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This paper attempts to answer a central question in unsupervised learning: what does it 
mean to “make sense” of a sensory sequence? In our formalization, making sense involves 
constructing a symbolic causal theory that both explains the sensory sequence and also 
satisfies a set of unity conditions. The unity conditions insist that the constituents of the 
causal theory – objects, properties, and laws – must be integrated into a coherent whole. 
On our account, making sense of sensory input is a type of program synthesis, but it is 
unsupervised program synthesis.
Our second contribution is a computer implementation, the Apperception Engine, that was 
designed to satisfy the above requirements. Our system is able to produce interpretable 
human-readable causal theories from very small amounts of data, because of the strong 
inductive bias provided by the unity conditions. A causal theory produced by our system is 
able to predict future sensor readings, as well as retrodict earlier readings, and impute (fill 
in the blanks of) missing sensory readings, in any combination. In fact, it is able to do all 
three tasks simultaneously.
We tested the engine in a diverse variety of domains, including cellular automata, rhythms 
and simple nursery tunes, multi-modal binding problems, occlusion tasks, and sequence 
induction intelligence tests. In each domain, we test our engine’s ability to predict future 
sensor values, retrodict earlier sensor values, and impute missing sensory data. The
Apperception Engine performs well in all these domains, significantly out-performing 
neural net baselines. We note in particular that in the sequence induction intelligence tests, 
our system achieved human-level performance. This is notable because our system is not 
a bespoke system designed specifically to solve intelligence tests, but a general-purpose
system that was designed to make sense of any sensory sequence.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Imagine a machine, equipped with various sensors, that receives a stream of sensory information. It must, somehow, 
make sense of this stream of sensory data. But what does it mean, exactly, to “make sense” of sensory data? We have an 
intuitive understanding of what is involved in making sense of the sensory stream – but can we specify precisely what is 
involved? Can this intuitive notion be formalized?
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One approach is to treat the sensory sequence as the input to a supervised learning problem1: given a sequence x1:t
of sensory data from time steps 1 to t , maximize the probability of the next datum xt+1. This family of approaches seeks 
to maximize p(xt+1 | x1:t). More generally, as well as training the system to predict future sensor readings, we may also 
train it to retrodict past sensor readings (maximizing p(x1 | x2:t)), and to impute missing intermediate values (maximizing 
p(xi | x1:i−1, xi+1:t)).

We believe there is more to “making sense” than prediction, retrodiction, and imputation. Predicting the future state of 
one’s photoreceptors may be part of what is involved in making sense – but it is not on its own sufficient. The ability to 
predict, retrodict, and impute is a sign, a surface manifestation, that one has made sense of the input. We want to define 
the underlying mental model that is constructed when one makes sense of the sensory input, and to show how constructing 
this mental model ipso facto enables one to predict, retrodict, and impute.

In this paper, we assume that making sense of sensory input involves constructing a symbolic theory that explains 
the sensory input [9–12]. A number of authors, including Lake [13] and Marcus [14], have argued that constructing an 
explanatory theory is a key component of common sense. Following Spelke and others [15,16], we assume the theory must 
posit objects that persist over time, with properties that change over time according to general laws. Further, we assume, 
following John McCarthy and others [17–19], that making sense of the surface sensory perturbations requires positing latent 
objects: some sensory sequences can only be made intelligible by hypothesizing an underlying reality, distinct from the 
surface features of our sensors, that makes the surface phenomena intelligible. The underlying reality consists of latent 
objects that causally interact with our sensors to product the sensory perturbations we are given as input. Once we have 
constructed such a theory, we can apply it to predict future sensor readings, to retrodict past readings, or to impute missing 
values.

Now constructing a symbolic theory that explains the sensory sequence is necessary for making sense of the sequence. 
But it is not, we claim, sufficient. There is one further additional ingredient that we add to our characterisation of “making 
sense”. This is the requirement that our theory exhibits a particular form of unity: the constituents of our theory – objects, 
properties, and atoms – must be integrated into a coherent whole. Specifically, our unity condition requires that the objects 
are interrelated via chains of binary relations, the properties are connected via exclusion relations, and the atoms are unified 
by jointly satisfying the theory’s constraints. This extra unity condition is necessary, we argue, for the theory to achieve good 
accuracy at prediction, retrodiction, and imputation.2

This paper makes two main contributions. The first is a formalization of what it means to “make sense” of the stream 
of sensory data. According to our definition, making sense of a sensory sequence involves positing a symbolic causal theory 
– a set of objects, a set of concepts, a set of initial conditions, a set of rules, and a set of constraints – that together satisfy 
two conditions. First, the theory must explain the sensory readings it is given. Second, the theory must satisfy a particular 
type of unity. Our definition of unity involves four conditions. (i) Spatial unity: all objects must be unified in space via a 
chain of binary relations. (ii) Conceptual unity: all concepts must be unified via constraints. (iii) Static unity: all propositions 
that are true at the same time must jointly satisfy the set of constraints. (iv) Temporal unity: all the states must be unified 
into a sequence by causal rules.

Our second contribution is a description of a particular computer system, the Apperception Engine,3 that was designed 
to satisfy the conditions described above.4 We introduce a causal language, Datalog⊃–, that was designed for reasoning about 
infinite temporal sequences. Given a sensory sequence, our system synthesizes a Datalog⊃– program that, when executed, 
generates a trace that both explains the sensory sequence and also satisfies the four conditions of unity. This can be seen as 
a form of unsupervised program synthesis [22]. In traditional supervised program synthesis, we are given input/output pairs, 
and search for a program that, when executed on the inputs, produces the desired outputs. Here, in unsupervised program 
synthesis, we are given a sensory sequence, and search for a causal theory that, when executed, generates a trajectory that 
both respects the sensory sequence and also satisfies the conditions of unity.

The Apperception Engine has a number of appealing features. (1) Because the causal theories it generates are symbolic, 
they are human-readable and hence verifiable. We can understand precisely how the system is making sense of its sensory 
data.5 (2) Because of the strong inductive bias (both in terms of the design of the causal language, Datalog⊃–, but also in 
terms of the unity conditions that must be satisfied), the system is data-efficient, able to make sense of the shortest and 
scantiest of sensory sequences.6 (3) Our system generates a causal model that is able to accurately predict future sensory 
input. But that is not all it can do; it is also able to retrodict previous values and impute missing sensory values in the middle 

1 See, for example, [1–5]. See also the Predictive Processing paradigm: [6–8].
2 We show, in the ablation experiments of Section 5, that without these unity conditions, our computer implementation is much less accurate at predic-

tion, retrodiction, and imputation.
3 “Apperception” comes from the French ‘apercevoir’. The term is introduced by Leibniz in the New Essays Concerning Human Understanding [20]. Ap-

perception, as we use it in this paper, is the process of assimilating sensory information into a coherent unified whole. See Dewey: “Apperception is the 
relating activity which combines the various sensuous elements presented to the mind at one time into a whole, and which unites these wholes, recurring 
at successive times, into a continuous mental life, thereby making psychical life intelligent” [21].

4 Our code and datasets are publicly available at https://github .com /RichardEvans /apperception.
5 Human readability is a much touted feature of Inductive Logic Programming (ILP) systems, but when the learned programs become large and include 

a number of invented auxiliary predicates, the resulting programs become less readable (see [23]). But even a large and complex machine-generated logic 
program will be easier to understand than a large tensor of floating point numbers.

6 Our sensory sequences are less than 300 bits. See Table 4.
2
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of the sensory stream. In fact, our system is able to predict, retrodict, and impute simultaneously.7 (4) The Apperception 
Engine has been tested in a diverse variety of domains, with encouraging results. The five domains we use are elementary 
cellular automata, rhythms and nursery tunes, “Seek Whence” and C-test sequence induction intelligence tests [24], multi-
modal binding tasks, and occlusion problems. These tasks were chosen because they require cognition rather than mere 
classificatory perception, and because they are simple for humans but not for modern machine learning systems, e.g. neural 
networks.8 The Apperception Engine performs well in all these domains, significantly out-performing neural net baselines. 
These results are significant because neural systems typically struggle to solve the binding problem (where information from 
different modalities must somehow be combined into different aspects of one unified object) and fail to solve occlusion tasks 
(in which objects are sometimes visible and sometimes obscured from view).

We note in particular that in the sequence induction intelligence tests, our system achieved human-level performance. 
This is notable because the Apperception Engine was not designed to solve these induction tasks; it is not a bespoke hand-
engineered solution to this particular domain. Rather, it is a general-purpose9 system that attempts to make sense of any
sensory sequence. This is, we believe, a highly suggestive result [25].

In ablation tests, we tested what happened when each of the four unity conditions was turned off. Since the system’s 
performance deteriorates noticeably when each unity condition is ablated, this indicates that the unity conditions are indeed 
doing vital work in our engine’s attempts to make sense of the incoming barrage of sensory data.

1.1. Related work

A human being who has built a mental model of the world can use that model for counterfactual reasoning, anticipation, 
and planning [26–28]. Similarly, computer agents endowed with mental models are able to achieve impressive performance 
in a variety of domains. For instance, Lukasz Kaiser et al. [29] show that a model-based reinforcement learning agent 
trained on 100K interactions compares with a state-of-the-art model-free agent trained on tens or hundreds of millions of 
interactions. David Silver et al. [30] have shown that a model-based Monte Carlo tree search planner with policy distillation 
can achieve superhuman level performance in a number of board games. The tree search relies, crucially, on an accurate 
model of the game dynamics.

When we have an accurate model of the environment, we can leverage that model to anticipate and plan. But in many 
domains, we do not have an accurate model. If we want to apply model-based methods in these domains, we must learn a 
model from the stream of observations. In the rest of this section, we shall describe various different approaches to repre-
senting and learning models, and show where our particular approach fits into the landscape of model learning systems.

Before we start to build a model to explain a sensory sequence, one fundamental question is: what form should the 
model take? We shall distinguish three dimensions of variation of models (adapted from [31]): first, whether they simply 
model the observed phenomena, or whether they also model latent structure; second, whether the model is explicit and 
symbolic or implicit; and third, what type of prior knowledge is built into the model structure.

We shall use the hidden Markov model (HMM)10 [32,33] as a general framework for describing sequential processes. 
Here, the observation at time t is xt , and the latent state is zt . In a HMM, the observation xt at time t depends only on the 
latent (unobserved) state zt . The state zt in turn depends only on the previous latent state zt−1.

The first dimension of variation amongst models is whether they actually use latent state information zt to explain the 
observation xt . Some approaches [34–39] assume we are given the underlying state information z1:t . In these approaches, 
there is no distinction between the observed phenomena and the latent state: xi = zi . With this simplifying assumption, 
the only thing a model needs to learn is the transition function. Other approaches [40,2,41] focus only on the observed 
phenomena x1:t and ignore latent information z1:t altogether. These approaches predict observation xt+1 given observation 
xt without positing any hidden latent structure. Some approaches take latent information seriously [42–44,5,45]. These 
jointly learn a perception function (that produces a latent zt from an observed xt ), a transition function (producing a next 
latent state zt+1 from latent state zt ) and a rendering function (producing a predicted observation xt+1 from the latent 
state zt+1). Our approach also builds a latent representation of the state. As well as positing latent properties (unobserved 
properties that explain observed phenomena), we also posit latent objects (unobserved objects whose relations to observed 
objects explain observed phenomena).

The second dimension of variation concerns whether the learned model is explicit, symbolic and human-readable, or 
implicit and inscrutable. In some approaches [42–44,5], the latent states are represented by vectors and the dynamics of 
the model by weight tensors. In these cases, it is hard to understand what the system has learned. In other approaches 

7 See Example 3 for a case where the Apperception Engine jointly predicts, retrodicts, and imputes.
8 Fig. 7 shows how neural baselines struggle to solve these tasks.
9 Although the algorithm is general-purpose (the exact same code is applied to many different domains), domain-specific knowledge can be injected as 

needed. For example, in the sequence induction tasks (Section 5.1.4), the successor relation on letters is provided to the system. But this information is 
arguably part of the problem formulation, rather than part of the solution.
10 Many systems predict state dynamics for partially observable Markov decision processes (POMDPs), rather than HMMs. In a POMDP, the state transition 

function depends on the previous state zt and the action at performed by an agent. See Jessica Hamrick’s paper for an excellent overview [31] of model-
based methods in deep learning that is framed in terms of POMDPs. In this paper, we consider HMMs. Adding actions to our model is not particularly 
difficult, but is left for further work.
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[46–49], the latent state is represented symbolically, but the state transition function is represented by the weight tensor of 
a neural network and is inscrutable. We may have some understanding of what state the machine thinks it is in, but we do 
not understand why it thinks there is a transition from this state to that. In some approaches [11,12,50–53], both the latent 
state and the state transition function are represented symbolically. Here, the latent state is a set of ground atoms11 and the 
state transition function is represented by a set of universally quantified rules. Our approach falls into this third category. 
Here, the model is fully interpretable: we can interpret the state the machine thinks it is in, and we can understand the 
reason why it believes it will transition to the next state.

A third dimension of variation between models is the amount and type of prior knowledge that they include. Some model 
learning systems have very little prior knowledge. In some of the neural systems (e.g. [2]), the only prior knowledge is the 
spatial invariance assumption implicit in the convolutional network’s structure. Other models incorporate prior knowledge 
about the way objects and states should be represented. For example, some models assume objects can be composed in 
hierarchical structures [47]. Other systems additionally incorporate prior knowledge about the type of rules that are used to 
define the state transition function. For example, some [51–53] use prior knowledge of the event calculus [54]. Our approach 
falls into this third category. We impose a language bias in the form of rules used to define the state transition function 
and also impose additional requirements on candidate sets of rules: they must satisfy the four unity conditions introduced 
above (and elaborated in Section 3.3 below).

To summarize, in order to position our approach within the landscape of other approaches, we have distinguished three 
dimensions of variation. Our approach differs from neural approaches in that the posited theory is explicit and human 
readable. Not only is the representation of state explicit (represented as a set of ground atoms) but the transition dynam-
ics of the system are also explicit (represented as universally quantified rules in a domain specific language designed for 
describing causal structures). Our approach differs from other inductive program synthesis methods in that it posits signif-
icant latent structure in addition to the induced rules to explain the observed phenomena: in our approach, explaining a 
sensory sequence does not just mean constructing a set of rules that explain the transitions; it also involves positing a type 
signature containing a set of latent properties and a set of latent objects. Our approach also differs from other inductive 
program synthesis methods in the type of prior knowledge that is used: as well as providing a strong language bias by 
using a particular representation language (a typed extension of datalog with causal rules and constraints), we also inject 
a substantial inductive bias: the unity conditions, the key constraints on our system, represent domain-independent prior 
knowledge. Our approach also differs from other inductive program synthesis methods in being entirely unsupervised. In 
contrast, OSLA and OLED [51,52] are supervised, and SPLICE [53] is semi-supervised. See Section 7 for detailed discussion.

1.2. Paper outline

Section 2 introduces basic notation. Section 3 presents the main definition of what it means for a theory to count as 
a unified interpretation of a sensory sequence. Section 4 describes a computer system that is able to generate unified in-
terpretations of sensory sequences. Section 5 describes our experiments in five different types of task: elementary cellular 
automata, rhythms and nursery tunes, “Seek Whence” sequence induction tasks, multi-modal binding tasks, and occlusion 
problems. In Section 6, we show how our system is extended to robustly handle noise. Related work is discussed in Sec-
tion 7.

2. Background

In this paper, we use basic concepts and standard notation from logic programming [55–57]. A function-free atom is an 
expression of the form p(t1, ..., tn), where p is a predicate of arity n ≥ 0 and each ti is either a variable or a constant. We 
shall use a, b, c, ... for constants, X, Y , Z , ... for variables, and p, q, r, ... for predicate symbols.

A substitution σ is a mapping from variables to terms. For example σ = {X/a, Y /b} replaces variable X with constant a
and replaces variable Y with constant b. We write ασ for the application of substitution σ to atom α, so e.g. p(X, Y )σ =
p(a, b).

A Datalog clause is a definite clause of the form α1 ∧ ... ∧αn → α0 where each αi is an atom and n ≥ 0. It is traditional to 
write clauses from right to left: α0 ← α1, ..., αn . In this paper, we will define a Datalog interpreter implemented in another 
logic programming language, ASP (answer-set programming). In order to keep the two languages distinct, we write Datalog 
rules from left to right and ASP clauses from right to left. A Datalog program is a set of Datalog clauses.

A key result of logic programming is that every Datalog program has a unique subset-minimal least Herbrand model that 
can be directly computed by repeatedly generating the consequences of the ground instances of the clauses [58].

We turn now from Datalog to normal logic programs under the answer set semantics [59]. A literal is an atom α or a 
negated atom not α. A normal logic program is a set of clauses of the form:

α0 ← α1, ...,αn

11 A ground atom is a logical atom that contains no variables.
4
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where α0 is an atom, α1, ..., αn is a conjunction of literals, and n ≥ 0. Normal logic clauses extend Datalog clauses by 
allowing functions in terms and by allowing negation by failure in the body of the rule.

Answer Set Programming (ASP) is a logic programming language based on normal logic programs under the answer set 
semantics. Given a normal logic program, an ASP solver finds the set of answer sets for that program. Modern ASP solvers 
can also be used to solve optimization problems by the introduction of weak constraints [60]. A weak constraint is a rule 
that defines the cost of a certain tuple of atoms. Given a program with weak constraints, an ASP solver can find a preferred 
answer set with the lowest cost.

3. A computational framework for making sense of sensory sequences

What does it mean to make sense of a sensory sequence? In this section, we formalize what this means, before describing 
our computer implementation. We assume that the sensor readings have already been discretized into ground atoms of first-
order logic, so a sensory reading featuring sensor a can be represented by a ground atom p(a) for some unary predicate p, 
or by an atom r(a, b) for some binary relation r and unique value b.12

Definition 1. An unambiguous symbolic sensory sequence is a sequence of sets of ground atoms. Given a sequence S =
(S1, S2, ...), every state St in S is a set of ground atoms, representing a partial description of the world at a discrete time 
step t . An atom p(a) ∈ St represents that sensor a has property p at time t . An atom r(a, b) ∈ St represents that sensor a is 
related via relation r to value b at time t . If G is the set of all ground atoms, then S ∈ (

2G
)∗

.

Example 1. Consider, the following sequence S1:10. Here there are two sensors a and b, and each sensor can be either on or 
off .

S1 = {} S2 = {off (a),on(b)} S3 = {on(a),off (b)} S4 = {on(a),on(b)} S5 = {on(b)}
S6 = {on(a),off (b)} S7 = {on(a),on(b)} S8 = {off (a),on(b)} S9 = {on(a)} S10 = {}

There is no expectation that a sensory sequence contains readings for all sensors at all time steps. Some of the readings 
may be missing. In state S5, we are missing a reading for a, while in state S9, we are missing a reading for b. In states S1
and S10, we are missing sensor readings for both a and b. 	

The central idea is to make sense of a sensory sequence by constructing a unified theory that explains that sequence. The 
key notions, here, are “theory”, “explains”, and “unified”. We consider each in turn.

3.1. The theory

Theories are defined in a new language, Datalog⊃–, designed for modelling dynamics. In this language, one can describe 
how facts change over time by writing a causal rule stating that if the antecedent holds at the current time-step, then the 
consequent holds at the next time-step. Additionally, our language includes a frame axiom allowing facts to persist over 
time: each atom remains true at the next time-step unless it is overridden by a new fact which is incompatible with it. Two 
facts are incompatible if there is a constraint that precludes them from both being true. Thus, Datalog⊃– extends Datalog 
with causal rules and constraints.

Definition 2. A theory is a four-tuple (φ, I, R, C) of Datalog⊃– elements where:

• φ is a type signature specifying the types of constants, variables, and arguments of predicates
• I is a set of initial conditions
• R is a set of rules describing the dynamics
• C is a set of constraints

We shall consider each element in turn, starting with the type signature.

Definition 3. Given a set T of types, a set O of constants representing individual objects, and a set P of predicates repre-
senting properties and relations, let G be the set of all ground atoms formed from T , O, and P . Given a set V of variables, 
let U be the set of all unground atoms formed from T , V , and P .

A type signature is a tuple (T , O , P , V ) where T ⊆ T is a finite set of types, O  ⊆O is a finite set of constants represent-
ing objects, P ⊆ P is a finite set of predicates representing properties and relations, and V ⊆ V is a finite set of variables. 
We write κO : O  → T for the type of an object, κP : P → T ∗ for the types of the predicate’s arguments, and κV : V → T for 
the type of a variable.

12 We restrict our attention to unary and binary predicates. This restriction can be made without loss of generality, since every k-ary relationship can be 
expressed as k + 1 binary relationships [61].
5
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Now some type signatures are suitable for some sensory sequences, while others are unsuitable, because they do not 
contain the right constants and predicates. The following definition formalizes this:

Definition 4. Let G S = ⋃
t≥1 St be the set of all ground atoms that appear in sensory sequence S = (S1, ...). Let Gφ be the 

set of all ground atoms that are well-typed according to type signature φ. If φ = (T , O , P , V ) then Gφ = {p(a1, ..., an) | p ∈
P , κP (p) = (t1, ..., tn), ai ∈ O , κO (ai) = ti for all i = 1..n}. A type signature φ is suitable for a sensory sequence S if all the 
atoms in S are well-typed according to signature φ, i.e. G S ⊆ Gφ .

Next, we define the set of unground atoms for a particular type signature.

Definition 5. Let Uφ be the set of all unground atoms that are well-typed according to signature φ. If φ = (T , O , P , V ) then 
Uφ = {p(v1, ..., vn) | p ∈ P , κP (p) = (t1, ..., tn), vi ∈ V , κV (vi) = ti for all i = 1..n}. Note that, according to this definition, an 
atom is unground if all its terms are variables. Note that “unground” means more than simply not ground. For example, 
p(a, X) is neither ground nor unground.

Example 2. One suitable type signature for the sequence of Example 1 is (T , O , P , V ), consisting of types T = {s}, objects 
O  = {a:s, b:s}, predicates P = {on(s), off (s)}, and variables V = {X :s, Y :s}. Here, and throughout, we write a:s to mean that 
object a is of type s, on(s) to mean that unary predicate on takes one argument of type s, and X :s to mean that variable X
is of type s. The unground atoms are Uφ = {on(X), off (X), on(Y ), off (Y )}. There are, of course, an infinite number of other 
suitable signatures. 	

Definition 6. The initial conditions I of a theory (φ, I, R, C) is a set of ground atoms from Gφ representing a partial 
description of the facts true at the initial time step.

The initial conditions are needed to specify the initial values of the latent unobserved information. Some systems (e.g. 
LFIT [12]) define a predictive model without using a set I of initial conditions. These systems are able to avoid positing 
initial conditions because they do not use latent unobserved information. But any system that does invoke latent information 
beneath the surface of the sensory stimulations must also define the initial values of the latent information.

The rules define the dynamics of the theory:

Definition 7. There are two types of rule in Datalog⊃–. A static rule is a definite clause of the form α1 ∧ ... ∧αn → α0, where 
n ≥ 0 and each αi is an unground atom from Uφ consisting of a predicate and a list of variables. Informally, a static rule is 
interpreted as: if conditions α1, ...αn hold at the current time step, then α0 also holds at that time step. A causal rule is a 
clause of the form α1 ∧ ... ∧ αn⊃–α0, where n ≥ 0 and each αi is an unground atom from Uφ . A causal rule expresses how 
facts change over time. Rule α1 ∧ ... ∧ αn⊃–α0 states that if conditions α1, ...αn hold at the current time step, then α0 holds 
at the next time step.

All variables in rules are implicitly universally quantified. So, for example, on(X)⊃– off (X) states that for all objects X , if 
X is currently on, then X will become off at the next-time step.

The constraints rule out certain combinations of atoms13:

Definition 8. There are three types of constraint in Datalog⊃–. A unary constraint is an expression of the form ∀X, p1(X) ⊕
... ⊕ pn(X), where n > 1, meaning that for all X , exactly one of p1(X), ..., pn(X) holds. A binary constraint is an expression 
of the form ∀X, ∀Y , r1(X, Y ) ⊕ ... ⊕ rn(X, Y ) where n > 1, meaning that for all objects X and Y , exactly one of the binary 
relations hold. A uniqueness constraint is an expression of the form ∀X, ∃!Y :t2, r(X, Y ), which means that for all objects X
of type t1 there exists a unique object Y such that r(X, Y ).

Note that the rules and constraints are constructed entirely from unground atoms. Disallowing constants prevents special-
case rules that apply to particular objects, and forces the theory to be general.14

3.2. Explaining the sensory sequence

A theory explains a sensory sequence if the theory generates a trace15 that covers that sequence. In this section, we 
explain the trace and the covering relation.

13 Note that exclusive disjunction between atoms p1(X), ..., pn(X) is different from xor between the n atoms. The xor of n atoms is true if an odd number 
of the atoms hold, while the exclusive disjunction is true if exactly one of the atoms holds. We write p1(X) ⊕ ... ⊕ pn(X) to mean exclusive disjunction 
between n atoms, not the application of n − 1 xor operations.
14 This restriction also occurs in some ILP systems [12,62].
15 In [12], the trace is called the orbit.
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Definition 9. Every theory θ = (φ, I, R, C) generates an infinite sequence τ (θ) of sets of ground atoms, called the trace of 
that theory. Here, τ (θ) = (A1, A2, ...), where each At is the smallest set of atoms satisfying the following conditions:

• I ⊆ A1
• If there is a static rule β1 ∧ ... ∧βm → α in R and a ground substitution σ such that At satisfies βiσ for each antecedent 

βi , then ασ ∈ At

• If there is a causal rule β1 ∧ ... ∧ βm⊃–α in R and a ground substitution σ such that At−1 satisfies βiσ for each 
antecedent βi , then ασ ∈ At

• Frame axiom: if α is in At−1 and there is no atom in At that is incompossible with α w.r.t constraints C , then α ∈ At . 
Two ground atoms are incompossible if there is some constraint c in C and some substitution σ such that the ground 
constraint cσ precludes both atoms being true.

The frame axiom is a simple way of providing inertia: a proposition continues to remain true until something new comes 
along which is incompatible with it. Including the frame axiom makes our theories much more concise: instead of needing 
rules to specify all the atoms which remain the same, we only need rules that specify the atoms that change.

Note that the state transition function is deterministic: At is uniquely determined by At−1.

Theorem 1. The trace of every theory repeats after some finite number of steps. For any theory θ , there exists a k such that τ (θ) =
(A1, ..., Ak−1, Ak, Ak+1, ...) and for all i ≥ 0, Ai = Ak+i .

Proof. Since the set Gφ of ground atoms is finite, there must be a k such that A1 = Ak . The proof proceeds by induction on 
i. If i = 0, the proof is trivial. When i > 0, note that the trace function τ satisfies the Markov condition that the next state 
At+1 depends only on the current state At , and not on any earlier states. Hence if Ai = Ai+k , then Ai+1 = Ai+k+1. �

One important consequence of Theorem 1 is:

Theorem 2. Given a theory θ and a ground atom α, it is decidable whether α appears somewhere in the infinite trace τ (θ).

Proof. Let τ (θ) be the infinite sequence (A1, A2, ...). From Theorem 1, the trace must repeat after k time steps. Thus, to 
check whether ground atom α appears somewhere in τ (θ), it suffices to test if α appears in A1, ..., Ak . �

Next we define what it means for a theory to “explain” a sensory sequence.

Definition 10. Given finite sequence S = (S1, ..., ST ) and (not necessarily finite) S ′ , S � S ′ if S ′ = (S ′
1, S

′
2, ...) and Si ⊆ S ′

i for 
all 1 ≤ i ≤ T . If S � S ′ , we say that S is covered by S ′ , or that S ′ covers S . A theory θ explains a sensory sequence S if the 
trace of θ covers S , i.e. S � τ (θ).

In providing a theory θ that explains a sensory sequence S , we make S intelligible by placing it within a bigger picture: 
while S is a scanty and incomplete description of a fragment of the time-series, τ (θ) is a complete and determinate 
description of the whole time-series.

Example 3. We shall provide a theory to explain the sensory sequence S of Example 1.
Consider the type signature φ = (T , O , P , V ), consisting of types T = {s}, objects O  = {a:s, b:s}, predicates P =

{on(s), off (s), p1(s), p2(s), p3(s), r(s, s)}, and variables V = {X :s, Y :s}. Here, φ extends the type signature of Example 2 by 
adding three unary predicates p1, p2, p3, and one binary relation r.16

Consider the theory θ = (φ, I, R, C), where:

I =

⎧⎪⎪⎨
⎪⎪⎩

p1(b)

p2(a)

r(a,b)

r(b,a)

⎫⎪⎪⎬
⎪⎪⎭

R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1(X)⊃– p2(X)

p2(X)⊃– p3(X)

p3(X)⊃– p1(X)

p1(X) → on(X)

p2(X) → on(X)

p3(X) → off (X)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

C =
⎧⎨
⎩

∀X :s, on(X) ⊕ off (X)

∀X :s, p1(X) ⊕ p2(X) ⊕ p3(X)

∀X :s, ∃!Y :s r(X, Y )

⎫⎬
⎭

16 Extended type signatures are generated by the machine, not by hand. Our computer implementation searches through the space of increasingly complex 
type signatures extending the original signature. This search process is described in Section 4.1.
7
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The infinite trace τ (θ) = (A1, A2, ...) for theory θ begins with:

A1 = {on(a),on(b), p2(a), p1(b), r(a,b), r(b,a)} A2 = {off (a),on(b), p3(a), p2(b), r(a,b), r(b,a)}
A3 = {on(a),off (b), p1(a), p3(b), r(a,b), r(b,a)} A4 = {on(a),on(b), p2(a), p1(b), r(a,b), r(b,a)}
. . .

Note that the trace repeats at step 4. In fact, it is always true that the trace repeats after some finite set of time steps.
Theory θ explains the sensory sequence S of Example 1, since the trace τ (θ) covers S . Note that τ (θ) “fills in the blanks” 

in the original sequence S , both predicting final time step 10, retrodicting initial time step 1, and imputing missing values 
for time steps 5 and 9. 	

3.3. Unifying the sensory sequence

Next, we proceed from explaining a sensory sequence to “making sense” of that sequence. In order for θ to make sense 
of S , it is necessary that τ (θ) covers S . But this condition is not, on its own, sufficient. The extra condition that is needed 
for θ to count as “making sense” of S is for θ to be unified. We require that the constituents of the theory are integrated 
into a coherent whole. A trace τ (θ) of theory θ is a (i) sequence of (ii) sets of ground atoms composed of (iii) predicates 
and (iv) objects. For the theory θ to be unified is for unity to be achieved at each of these four levels17:

Definition 11. A theory θ is unified if each of the four conditions hold:

1. Objects are united in space (see Section 3.3.1)
2. Predicates are united via constraints (see Section 3.3.2)
3. Ground atoms are united into states by jointly respecting constraints and static rules (see Section 3.3.3)
4. States are united into a sequence by causal rules (see Section 3.3.4)

3.3.1. Spatial unity

Definition 12. A theory θ satisfies spatial unity if for each state At in τ (θ) = (A1, A2, ...), for each pair (x, y) of distinct 
objects, x and y are connected via a chain of binary atoms {r1(x, z1), r2(z1, z2), ...rn(zn−1, zn), rn+1(zn, y)} ⊆ At .

If this condition is satisfied, it means that given any object, we can get to any other object by hopping along relations. 
Everything is connected, even if only indirectly.

Note that this notion of spatial unity is rather abstract: the requirement is only that every pair of objects are indirectly 
connected via some chain of binary relations. Although some of these binary relations might be spatial relations (e.g. “left-
of”), they need not all be. The requirement is only that every pair of objects are connected via some chain of binary 
relations; it does not insist that each binary relation has a specifically “spatial” interpretation.

3.3.2. Conceptual unity
A theory satisfies conceptual unity if every predicate is involved in some constraint, either exclusive disjunction (⊕) or 

unique existence (∃!). The intuition here is that constraints combine predicates into clusters of mutual incompatibility.

Definition 13. A theory θ = (φ, I, R, C) satisfies conceptual unity if for each unary predicate p in φ, there is some xor 
constraint in C of the form ∀X :t, p(X) ⊕ q(X) ⊕ ... containing p; and, for each binary predicate r in φ, there is some xor 
constraint in C of the form ∀X :t1, ∀Y :t2, r(X, Y ) ⊕ s(X, Y ) ⊕ ... or some ∃! constraint in C of the form ∀X :t, ∃!Y :t2, r(X, Y ).

To see the importance of this, observe that if there are no constraints, then there are no exhaustiveness or exclusive-
ness relations between atoms. An xor constraint e.g. ∀X :t, on(X) ⊕ off (X) both rules out the possibility that an object is 
simultaneously on and off (exclusiveness) and also rules out the possibility that an object of type t is neither on nor off
(exhaustiveness). It is exhaustiveness which generates states that are determinate, in which it is guaranteed every object of 
type t is e.g. either on or off . It is exclusiveness which generates incompossibility between atoms, e.g. that on(a) and off (a)

are incompossible. Incompossibility, in turn, is needed to constrain the scope of the frame axiom (see Definition 9 above). 
Without incompossibility, all atoms from the previous time-step would be transferred to the next time-step, and the set of 
true atoms in the sequence (S1, S2, ...) would grow monotonically over time: Si ⊆ S j if i ≤ j, which is clearly unacceptable. 
The purpose of the constraint of conceptual unity is to collect predicates into groups, to provide determinacy in each state, 
and to ground the incompossibility relation that constrains the way information persists between states.18

17 The unity conditions were inspired by Kant’s discussion of the “synthetic unity of apperception” in the Critique of Pure Reason [63].
18 A natural question to ask at this point is: why use exclusive disjunction to represent constraints? Why not instead represent constraints using strong 

negation and negation as failure [64], since an exclusive disjunction can always be converted into a set of extended clauses representing the predicates’ 
8
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3.3.3. Static unity
In our effort to interpret the sensory sequence, we construct various ground atoms. These need to be grouped together, 

somehow, into states (sets of atoms). But what determines how these atoms are grouped together into states?
Treating a set A of ground atoms as a state is (i) to insist that A satisfies all the constraints in C and (ii) to insist that A

is closed under the static rules in R:

Definition 14. A theory θ = (φ, I, R, C) satisfies static unity if every state (A1, A2, ...) in τ (θ) satisfies all the constraints in 
C and is closed under the static rules in R .

Static unity is an uncontroversial requirement and is used in other ILP systems [67,68]. Note that, from the definition of 
the trace in Definition 9, all the states in τ (θ) are automatically closed under the static rules in R .

3.3.4. Temporal unity
Given a set of states, we need to unite these elements in a sequence. According to the fourth and final condition of unity, 

the only thing that can unite states in a sequence is a set of causal rules. These causal rules are universal in two senses: they 
apply to all object tuples, and they apply at all times. A causal rule α1 ∧ ... ∧ αn⊃–α0 fixes the temporal relation between 
the atoms α1, ..., αn (which are true at t) and the atom α0 (which is true at t + 1):

Definition 15. A sequence (A1, A2, ...) of states satisfies temporal unity with respect to a set R⊃– of causal rules if, for each 
α1 ∧ ... ∧ αn⊃–α0 in R⊃–, for each ground substitution σ , for each time-step t , if {α1σ , ..., αnσ } ⊆ At then α0σ ∈ At+1.

Temporal unity is an uncontroversial requirement and is also used in other ILP systems such as LFIT [12]. Note that, from 
the definition of the trace in Definition 9, the trace τ (θ) automatically satisfies temporal unity.

3.3.5. The four conditions of unity
To recap, the trace of a theory is a sequence of sets of atoms. The four types of element are objects, predicates, sets of 

atoms, and sequences of sets of atoms. Each of the four types of element has its own form of unity:

1. Spatial unity: objects are united in space by being connected via chains of relations
2. Conceptual unity: predicates are united by constraints
3. Static unity: atoms are united in a state by jointly satisfying constraints and static rules
4. Temporal unity: states are united in a sequence by causal rules

Since temporal unity is automatically satisfied from the definition of a trace in Definition 9, we are left with only three 
unity conditions that need to be explicitly checked: spatial unity, conceptual unity, and static unity. A trace partially satisfies 
static unity since the static rules are automatically enforced by Definition 9; but the constraints are not necessarily satisfied.

Note that both checking spatial unity and checking static unity require checking every time-step, and the trace is in-
finitely long. However, as long as the trace repeats at some point, Theorem 1 ensures that we need only check the finite 
portion of the trace until we find the first repetition (the first k such that A1 = Ak where τ (θ) = (A1, ...)).

3.4. Making sense

Now we are ready to define the central notion of “making sense” of a sequence.

Definition 16. A theory θ makes sense of a sensory sequence S if θ explains S , i.e. S � τ (θ), and θ satisfies the four 
conditions of unity of Definition 11. If θ makes sense of S , we also say that θ is a unified interpretation of S .

Example 4. The theory θ of Example 3 satisfies the four unity conditions since:

1. For each state Ai in τ (θ), a is connected to b via the singleton chain {r(a, b)}, and b is connected to a via {r(b, a)}.

exclusiveness, and one normal clause representing their exhaustiveness? The main reason we chose to add exclusive disjunction as a first-class language 
construct in Datalog⊃–, rather than adding negation as failure, is that it means we can avoid the complexities involved in the semantics if we added negation 
as failure to our target language. There are various semantics for normal logic programs that include negation as failure (e.g. Clark completion [65], stable 
model semantics [59], well-founded models [66]), but each of them introduces significant additional complexities when compared with the least model of 
a definite logic program: the Clark completion is not always consistent (does not always have a model), the stable model semantics assigns the meaning of 
a normal logic program to a set of models rather than a single model, and the well-founded model uses a 3-valued logic where atoms can be true, false, 
or undefined. Thus, the main reason for expressing constraints using exclusive disjunction (rather than using negation as failure) is to restrict the rules to 
definite rules and avoid the complexities of the various semantics of normal logic programs.
9
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2. The predicates of θ are on, off , p1, p2, p3, r. Here, on and off are involved in the constraint ∀X :s, on(X) ⊕ off (X), 
while p1, p2, p3 are involved in the constraint ∀X :s, p1(X) ⊕ p2(X) ⊕ p3(X), and r is involved in the constraint 
∀X :s, ∃!Y :s r(X, Y ).

3. Let τ (θ) = (A1, A2, A3, A4, ...). It is straightforward to check that A1, A2, and A3 satisfy each constraint in C . Observe 
that A4 repeats A1, thus Theorem 1 ensures that we do not need to check any more time steps.

4. Temporal unity is automatically satisfied by the definition of the trace τ (θ) in Definition 9.

Hence, θ makes sense of sensory sequence S of Example 1, since S � τ (θ) (Example 3) and θ also satisfies the four 
conditions of unity. 	

In our search for interpretations that make sense of sensory sequences, we are particularly interested in parsimonious
interpretations. To this end, we define the cost of a theory19:

Definition 17. Given a theory θ = (φ, I, R, C), the cost of θ is

|I| +
∑{

n + 1 | α1 ∧ ... ∧ αn ◦ α0 ∈ R,◦ ∈ {→,⊃– } }
Here, cost(θ) is just the total number of ground atoms in I plus the total number of unground atoms in the rules of R .

The key notion of this section is the discrete apperception task.

Definition 18. The input to an apperception task is a triple (S, φ, C) consisting of a sensory sequence S , a suitable type 
signature φ, and a set C of (well-typed) constraints such that (i) each predicate in S appears in some constraint in C and 
(ii) S can be extended to satisfy C : there exists a sequence S ′ covering S such that each state in S ′ satisfies each constraint 
in C .

Given such an input triple (S, φ, C), the discrete apperception task is to find the lowest cost theory θ = (φ′, I, R, C ′)
such that φ′ extends φ, C ′ ⊇ C , and θ makes sense of S .

Note that the input to an apperception task is more than just a sensory sequence S . It also contains a type signature 
φ and a set C of constraints. A natural question at this point is: why not simply let the input to an apperception task be 
just the sequence S , and ask the system to produce some theory θ satisfying the unity conditions such that S � τ (θ)? The 
reason that the input needs to contain types φ and constraints C to supplement S is that otherwise the task is severely 
under-constrained, as the following example shows.

Example 5. Suppose our sequence is S = ({on(a)}, {off (a)}, {on(a)}, {off (a)}, {on(a)}, {off (a)}). If we are not given any con-
straints (such as ∀X : t, on(X) ⊕ off (X)), if we are free to construct any φ and any set C of constraints, then the following 
interpretation θ = (φ, I, R, C) will suffice, where φ = (T , O , P , V ), consisting of types T = {t}, objects O  = {a:t}, predicates 
P = {on(t), off (t), p(t), q(t)}, and variables V = {X :t}, and suppose that I, R, C are defined as:

I =
{

on(a)

off (a)

}
R = { }

C =
{ ∀X :t, on(X) ⊕ p(X)

∀X :t, off (X) ⊕ q(X)

}

Here we have introduced two latent predicates p and q which are incompatible with on and off respectively. But in this 
interpretation, on and off are not incompatible with each other, so the degenerate interpretation (where both on and off
are true at all times) is acceptable. This shows the need for including constraints on the input predicates as part of the task 
formulation.

More generally, for any sensory sequence (S1, ..., ST ) featuring predicates p1, ..., pn , but no constraints between 
p1, ..., pn , we can always construct a degenerate interpretation by adding new predicates q1, ..., qn with an xor constraint 
∀X : t, pi(X) ⊕ qi(X) between each predicate pi and the corresponding new predicate qi . In the degenerate interpretation, 
the initial conditions I are S1 ∪ ... ∪ ST , and the rules R are empty. This shows that, without constraints on the predicates 
appearing in the initial sequence, the problem is underspecified. 	

The apperception task can be generalized to the case where we are given as input, not a single sensory sequence S , but 
a set of m such sequences.

19 Note that this simple measure of cost does not depend on the constraints in C or the type signature φ. There are various alternative more complex 
definitions of cost. We could, for example, use the Kolmogorov complexity [69] of θ : the size of the smallest program that can generate θ . Or we could use 
Levin complexity [70] and also take into account the log of the computation time needed to generate τ (θ), up to the point where the trace first repeats.
10
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Definition 19. Given a set {S1, ..., Sm} of sensory sequences, a type signature φ and constraints C such that each (Si, φ, C)

is a valid input to an apperception task as defined in Definition 18, the generalized apperception task is to find a lowest-
cost theory (φ′, {}, R, C ′) and sets {I1, ..., Im} of initial conditions such that φ′ extends φ, C ′ ⊇ C , and for each i = 1..m, 
(φ′, I i, R, C ′) makes sense of Si .

3.5. Examples

In this section, we provide a worked example of an apperception task, along with different unified interpretations. We 
wish to highlight that there are always many alternative ways of interpreting a sensory sequence, each with different latent 
information (although some may have higher cost than others).

We continue to use our running example, the sensory sequence from Example 1. Here there are two sensors a and b, 
and each sensor can be on or off .

S1 = {} S2 = {off (a),on(b)} S3 = {on(a),off (b)} S4 = {on(a),on(b)} S5 = {on(b)}
S6 = {on(a),off (b)} S7 = {on(a),on(b)} S8 = {off (a),on(b)} S9 = {on(a)} S10 = {}

Let φ = (T , O , P , V ) where T = {sensor}, O  = {a, b}, P = {on(sensor), off (sensor)}, V = {X :sensor}. Let C = {∀X :sensor,
on(X) ⊕ off (X)}.

Examples 6, 7, and 8 below show three different unified interpretations of Example 1.

Example 6. One possible way of interpreting Example 1 is as follows. The sensors a and b are simple state machines that 
cycle between states p1, p2, and p3. Each sensor switches between on and off depending on which state it is in. When it is 
in states p1 or p2, the sensor is on; when it is in state p3, the sensor is off. In this interpretation, the two state machines 
a and b do not interact with each other in any way. Both sensors are following the same state transitions. The reason the 
sensors are out of sync is because they start in different states.

The type signature for this first unified interpretation is φ′ = (T , O , P , V ), where T = {sensor}, O  = {a:sensor, b:sensor}, 
P = {on(sensor), off (sensor), r(sensor, sensor), p1(sensor), p2(sensor), p3(sensor)}, and V = {X :sensor, Y :sensor}. The three 
unary predicates p1, p2, and p3 are used to represent the three states of the state machine.

Our first unified interpretation is the tuple (φ′, I, R, C ′), where:

I =

⎧⎪⎪⎨
⎪⎪⎩

p2(a)

p1(b)

r(a,b)

r(b,a)

⎫⎪⎪⎬
⎪⎪⎭

R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1(X)⊃– p2(X)

p2(X)⊃– p3(X)

p3(X)⊃– p1(X)

p1(X) → on(X)

p2(X) → on(X)

p3(X) → off (X)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

C ′ =
⎧⎨
⎩

∀X :sensor, on(X) ⊕ off (X)

∀X :sensor, p1(X) ⊕ p2(X) ⊕ p3(X)

∀X :sensor, ∃!Y :sensor r(X, Y )

⎫⎬
⎭

The update rules R contain three causal rules (using ⊃– ) describing how each sensor cycles from state p1 to p2 to p3, and 
then back again to p1. For example, the causal rule p1(X)⊃– p2(X) states that if sensor X satisfies p1 at time t , then X
satisfies p2 at time t + 1. We know that X is a sensor from the variable typing information in φ′ . R also contains three 
static rules (using →) describing how the on or off attribute of a sensor depends on its state. For example, the static rule 
p1(Y ) → on(X) states that if X satisfies p1 at time t , then X also satisfies on at time t .

The constraints C ′ state that (i) every sensor is (exclusively) either on or off , that every sensor is (exclusively) either p1, 
p2, or p3, and that every sensor has exactly one sensor that is related by r to it. The binary r predicate, or something like 
it, is needed to satisfy the constraint of spatial unity.

In this first interpretation, three new predicates are invented (p1, p2, and p3) to represent the three states of the state 
machine. In the next interpretation, we will introduce new invented objects instead of invented predicates.

Given the initial conditions I and the update rules R , we can use our interpretation to compute which atoms hold at 
which time step. In this case, τ (θ) = (A1, A2, ...) where Si � Ai . Note that this trace repeats: Ai = Ai+3. We can use the 
trace to predict the future values of our two sensors at time step 10, since A10 = {on(a), on(b), r(a, b), r(b, a), p2(a), p1(b)}.

As well as being able to predict future values, we can retrodict past values (filling in A1), or interpolate intermediate 
unknown values (filling in A5 or A9).20 But although an interpretation provides the resources to “fill in” missing data, it 
has no particular bias to predicting future time-steps. The conditions which it is trying to satisfy (the unity conditions of 
Section 3.3) do not explicitly insist that an interpretation must be able to predict future time-steps. Rather, the ability to 
predict the future (as well as the ability to retrodict the past, or interpolate intermediate values) is a derived capacity that 
emerges from the more fundamental capacity to “make sense” of the sensory sequence. 	

20 This ability to “impute” intermediate unknown values is straightforward given an interpretation. Recent results show that current neural methods for 
sequence learning are more comfortable predicting future values than imputing intermediate values.
11
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Example 7. There are always infinitely many different ways of interpreting a sensory sequence. Next, we show a rather 
different interpretation of S1:10 from that of Example 6. In our second unified interpretation, we no longer see sensors a and 
b as self-contained state-machines. Now, we see the states of the sensors as depending on their left and right neighbours. 
In this new interpretation, we no longer need the three invented unary predicates (p1, p2, and p3), but instead introduce a 
new object.

Object invention is much less explored than predicate invention in inductive logic programming. But Dietterich et al. [71]
anticipated the need for it, and Inoue [18] uses meta-level abduction to posit unperceived objects.

Our new type signature φ′ = (T , O , P , V ), where T = {sensor}, O  = {a:sensor, b:sensor, c:sensor},
P = {on(sensor), off (sensor), r(sensor, sensor)}, and V = {X :sensor, Y :sensor}.
In this new interpretation, imagine there is a one-dimensional cellular automaton with three cells, a, b, and (unobserved) 

c. The three cells wrap around: the right neighbour of a is b, the right neighbour of b is c, and the right neighbour of c is 
a. In this interpretation, the spatial relations are fixed. (We shall see another interpretation later where this is not the case.) 
The cells alternate between on and off according to the following simple rule: if X ’s left neighbour is on (respectively off) 
at t , then X is on (respectively off) at t + 1.

Note that objects a and b are the two sensors we are given, but c is a new unobserved latent object that we posit in 
order to make sense of the data. Many interpretations follow this pattern: new latent unobserved objects are posited to 
make sense of the changes to the sensors we are given.

Note further that part of finding an interpretation is constructing the spatial relation between objects; this is not some-
thing we are given, but something we must construct. In this case, we posit that the imagined cell c is inserted to the right 
of b and to the left of a.

We represent this interpretation by the tuple (φ′, I, R, C ′), where:

I =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

on(a)

on(b)

off (c)
r(a,b)

r(b, c)
r(c,a)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

R =
{

r(X, Y ) ∧ off (X)⊃– off (Y )

r(X, Y ) ∧ on(X)⊃– on(Y )

}
C ′ =

{ ∀X :sensor, on(X) ⊕ off (X)

∀X :sensor, ∃!Y :sensor, r(X, Y )

}

Here, φ′ extends φ, C ′ extends C , and the interpretation satisfies the unity conditions. 	

Example 8. We shall give one more way of interpreting the same sensory sequence, to show the variety of possible inter-
pretations.

In our third interpretation, we will posit three latent cells, c1, c2, and c3 that are distinct from the sensors a and b. 
Cells have static attributes: each cell can be either black or white, and this is a permanent unchanging feature of the cell. 
Whether a sensor is on or off depends on whether the cell it is currently contained in is black or white. The reason why 
the sensors change from on to off is because they move from one cell to another.

Our new type signature (T , O , P , V ) distinguishes between cells and sensors as separate types: T = {cell, sensor}, O  = {a :
sensor, b : sensor, c1 : cell, c2 : cell, c3 : cell}, P = {on(sensor), off (sensor), part(sensor, cell), r(cell, cell), black(cell), white(cell)}, 
and V = {X : sensor, Y : cell, Y2 : cell}. Our interpretation is the tuple (φ, I, R, C), where:

I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

part(a, c1)

part(b, c2)

r(c1, c2)

r(c2, c3)

r(c3, c1)

black(c1)

black(c2)

white(c3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

R =
⎧⎨
⎩

part(X, Y ) ∧ black(Y ) → on(X)

part(X, Y ) ∧ white(Y ) → off (X)

r(Y , Y2) ∧ part(X, Y2)⊃– part(X, Y )

⎫⎬
⎭ C =

⎧⎪⎪⎨
⎪⎪⎩

∀X :sensor, on(X) ⊕ off (X)

∀Y :cell, black(Y ) ⊕ white(Y )

∀X :sensor, ∃!Y : cell, part(X, Y )

∀Y :cell, ∃!Y2 : cell, r(Y , Y2)

⎫⎪⎪⎬
⎪⎪⎭

The update rules R state that the on or off attribute of a sensor depends on whether its current cell is black or white. They 
also state that the sensors move from right-to-left through the cells.

In this interpretation, there is no state information in the sensors. All the variability is explained by the sensors moving 
from one static object to another.

Here, the sensors move about, so spatial unity is satisfied by different sets of atoms at different time-steps. For example, 
at time-step 1, sensors a and b are indirectly connected via the ground atoms part(a, c1), r(c1, c2), part(b, c2). But at time-
step 2, a and b are indirectly connected via a different set of ground atoms part(a, c3), r(c3, c1), part(b, c1). Spatial unity 
requires all pairs of objects to always be connected via some chain of ground atoms at each time-step, but it does not insist 
that it is the same set of ground atoms at each time-step. 	

Examples 6, 7, and 8 provide different ways of interpreting the same sensory input. In Example 6, the sensors are 
interpreted as self-contained state machines. Here, there are no causal interactions between the sensors: each is an isolated 
12
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machine. In Examples 7 and 8, by contrast, there are causal interactions between the sensors. In Example 7, the on and off
attributes move from left to right along the sensors. In Example 8, it is the sensors that move, not the attributes, moving 
from right to left. The difference between these two interpretations is in terms of what is moving and what is static.

Note that the interpretations of Examples 6, 7, and 8 have costs 16, 12, and 17 respectively. So the theory of Example 7, 
which invents an unseen object, is preferred to the other theories that posit more complex dynamics.

3.6. Properties of interpretations

In this section, we provide some results about the correctness properties of unified interpretations. The next theorem 
shows that all objects appearing in sensor readings satisfy object permanence.

Theorem 3. For each sensory sequence S = (S1, ..., St) and each unified interpretation θ of S, for each object x that features in S (i.e. 
x appears in some ground atom p(x) or q(x, y) in some state Si in S), for each state Ai in τ (θ) = (A1, A2, ...), x features in Ai . In other 
words, if x features in any state in S, then x features in every state in τ (θ).

Proof. Let θ = (φ, I, R, C) and φ = (T , O , P , V ). Since object x features in sequence S , there exists some atom α involving 
x in some state S j in (S1, ..., St). Since θ is an interpretation, S � τ (θ), and hence α ∈ (τ (θ)) j . Consider the two possible 
forms of α:

1. α = p(x). Since θ satisfies conceptual unity, there must be a constraint involving p of the form ∀X : t, p(X) ⊕ q1(X)... ⊕
qn(X) in C . Since φ is suitable for S , x ∈ O and κO (x) = t . Let τ (θ) = (A1, A2, ...) and consider any Ai in τ (θ). Since 
θ satisfies static unity, Ai satisfies each constraint in C and in particular Ai |= ∀X : t, p(X) ⊕ q1(X)... ⊕ qn(X). Since 
κO (x) = t , Ai |= p(x) ⊕ q1(x)... ⊕ qn(x). Hence {p(x), q1(x), ..., qn(x)} ∩ Ai �= ∅ i.e. x features in Ai .

2. α = q(x, y) for some y. Since θ satisfies conceptual unity, there must be a constraint involving q. This constraint can 
either be (i) a binary constraint of the form ∀X : t1, ∀Y : t2, q(X, Y ) ⊕ p1(X, Y ) ⊕ ... ⊕ pn(X, Y ) or (ii) a uniqueness 
constraint of the form ∀X : t1, ∃!Y : t2, q(X, Y ).
Considering first case (i), since φ is suitable for S , x, y ∈ O , κO (x) = t1, and κO (y) = t2. Again, let τ (θ) = (A1, A2, ...)
and consider any Ai in τ (θ). Since θ satisfies static unity, Ai satisfies each constraint in C and in particular Ai |= ∀X :
t1, ∀Y : t2, q(X, Y ) ⊕ p1(X, Y ) ⊕ ... ⊕ pn(X, Y ). Since κO (x) = t1, κO (y) = t2, Ai |= q(x, y) ⊕ p1(x, y) ⊕ ... ⊕ pn(x, y). Hence 
{q(x, y), p1(x, y), ..., pn(x, y)} ∩ Ai �= ∅ i.e. x features in Ai .
For case (ii), again let τ (θ) = (A1, A2, ...) and consider any Ai in τ (θ). Since θ satisfies static unity, Ai satisfies each 
constraint in C and in particular Ai |= ∀X : t1, ∃!Y : t2, q(X, Y ). Since κO (x) = t1, Ai |= ∃!Y : t2, q(x, Y ). Therefore there 
must be some y such that κO (y) = t2 and q(x, y) ∈ Ai . �

Note that this proof can be extended to apply to latent objects as well. Any object appearing in any atom in some state Ai
must also appear in every other state A j .

Theorem 3 provides some guarantee that admissible interpretations that satisfy the unity conditions will always be 
acceptable in the minimal sense that they always provide some value for each sensor. This theorem is important because it 
justifies the claim that a unified interpretation will always be able to support prediction (of future values), retrodiction (of 
previous values), and imputation (of missing values).

Note that this theorem does not imply that the predicate of the atom in which x appears is one of the predicates 
appearing in the sensory sequence S . It is entirely possible that it is some distinct predicate that appears in φ but has never 
been observed in S . The following example illustrates this possibility.

Example 9. Suppose the sensory sequence is just S = ({p(a)}). Suppose the type signature (T , O , P , V ) introduces another 
unary predicate q, i.e. T = {t}, O  = {a}, P = {p(t), q(t)}, and V = {X : t}. Suppose our interpretation is (φ, I, R, C) where 
I = {p(a)}, R = {p(X)⊃– q(X)}, and C = {∀X : t, p(X) ⊕ q(X)}. Here, τ (θ) = ({p(a)}, {q(a)}, {q(a)}, {q(a)}, ...). Note that q is a 
new predicate that does not appear in the sensory input; q is a “peer” of p (in that they are connected by an xor constraint), 
but q was never observed. 	

The next theorem is a form of “completeness”, showing that every sensory sequence has some admissible interpretation 
that satisfies the unity conditions.

Theorem 4. For every apperception task (S, φ, C) there exists some interpretation θ = (φ′, I, R, C ′) that makes sense of S, where φ′
extends φ and C ′ ⊇ C.

Proof. We construct a degenerate theory that simply memorizes the sequence it has seen. First, we define φ′ given φ =
(T , O , P , V ). For each sensor xi that features in S , i = 1..n, and each state S j in S , j = 1..m, create a new unary predicate 
pi . The intention is that pi (X) is true if X is the i’th object xi at the j’th time-step. If κO (xi) = t then let κP (pi ) = (t). For 
j j j

13
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each type t ∈ T , create a new variable Xt where κV (Xt) = t . Let φ′ = (T , O , P ′, V ′) where P ′ = P ∪ {pi
j | i = 1..n, j = 1..m}, 

and V ′ = V ∪ {Xt | t ∈ T }.
Second, we define θ = (φ′, I, R, C ′). Let the initial conditions I be:

{
pi

1(xi) | i = 1..n
}

Let the rules R contain the following causal rules for i = 1..n and j = 1..m − 1 (where xi is of type t):

pi
j(Xt)⊃– pi

j+1(Xt)

together with the following static rules for each unary atom q(xi) ∈ S j :

pi
j(Xt) → q(Xt)

and the following static rules for each binary atom r(xi , xk) ∈ S j (where xi is of type t and xk is of type t′):

pi
j(Xt) ∧ pk

j(Yt′) → r(Xt , Yt′)

We augment C to C ′ by adding the following additional constraints. Let Pt be the unary predicates for all objects of type t:

Pt =
{

pi
j | κO (xi) = t, j = 1..m

}

Let Pt = {p′
1, ..., p

′
k}. Then for each type t add a unary constraint:

∀Xt : t, p′
1(Xt) ⊕ ... ⊕ p′

k(Xt)

It is straightforward to check that θ as defined satisfies the constraint of conceptual unity, that the constraints C ′ are 
satisfied by each state in τ (θ), and that the sensory sequence is covered by τ (θ). To satisfy spatial unity, add a new “world” 
object w of a new type tw and for each type t add a relation partt(t, tw) and a constraint ∀X : t, ∃!Y : tw , partt(X, Y ). For 
each object x of type t , add an initial condition atom partt(x, w) to I . Thus, all the conditions of unity are satisfied, and θ
is a unified interpretation of S . �
Example 10. Consider the following apperception problem (S, φ, C). Suppose there is one sensor a with values on and off . 
Suppose the sensory sequence is S1:7 where:

S1 = {on(a)} S2 = {off (a)} S3 = {on(a)} S4 = {off (a)}
S5 = {on(a)} S6 = {off (a)} S7 = {on(a)}

Let φ = (T , O , P , V ) where T = {t}, O  = {a : t}, P = {on(t), off (t)}, and V = {}. Clearly, φ is suitable for S . The constraints C
are just {∀X : t, on(X) ⊕ off (X)}.

Applying Theorem 4, we generate 7 unary predicates p1, ..., p7. The type signature φ′ for this interpretation is 
(T ′, O ′, P ′, V ′) where T ′ = {t, tw}, O ′ = {a, w}, P ′ = P ∪ {p1(t), p2(t), ..., p7(t), part(t, tw)}, and V ′ = {X : t, Y : tw }. Our in-
terpretation is (φ′, I, R, C ′) where:

I =
{

p1(a)

part(a, w)

}
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(X)⊃– p2(X)

p2(X)⊃– p3(X)

...

p6(Y )⊃– p7(Y )

p1(X) → on(X)

p2(X) → off (X)

p3(X) → on(X)

p4(X) → off (X)

p5(X) → on(X)

p6(X) → off (X)

p7(X) → on(X)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C ′ =
⎧⎨
⎩

∀X : t, on(X) ⊕ off (X)

∀X : t, p1(X) ⊕ p2(X) ⊕ ... ⊕ p7(X)

∀X : t, ∃!Y : tw part(X, Y )

⎫⎬
⎭ 	

Note that the interpretation provided by Theorem 4 is degenerate and unilluminating: it treats each object entirely sepa-
rately (failing to capture any regularities between objects’ behaviour) and treats every time-step entirely separately (failing 
to capture any laws that hold over multiple time-steps). This unilluminating interpretation provides an upper bound on the 
complexity of the theory needed to make sense of the sensory sequence.
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4. Computer implementation

The Apperception Engine is our system for solving apperception tasks.21 Given as input an apperception task (S, φ, C), 
the engine searches for a type signature φ′ and a theory θ = (φ′, I, R, C ′) where φ′ extends φ, C ′ ⊇ C and θ makes sense of 
S . In this section, we describe how it is implemented.

Definition 20. A template is a structure for circumscribing a large but finite set of theories. It is a type signature together 
with constants that bound the complexity of the rules in the theory. Formally, a template χ is a tuple (φ, N→, N⊃–, NB)

where φ is a type signature, N→ is the max number of static rules allowed in R , N⊃– is the max number of causal rules 
allowed in R , and NB is the max number of atoms allowed in the body of a rule in R .

Each template χ specifies a large (but finite) set of theories that conform to χ . Let 
χ,C ⊂ 
 be the subset of theories 
(φ, I, R, C ′) in 
 that conform to χ and where C ′ ⊇ C .

Algorithm 1: The Apperception Engine algorithm in outline.
input : (S, φ, C), an apperception task
output : θ∗ , a unified interpretation of S

(s∗, θ∗) ← (max(float), nil)

foreach template χ extending φ of increasing complexity do
θ ← argminθ {cost(θ) | θ ∈ 
χ,C , S � τ (θ), unity(θ)}
if θ �= nil then

s ← cost(θ)

if s < s∗ then
(s∗, θ∗) ← (s, θ)

end
end
if exceeded processing time then

return θ∗
end

end

Our method, presented in Algorithm 1, is an anytime algorithm that enumerates templates of increasing complexity. For 
each template χ , it finds the θ ∈ 
χ,C with lowest cost (see Definition 17) that satisfies the conditions of unity. If it finds 
such a θ , it stores it. When it has run out of processing time, it returns the lowest cost θ it has found from all the templates 
it has considered.

Note that the relationship between the complexity of a template and the cost of a theory satisfying the template is not 
always simple. Sometimes a theory of lower cost may be found from a template of higher complexity. This is why we cannot 
terminate as soon as we have found the first theory θ . We must keep going, in case we later find a lower cost theory from 
a more complex template.

The two non-trivial parts of this algorithm are the way we enumerate templates, and the way we find the lowest-cost 
theory θ for a given template χ . We consider each in turn.

4.1. Iterating through templates

We need to enumerate templates in such a way that every template is (eventually) visited by the enumeration. Since 
the objects, predicates, and variables are typed (see Definition 3), the acceptable ranges of O , P , and V depend on T . 
Because of this, our enumeration procedure is two-tiered: first, enumerate sets T of types; second, given a particular T , 
enumerate (O , P , V , N→, N⊃–, NB) tuples for that particular T . We cannot, of course, enumerate all (O , P , V , N→, N⊃–, NB)

tuples because there are infinitely many. Instead, we specify a constant bound (n) on the number of tuples, and gradually 
increase that bound:

foreach (T , n) do
emit n tuples of the form (O , P , V , N→, N⊃–, NB)

end

In order to enumerate (T , n) pairs, we use a standard diagonalization procedure. See Table 1.

21 The source code is available at https://github .com /RichardEvans /apperception.
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Table 1
Enumerating (t, n) pairs. Row t means that there are t types in T , while column n means 
there are n tuples of the form (O , P , V , N→, N⊃–, NB ) to enumerate. We increment n by 100. 
The entries in the table represent the order in which the (t, n) pairs are visited.

100 200 300 400 ...

1 1 2 4 7 ...
2 3 5 8 ...
3 6 9 ...
4 10 ...
... ...

Once we have a (T , n) pair, we need to emit n (O , P , V , N→, N⊃–, NB) tuples using the types in T . One way of 
enumerating k-tuples, where k > 2, is to use the diagonalization technique recursively: first enumerate pairs, then ap-
ply the diagonalization technique to enumerate pairs consisting of individual elements paired with pairs, and so on. 
But this recursive application will result in heavy biases towards certain k-tuples. Instead, we use the Haskell function 
Universe.Helpers.choices to enumerate n-tuples while minimizing bias. The choices :: [[a]] -> [[a]] 
function takes a finite number n of (possibly infinite) lists, and produces a (possibly infinite) list of n-tuples, generating 
a n-way Cartesian product that is guaranteed to eventually produce every such n-tuple.

We use choices to generate 6-tuples (O , P , V , N→, N⊃–, NB) tuples by creating six infinite streams: (i) SO : an infinite 
list of finite lists of typed objects, (ii) SP : an infinite list of finite lists of typed predicates, (iii) SV : an infinite list of finite 
lists of typed variables, (iv) S→ = {0, 1, ...}: the number of static rules, (v) S⊃– = {0, 1, ...}: the number of causal rules, and 
(vi) SB = {0, 1, ...}: the max number of body atoms. Now when we pass this list of streams to the choices function, it 
produces an enumeration of the 6-way Cartesian product SO × SP × SV × S→ × S⊃– × SB .

Example 11. Recall the apperception problem from Example 1. There are two sensors a and b, and each sensor can be on
or off .

S1 = {} S2 = {off (a),on(b)} S3 = {on(a),off (b)} S4 = {on(a),on(b)} S5 = {on(b)}
S6 = {on(a),off (b)} S7 = {on(a),on(b)} S8 = {off (a),on(b)} S9 = {on(a)} S10 = {}

We shall start with an initial template χ0 = (φ = (T , O , P , V ), N→, N⊃–, NB), where T = {sensor, grid}, O  = {a:sensor, b:sensor,
g:grid}, P = {on(sensor), off (sensor), part(sensor, grid)}, V = {X :sensor, Y :sensor}, N→ = 1, N⊃– = 3, and NB = 2. We use the 
template enumeration procedure described above to generate increasingly complex templates χ1, χ2, ..., using χ0 as a base. 
This produces the following augmented templates :

�χ1 = (∅,∅,∅, {V 1:sensor},0,0,0) �χ2 = (∅,∅,∅,∅,0,0,1) �χ3 = (∅,∅, {p1(sensor)},∅,0,0,0)

�χ4 = (∅,∅,∅, {V 1:sensor},0,0,1) �χ5 = (∅,∅,∅,∅,0,0,2) �χ6 = (∅, {o1:sensor},∅,∅,0,0,0)

�χ7 = (∅,∅, {p1(sensor)},∅,0,0,1) �χ8 = (∅,∅,∅, {V 1:sensor},0,0,2) �χ9 = (∅,∅,∅,∅,0,0,2)

�χ10 = (∅,∅, {p1(sensor)}, {V 1:sensor},0,0,0) . . . . . .

In the list above, we display the change from the base template χ0, so �χi means the changes in template χi from the 
base template χ0. Each template χ = (φ = (T , O , P , V ), N→, N⊃–, NB) is flattened as a 7-tuple (T , O , P , V , N→, N⊃–, NB).

Many of these templates do not have the expressive resources to find a unified interpretation. But some do. The first 
solution the Apperception Engine finds has the following type signature (the new elements are in bold):

T =
{

grid
sensor

}
O =

⎧⎨
⎩

a : sensor
b : sensor
g : grid

⎫⎬
⎭ P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1(sensor)
p2(sensor)
off (sensor)
on(sensor)
part(sensor,grid)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

V =
{

S : sensor
S2 : sensor

}

together with the following theory θ = (φ, I, R, C), where:

I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1(a)

p2(b)

on(a)

part(a, g)

part(b, g)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

R =

⎧⎪⎪⎨
⎪⎪⎩

p2(S) → on(S)
p2(S)⊃– p1(S)
p1(S) ∧ on(S)⊃– off (S)
off (S) ∧ p1(S)⊃– p2(S)

⎫⎪⎪⎬
⎪⎪⎭

C =
{ ∀X : sensor, p1(X) ⊕ p2(X)

∀X : sensor, ∃!Y : grid, part(X, Y )

}

This solution uses the invented predicates p1 and p2 to represent two states of a state-machine. This is recognisable as a 
compressed version of Example 6 above.

Later, the Apperception Engine finds another solution using the type signature φ = (T , O , P , V ) (again, the augmented 
parts of the type signature are in bold):
16
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Fig. 1. The varieties of inference. Here, shaded elements are given, and unshaded elements must be generated. X and Y are sets of facts, while P is a set of 
rules for transforming X into Y .

T =
{

grid
sensor

}
O =

⎧⎪⎪⎨
⎪⎪⎩

a : sensor
b : sensor
g : grid
o1 : sensor

⎫⎪⎪⎬
⎪⎪⎭

P =

⎧⎪⎪⎨
⎪⎪⎩

r1(sensor, sensor)
off (sensor)
on(sensor)
part(sensor,grid)

⎫⎪⎪⎬
⎪⎪⎭

V =
{

S : sensor
S2 : sensor

}

together with the following theory θ = (φ, I, R, C), where:

I =

⎧⎪⎪⎨
⎪⎪⎩

off (o1) on(a)

r1(a,o1) r1(b,a)

r1(o1,b) part(a,grid)

part(b,grid) part(o1,grid)

⎫⎪⎪⎬
⎪⎪⎭

R =
{

off (S) ∧ r1(S, S2) → on(S2)

off (S2) ∧ r1(S, S2) ∧ on(S)⊃– off (S)

}

C =
{ ∀X :sensor, ∃!Y :grid, part(X, Y )

∀X :sensor, ∃!Y :sensor, r1(X, Y )

}

Here, it has constructed an invented object o1:sensor and posited a one-dimensional spatial relationship r1 between the 
three sensors. This solution is recognisable as a variant of Example 7 above. 	

4.2. Finding the best theory from a template

The most complex part of Algorithm 1 is:

θ ← argmin
θ

{cost(θ) | θ ∈ 
χ,C , S � τ (θ),unity(θ)}

Here, we search for a theory θ with the lowest cost (see Definition 17) such that θ conforms to the template χ and 
includes the constraints in C , such that τ (θ) covers S , and θ satisfies the conditions of unity. In this sub-section, we explain 
in outline how this works.

Our approach combines abduction and induction to generate a unified interpretation θ .22 See Fig. 1. Here, X ⊆ G is a set 
of facts (ground atoms), P : G → G is a procedure for generating the consequences of a set of facts, and Y ⊆ G is the result 
of applying P to X . If X and P are given, and we wish to generate Y , then we are performing deduction. If P and Y are 
given, and we wish to generate X , then we are performing abduction. If X and Y are given, and we wish to generate P , 
then we are performing induction. Finally, if only Y is given, and we wish to generate both X and P , then we are jointly 
performing abduction and induction. This is what the Apperception Engine does.23

Our method is described in Algorithm 2. In order to jointly abduce a set I (of initial conditions) and induce sets R and 
C (of rules and constraints), we implement a Datalog⊃– interpreter in ASP. See Section 4.3 for the details. This interpreter 
takes a set I of atoms (represented as a set of ground ASP terms) and sets R and C of rules and constraints (represented 
again as a set of ground ASP terms), and computes the trace of the theory τ (θ) = (S1, S2, ...) up to a finite time limit.

Concretely, we implement the interpreter as an ASP program πτ that computes τ (θ) for theory θ . We implement the 
conditions of unity as ASP constraints in a program πu . We implement the cost minimization as an ASP program πm that 
counts the number of atoms in each rule plus the number of initialisation atoms in I , and uses an ASP weak constraint [60]
to minimize this total. Then we generate ASP programs representing the sequence S , the initial conditions, the rules and 
constraints. We combine the ASP programs together and ask the ASP solver (clingo [73]) to find a lowest cost solution. 
(There may be multiple solutions that have equally lowest cost; the ASP solver chooses one of the optimal answer sets.) We 
extract a readable interpretation θ from the ground atoms of the answer set. In Section 4.3, we explain how Algorithm 2
is implemented in ASP. In Section 4.4, we evaluate the computational complexity. In Section 4.5, we describe the various 
optimisations used to prune the search. In Section 5.2.4, we compare with ILASP, a state-of-the-art ILP system.

22 For related work that also uses abduction, see [11,72,19].
23 At a high level, our system is similar to XHAIL [11]. But there are a number of differences. First, our program P contains causal rules and constraints as 

well as standard Horn clauses. Second, our conclusion Y is an infinite sequence (S1, S2, ...) of sets, rather than a single set. Third, we add additional filters 
on acceptable theories in the form of the unity conditions (see Definition 11).
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Algorithm 2: Finding the lowest cost θ for sequence S and template χ . Here, πτ computes the trace, πu checks that 
the unity conditions are satisfied, and πm minimizes the cost of θ .

input : S , a sensory sequence
input : χ = (φ, N→, N⊃–, NB ), a template
input : C , a set of constraints on the predicates of the sensory sequence
output : θ , the simplest unified interpretation of S that conforms to χ
πS ← gen_input(S)

πI ← gen_inits(φ)

πR ← gen_rules(φ, N→, N⊃–, NB )

πC ← gen_constraints(φ, C)

 ← πτ ∪ πu ∪ πm ∪ πS ∪ πI ∪ πR ∪ πC

A ← clingo()

if satisfiable(A) then
θ ← extract(A)

return θ

end
return nil

4.3. The ASP encoding

Our Datalog⊃– interpreter is written in ASP. All elements of Datalog⊃–, including variables, are represented by ASP con-
stants. A variable X is represented by a constant var_x, and a predicate p is represented by a constant c_p. Elements of 
the target language are reified in ASP, so an unground atom p(X) of Datalog⊃– is represented by a term s(c_p, var_x), 
and a rule is represented by a set of ground atoms for the body, and a single ground atom for the head. For example, the 
static rule p(X) ∧ q(X, Y ) → r(Y ) is represented as:

rule_body(r1, s(c_p, var_x)).
rule_body(r1, s2(c_q, var_x, var_y)).
rule_head_static(r1, s(c_r, var_y)).

The causal rule on(X)⊃– off (X) is represented as:

rule_body(r2, s(c_on, var_x)).
rule_head_causes(r2, s(c_off, var_x)).

Given a type signature φ, we construct ASP terms that represent every well-typed unground atom in Uφ , and wrap these 
terms in the is_var_atom predicate. For example, to represent that r(C, C2) is a well-typed unground atom, we write 
is_var_atom(atom(c_r, var_c, var_c2)). Similarly, we construct ASP terms that represent every well-typed 
ground atom in Gφ using the is_ground_atom predicate.

The initial conditions I ⊆ Gφ are represented by the init predicate. For example, to represent that I = {p(a), r(b, c)}, 
we write:

init(s(c_p, c_a)).
init(s2(c_r, c_b, c_c)).

Our meta-interpreter πτ implements τ : 
 → (2G)∗ from Definition 9. We use holds(a, t) to represent that atom a 
is true at time t (i.e. a ∈ St where τ (θ) = (S1, S2, ..., St , ...)).

% initial conditions
holds(A, T) :-

init(A),
init_time(T).

% update for static rules
holds(GA, T) :-

rule_head_static(R, VA),
eval_body(R, Subs, T),
ground_atom(VA, GA, Subs).

% update for causal rules
holds(GC, T+1) :-

rule_head_causes(R, VC),
eval_body(R, Subs, T),
ground_atom(VC, GC, Subs),
is_time(T+1).
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% frame axiom
holds(S, T+1) :-

holds(S, T),
is_time(T+1),
not -holds(S, T+1).

Since τ (θ) is an infinite sequence (A1, A2, ...), we cannot compute the whole of it. Instead, we only compute the sequence 
up to the max time of the original sensory sequence S .

Note that the frame axiom uses negation as failure and strong negation [64] to check that some other incompatible atom 
has not already been added. Thus, the frame axiom is not restrictive and can be overridden as needed by the causal rules, 
to handle predicates that are not inertial.

The conditions of unity described in Section 3.3 are represented directly as ASP constraints in πu . For example, spatial 
unity is encoded as:

:- spatial_unity_counterexample(X, Y, T).

Here, there is a counterexample to spatial unity at time T if objects X and Y are not related:

spatial_unity_counterexample(X, Y, T) :-
is_object(X),
is_object(Y),
is_time(T),
not related(X, Y, T).

Here, related is the reflexive symmetric transitive closure of the relation holding between X and Y if there is some 
relation R connecting them. Note that related can quantify over relations because the Datalog⊃– atoms and predicates 
have been reified into terms:

related(X, Y, T) :-
holds(s2(R, X, Y), T).

related(X, X, T) :-
is_object(X),
is_time(T).

related(X, Y, T) :- related(Y, X, T).

related(X, Y, T) :-
related(X, Z, T),
related(Z, Y, T).

When constructing a theory θ = (φ, I, R, C), the solver needs to choose which ground atoms to use as initial conditions 
in I , which static and causal rules to include in R , and which xor or uniqueness conditions to use as conditions in C .

To allow the solver to choose what to include in I , we add the ASP choice rule to πI :

{ init(A) } :- is_ground_atom(A).

To allow the solver to choose which rules to include in R , we add the following clauses to πR :

0 { rule_body(R, VA) : is_var_atom(VA) } k_max_body :- is_rule(R).
1 { rule_head_static(R, VA) : is_var_atom(VA) } 1 :- is_static_rule(R).
1 { rule_head_causes(R, VA) : is_var_atom(VA) } 1 :- is_causes_rule(R).

Here, k_max_body is the NB parameter of the template that specifies the max number of body atoms in any rule. The 
number of rules satisfying is_static_rule and is_causes_rule is determined by the parameters N⊃– and N→ in 
the template (see Definition 20).

The ASP program πm minimizes the cost of the theory θ (see Definition 17) by using weak constraints [60]:

:∼ rule_body(R,A). [1@1,R,A]
:∼ rule_head_static(R,A). [1@1,R,A]
:∼ rule_head_causes(R,A). [1@1,R,A]
:∼ init(A). [1@1,A]
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Table 2
The number of ground clauses in the ASP encoding of Algorithm 2.

Predicate # ground clauses

holds |�φ | · |Uφ | · (N→ + N⊃–) · t + |Gφ | · (t + 1)

eval_atom(VA, Subs, T) |�φ | · |Uφ | · t
eval_body(R, Subs, T) |�φ | · (N→ + N⊃–) · t

Table 3
The number of ground clauses in the ASP encoding of Algorithm 2.

Clause # ground clauses # atoms

holds(GA, T) :-
rule_head_static(R, VA),
eval_body(R, Subs, T),
ground_atom(VA, GA, Subs).

|�φ | · |Uφ | · N→ · t 4

holds(GA, T+1) :-
rule_head_causes(R, VA),
eval_body(R, Subs, T),
ground_atom(VA, GA, Subs).

|�φ | · |Uφ | · N⊃– · t 4

eval_body(R, Subs, T) :-
is_rule(R),
is_subs(Subs),
is_time(T),
eval_atom(V, Subs, T) :

rule_body(R, V).

|�φ | · (N→ + N⊃–) · t |Uφ | + 4

4.4. Complexity

This section describes the complexity of Algorithm 2.
We assume basic concepts and standard terminology from complexity theory. Let P be the class of problems that can 

be solved in polynomial time by a deterministic Turing machine, N P be the class of problems solved in polynomial time by 
a non-deterministic Turing machine, and E X P T I M E be the class of problems solved in time 2nd

by a deterministic Turing 
machine. Let �P

i+1 = N P�P
i be the class of problems that can be solved in polynomial time by a non-deterministic Turing 

machine with a �P
i oracle. Finding a solution to an ASP program is in NP [74,75], while finding an optimal solution to an 

ASP program with weak constraints is in �P
2 [76,77].

Since deciding whether a non-disjunctive ASP program has a solution is in NP [74,75], our ASP encoding of Algorithm 2
shows that finding a unified interpretation θ for a sequence given a template is in NP. Since verifying whether a solution to 
an ASP program with preferences is indeed optimal is in �P

2 [76,77], our ASP encoding shows that finding the lowest cost 
theory is in �P

2 .
However, the standard complexity results assume the ASP program has already been grounded into a set of propositional 

clauses. To really understand the space and time complexity of Algorithm 2, we need to examine how the set of ground 
atoms in the ASP encoding grows as a function of the parameters in the template χ = (φ = (T , O , P , V ), N→, N⊃–, NB).

Observe that, since we restrict ourselves to unary and binary predicates, the number of ground and unground atoms is 
a small polynomial function of the type signature parameters24:

|Gφ | ≤ |P | · |O |2
|Uφ | ≤ |P | · |V |2

But note that the number of substitutions �φ that is compatible with the signature φ is an exponential function of the 
number of variables V :

|�φ | ≤ |O ||V |

Thus, in our ASP encoding, finding the lowest cost theory is in �P
2 , but the number of ground propositional clauses 

grows exponentially with |O |, the number of variables allowed in a rule. Table 2 shows the number of ground clauses for 
the three most expensive clauses.

24 The actual numbers will be less than these bounds because type-checking rules out certain combinations.
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4.5. Optimization

Because of the combinatorial complexity of the apperception task, we had to introduce a number of optimizations to get 
reasonable performance on even the simplest of domains.

4.5.1. Reducing grounding with type checking
We use the type signature φ to dramatically restrict the set of ground atoms (Gφ ), the unground atoms (Uφ ), the 

substitutions (�φ ), and rules Rφ . Type-checking has been shown to drastically reduce the search space in program synthesis 
tasks [78].

4.5.2. Symmetry breaking
We use symmetry breaking to remove candidates that are equivalent. We remove programs that are equivalent up to a 

variable renaming by using a strict ordering on variables. We also remove programs that are equivalent up to a reordering 
of the rules by using a strict ordering on unground atoms.

4.5.3. Adding redundant constraints
ASP programs can be significantly optimized by adding redundant constraints (constraints that are provably entailed by 

the other clauses in the program) [79]. We speeded up solving time (by about 30%) by adding the following redundant 
constraints:

:- init(A),
init(B),
incompossible(A, B).

:- rule_body(R, A),
rule_body(R, B),
incompossible_var_atoms(A, B).

:- rule_body(R, A),
rule_head_static(R, A).

:- rule_body(R, A),
rule_head_causes(R, A).

:- rule_body(R, A),
rule_head_static(R, B),
incompossible_var_atoms(A, B).

:- rule_body(R, A),
rule_head_causes(R, B),
incompossible_var_atoms(A, B).

5. Experiments

5.1. Five experimental domains

To evaluate the generality of our system, we tested it in a variety of domains: elementary (one-dimensional) cellular 
automata, drum rhythms and nursery tunes, sequence induction tasks, multi-modal binding tasks, and occlusion tasks. These 
particular domains were chosen because they represent a diverse range of tasks that are simple for humans but are hard 
for state-of-the-art machine learning systems. The tasks were chosen to highlight the difference between mere perception 
(the classification tasks that machine learning systems already excel at) and apperception (assimilating information into a 
coherent integrated theory, something traditional machine learning systems are not designed to do).

5.1.1. Results
We implemented the Apperception Engine in Haskell and ASP. We used clingo [73] to solve the ASP programs gener-

ated by our system. We ran all experiments with a time-limit of 4 hours on a standard Unix desktop.
Our experiments (on the prediction task) are summarised in Table 4. Note that our accuracy metric for a single task 

is rather exacting: the model is accurate (Boolean) on a task iff every hidden sensor value is predicted correctly.25 It does 

25 The reason for using this strict notion of accuracy is that, as the domains are deterministic and noise-free, there is a simplest possible theory that 
explains the sensory sequence. In such cases where there is a correct answer, we wanted to assess whether the system found that correct answer exactly 
– not whether it was fortunate enough to come close while misunderstanding the underlying dynamics.
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Table 4
Results for prediction tasks on five domains. We show the mean information size of the sensory input, to stress 
the scantiness of our sensory sequences. We also show the mean information size of the held-out data. Our 
metric of accuracy for prediction tasks is whether the system predicted every sensor’s value correctly.

Domain Tasks (#) Memory 
(megs)

Input size 
(bits)

Held out size 
(bits)

Accuracy 
(%)

ECA 256 473.2 154.0 10.7 97.3%
Rhythm & music 30 2172.5 214.4 15.3 73.3%
Seek Whence 30 3767.7 28.4 2.5 76.7%
Multi-modal binding 20 1003.2 266.0 19.1 85.0%
Occlusion 20 604.3 109.2 10.1 90.0 %

0 1 1 0 1 1 1 0

Fig. 2. Updates for ECA rule 110. The top row shows the context: the target cell together with its left and right neighbour. The bottom row shows the new 
value of the target cell given the context. A cell is black if it is on and white if it is off.

110

? ? ? ? ? ? ? ? ? ? ?

Fig. 3. One trajectory for Rule 110. Each row represents the state of the ECA at one time-step. In this prediction task, the bottom row (representing the 
final time-step) is held out.

not score any points for predicting most of the hidden values correctly. As can be seen from Table 4, our system is able to 
achieve good accuracy across all five domains.

5.1.2. Elementary cellular automata
An Elementary Cellular Automaton (ECA) [80,81] is a one-dimensional Cellular Automaton. The world is a circular array 

of cells. Each cell can be either on or off . The state of a cell depends only on its previous state and the previous state of its 
left and right neighbours.

Fig. 2 shows one set of ECA update rules.26 Each update specifies the new value of a cell based on its previous left 
neighbour, its previous value, and its previous right neighbour. The top row shows the values of the left neighbour, previous 
value, and right neighbour. The bottom row shows the new value of the cell. There are 8 updates, one for each of the 23

configurations. In the diagram, the leftmost update states that if the left neighbour is on, and the cell is on, and its right 
neighbour is on, then at the next time-step, the cell will be turned off . Given that each of the 23 configurations can produce 
on or off at the next time-step, there are 223 = 256 total sets of update rules.

Given update rules for each of the 8 configurations, and an initial starting state, the trajectory of the ECA is determined. 
Fig. 3 shows the state sequence for Rule 110 above from one initial starting state of length 11.

In our experiments, we attach sensors to each of the 11 cells, produce a sensory sequence, and then ask our system to 
find an interpretation that makes sense of the sequence. For example, for the state sequence of Fig. 3, the sensory sequence 
is (S1, ..., S10) where:

S1 = {off (c1),off (c2),off (c3),off (c4),off (c5),on(c6),off (c7),off (c8),off (c(),off (c10),off (c11)}
S2 = {off (c1),off (c2),off (c3),off (c4),on(c5),on(c6),off (c7),off (c8),off (c(),off (c10),off (c11)}

26 This particular set of update rules is known as Rule 110. Here, 110 is the decimal representation of the binary 01101110 update rule, as shown in 
Fig. 2. This rule has been shown to be Turing-complete [81].
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S3 = {off (c1),off (c2),off (c3),on(c4),on(c5),on(c6),off (c7),off (c8),off (c(),off (c10),off (c11)}
S4 = {off (c1),off (c2),on(c3),on(c4),off (c5),on(c6),off (c7),off (c8),off (c(),off (c10),off (c11)}
S5 = {off (c1),on(c2),on(c3),on(c4),on(c5),on(c6),off (c7),off (c8),off (c(),off (c10),off (c11)}

Note that we do not provide the spatial relation between cells. The system does not know that e.g. cell c1 is directly to the 
left of cell c2.

Results. Given the 256 ECA rules, all with the same initial configuration, we treated the trajectories as a prediction task 
and applied our system to it. Our system was able to predict 249/256 correctly. In each of the 7/256 failure cases, the
Apperception Engine found a unified interpretation, but this interpretation produced a prediction which was not the same 
as the oracle. For example, the dynamics found for Fig. 3 are:

R =
{

r(X, Y ) ∧ on(X) ∧ off (Y )⊃– on(Y )

r(X, Y ) ∧ r(Y , Z) ∧ on(X) ∧ on(Z) ∧ on(Y )⊃– off (Y )

}

These rules exactly capture the dynamics of the cells that change. The other cells retain their value from the previous 
time-step, according to the frame axiom of Definition 9.

The initial conditions found by the Apperception Engine describe the initial values of the cells, and also specify the 
latent r relation between cells:

I =
{

off (c1) off (c2) off (c3) off (c4) off (c5) on(c6) off (c7) off (c8) off (c9) off (c10) off (c11)

r(c1, c11) r(c2, c1) r(c3, c2) r(c4, c3) r(c5, c4) r(c6, c5) r(c7, c6) r(c8, c7) r(c9, c8) r(c10, c9) r(c11, c10)

}

Here, the system uses r(X, Y ) to mean that cell Y is immediately to the right of cell X . Note that the system has constructed 
the spatial relation itself. It was not given the spatial relation r between cells. All it was given was the sensor readings of the 
11 cells. It constructed the spatial relationship r between the cells in order to make sense of the data.

5.1.3. Drum rhythms and nursery tunes
We also tested our system on simple melodies and rhythms. Here, each sensor is an auditory receptor that is tuned to 

listen for a particular note or drum beat. In the tune tasks, there is one sensor for C , one for D , one for E , all the way to 
HighC. (There are no flats or sharps.) In the rhythm tasks, there is one sensor listening out for bass drum, one for snare 
drum, and one for hi-hat. Each sensor can distinguish four loudness levels, between 0 and 3. When a note is pressed, it 
starts at max loudness (3), and then decays down to 0. Multiple notes can be pressed simultaneously.

For example, the Twinkle Twinkle Little Star tune generates the following sensor readings (assuming 8 time-steps for a 
bar):

S1 = {v(sc,3), v(sd,0), v(se,0), v(s f ,0), v(sg,0), v(sa,0), v(sb,0), v(sc∗,0)}
S2 = {v(sc,2), v(sd,0), v(se,0), v(s f ,0), v(sg,0), v(sa,0), v(sb,0), v(sc∗,0)}
S3 = {v(sc,3), v(sd,0), v(se,0), v(s f ,0), v(sg,0), v(sa,0), v(sb,0), v(sc∗,0)}
S4 = {v(sc,2), v(sd,0), v(se,0), v(s f ,0), v(sg,0), v(sa,0), v(sb,0), v(sc∗,0)}
S5 = {v(sc,1), v(sd,0), v(se,0), v(s f ,0), v(sg,3), v(sa,0), v(sb,0), v(sc∗,0)}
S6 = {v(sc,0), v(sd,0), v(se,0), v(s f ,0), v(sg,2), v(sa,0), v(sb,0), v(sc∗,0)}
...

Results. Recall that our accuracy metric is stringent and only counts a prediction as accurate if every sensor’s value is pre-
dicted correctly. In the rhythm and music domain, this means the Apperception Engine must correctly predict the loudness 
value (between 0 and 3) for each of the sound sensors. There are 8 sensors for tunes and 3 sensors for rhythms. When we 
tested the Apperception Engine on the 20 drum rhythms and 10 nursery tunes, our system was able to predict 22/30 cor-
rectly. Note that the interpretations found are large and complex programs by the standards of state-of-the-art ILP systems. 
In Three Blind Mice, for example, the interpretation contained 10 update rules and 34 initialisation atoms making a total of 
44 clauses. The reason we are able to find such large programs is that our ASP encoding represents the space of possible 
programs much more efficiently than other encodings (see Section 5.2.4).

5.1.4. Seek Whence and C-test sequence induction intelligence tests
Hofstadter introduced the Seek Whence27 domain in [24]. The task is, given a sequence s1, ..., st of symbols, to predict 

the next symbol st+1. Typical Seek Whence tasks include28:

27 The name is a pun on “sequence”. See also the related Copycat domain [82].
28 Hofstadter used natural numbers, but we transpose the sequences to letters, to bring them in line with the Thurstone letter completion problems [83]

and the C-test [84].
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a,a,b,a,b,c,a,b,c,d,a, ... a,b,c,d,e, ...
b,a,b,b,b,b,b,c,b,b,d,b,b,e, ... a,b,b,c,c,c,d,d,d,d,e, ...
a,f,e,f,a,f,e,f,a,f,e,f,a, ... b,a,b,b,b,c,b,d,b,e, ...
a,b,b,c,c,d,d,e,e, ... a,b,c,c,d,d,e,e,e,f,f,f, ...
f,a,f,b,f,c,f,d,f, ... a,f,e,e,f,a,a,f,e,e,f,a,a, ...
b,b,b,c,c,b,b,b,c,c,b,b,b,c,c, ... b,a,a,b,b,b,a,a,a,a,b,b,b,b,b, ...
b,c,a,c,a,c,b,d,b,d,b,c,a,c,a, ... a,b,b,c,c,d,d,e,e,f,f, ...
a,a,b,a,b,c,a,b,c,d,a,b,c,d,e, ... b,a,c,a,b,d,a,b,c,e,a,b,c,d,f, ...
a,b,a,c,b,a,d,c,b,a,e,d,c,b, ... c,b,a,b,c,b,a,b,c,b,a,b,c,b, ...
a,a,a,b,b,c,e,f,f, ... a,a,b,a,a,b,c,b,a,a,b,c,d,c,b, ...
a,a,b,c,a,b,b,c,a,b,c,c,a,a,a, ... a,b,a,b,a,b,a,b,a, ...
a,c,b,d,c,e,d, ... a,c,f,b,e,a,d, ...
a,a,f,f,e,e,d,d, ... a,a,a,b,b,b,c,c, ...
a,a,b,b,f,a,b,b,e,a,b,b,d, ... f,a,d,a,b,a,f,a,d,a,b,a, ...
a,b,a,f,a,a,e,f,a, ... b,a,f,b,a,e,b,a,d, ...

Fig. 4. Sequences from Seek Whence and the C-test.

• b, b, b, c, c, b, b, b, c, c, b, b, b, c, c, ...
• a, f, b, f, f, c, f, f, f, d, f, f, ...
• b, a, b, b, b, b, b, c, b, b, d, b, b, e, b, ...

Hofstadter called the third sequence the “theme song” of the Seek Whence project because of its difficulty. There is a “per-
ceptual mirage” in the sequence because of the sub-sequence of five b’s in a row that makes it hard to see the intended 
pattern: (b, x, b)∗ for ascending x.

Results. Given the 30 Seek Whence sequences, we treated the trajectories as a prediction task and applied our system to 
it. Our system was able to predict 23/30 correctly. For the 7 failure cases, 4 of them were due to the system not being 
able to find any unified interpretation within the memory and time limits, while in 3 of them, the system found a unified 
interpretation that produced the “incorrect” prediction (Fig. 4).

The first key point we want to emphasise here is that our system was able to achieve human-level performance29 on 
these tasks without hand-coded domain-specific knowledge.30 This is a general system for making sense of sensory data 
that, when applied to the Seek Whence domain, is able to solve these particular problems. The second point we want to 
stress is that our system did not learn to solve these sequence induction tasks after seeing many previous examples.31

On the contrary: our system had never seen any such sequences before; it confronts each sequence de novo, without prior 
experience. This system is, to the best of our knowledge, the first such general system that is able to achieve such a result.

5.1.5. Binding tasks
The binding problem [87] is the task of recognising that information from different sensory modalities should be col-

lected together as different aspects of a single external object. For example, you hear a buzzing in your auditory field and 
you see an insect in your visual field. How do you associate the buzzing and the insect-appearance as aspects of one single 
object?

To investigate how our system handles such binding problems, we tested it on the following multi-modal variant of the 
ECA described above. Here, there are two types of sensor. The light sensors have just two states: black and white, while the 
touch sensors have four states: fully un-pressed (0), fully pressed (3), and two intermediate states (1, 2). After a touch sensor 
is fully pressed (3), it slowly depresses, going from states 2 to 1 to 0 over 3 time-steps. In this example, we chose Rule 110 
(the Turing-complete ECA rule) with the same initial configuration as in Fig. 3, as described earlier. In this multi-modal 
variant, there are 11 light sensors, one for each cell in the ECA, and two touch sensors on cells 3 and 11. See Fig. 5.

Results. We ran 20 multi-modal binding experiments, with different ECA rules, different initial conditions, and the touch 
sensors attached to different cells. The engine achieved 85% accuracy.

5.1.6. Occlusion tasks
Neural nets that predict future sensory data conditioned on past sensory data struggle to solve occlusion tasks because 

it is hard to inject into them the prior knowledge that objects persist over time. Our system, by contrast, was designed to 
posit latent objects that persist over time.

To test our system’s ability to solve occlusion problems, we generated a set of tasks of the following form: there is a 2D 
grid of cells in which objects move horizontally. Some move from left to right, while others move from right to left, with 
wrap around when they get to the edge of a row. The objects move at different speeds. Each object is placed in its own row, 
so there is no possibility of collision. There is an “eye” placed at the bottom of each column, looking up. Each eye can only 

29 See Meredith [85] for empirical results 25 students on the “Blackburn dozen” Seek Whence problems.
30 The one piece of domain-specific knowledge we inject is the successor relation between the letters a, b, c, ...
31 Machine learning approaches to these tasks need thousands of examples before they can learn to predict. See for example [86].
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Fig. 5. A multi-modal trace of ECA rule 110 with eleven light sensors (left) l1, ..., l11 and two touch sensors (right) t1, t2 attached to cells 3 and 11. Each 
row represents the states of the sensors for one time-step. For this prediction task, the final time-step is held out.

Fig. 6. An occlusion task.

see the objects in the column it is placed in. An object is occluded if there is another object below it in the same column. 
See Fig. 6.

The system receives a sensory sequence consisting of the positions of the moving objects whenever they are visible. The 
position of the objects when they are occluded is used as held-out test data to verify the predictions of the model. This is 
an imputation task.

Results. We generated 20 occlusion tasks by varying the size of the grid, the number of moving objects, their direction and 
speed. The Apperception Engine achieved 90% accuracy.

5.2. Empirical evaluations

In this section, we test our system to evaluate the truth of the following hypotheses:

1. The five domains of section 5.1 are challenging tasks for existing baselines.
2. Our system handles retrodiction and imputation just as easily as prediction.
3. The features of our system (unity conditions, cost minimisation) are essential to its performance.
4. Our system outperforms state-of-the-art inductive logic programming approaches in the five domains.

We consider each in turn.

5.2.1. The five domains of section 5.1 are challenging tasks for existing baselines
To evaluate whether our domains are indeed sufficiently challenging, we compared our system against four baselines. 

The first constant baseline always predicts the same constant value for every sensor for each time-step. The second inertia
baseline always predicts that the final hidden time-step equals the penultimate time-step. The third MLP baseline is a 
fully-connected multilayer perceptron (MLP) [88] that looks at a window of up to 10 earlier time-steps to predict the next 
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Fig. 7. Comparison with baselines. We display predictive accuracy on the held-out final time-step.

time-step. The fourth LSTM baseline is a recurrent neural net based on the long short-term memory (LSTM) architecture 
[89].

The neural baselines are designed to exploit potential statistical patterns that are indicative of hidden sensor states. In 
the MLP baseline, we formulate the problem as a multi-class classification problem, where the input consists in a feature 
representation x of relevant context sensors, and a feed-forward network is trained to predict the correct state y of a 
given sensor in question. In the prediction task, the feature representation comprises one-hot32 representations for the state 
of every sensor in the previous two time steps before the hidden sensor. The training data consists of the collection of 
all observed states in an episode (as potential hidden sensors), together with the respective history before. Samples with 
incomplete history window (at the beginning of the episode) are discarded.

The MLP classifier is a 2-layer feed-forward neural network, which is trained on all training examples derived from the 
current episode (thus no cross-episode transfer is possible). We restrict the number of hidden neurons to (20, 20) for the 
two layers, respectively, in order to prevent overfitting given the limited number of training points within an episode. We 
use a learning rate of 10−3 and train the model using the Adam optimiser [90] for up to 200 epochs, holding aside 10% of 
data for early stopping.

Given that the input is a temporal sequence, a recurrent neural network (that was designed to model temporal dynamics) 
is a natural choice of baseline. But we found that the LSTM performs only slightly better than the MLP on Seek Whence 
tasks, and worse on the other tasks. The reason for this is that the paucity of data (a single temporal sequence consisting 
of a small number of time-steps) does not provide enough information for the high capacity LSTM to learn desirable gating 
behaviour. The simpler and more constrained MLP with fewer weights is able to do slightly better on some of the tasks, yet 
both neural baselines achieve low accuracy in absolute terms.

Fig. 7 shows the results. Clearly, the tasks are very challenging for all four baseline systems.

5.2.2. Our system handles retrodiction and imputation just as easily as prediction
To evaluate whether our system is just as capable of retrodicting earlier values and imputing missing intermediate values 

as it is at predicting future values, we ran tests where the unseen hidden sensor values were at the first time step (in the 
case of retrodiction) or randomly scattered through the time-series (in the case of imputation).33 We made sure that the 
number of hidden sensor values was the same for prediction, retrodiction, and imputation.

Fig. 8 shows the results. The results are significantly lower for retrodiction in the ECA tasks, but otherwise comparable. 
The reason for retrodiction’s lower performance on ECA is that for a particular initial configuration there are a significant 
number (more than 50%) of the ECA rules that wipe out all the information in the current state after the first state transition, 
and all subsequent states then remain the same. The results for imputation are comparable with the results for prediction. 
Although the results for rhythm and music are lower, the results on Seek Whence are slightly higher.

32 A one-hot representation of feature i of n possible features is a vector of length n in which all the elements are 0 except the i’th element.
33 A deterministic transition dynamic is a function from a set of ground atoms to a set of ground atoms. If this function is not injective, then information 

is lost as we go through time: there will be a unique next step from the current time-step, but there can be multiple previous steps that transition into 
the current time-step. Our search procedure uses maximum a posteriori (MAP) estimation: we find a single model with the highest posterior (based on 
the likelihood – how well it explains the sequence, and on the prior – the program length), and uses that model to predict, retrodict, and impute. A 
more ambitious Bayesian approach would construct a probability distribution over rival theories, and use a mixture model for retrodiction. But, given the 
computation complexity of finding a single solution (see Section 4.4), this ambitious approach is – in the short term at least – prohibitively expensive.
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Fig. 8. Comparing prediction with retrodiction and imputation. In retrodiction, we display accuracy on the held-out initial time-step. In imputation, a 
random subset of atoms are held-out; the held-out atoms are scattered throughout the time-series. In other words, there may be different held-out atoms 
at different times. The number of held-out atoms in imputation matches the number of held-out atoms in prediction and retrodiction.

Table 5
Ablation experiments. We display predictive accuracy on the final held-out time-step.

ECA Rhythm & music Seek Whence

Full system (AE) 97.3% 73.3% 76.7%
No check that S � τ (θ) 5.1% 3.0% 4.6%
No conceptual unity 5.3% 0.0% 6.7%
No spatial unity 95.7% 73.3% 73.3%
No cost minimization 96.7% 56.6% 73.3%

5.2.3. The features of our system are essential to its performance
To verify that the unity conditions are doing useful work, we performed a number of experiments in which the various 

conditions were removed, and compared the results. We ran four ablation experiments. In the first, we removed the check 
that the theory’s trace covers the input sequence: S � τ (θ) (see Definition 16). In the second, we removed the check on 
conceptual unity. Removing this condition means that the unary predicates are no longer connected together via exclusion 
relations ⊕, and the binary predicates are no longer constrained by ∃! conditions. (See Definition 13.) In the third ablation 
test, we removed the check on spatial unity. Removing this condition means allowing objects which are not connected 
via binary relations. In the fourth ablation test, we removed the cost minimization part of the system. Removing this 
minimization means that the system will return the first interpretation it finds, irrespective of size.

The results of the ablation experiments are displayed in Table 5. The first ablation test, where we remove the check that 
the generated sequence of sets of ground atoms respects the original sensory sequence (S � τ (θ)), performs very poorly. Of 
course, if the generated sequence does not cover the given part of the sensory sequence, it is highly unlikely to accurately 
predict the held-out part of the sensory sequence. This test is just a sanity check that our evaluation scripts are working as 
intended.

The second ablation test, where we remove the check on conceptual unity, also performs poorly. The reason is that 
without constraints, there are no incompossible atoms. Recall from Definition 9 that two atoms are incompossible if there 
is some ⊕ constraint or some ∃! constraint that means the two atoms cannot be simultaneously true. But in Definition 9, 
the frame axiom forces an atom that was true at the previous time-step to also be true at the next time-step unless the 
old atom is incompossible with some new atom: we add α to Ht if α is in Ht−1 and there is no atom in Ht that is 
incompossible with α. But if there are no incompossible atoms, then all previous atoms are always added. Therefore, if 
there are no ⊕ and ∃! constraints, then the set of true atoms monotonically increases over time. This in turn means that 
state information becomes meaningless, as once something becomes true, it remains always true, and cannot be used to 
convey information.

When we remove the spatial unity constraint, the results for the rhythm tasks are identical, but the results for the ECA 
and Seek Whence tasks are lower. The reason why the results are identical for the rhythm tasks is because the background 
knowledge provided (the r relation on notes, see Section 5.1.3) means that the spatial unity constraint is guaranteed to 
be satisfied. The reason why the results are lower for ECA tasks is because interpretations that fail to satisfy spatial unity 
contain disconnected clusters of cells (e.g. cells {c1, ..., c5} are connected by r in one cluster, while cells {c6, ..., c11} are 
connected in another cluster, but {c1, ..., c5} and {c6, ..., c11} are disconnected). Interpretations with disconnected clusters 
tend to generalize poorly and hence predict with less accuracy. The reason why the results are only slightly lower for the 
27



R. Evans, J. Hernández-Orallo, J. Welbl et al. Artificial Intelligence 293 (2021) 103438
Fig. 9. Comparing our system and ILASP w.r.t. grounding size.

Seek Whence tasks is because the lowest cost unified interpretation for most of these tasks also happens to satisfy spatial 
unity.

The results for the fourth ablation test, where we remove the cost minimization, are broadly comparable with the full 
system in ECA and Seek Whence, but are markedly worse in the rhythm / music tasks. But even if the results were compa-
rable in all tasks, there are independent reasons to want to minimize the size of the interpretation. Shorter interpretations 
are more human-readable, and transfer better to new situations (since they tend to be more general, as they have fewer 
atoms in the bodies of the rules).

5.2.4. Our system outperforms state-of-the-art inductive logic programming approaches in the five domains
In order to assess the efficiency of our system, we compared it to ILASP34 [96–99], a state-of-the-art Inductive Logic Pro-

gramming algorithm.35 Unlike traditional ILP systems that learn definite logic programs, ILASP learns answer set programs.36

ILASP is a powerful and general framework for learning answer set programs; it is able to learn choice rules, constraints, 
and even preferences over answer sets [97].

ILASP is able to solve some simple apperception tasks. For example, ILASP is able to solve the task in Example 6. But 
for the ECA tasks, the music and rhythm tasks, and the Seek Whence tasks, the ASP programs generated by ILASP were not 
solvable because they required too much memory.

In order to understand the memory requirements of ILASP on these tasks, and to compare our system with ILASP in a fair 
like-for-like manner, we looked at the size of the grounded ASP programs. Recall that both our system and ILASP generate 
ASP programs that are then grounded into propositional clauses that are then passed to a SAT solver. The grounding size 
determines the memory usage and is strongly correlated with solution time.

We took a representative ECA rule, Rule 245, and looked at the grounding size as the number of cells increased from 2 
to 11. We used the same template for both ILASP and the Apperception Engine. The results are in Fig. 9.

As we increase the number of cells, the grounding size of the ILASP program grows much faster than the corresponding
Apperception Engine program. The reason for this marked difference is the different ways the two approaches represent 
rules. In our system, rules are interpreted by an interpreter that operates on reified representations of rules. In ILASP, by 
contrast, rules are compiled into ASP rules. This means, if there are |Uφ | unground atoms and there are at most NB atoms 
in the body of a rule, then ILASP will generate |Uφ |NB+1 different clauses. When it comes to grounding, if there are |�φ |
substitutions and t time-steps, then ILASP will generate at most |Uφ |NB+1 · |�φ | · t ground instances of the generated clauses. 
Each ground instance will contain NB + 1 atoms, so there are (NB + 1) · |Uφ |NB+1 · |�φ | · t ground atoms in total.

Compare this with our system. Here, we do not represent every possible rule explicitly as a separate clause. Rather, we 
represent the possible atoms in the body of a rule by an ASP choice rule:

0 { rule_body(R, VA) : is_unground_atom(VA) } k_max_body :- is_rule(R).

34 We compared against ILASP rather than Metagol (another state-of-the-art inductive logic programming system [91,92]) because (i) ILASP is comparable 
in performance (it achieved slightly better results than Metagol in the Inductive General Game Playing task suite [93], getting 40% correct as opposed 
to Metagol’s 36%), and (ii) since ILASP also uses ASP we can compare the grounding size of our program with ILASP and get a fair apples-for-apples 
comparison. We used ILASP rather than HEXMIL (the ASP implementation of Metagol [94]) because of scaling problems with HEXMIL [95]. Our decision to 
use ILASP rather than Metagol for these tests was based on a number of discussions with Andrew Cropper (the developer of Metagol) and Mark Law (the 
developer of ILASP). We are very grateful to both for their advice on this.
35 Strictly speaking, ILASP is a family of algorithms, rather than a single algorithm. We used ILASP2 [97] in this evaluation.
36 Answer set programming under the stable model semantics is distinguished from traditional logic programming in that it is purely declarative and each 

program has multiple solutions (known as answer sets). Because of its non-monotonicity, ASP is well suited for knowledge representation and common-
sense reasoning [100,101].
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If there are N→ static rules and N⊃– causal rules, then this choice rule only generates N→ + N⊃– ground clauses, each 
containing |Uφ | atoms.

The most expensive clauses in our encoding are analysed in Table 3. Recall from Section 4.4 that the total number of 
atoms in the ground clauses is approximately 5 · |�φ | · (N→ + N⊃–) · |Uφ | · t .

To compare this with ILASP, let us set NB = 4 (which is representative). Then ILASP generates ground clauses with 
5 · |Uφ |5 · |�φ | · t ground atoms while our system generates clauses with 5 · |�φ | · (N→ + N⊃–) · |Uφ | · t ground atoms. The 
reason, then, why our system has such lower grounding sizes than ILASP is because (N→ + N⊃–) << |Uφ |4. Intuitively, the 
key difference is that ILASP considers every possible subset of the hypothesis space, while our system (by restricting to at 
most N→ + N⊃– rules) only considers subsets of length at most N→ + N⊃– .

6. Noisy apperception

So far, we have assumed that our sensor readings are entirely noise-free: some of the sensory readings may be missing, 
but none of the readings are inaccurate.

If we give the Apperception Engine a sensory sequence with mislabelled data, it will struggle to provide a theoretical 
explanation of the mislabelled input. Consider, for example, S1:20:

S1 = {p(a)} S2 = {p(a)} S3 = {q(a)} S4 = {p(a)} S5 = {p(a)}
S6 = {p(a)} S7 = {p(a)} S8 = {p(a)} S9 = {p(a)} S10 = {p(a)}
S11 = {p(a)} S12 = {p(a)} S13 = {p(a)} S14 = {p(a)} S15 = {p(a)}
S16 = {p(a)} S17 = {p(a)} S18 = {p(a)} S19 = {p(a)} S20 = {p(a)}

Here, S3 = {q(a)} is an outlier in the otherwise tediously predictable sequence.
If we give sequences such as this to the Apperception Engine, it attempts to make sense of all the input, including the 

anomalies. In this case, it finds the following baroque explanation:

I =
{

p(a)

c1(a)

}
R =

⎧⎪⎪⎨
⎪⎪⎩

q(X) → c3(X)

c3(X)⊃– p(X)

c1(X)⊃– c2(X)

c2(X)⊃– q(X)

⎫⎪⎪⎬
⎪⎪⎭

C ′ =
{ ∀X :s, p(X) ⊕ q(X)

∀X :s, c1(X) ⊕ c2(X) ⊕ c3(X)

}

Here, the Apperception Engine has introduced three new invented predicates c1, c2, c3 in order to count how many p’s it 
has seen, so that it knows when to switch to q. If we move the anomalous entry q(a) later in the sequence, or add further 
anomalies, the engine is forced to construct increasingly complex theories. This is clearly unsatisfactory.

In order to handle noisy mislabelled data, we shall relax our insistence that the sequence S1:T is entirely covered by the 
trace of the theory θ . Instead of insisting that S � τ (θ), we shall minimise the number of discrepancies between each Si
and τ (θ)i , for i = 1..T .

We want to find the most probable theory θ given our noisy input sequence S1:T :

arg max
θ

p (θ | S1:T ) (1)

By Bayes’ rule, this is equivalent to

arg max
θ

p(θ) · p (S1:T | θ)

p(S1:T )
(2)

Since the denominator does not depend on θ , this is equivalent to:

arg max
θ

p(θ) · p (S1:T | θ) (3)

Since the probability of the state Si is conditionally independent of the previous state Si−1 given θ (this is the assumption 
behind the Hidden Markov Model), the above is equivalent to:

arg max
θ

p(θ) ·
T∏

i=1

p (Si | θ) (4)

Now each Si depends only on τ (θ)i , the trace of θ at time step i. Thus we can rewrite to:

arg max
θ

p(θ) ·
T∏

i=1

p (Si | τ (θ)i) (5)

Since we assume a description length prior over theories, p(θ) ∝ 2−len(θ) . Let the probability of Si given τ (θ)i be 
p (Si | τ (θ)i) = 2−|Si−τ (θ)i | . Then we can rewrite to:
29



R. Evans, J. Hernández-Orallo, J. Welbl et al. Artificial Intelligence 293 (2021) 103438
arg max
θ

2−len(θ) ·
T∏

i=1

2−|Si−τ (θ)i | (6)

Thus, we define the costnoise of the theory to be:

costnoise = len(θ) +
T∑

i=1

|Si − τ (θ)i | (7)

and search for the theory with lowest cost.

Example 12. Consider, for example, the following sequence S1:10:

S1 = {} S2 = {off (a),on(b)} S3 = {on(a),off (b)} S4 = {on(a),on(b)} S5 = {on(b)}
S6 = {on(a),off (b)} S7 = {on(a),on(b)} S8 = {off (a),on(b)} S9 = {on(a)} S10 = {}

Because the sequence is so short, the lowest costnoise theory is:

I = { }
R = { }

C ′ = { ∀X :s, on(X) ⊕ off (X)
}

This degenerate empty theory has cost 14 (the number of atoms in S) which is shorter than any “proper” explanation 
that captures the regularities. But as the sequence gets longer, the advantage of a “proper” explanation over a degenerate 
solution becomes more and more apparent. Consider, for example, the following extension S ′

1:30:

S ′
1 = {} S ′

2 = {off (a),on(b)} S ′
3 = {on(a),off (b)} S ′

4 = {on(a),on(b)} S ′
5 = {on(b)}

S ′
6 = {on(a),off (b)} S ′

7 = {on(a),on(b)} S ′
8 = {off (a),on(b)} S ′

9 = {on(a)} S ′
10 = {}

S ′
11 = {off (a),on(b)} S ′

12 = {on(a),off (b)} S ′
13 = {on(a),on(b)} S ′

14 = {off (a),on(b)} S ′
15 = {on(a),off (b)}

S ′
16 = {on(a),on(b)} S ′

17 = {off (a),on(b)} S ′
18 = {on(a),off (b)} S ′

19 = {on(a),on(b)} S ′
20 = {off (a),on(b)}

S ′
21 = {on(a),off (b)} S ′

22 = {on(a),on(b)} S ′
23 = {off (a),on(b)} S ′

24 = {on(a),off (b)} S ′
25 = {on(a),on(b)}

S ′
26 = {off (a),on(b)} S ′

27 = {on(a),off (b)} S ′
28 = {on(a),on(b)} S ′

29 = {off (a),on(b)} S ′
30 = {}

Now the lowest costnoise theory is one that finds the underlying regularity:

I =
⎧⎨
⎩

on(a)

p1(a)

p2(b)

⎫⎬
⎭ R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

off (X) → p3(X)

p2(X) → on(X)

p1(X)⊃– off (X)

p3(X)⊃– p2(X)

p2(X)⊃– p1(X)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

C ′ =
{ ∀X :s, on(X) ⊕ off (X)

∀X :s, p1(X) ⊕ p2(X) ⊕ p3(X)

}

We can see, then, that the noise-robust version of the Apperception Engine is somewhat less data-efficient than the noise-
intolerant version described earlier. 	

6.1. Experiments

We used the following sequences to compare the noise-intolerant Apperception Engine with the noise-robust version:

a,b,a,b,a,b,a,b,a,b,a,b, ... a,a,b,a,a,b,a,a,b,a,a,b, ...
a,a,b,b,a,a,b,b,a,a,b,b, ... a,a,a,b,a,a,a,b,a,a,a,b, ...
a,b,b,a,a,b,b,a,a,b,b,a, ... a,b,c,a,b,c,a,b,c,a,b,c, ...
a,b,c,b,a,a,b,c,b,a,a,b,c,b,a, ... a,b,a,c,a,b,a,c,a,b,a,c, ...
a,b,c,c,a,b,c,c,a,b,c,c, ... a,a,b,b,c,c,a,a,b,b,c,c, ...

We chose these particular sequences because they are simple, noise-free, and the Apperception Engine is able to solve them 
in a reasonably short time.

We performed two groups of experiments. In the first, we evaluated how much longer the sequence needs to be for the 
noise-robust version to capture the underlying regularity, in comparison with the noise-intolerant version which is more 
data-efficient. Fig. 10 shows the results. We plot mean percentage accuracy (over the ten sequences) against the length of 
the sequence that is provided to the Apperception Engine. Note that the noise-intolerant version only needs sequences of 
length 10 to achieve 100% accuracy, while the noise-tolerant version needs sequences of length 30.37

In the second experiment, we evaluate how much better the noise-robust version of the Apperception Engine is at han-
dling mislabelled data. We take the same ten sequences above, extended to length 100, and consider various perturbations 

37 Note also that the noise-tolerant version finds a solution significantly (17x) faster than the noise-intolerant version.
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Fig. 10. Comparing the data-efficiency of the noise-robust version of the Apperception Engine with the noise-intolerant version. We plot mean percentage 
accuracy against length of the sequence. The noise-intolerant version achieves 100% accuracy when the sequence is length 10 or over, while the noise-robust 
version only achieves this level of accuracy when the length is over 30.

Fig. 11. Comparing the accuracy of the noise-robust version of the Apperception Engine with the noise-intolerant version. We plot mean percentage 
accuracy against the number of mislabellings. The noise-intolerant version deteriorates to random as soon as any noise is introduced, while the noise-
robust version is able to maintain reasonable (88%) accuracy with up to 30% of the sequence mislabelled.

of the sequence where we randomly mislabel a certain number of entries. Fig. 11 shows the results. We plot mean per-
centage accuracy (over the ten sequences) against the percentage of mislabellings. Note that the noise-intolerant version 
deteriorates to random as soon as any noise is introduced, while the noise-robust version is able to maintain reasonable 
accuracy with up to 30% of the sequence mislabelled.

7. Related work

In this section, we describe particular systems that are related to our approach. For a general overview of the space of 
different approaches, see Section 1.1.

7.1. “Theory learning as stochastic search in a language of thought”

Ullman et al. [67,68] describe a system for learning first-order rules from symbolic data. Recasting their approach into 
our notation, their system is given as input a set S of ground atoms,38 and it searches for a set of static rules R and a set I
of atoms such that R, I |= S .

Of course, the task as just formulated admits of entirely trivial solutions: for example, let I = S and R = {}. Ullman et 
al. rule out such trivial solutions by adding two restrictions. First, they distinguish between two disjoint sets of predicates: 
the surface predicates are the predicates that appear in the input S , while the core predicates are the latent predicates. Only 
core predicates are allowed to appear in the initial conditions I . This distinction rules out the trivial solution above, but 

38 Compare with our system, which is given a sequence (S1, ..., ST ) of sets of ground atoms.
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there are other degenerate solutions: for each surface predicate p, add a new core predicate pc . If p(k1, ..., kn) is in S , add 
pc(k1, ..., kn) to I . Also, add the rule p(X1, ..., Xn) ← pc(X1, .., Xn) to R . Clearly, R, I |= S but this solution is unilluminating, 
to say the least. To prevent such degenerate solutions, the second restriction that Ullman et al. add is to prefer shorter
rule-sets R and smaller sets I of initial atoms. The idea is that if S contains structural regularities, their system will find an 
R and I that are much simpler than the degenerate solution above.

Consider, for example, the various surface relations in a family tree: John is the father of William; William is the husband 
of Anne; Anne is the mother of Judith; John is the grandfather of Judith. All the various surface relations (father, mother, 
husband, grandfather...) can be explained by a small number of core relations: parent(X, Y ), spouse(X, Y ), male(X), and 
female(X). Now the surface facts S = {father(john, william), ...} can be explained by a small number of facts involving core 
predicates I = {parent(john, william), male(john), ...} together with rules such as:

father(X, Y ) ← parent(X, Y ),male(X)

At the computational level, then, the task that Ullman et al. set out to solve is: given a set S of ground atoms featuring 
surface predicates, find the smallest set I of ground atoms featuring only core predicates, and the smallest set R of static 
rules, such that R, I |= S . Recasting this task in the language of probability, they wish to find:

arg max
R,I

p(R, I | S)

Using Bayes’ rule this can be recast as:

arg max
R,I

p(R, I | S) = arg max
R,I

p(S | R, I)p(R, I)

p(S)

= arg max
R,I

p(S | R, I)p(R, I)

= arg max
R,I

p(S | R, I)p(R)p(I | R)

Here, the likelihood p(S | R, I) is the proportion of S that is entailed by R and I , the prior p(R) is the size of the rules, and 
p(I | R) is the size of I .

At the algorithmic level, Ullman et al. apply Markov Chain Monte Carlo (MCMC). MCMC is a stochastic search procedure. 
When it is currently considering search element x, it generates a candidate next element x′ by randomly perturbing x. Then 
it compares the scores of x and x′ . If x′ is better, it switches attention to focus on x′ . Otherwise, if x′ is worse than x, there 
is still a non-zero probability of switching (to avoid local minima), but the probability is lower when x’ is significantly worse 
than the current search element x.

In their algorithm, MCMC is applied at two levels. At the first level, a set R of rules is perturbed into R ′ by adding or 
removing atoms from clauses, or by switching one predicate for another predicate with the same arity. At the second level, 
I is perturbed into I ′ by changing the extension of the core predicates.

Given that the search space of sets of rules is so enormous, and that MCMC is a stochastic search procedure that only 
operates locally, the algorithm needs additional guidance to find solutions. In their case, they provide a template, a set of 
meta-rules that constrain the types of rules that are generated in the outermost MCMC loop. A meta-rule is a higher-order 
clause in which the predicates are themselves variables. For example, in the following meta-rule for transitivity, P is a 
variable ranging over two-place predicates:

P (X, Y ) ← P (X, Z), P (Z , Y )

Meta-rules are a key component in many logic program synthesis systems [91,102,103,96,99].
Ullman et al. tested their system in a number of domains including taxonomy hierarchies, simplified magnetic theories, 

kinship relations, and psychological explanations of action. In each domain, their system is able to learn human-interpretable 
theories from small amounts of data.

At a high level, Ullman et al.’s system has much in common with the Apperception Engine. They are both systems for 
generating interpretable explanations from small quantities of symbolic data. While the Apperception Engine generates a 
(φ, I, R, C) tuple from a sequence (S1, ..., ST ), their system generates an (I, R) pair from a single set S of atoms. But there 
are a number of significant differences. First, and most importantly, our system learns causal dynamics from time series, 
while their system only learns static rules. Second, our system posits latent objects as well as latent predicates, while their 
system only posits latent predicates. The ability to imagine unobserved objects, with unobserved attributes that explain the 
observed attributes of observed objects, is a key feature of the Apperception Engine. Third, their system requires hand-
engineered templates in order to find a theory that explains the input. This reliance on hand-engineered templates restricts 
the domain of application of their technique: in a domain in which they do not know, in advance, the structure of the 
rules they want to learn, their system will not be applicable. Fourth, a unified interpretation θ = (φ, I, R, C) in our system 
includes a set C of constraints. These constraints play a critical role in our system: they are both regulative (ruling out 
certain incompossible combinations of atoms) and constitutive (the constraints determine the incompossible relation that 
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in turn grounds the frame axiom). There is no equivalent of our constraints C in their system. A fifth key difference is that 
our system has to produce a theory that, as well as explaining the sensory sequence, also has to satisfy the unity conditions: 
spatial unity, conceptual unity, static unity, and temporal unity. There is no analog of our unity conditions in Ullman et al.’s
system.

At the algorithmic level, the systems are very different. While we use a form of meta-interpretive learning (see Sec-
tion 4.2), they use MCMC. Our system compiles an apperception problem into the task of finding an answer set to an ASP 
program that minimises the program cost. The ASP problem is given to an ASP solver, that is guaranteed to find the global 
minimum. MCMC, by contrast, is a stochastic procedure that operates locally (moving from one single point in program space 
to another), and is not guaranteed to (in fact, in practice, it rarely does) find a global minimum.

7.2. “Learning from interpretation transition”

Inoue, Ribeiro, and Sakama [12] describe a system (LFIT) for learning logic programs from sequences of sets of ground 
atoms. Since their task definition is broadly similar to ours, we focus on specific differences. In our formulation of the 
apperception task, we must construct a (φ, I, R, C) tuple from a sequence (S1, ..., ST ) of sets of ground atoms. In their task 
formulation, they learn a set of causal rules from a set {(Ai , Bi)}N

i=1 of pairs of sets of ground atoms.
In some respects, their task formulation is more general than ours. First, their input {(Ai , Bi)}N

i=1 can represent transitions 
from multiple trajectories, rather than just a single trajectory, and corresponds to a generalized apperception task (see 
Definition 19). Second, they learn normal logic programs, allowing negation as failure in the body of a rule, while our 
system only learns definite clauses.

But there are a number of other ways in which our task formulation is significantly more general than LFIT. First, our 
system posits latent information to explain the observed sequence, while LFIT does not construct any latent information. 
Their system searches for a program P that generates exactly the output state. In our approach, by contrast, we search for a 
program whose trace covers the output sequence, but does not need to be identical to it. The trace of a unified interpretation 
typically contains much extra information that is not part of the original input sequence, but that is used to explain the 
input information.

Second, our system abduces a set of initial conditions as well as a set of rules, while LFIT does not construct initial 
conditions. Because of this, our system is able to predict the future, retrodict the past, and impute missing intermediate 
values. LFIT, by contrast, can only be used to predict future values.

Third, our system generates a set of constraints as well as rules. The constraints perform double duty: on the one hand, 
they restrict the sets of compossible atoms that can appear in traces; on the other hand, they generate the incompossibility 
relation that grounds the frame axiom. Note that there is no frame axiom in LFIT.

In [12], Inoue et al. use a bottom-up synthesis method to learn rules. Given a state transition (A, B) in E , they construct 
a normal ground rule for each β ∈ B:

∧
α∈A

α ∧
∧

α∈G−A

not α⊃– β

Then, they use resolution to generalize the individual ground rules. It is important to note that this strategy is quite conser-
vative in the generalizations it performs, since it only produces a more general rule if it turns out to be a resolvent of a pair 
of previous rules. While the Apperception Engine searches for the shortest (and hence most general) rules, LFIT searches 
for the most specific generalization. In more recent work [104], LFIT has been changed to perform top-down specialization, 
rather than bottom-up generalization. With this change, LFIT is guaranteed to find the shortest set of rules that explain the 
transitions.

LFIT was tested on Boolean networks and on Elementary Cellular Automata. It is instructive to compare our system 
with LFIT on the ECA tasks. When LFIT is applied to the ECA task, it is provided with the one-dimensional spatial relation 
between the cells as background knowledge. In our approach, by contrast, we do not hand-code the spatial relation, but 
rather let the Apperception Engine generate the spatial relation itself as part of the initial conditions. (See Section 5.1.2.) It 
is precisely because our system is able to posit latent information to explain the surface features that it is able to generate 
the spatial relation itself, rather than having to be given it.

In some situations, positing latent information allows us to constructer a simpler theory. In other situations, however, 
positing latent information is absolutely essential to making sense of the sequence. There are many apperception tasks 
for which every interpretation that makes sense of the sequence must include latent information: consider, for example, 
learning the dynamics of the ECA without spatial information (Section 5.1.2), the Seek Whence sequences (Section 5.1.4), or 
the binding tasks (Section 5.1.6). Even the following simple example shows the unavoidable need to posit latent information:

Example 13. Consider the task (S, φ, C) where S = (S1, S2, S3, ..., Sn), S1 = S2 = {p(a)}, and S3 = S4 = ... = Sn = {q(a)}. 
Here, φ contains one type t , one object a of type t , two unary predicates p and q, and one constraint ∀X : t, p(X) ⊕
q(X). Since p and q are incompatible, the transition from p to q from state S2 to S3 must be explained by a causal rule 
φ⊃– q(X), where φ is a set of atoms. Now φ cannot be empty, or the rule would be unsafe, φ cannot be {p(X)}, or else q(a)

would be derivable at the second time-step, contradicting S2 = {p(a)}. Similarly, φ cannot be {q(X)}, or else q(a) would 
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not be derivable at time-step 3. Hence φ must contain an atom featuring a predicate distinct from p or q. Hence, every 
interpretation that makes sense of S must invoke latent information.

One of the theories found by the Apperception Engine for this is θ = (φ, I, R, C), where:

I =
{

p(a)

r(a)

}
R =

{
r(X)⊃– s(X)

p(X) ∧ s(X)⊃– q(X)

}
C =

{ ∀X :t, p(X) ⊕ q(X)

∀X :t, r(X) ⊕ s(X)

}

Here, there are two latent predicates, r and s, that are used as counters, so the system can distinguish between the two 
occurrences of p(a) in S1 and S2. Thus for some sequences, the positing of latent predicates, and the abduction of initial 
conditions for the latent atoms, is unavoidable.39 	

LFIT has been extended in a number of ways, to increase the range of real-world problems that it can tackle. In [106], 
LFIT was extended to learn probabilistic models. In [105], the system was extended from the Markov(1) assumption (where 
the new state depends only on the current state) to the more general Markov(k) setting (where the new state depends 
on the last k states). In [107], LFIT was generalised so that as well as working with deterministic models (where all state 
transitions happen simultaneously), it also can work with other semantics (where only a subset of the transitions may 
happen at each time-step). In [108], LFIT was extended to work directly with continuous sensor data, rather than assuming 
the continuous sensor data has first been discretised by some other process. In [109,110], LFIT was reimplemented in a 
feed-forward neural network, so as to robustly handle noisy and continuous data.

7.3. “Unsupervised learning by program synthesis”

Ellis et al. [22] use program synthesis to solve an unsupervised learning problem. Given an unlabelled dataset {xi}N
i=1, 

they find a program f and a set of inputs {Ii}N
i=1 such that f (Ii) is close to xi for each i = 1..N . More precisely, they use 

Bayesian inference to find the f and {Ii}N
i=1 that minimizes the total description length (negative log probability) of the 

program, the initial conditions, and the data-reconstruction error:

− log P f ( f ) +
N∑

i=1

(− log P x|z(xi | f (Ii)) − log P I (Ii)
)

where P f ( f ) is a description length prior over programs, P I (Ii) is a description length prior over initial conditions, and 
P x|z(· | zi) is a noise model. This system was designed from the outset to be robust to noise, using Bayesian inference to 
calculate the desired tradeoff between the program length, the initial conditions length, and the data-reconstruction error 
cost. They tested this system in two domains: reproducing two dimensional pictures, and learning morphological rules for 
English verbs.

This system is similar to ours in that it produces interpretable programs from a small number of data samples. Like ours, 
their program length prior acts as an inductive bias that prefers general solutions over special-case memorized solutions. 
Like ours, as well as constructing a program, they also learn initial conditions that combine with the program to produce 
the desired results.40 At a high level, their algorithm is also similar: they generate a Sketch program [111] from the dataset 
{xi}N

i=1 of examples, and use a SMT solver to fill in the holes. They then extract a readable program from the SMT solution, 
which they then apply to new instances, exhibiting strong generalization.

As well as the high level architectural similarities, there are a number of important differences. First, their goal was to 
generate an object f (Ii) that matches as closely as possible to the input object xi . Our goal is more general: we seek to 
generate a sequence τ (θ) that covers the input sequence. The covering relation is much more general, as Si only has to be 
a subset of (τ (θ))i , not identical to it. This allows the addition of latent information to the trace of the theory. A second 
key difference is that we focus on generating sequences, not individual objects. Our system is designed for making sense 
(unsupervisedly) of time series, sequences of states, not of reconstructing individual objects. A third key difference is that 
we use a single domain-independent language, Datalog⊃–, for all domains, while Ellis et al. use a different domain-specific 
imperative language for each domain they consider. A fourth key difference is that we use a declarative language, rather 
than an imperative language. An individual rule or constraint has a truth-conditional interpretation, and can be interpreted 
as a belief of the synthesising agent. An individual line of an imperative procedure, by contrast, cannot be interpreted as a 
belief. A fifth major difference is that we synthesise constraints as well as rules. Constraints are the “special sauce” of our 
system: exclusive disjunctions combine predicates into groups, enforce that each state is fully determinate, and ground the 
incompossibility relation that underlies the frame axiom.

39 It is unavoidable unless we relax the Markov assumption. In [105], examples like this can be handled by using a rule that tests whether p holds at the 
last two time-steps: p(T − 2, X) ∧ p(T − 1, X) → q(T , X).
40 In fact, they learn a different set of initial conditions Ii for each data point xi . This corresponds to the generalized apperception task of Definition 19.
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7.4. “Learning symbolic models of stochastic domains”

Pasula et al. [10] describe a system for learning a state transition model from data. The model learns a probability 
distribution p(s′ | s, a) where s is the previous state, a is the action that was performed and s′ is the next state.

Each state is represented as a set of ground atoms, just like in our system. They assume complete observability: they 
assume they are given the value of every sensor and the task is just to predict the next values of the sensors.

They represent a state transition model by a set of “dynamic rules”: these are first-order clauses determining the future 
state given a current state and an action. These dynamic rules are very close to the causal rules in Datalog⊃–. Unlike in our 
system, their rules have a probability outcome for each possible head. Note their system does not include static rules or 
constraints.

In their semantics, they assume that exactly one dynamic rule fires every time-step. This is a very strong assumption. But it 
makes it easier to learn rules with probabilistic outcomes.

They learn state transitions for the noisy gripper domain (where a robot hand is stacking bricks, and sometimes fails 
to pick up what it attempts to pick up) and a logistics problem (involving trucks transporting objects from one location to 
another). Impressively, they are able to learn probabilistic rules in noisy settings. They also verify the usefulness of their 
learned models by passing them to a planner (a sparse sampling MDP planner), and show, reassuringly, that the agent 
achieves more reward with a more accurate model.

At a strategic level, their system is similar in approach to ours. First, they learn first-order rules, not merely propositional 
ones. In fact, they show in ablation studies that learning propositional rules generalise significantly less well, as you would 
expect. Second, they use an inductive bias against constants (p. 14), just as we do: “learning action models which are 
restricted to be free of constants provides a useful bias that can improve generalisation when training with small data sets”. 
Third, their system is able to construct new invented predicates.

But there are also a number of differences. In our system, many rules can fire simultaneously. But in theirs, only one 
rule can fire in any state. Because of this assumption, they cannot model e.g. a cellular automaton, where each cell has 
its own individual update rule firing simultaneously. Another limiting assumption is that they assume they have complete 
observability of all sensory predicates. This means they would not be able to solve e.g. occlusion tasks.

7.5. “Nonmonotonic abductive inductive learning”

Ray [11] described a system, XHAIL, for jointly learning to abduce ground atoms and induce first-order rules. XHAIL 
learns normal logic programs that can include negation as failure in the body of a rule.

XHAIL is similar to the Apperception Engine in that as well as inducing general first-order rules, it also constructs a set of 
initial ground atoms. This enables it to model latent (unobserved) information, which is a very powerful and useful feature. 
At the implementation level, it uses a similar strategy in that solutions are found by iterative deepening over a series of 
increasingly complex ASP programs. The simplified event calculus [54] is represented explicitly as background knowledge.

But there are also a number of key differences. First, it does not model constraints. This means it is not able to represent 
the incompossibility relation between ground atoms. Also, XHAIL does not try to satisfy our other unity conditions, such 
as spatial and conceptual unity. Second, the induced rules are compiled in XHAIL, rather than being interpreted (as in our 
system). Representing each candidate induced rule explicitly as a separate ASP rule means that the number of ASP rules 
considered grows exponentially with the size of the rule body.41 Third, XHAIL needs to be provided with a set of mode 
declarations to limit the search space of possible induced rules. These mode declarations constitute a significant piece of 
background knowledge. Now of course there is nothing wrong with allowing an ILP system to take advantage of background 
knowledge to aid the search. But when an ILP system relies on this hand-engineered knowledge, then it restricts the range 
of applicability to domains in which human engineers can anticipate in advance the form of the rules they want the system 
to learn.42

7.6. The Game Description Language and Datalog⊃–

Our language Datalog⊃– is an extension of Datalog that incorporates, as well as the standard static rules of Datalog, both 
causal rules (Definition 7) and constraints (Definition 8). The semantics of Datalog⊃– are defined according to Definition 9. 
Unlike standard Datalog, the atoms and rules of Datalog⊃– are strongly typed (see Definitions 4, 5, and 7).

At a high level, Datalog⊃– is related to the Game Description Language (GDL) [113]. The GDL is an extension of Datalog 
that was designed to express deterministic multi-agent discrete Markov decision processes. The GDL includes (stratified) 
negation by failure, as well as some (restricted) use of function symbols, but these extensions were carefully designed to 
preserve the key Datalog property that a program has a unique subset-minimal Herbrand model. The GDL includes special 
keywords, including init for specifying initial conditions (equivalent to the initial conditions I in a (φ, I, R, C) theory), and 

41 It shares the same implementation strategy as ASPAL [112] and ILASP [96]. See Section 5.2.4 for discussion of the grounding problem associated with 
this family of approaches. The discussion is specifically focused on ILASP, but we believe the same issue affects ASPAL and XHAIL mutatis mutandem.
42 See Appendix C of [62] for a discussion of the use of mode declarations as a language bias in ILP systems.
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next for specifying state transitions (equivalent to our causal rules). The inductive general game playing (IGGP) task [114,93]
involves learning the rules of a game from observing traces of play.

An IGGP task is broadly similar to an apperception task in that both involve inducing initial conditions and rules from 
traces. But there are many key differences. One major feature of Datalog⊃– is the use of constraints to generate incompossible 
sets of ground atoms. These exclusion constraints are needed to generate the incompossibility relation which in turn is 
needed to restrict the scope of the frame axiom (see Definition 9).

The main difference between Datalog⊃– and the GDL is that the former includes exclusion constraints. The exclusion 
constraints play two essential roles. First, they enable the theory as a whole to satisfy the condition of conceptual unity. 
Second, they provide constraints, via the condition of static unity, on the generated trace: since the constraints must always 
be satisfied, this restricts the rules that can be constructed. Satisfying these constraints means filling in missing information. 
This is why a unified interpretation is able to make sense of incomplete traces where some of the sensory data is missing.

7.7. Related application areas

We briefly outline four related research areas where the Apperception Engine can be applied.
One related area of research is learning action theories [115–119]. Here, the aim is to learn the transition dynamics in 

the presence of exogenous actions performed by an agent. The aim is not to predict what actions the agent performs, but 
rather to predict the effects of the action on the state.

Another application area is relational reinforcement learning [120–122]. Here, the agent works out how to optimize its 
reward in an environment by constructing (using ILP) a first-order model of the dynamics of that environment, which it 
then uses to plan. Here, the Apperception Engine can be used to construct the dynamics model.

A related application area is learning game rules from player traces [123,96]. Here, the learning system is presented with 
traces (typically, sequences of sets of ground atoms), representing the state of the game at various points in time, and has 
to learn the transition dynamics (or reward function, or action legality function) of the underlying system.

A fourth related area is the predictive processing (PP) paradigm [124,6–8], an increasingly popular model in compu-
tational and cognitive neuroscience. Inspired by Helmholtz, the model learns to make sense of its sensory stream by 
attempting to predict future percepts. When the predicted percepts diverge from the actual percepts, the model updates 
its parameters to minimize prediction error. The PP model is probabilistic, Bayesian, and hierarchical: probabilistic in that 
the predicted sensory readings are represented as probability density functions, Bayesian in that the likelihood is combined 
with prior expectations [6], and hierarchical in that each layer provides predictions of sensory input for the layer below; 
there are typically many layers. While PP focuses on prediction, the Apperception Engine generates an interpretation that 
is equally adept at predicting future signals, retrodicting past signals, and imputing missing intermediary signals. In our 
approach, the ability to predict future signals is a derived capacity, a capacity that emerges from the more general capacity 
to construct a unified interpretation – but prediction is not singled out in particular. The Apperception Engine is able to 
predict, retrodict, and impute – in fact, it is able to do all three simultaneously using a single incomplete sensory sequence 
with elements missing at the beginning, at the end, and in the middle.

7.8. Summary

In summary, there are various other systems that construct dynamic rules for explaining sequences. But these systems 
are unable to posit latent hidden information to make sense of the sequence. These systems are able to predict future 
elements of the sequence, but are not able to retrodict earlier elements, or impute missing intermediary elements. For 
problems that require positing latent hidden information,43 or problems that require retrodiction and imputation as well as 
prediction, the Apperception Engine is particularly well suited.

8. Conclusion

This paper is an attempt to answer a key question of unsupervised learning: what does it mean to “make sense” of 
a sensory sequence? Our answer is that making sense means constructing a symbolic theory containing a set of objects 
that persist over time, with attributes that change over time, according to general laws. This theory must both explain 
the sensory input, and satisfy the unity conditions of Section 3.3. As well as providing a precise formalization of this task, 
we also provide a concrete implementation of a system that is able to make sense of the sensory stream. We have tested 
the Apperception Engine in a variety of domains; in each domain, we tested its ability to predict future values, retrodict 
previous values, and impute missing intermediate values. Our system achieves good results across the board, outperforming 
neural network baselines and also state-of-the-art ILP systems.

Of particular note is that the Apperception Engine is able to achieve human performance on challenging sequence 
induction intelligence tests. We stress, once more, that the system was not hard-coded to solve these tasks. Rather, it is 

43 For example, making sense of the ECA sequences without spatial information (Section 5.1.2), or interpreting the Seek Whence sequences (Section 5.1.4), 
or the binding tasks (Section 5.1.6).
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a general domain-independent sense-making system that is able to apply its general architecture to the particular problem 
of Seek Whence induction tasks, and is able to solve these problems “out of the box” without human hand-engineered 
help. We also stress, again, that the system did not learn to solve these sequence induction tasks by being presented with 
hundreds of training examples.44 Indeed, the system had never seen a single such task before. Instead, it applied its general 
sense-making urge to each individual task, de novo.

Our architecture, an unsupervised program synthesis system, is a purely symbolic system, and as such, it inherits two 
key advantages of ILP systems [62]. First, the interpretations produced are interpretable. Because the output is symbolic, 
it can be read and verified by a human.45 Second, it is very data-efficient. Because of the language bias of the Datalog⊃–
language, and the strong inductive bias provided by the unity conditions, the system is able to make sense of extremely 
short sequences of sensory data, without having seen any others.

However, the system in its current form has some limitations that we wish to make explicit. First, the sensory input must 
be discretized before it can be passed to the system. We assume some prior system has already discretized the continuous 
sensory values by grouping them into buckets. One possible approach to deal with continuous sensory values is to combine 
the Apperception Engine with a neural network that maps the raw continuous inputs into categories. We have recently 
developed such an extension, in which we discretize the input by simulating a binary neural network. The binary neural 
network is implemented in ASP, so the weights of the network and the rules of the theory can be found simultaneously by 
solving one large SAT problem.

Second, our implementation as described above assumes all causal rules are fully deterministic. It is quite straightforward 
to add non-determinism to the Datalog⊃– framework: we can define an extended theory as a theory with initial conditions 
for each time-step (rather than only allowing initial conditions for the first time-step, as in Definition 2). An extended theory 
θ = (φ, {I1, ..., IT }, R, C) generates a trace τ (θ) = (A1, A2, ...) in exactly the same way as in Definition 9, with one small 
exception: It ⊆ At replaces I ⊆ A1. In other words, new atoms can be abduced at each time-step. This would allow us to 
handle non-determinism by abducing atoms that change their truth-value according to {I1, ..., IT } instead of according to 
the rules in R .

Third, the size of the search space means that our system is currently restricted to small-to-medium-size problems.46

Going forward, we believe that the right way to build complex theories is incrementally, using curriculum learning: the 
system should consolidate what it learns in one episode, storing it as background knowledge, and reusing it in subsequent 
episodes.47

We hope in future work to address these limitations. But we believe that, even in its current form, the Apperception 
Engine shows considerable promise as a prototype of what a general-purpose domain-independent sense-making machine 
must look like.
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