosophical improvement for the meta-theory of
logical consequence.

Evidently, we were able to replace the use of set-theoretic vocabulary
by an arithmetical one. For the latter, it could be argued that its intuitive
understanding is much clearer compared to the former as set-theory is a
rather modern invention of 20th Century Mathematical Logic. Consequently,
any definition in arithmetical terms is to favor over an equivalent definition
in terms of sets.

Another point can be made if we consider again Quine’s interest in a
substitutional definition. He aimed to relieve the meta-theory of logical
consequence from its ontological commitment to sets. The question is to
what extent the fact that ZF ≺ PA + Tr(Π0

1) affects this elimination of onto-
logical commitment to sets. It has to be admitted that the term “ontological
commitment” is not an entirely clear notion. So the previous question will
not have a clear-cut answer and our argumentation can only be based on a
somehow intuitive persuasion. Having said this, the aspect that we want to
bring to attention here is that it is doubtful whether a presupposed ontology
of a theory—in whatever sense—is preserved by relative interpretability. For
instance, ZF + CH ≺ PA + Tr(Π0

1) as well as ZF +¬CH ≺ PA + Tr(Π0
1).

Intuitively, it seems plausible that an assumed ontology for ZF + CH is in
conflict with an assumed ontology for ZF +¬CH. Thus, both ontologies
cannot be adopted equally in an assumed ontology for PA + Tr(Π0

1). But as
there appears to be no criterion to decide which one may be adopted, it seems
questionable whether any ontology is preserved under relative interpretation
in general.

Taking all this into consideration, we may conclusively say that this paper
established a substitutional approach to logical truth and consequence that
is able to avoid set-theoretic vocabulary in its meta-theory. For a definition
that is extensionally adequate for recursively enumerable sets of assumptions,
it was shown that the meta-theory has not to exceed PA. Though we don’t
expect our framework to replace the use of model-theory in the practice of
determining a logical consequence, we consider it instructive that it could be
done without set-theory in principle.
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