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Abstract:
To  account  for  the  explanatory  role  representations  play  in
cognitive  science,  Egan’s  deflationary  account  introduces  a
distinction  between  cognitive  and  mathematical  contents.
According  to  that  account,  only  the  latter  are  genuine
explanatory  posits  of  cognitive-scientific  theories,  as  they
represent  the arguments  and values  cognitive  devices  need to
represent  to  compute.  Here,  I  argue  that  the  deflationary
account suffers from two important problems, whose roots trace
back to the introduction of mathematical contents. First, I will
argue that mathematical contents do not satisfy important and
widely accepted desiderata all theories of content are called to
satisfy, such as content determinacy and naturalism. Secondly, I
will claim that there are cases in which mathematical contents
cannot play the explanatory role the deflationary account claims
they play, proposing an empirical  counterexample. Lastly, I will
conclude the paper highlighting two important implications of my
arguments, concerning recent theoretical proposals to naturalize
representations  via physical  computation,  and  the  popular
predictive processing theory of cognition.
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1 - Introduction

Which factors turn the firing of some neurons into a representation? A
prominent  way  to  answer  is  by  naturalizing  content;  i.e.  pointing  to  a
naturalistic relation holding between neural activity and worldly targets in
virtue of which the former represents the latter. “Classic” proposals point
to causal/informational factors (e.g. Dretske 1988; Fodor 1990), biological
functions  (e.g.  Millikan  1984)  or  abstract  notions  of  resemblance  (e.g.
O’Brien  and Opie  2004).  Despite  their  differences,  all  these  proposals
face the problem of content (in)determinacy: due to the number of causal
intermediaries  (e.g.  Artiga  and  Sebastian  2018),  the  indeterminacy  of
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biological functions (e.g. Hutto and Myin 2013, Ch.4) or the ubiquity of
abstract resemblance relations (e.g. Sprevak 2001), these proposals all fail
to provide unique and univocally determined representational contents.

Egan (2014; 2019; 2020a) suggests these failures motivate a different
agenda. Rather than naturalizing content, we should aim at capturing the
explanatory role content plays in cognitive science.1 To this end,  Egan’s
(2014;  2020a)  deflationary  account  identifies  two  distinct  kinds  of
content:  cognitive  and  mathematical.  Cognitive  contents  are  contents
usually  understood  (representations  of  worldly  targets),  which  are  not
really represented “inside” cognitive systems, for they only belong to a
facultative  gloss layered  over  cognitive-scientific  explanations.
Conversely,  mathematical contents are genuine ingredients of cognitive-
scientific  explanations,  and  so  they  really  are  represented  “inside”
cognitive systems. Or so, at least, Egan claims.

Here, I want to challenge this account, which I’ll summarize in §2. Then,
In  §3,  I  will  raise  my  first  challenge,  arguing  that  the  deflationary
account  does not satisfy the desiderata it sets for itself: like “classic”
accounts  of  content,  it  cannot  provide  well  determined  contents  while
staying  natural  in  the  relevant  sense.  In  §4,  I  will  raise  my  second
challenge, claiming, contra Egan, that there is at least one family of cases
(namely, adversarial example induced misclassifications) in which cognitive
contents  are  not  just  a  “facultative  gloss”,  being  needed  to  provide  a
satisfactory explanation. Lastly, in §5, I will highlight some implications of
my  challenges.  To  anticipate  a  bit,  these  implications  concern  the
development  of  some  “computation  based”  and  deflationary-account
inspired  accounts  of  representations,  with  an  attention  to  accounts  or
representations  tied  to  the  popular  neurocomputational  theory  of
predictive processing (e.g. Wiese 2017). 

1 Really, in  computational  cognitive science. Since anti-computationalists are typically also anti-representationalsits
(e.g. Hutto and Myin 2013), I will ignore them here.
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2 - Egan’s deflationary account of representations

A  perspicuous  way  to  understand  Egan’s  deflationary  account  of
representations is to consider it as a reaction motivated by the failure of
“classic” accounts. In particular, “classic” accounts fail  to satisfy these
extremely widely accepted desiderata:2

(1)  Misrepresentation:  A  successful  account  of  representations
allows for misrepresentation to occur

(2)  Determinacy:  A  successful  account  of  representations  assigns
determinate contents to representational vehicles

(3)  Empirical  adequacy:  A  successful  account  of  representations
conforms to the actual practice of cognitive science

(4) Naturalism:  A successful  account of representations  specifies,
using  non-intentional  and  non-semantic  terms,  at  least  sufficient
conditions for a state or structure to bear a determinate content

(5)  No  pan-representationalism:  A  successful  account  of
representations  does  not  imply  that  many  clearly  non-
representational things count as representations

Being extremely widespread, (1) to (5) need little introduction, so I’ll limit
myself to the few remarks relevant for my arguments.

(1) and (2) are constitutively connected. The ability to misrepresent (2)
identifies representations,  setting  them  apart  from  mere  states  or
objects  (cf  Dretske  1986).  But  misrepresentation  requires  (1)
determinate  contents:  open-endedly  disjunctive  contents  make
misrepresentation,  if not impossible,  at least highly problematic.  That’s
why content determinacy is such a big problem for “classic” accounts.

Empirical adequacy (3) is not “just” a desideratum in its own right, it is
the  essential  desideratum of  the  deflationary  account.  For  the

2 See Egan (2019: 248-249; 2020a 28-29). In her (2020a) Egan mentions more desiderata than I report. I omit those for
the sake of brevity. 
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deflationary  account  aims at  capturing  the  explanatory  role  of
representations in cognitive science; hence its success is predicated on it
conforming to the relevant empirical practice - the deflationary account
just  cannot  be  revisionary.  Importantly,  satisfying  (1) and  (2) is  a
prerequisite  for  satisfying  (3), for  cognitive  scientists  do  posit
representations with well determined contents (e.g. Backer et al. 2021).

Condition  (4) captures the widespread idea that content is not a basic
ingredient of the world; contents depend on more basic features, in terms
of which they can be explained. These features may, but need not, be the
one “classic” accounts aiming to naturalize content rely on. Other features
can do the trick too.3 To satisfy  (4), the only thing that matters is that
these features are not already semantic (or intentional, or contentful).

Lastly, (5) is a prerequisite for (3), at least insofar cognitive scientists
do  not  label  every  behavior-producing  structure  a  representation  (cf.
Webb  2006).  Moreover,  it  safeguards  the  explanatory  power  of
representations:  pan-representationalism  trivializes  the  explanatory
power of content, equating representations to mere causal mediators (see
Ramsey 2007; Orlandi 2020).

Now, as indicated in §1, Egan’s (2019a; 2020a) deflationary account is
motivated by the fact that “classic” accounts fail to satisfy  (1) and (2).
But  what’s  the  shape  of  the  proposed  alternative?  Since  her  account
mainly aims at accounting for the explanatory role representations play in
cognitive science, cognitive-scientific explanations offer a natural starting
point to illustrate it. 

Egan  (2010;  2014;  2017;  2020)  construes  cognitive-scientific
explanations as function-theoretic: they unveil the mathematical function
F computed by a cognitive device S. These explanations characterize only
the  input/output  behavior  of  S,  thereby  sitting  at  Marr’s  (1982)
computational level. And, indeed Egan uses Marr’s computational account
of vision as a prototypical  example of a function theoretic  explanation.

3 As we will shortly see, features relevant to computational implementation may do the trick (see Coelho Mollo 2021;
Piantadosi 2021).
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According  to  Marr,  retinas  -  the  system  S  -  contribute  to  vision  by
computing a smoothing function F convolving a Laplacian operator with a
Gaussian operator. This, Egan claims, is a function-theoretic explanation,
which tells us all there is to know about the role retinas play in vision.

But what does it mean to say a system S computes a function F? Egan
(2010; 2014; 2020a) suggests that S computes F just in case:

(i) There exist  a  realization  function  fR mapping,  in  a  many-to-one
fashion, the physical states of S onto a range of vehicle types; &

(ii) There exist an interpretation function fI mapping, in a one-to-one
fashion,   the  relevant  vehicle  types  in  (i) onto  the  values  and
arguments of F; &

(iii) For  all  argument  -  value  pairs  of  F,  if  S  is  in  a  state  that,
according to (i) and (ii), maps on a specific argument of F, then S is
caused to enter in a state that, according to (i) and (ii) maps on the
corresponding value of F

Less formally:  (i)  fR identifies the computational state types (or vehicle
types) tokened in S; (ii) fI matches them to the arguments and values of F
in a one-to-one fashion, and (iii) says that S computes F just in case the
state-transitions in S “march in step” with the argument-value pairings of
F. Egan (2014; 2020) provides this simple example. Suppose S computes
the addition function F. This means that (i): there is a function fR grouping
S’s states together in well defined vehicle types; & (ii) there is a one-to-
one mapping fI from these vehicle types onto numbers, such that; (iii) if S
is in a state s’ (as identified by fR) and fI(s’)=n, and then receives an input
causing it to occupy state s’’ and  fI(s’’)=m, then S is caused to enter a
state s’’’ and  fI(s’’’)=n + m.

An alternative  way to spell  out  (ii) is  by saying that  fI gives to the
vehicle types identified by fR their  mathematical contents. Mathematical
contents  thus  represent  abstract  objects;  namely  the  arguments  and
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values  of  the  F  computed  by  S.4 Mathematical  contents  are  also  the
explanatory  factors  highlighted  by  function-theoretic  explanations,  of
which they are an essential component (Egan 2014: 122-123). They explain
(but more of this in §4) by subsuming the behavior of a physical system
under  a  mathematical  function  we  already understand.  They  translate
something  unknown  (a  system’s  behavior)  into  something  independently
known (a mathematical function), allowing us to postdict and predict the
behavior of the system in a wide range of possible circumstances (cf Egan
1999;  2010;  2014;  2017;  2020).  Knowing  function-theoretic
characterization  of  a  device  S,  we  know  how  S  behaves  given  some
relevant input.

According to Egan (2014; 2019; 2020) function theoretic explanations
are not complete explanations of our cognitive capacities. They only inform
us that a  system S computes  a function  F.  But  why  does computing  F
constitute a cognitive capacity? To answer,  we need to supplement the
function-theoretic explanation with an  ecological component: a series of
assumptions  about  the  environment  S  operates  in,  allowing  us  to
understand  how  computing F contributes to cognition.  To continue with
Marr’s retinical example: it is only because  in this environment adjacent
retinal cells receive (roughly) the same amount of light that computing a
smoothing  function  allows  sharp  changes  in  illumination  to  “pop  up”,
thereby allowing a system to detect edges.

Note how the ecological component invites  cognitive contents into the
picture: doesn’t the ecological component suggest that retinas  represent
edges? Egan (2014; 2019: 254; 2020a) answers negatively: retinas  really
only represent mathematical contents, the representation of which allows
a system in an environment such as ours to “use” retinas to detect edges.
Yet,  Egan  concedes,  that’s  quite  a  mouthful,  and  so  we  can  say  for
simplicity’s  sake that  retinas  represent  edges.  Ascriptions  of  cognitive
contents, then, allows us to summarize the explanatory job done by the
ecological  components  in  an  understanding-friendly  manner.  They’re  a

4 Which need not be  numbers.  If  F  is  a  function from vectors  to  labels  (as  many neural  networks),  the relevant
mathematical contents will be vectors and labels, which are not numbers.
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perspicuous,  but  really  not-strictly-speaking-needed  and  thus  not
ontologically committing,  summary of how S’s computing of F in a given
environment contributes to the cognitive capacity under investigation.

Thus, to repeat, ascriptions of cognitive contents are just, merely and
only ascriptions.  Retinas  do not  really token  representations  of  edges;
they  only  really  token  representations  of  the  inputs  and  outputs  of  F
(Egan 2014; 2020a). Indeed, in her view, no cognitive contents are really
ever represented within  cognitive  systems.  Only  mathematical  contents
are.  So,  there’s  really  no  fact  of  the  matter about  which  cognitive
contents cognitive systems really represent over and above our ascriptions
(cf.  Coelho Mollo 2020).  Cognitive contents are only ascribed from the
outside, based on our pragmatic and explanatory interests - roughly, based
on how user-friendly the grip they afford over a system’s behavior is. And
thus the cognitive-content based talk is revealed to be just an informal,
and strictly speaking facultative, “gloss” over genuine cognitive-scientific
explanations (Egan 2014; 2019; 2020a). 5

And it is precisely this “glossy” nature that allows Egan’s (2014; 2020a)
account to successfully face desiderata  (1)-(5), or at least the  relevant
desiderata  in  that  list.  As  a  matter  of  fact,  we  ascribe  determinate
contents:  we say retinas represent edges,  not that they represent the
disjunction “edges or shadows”.  Thus,  (2) determinacy is  satisfied.  But
given their constitutive connection, (1) misrepresentation is satisfied too.
Being  built  on  several  case  studies,  we  can  expect  the  deflationary
account to satisfy (3) empirical accuracy. Egan claims her account is safe
from  pan-representationalims,  satisfying  (5).  After  all,  on  her  account
cognitive  contents  are  ascribed,  and  surely  we  don’t  ascribe  cognitive
contents to everything. And while the account fails (4) naturalism, for the
explanatory interests grounding cognitive contents are as intentional and
as contentful  as it  gets,  failing  (4)  is  now a “don’t  care” factor.  Since
cognitive  contents  are  no  longer  really part  of  cognitive-scientific
explanations,  the  naturalistic  credentials  of  cognitive  science  are  not

5 However,  it  can play a  heuristic  role in guiding the empirical investigation of a device,  if no function theoretic
characterization of the device is available (Egan 2020a: 45-48).
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under threat. The non-naturality of cognitive contents is quarantined in an
“informal gloss” over the real scientific theory, and thus does not spread
to  the  latter.  The  “glossy”  nature  of  cognitive  contents  makes  (4)
irrelevant, allowing Egan’s account to ignore it.

Even supposing Egan is right on all of the above, I can’t help but notice
that there’s an important sense in which that does not really matter. For,
thus far Egan has only shown that cognitive contents satisfy the relevant
desiderata. But cognitive contents, the deflationary account mantains, are
not really  there.  Only  mathematical  contents  are.  So it  seems that,  in
order  for  the  deflationary  account  to  succeed,  we  must  show  that
mathematical contents satisfy (1) to (5). 

And (spoiler alert), they don’t seem able to satisfy (1) to (5) - or so I
shall now argue.

3 - The indeterminacy of mathematical contents

Do mathematical contents satisfy desiderata (1) to (5) - or at least the
relevant desiderata amongst them ?

Consider first (4) naturalism. Mathematical contents are either natural
or non natural. If they are natural, (4) is satisfied. If they are not, they
fail to meet all the desiderata, and so Egan’s account falls short of her
own  standards  of  adequacy.  And  this  failure  matters.  Unlike  cognitive
contents, mathematical contents are not quarantined in an “informal gloss”.
They are “really there”: they’re tokened within computational systems, and
they’re  essential  ingredients  of  our  cognitive-scientific  explanations.
Their  non-naturality  does  threaten  the  naturalistic  credentials  of
cognitive science. This time (4) cannot be ignored. When it comes to the
deflationary  account  theoretical  stability,  then,  mathematical  contents
better be natural.

So, are mathematical contents natural? Egan’s answer is a bit confusing.
In  some  passages,  she  seems  to  deny that  mathematical  contents  are
natural  (Egan  2014:  213).   It’s  not  hard  to  see  why:  “classic”  content
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naturalizing relations all have a hard time accounting for representations
of abstract and non existing targets.6 Moreover, the deflationary account
should be an  alternative to “classic” ones,  so it  cannot rely on “classic”
ones to naturalize mathematical contents. But it is hard to think that this
is Egan’s  “official”  view,  at least insofar adopting this  view  amounts to
conceding that (4) is not met, and thus that the deflationary account does
not satisfy the relevant desiderata.

Perhaps this is why, in other passages, Egan (2014: 117, 119) seems to
suggest that mathematical contents are naturalized by a minimalistic form
of interpretational semantics. Her suggestion seems to be that the vehicle
types  (identified  by  fR)  represent  the  mathematical  contents  they
represent  because there  is  an  interpretation  function fI associating
vehicle  types  and  contents  in  a  one-to-one  fashion.  The  vehicle  types
identified by  fR represent the mathematical contents they represent  in
virtue of the fact that they can be interpreted as values and arguments
of F via fI. Whilst naturalistic in the relevant sense7, this approach fails to
satisfy other relevant desiderata.

First,  such  an  account  leaves  us  in  the  dark  about  fR.  How  are  the
relevant  vehicle  types  identified?  Usually  representations  are  type
identified  by  their  contents  (cf.  Egan  2012:  256).  But,  clearly,  that
procedure is not available to us now, given that we want  fI to yield yet-
uninterpreted vehicle tokens their mathematical contents - the relevant
tokens must (logically) be type identified before fI operates on them. So,
in order for Egan’s minimalistic interpretational semantics to get off the
ground, we need an account of the realization function fR, spelling out how
the  relevant  types  are  identified.  And  such  an  account  must  satisfy
certain relevant desiderata in its own right. An account of  fR must, for
example, avoid pancomputationalism. It is remarkably easy to construe any

6  Accounts  of  content  based on abstract  similarities  have less problems in this regard:  abstract similarities  with
abstract structures are easy to come by - indeed, perhaps too easy to come by, as often these accounts have to find some
means to avoid content underdetermination (e.g. Cummins 1996). Needless to say, Egan does not hold that these means
are successful. 
7 As Cummins (1989: Ch. 10) noticed, in order for some states to be interpretable as representing, there is no need of
someone actually interpreting them. A system S may be interpretable as computing F even if no-one actually interprets
it as such.
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physical  system  as  computing  something  (Putnam  1988;  Searle  1992;
Copeland 1996; Scheutz 1999). A good account of fR will not allow for such
construals: given how cheap possible interpretations are (see below), such
an account would entail  a form of pan-representationalism,  leading to a
violation of  (5) and  (3) empirical adequacy.8 Moreover, an account of  fR

must be such that it identifies only one set of computational vehicle types
for  each  computational  system.  Otherwise,  a  system’s  computational
identity  would be unclear,  and we would  not  be able  to  say whether a
system S computes  a  function  F  rather  than a  different  function  F*.
Lastly, a good account of fR must be naturalistic, so as to avoid problems
with (4).

Secondly, even with an appropriate account of fR at hand, the problem
of content indeterminacy would loom large (Cummins 1989: 100-102). Given
a system S and a well defined set of vehicle types (i.e. a well defined fR),
it will  typically be possible to put them in a one-to-one correspondence
with multiple sets of argument-value pairings. Indeed, for every device S
computing a function F we can  always build up some  ad hoc function F*
under  which  S  is  interpretable  while  keeping  fR constant.  Take,  for
example,  an  imaginary  device  S  and  a  fR such  that  given  fR S  can  be
interpreted as computing a limited form of addition:  the inputs can be
interpreted  as  numbers  ranging  from  1  to  9  and  the  outputs  can  be
interpreted as numbers ranging from 2 to 18. Now, the same device, under
the  same  fR,  can  be  interpreted  as  computing  a  function  (isomorph  to
addition) from the first nine US presidents to the set of presidents from
Adams (2nd president) to Grant (18th president). The same sets of states
can  be  interpreted  as  realizing the  addition  function  F(7;9)=16  or a
function  F*(Jackson;Harrison)=Lincoln.9 So,  given  fR,  S  is  interpretable
under  at least  two functions. But what do the vehicles tokened inside S

8  Couldn’t this problem be avoided by limiting the scope interpretability to the systems studied by cognitive science?
That would restrict the number of systems to which the present account assigns contents, thereby avoiding the problems
with (5) and (3). But the move is ineffective, for current cognitive science studies all sorts of systems, including plants
(Calvo  et  al 2020),  Bacteria  (Lyons  2015),  subcellular  mechanisms  (Yakura  2019)  and  even  certain  materials
(McGivern  2019,  Tripaldi  2022).  Surely  saying  that  these  systems  represent  counts as  a  commitment  to
panrepresentationalism.
9 Of course, they’re respectively the 7th, 9th and 16th US presidents. Notice also that such alternative interpretations are
legion: we can always also interpret S as computing over presidents (or monarchs, or whatever) of  any country!
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really  represent,  the arguments and values of F or the ones of F* (or
both)? There seems no  principled way to choose. Therefore (1) and  (2)
fail to obtain.

There seems also to be a further problem. Egan seems to espouse a
semantic  account of computation: for S to compute F, S  must represent
the  arguments  and  values  of  F;  that  is,  certain  relevant  mathematical
contents (cf. §2). On this account, S computes F in virtue of the fact that
S represents the arguments and values of F. But now notice that, in order
for  Egan’s  account  of  content  to  work  as  a  form  of  interpretational
semantics,  the  dependency  relation  between  computation  and
representation  must  be  reversed.  If  Egan’s  account  is  a  form  of
interpretational semantics, then clearly the identification of the relevant
computational state types must  come logically prior to  and  constrain any
mathematical content endowing interpretation. Thus S represents what it
represents partially in virtue of what it computes; that is, in virtue of the
relevant computational state types tokened within,  and constraining the
interpretability of, S. Simplifying: on the semantic account of computation
Egan  espouses,  S  computes  what  it  computes  in  virtue  of what  it
represents.  But  on  the  interpretational  semantics  Egan  seemingly
espouses, S represents what it represents in virtue of what it computes.

Cummins (1989: 93) argued this tension should be solved by prioritizing
computation:  according  to  Cummins,  we  should  say  systems  represent
because they compute.10 If we transpose this move in Egan’s account, we
gain several boons. First, we solve the problem above. Secondly, a suitably
robust  account  of  physical  computation  (and  computational
implementation)  may  restrict  the  number  of  systems  that  compute,
thereby avoiding pancomputationalism, and thus helping to satisfy  (5) no
pan-representationalism and  (3) empirical adequacy. Further, a suitably
robust  account  may  enable  us  to  say  that  each  computing  system  S
computes few - ideally one and only one - well determined function F. In
this way, it will  help us restrict the  admissible interpretations of each

10  What if we do not trust Cummins and prioritize representation? Answer: then we need a substantial account of what
makes certain states represent mathematical contents, and we’re back to square one.
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system,  helping  make  their  mathematical  contents  appropriately
determined. Thus, it would be a step towards satisfying  (1) and  (2), and
thus (3).

So,  the  question  now  is:  which account  of  physical  computation  will
deliver  these  boons?  The  answer,  I  fear,  is  “none”;  for,  accounts  of
physical computation can be clustered together in three big families of
approaches  (semantic,  “mapping”,  and  mechanistic;  see  Piccinini  2015;
Piccinini and Maley 2020), and there are very general reasons to believe no
approach can, in principle provide us these boons.

Consider,  first,  semantic approaches.  Despite  their  variety11 they  all
agree that representation is necessary for computation. This makes them
unsuited  to  solve  the  problems  of  the  deflationary  account.  For,
presumably, representations require  contents. If the content required is
cognitive  content,  then the deflationary account would simply be false:
being necessary for computation, cognitive contents would not be just a
facultative  gloss  over  real  cognitive-scientific  explanations.  But  if  the
content  required  is  mathematical  content,  then  the  account  would  be
circular: our account of physical computation would presuppose the kind of
well determined and well distributed mathematical contents we'd like it to
deliver.

Consider now “mapping” approaches. In general, they claim a system S
implements a computational device C computing a function F (minimally, the
transition function of C) just in case the physical state transition of S and
the  computational  state  transition  of  C  “march  in  step”,  meaning  that
there is a one-to-one mapping I from a relevant subset of states of S onto
the states of C, and, for all state transitions c’  → c’’ of C, S transitions for
s’  to  s’’ only if  I(s’)=c’ and  I(s’’)=c’’.  This is the  necessary condition all
mapping accounts share. If this condition is  also  taken to be sufficient,
one  reaches  the  “simple”  mapping  account  (cf  Godfrey-Smith  2009).
Otherwise,  one  could  robustify  the  account  adding  further  necessary

11 For a sample, see (Fodor 1975; O’Brien and Opie 2008; Shagrir 2001; Maley 2021)
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conditions.  These vary from account to account, and won’t matter here
(see Piccinini and Maley 2021 for a survey).

Two general reasons impede mapping approaches to deliver the desired
boons.  One  is  computational  indeterminacy,  which  I  will  discuss  below,
when dealing with mechanistic approaches. The other is that  all mapping
approaches entail a limited form of pancomputationalism - they all entail
that each and every physical system S implements an inputless finite state
automaton C computing the identity function (cf Chalmers 1995; 2011).12

Now, while this form of limited pancomputationalism need not be fatal for
mapping accounts and may even be successfully dealt with in various ways
(see  Orlandi  2018;  Sprevak  2019;  Schweitzer  2019  for  discussion),  it
poses a large problem when it  comes to using “mapping”  approaches to
physical  computation  to  deliver  mathematical  contents.  For,  if  systems
represent mathematical contents because they compute,  and all systems
compute  something,  then  all  systems  represent  some  mathematical
contents.  And  this  is  a  form  of  panrepresentationalism.  Thus,  (5)  No
panrepresentationalism is not satisfied. But since (5) is a prerequisite for
(3) Empirical adequacy, (3) fails too. But, as indicated in §2, (3) is central
to the deflationary account. So, “mapping” approaches are not an option. 

Consider,  lastly,  mechanistic approaches.13 These  approaches  apply
insights from (neo-)mechanist philosophy of science to unravel the nature
of  computational  implementation.  Roughly,  they  claim  that  a  physical
system implements a computational device only if it is a  mechanism with
the function14,15 to compute (see Miłkowski 2013; Piccinini 2015). Roughly
put, a mechanism of a phenomenon is a set of spatiotemporal components
performing certain functions and having certain spatiotemporal relations,

12 Alternatively: let C* be an inputless finite state automaton with a single state x. Let its state transition function F* be
F*(x)=x. Lastly, let the mapping I be a mapping from all the states of any system S to x. Clearly given this mapping, any
physical system S implements C*, and so computes F*.
13 Assuming, for the sake of discussion, that they are compatible with the deflationary account. They may not be (cf.
Egan 2017).
14 I will leave the relevant notion of function unspecified because (a) it’s not relevant for my argument and (b) which
notion to use is a contested matter (cf Miłkowski 2013; Piccinini 2015) on which I need not take a stance.
15 Dewhurst’s (2018b) rejection of this functional constraint is an exception. For the (quite limited) purposes of this
paper, I will only note that this leaves the proposal open to the kind of pancomputationalism-connected problems of
“mapping” approaches.
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such  that  they  constitute the  phenomenon  under  investigation  (cfr.
Piccinini 2010: 285). “Computing” is here understood as the manipulation of
digits  according  to  rules.  Digits  may  be  thought  of  as  the  minimal
computationally-salient  states  manipulated  by  a  device,  which  may  be
concatenated to yield more complex computationally salient states.  The
rule according to which a mechanism yields digits as output when “fed”
some  digit  determines  the  mechanism’s  computational  identity.
Importantly, such a rule must be medium-independent: it must be sensitive
only to the degrees of freedom of digit types, while ignoring any other
feature of their tokens.

Now, being a robustified version of the “mapping” account (cf. Piccinini
2015),  the  mechanistic  approach  avoids  pancomputationlism.  Not  every
physical system is a computational system in the sense just sketched: for
one thing, not every physical system has functions, let alone the function
of computing. The mechanistic account thus avoids the problems with (3)
and (5) sketched above.

Yet, the mechanistic approach struggles in identifying the computational
identity of certain devices (cf Sprevak 2010; Piccinini 2015: 36-39; 127-
130; Dewhurst 2018a, Fresco  et al. 2021), which prevents it from being
able to assign well–determined mathematical contents as required by  (1)
and (2). To see the problem, consider a computing device S operating on
two digit types “@” and “#”. S Takes two digits as inputs yielding one as
output according to the following rule: it outputs @  iff both inputs are
@s; else it outputs #. Table 1 below summarized S’s behavior.

Input1 Input2 output
@ @ @
@ # #
# @ #
# # #

Caption: Table 1: The input-output table of S
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Table 1 looks similar to the truth table of the  logical  conjunction:  a
function from (pairs of) truth values to truth values. It is thus natural to
think @s represent the truth value true and #s represent the truth value
false. It thus seems that the mathematical contents carried by @s and #s
are well determined. But the impression is misguided. Let @s carry the
mathematical content false and #s carry the mathematical content true.
Now  Table 1 looks like the (upside-down) truth table of the  inclusive
disjunction. So, do “@”s represent the truth value true, false or both? It
seems there’s no principled way to answer.

Worse  still,  the  mathematical  contents  of  @s  and  #s  may  be
undetermined  even when the F S computes is  determined.16 Consider a
system S* displaying the computational behavior summarized in Table 2:

Input Output
@ #
# @

Caption: Table 2: The input-output table of S*

S* takes one digit as input yielding one as output. If the input is a @, it
yields a # and  vice versa.  It is natural to say S* computes the  logical
negation function, and there seems to be no other interpretation around.17

But  saying  S*  computes  the  negation  function  it  is  yet  not  enough  to
determine whether @s represent the truth value true or the truth value
false. The relevant mathematical contents are left undetermined. So,  (2)
determinacy is not met, and since (2) is not met, (1) misrepresentation is
not met too.18

An obvious objection to my point is this: whilst looking at S alone does
not determine the mathematical contents of @s and #s, looking at how S

16 Thus, attempts to restore computational determinacy such as the ones in (Dewhurst 2018a; Fresco and Miłkowski
2021; Dothey and Dewhurst 2022) are not going to solve the problem of indeterminacy I’m pointing at. 
17 I’m assuming that we have some compelling independent reason to interpret the device as a logic gate. In fact, as a
reviewer correctly noticed, without such an assumption, the computational identity of S* would not be determined; e.g.
if “@” represents 2, and “#” represents ½, then the device is computing F(x) = 1/x. 
18 Note, also, that thus far I’ve assumed that the relevant digits are given and that their identity can be easily defined.
But that is not the case, and there’s an indeterminacy problem there too, see (Papayannopolus et al forthcoming).
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is embedded in a larger computational device, and how it cooperates with
other computational mechanisms, will.

The objection fails on several grounds. First,  even if  looking at how S
contributes to a large computational system were sufficient to determine
the mathematical contents of @s and #s, S  need not  be embedded in a
larger computational  system in  order for  it  to compute.  So,  albeit  the
move may determine  the mathematical  contents  of  some computational
systems; namely the ones embedded in larger computational systems, it
fails  to  determine  mathematical  contents  in  general.  For  example,  the
mathematical  contents  of  individual  logic  gates  would  remain
indeterminate.  A,  perhaps  limited,  problem  with  content  determinacy
would still persist.

Second, observing how S is embedded in a larger system does not yield
well determined mathematical contents. Consider a system M constituted
concatenating S and S* as follows: S takes two inputs, yields an output
that  function  as  S*  input,  and  then  S*  yields  the  final  output.  The
behavior of M is summarized in table 3:

Input1 input2 S S*
@ @ @ #
@ # # @
# @ # @
# # # @

Caption: Table 3: The input-output table of M

If @s represent false and #s represent true, M computes the nor (not
or) function. Under the opposite assignment of truth values, M computes
nand (not and). The mathematical contents in M are thus as undetermined
as the ones  in  S and S*.  Note  that,  in  principle,  no  amount  of  added
computational machinery will make the mathematical contents of @s and
#s determinate. It will always be possible to “swap” the truth values and
see the entire device as computing a function. Maybe the function will not
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be interesting or useful. But it would still be a  function  - and so we are
still  left  to  choose  among two  competing  assignments  of  mathematical
contents.

So, the minimalistic form of interpretational semantics Egan endorses
does  not  really  seem  defensible:  just  like  “classic”  account  of
representations,  it  leaves  (mathematical)  contents  indeterminate  and
unable to misrepresent.

Is there any other option? Maybe we could hope in semantic primitivism;
i.e.  the view that there are natural  primitive  (non-analyzable)  semantic
facts concerning  mathematical  contents  (cf.  Burge 2010).  But semantic
primitivism fails to satisfy the relevant desiderata  (1) to  (5). In fact, it
fails to satisfy (4). Semantic primitivism asserts that content is natural in
the relevant sense. But it does not offer an  account of content in more
basic terms as required by  (4) (cf. Piccinini  2015: 35).  Indeed,  it can’t
coherently  offer  such  an  account,  for  any  such  account  entails that
content is not primitive. And even leaving this problem aside, it seems that
primitive semantic facts are  epiphenomenal: they make no difference to
the  computational  behavior  of  a  system.  Recall  system  S,  whose
computational behavior is summarized below in table 1 bis:

Input1 Input2 output
@ @ @
@ # #
# @ #
# # #

Caption: Table 1 bis: The input-output table of S (Again)

Suppose that, as a matter of primitive semantic fact, S is an And Gate:
it  computes  the  conjunction  function.  So,  as  a  matter  of  primitive
semantic fact, @s represent  true and #s represent  false. Still, I  could
use S as an Or Gate in an appropriate system. I could even build a system
for the purpose of using S as an  Or Gate. It seems that the “primitive
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semantic facts”, whilst sufficient to give us well determined mathematical
contents, make them irrelevant to the actual functioning of a device. They
lose  their  explanatory  power.  And,  thus  robbed  of  their  explanatory
power,  they  start  to  look  like  a  simplificatory  gloss summarizing  the
physical/causal behavior of physical systems.

So,  at present,  there seems to be no satisfactory way to naturalize
mathematical contents. It seems that all avenues to naturalization force
us to pay too high of a price. To naturalize mathematical contents is to
forego many of the desiderata in the (1)-(5) list. And to keep them non-
naturalized is to taint the naturalistic credentials of cognitive science. 

But the troubles for the deflationary account are not over.

4 - Deflating the explanatory power of deflated representations

The deflationary account claims cognitive scientific explanations consist
only in  the  function  theoretic  characterization  of  a  device  plus  an
ecological component. I want to argue that this is not the case: sometimes,
cognitive contents are necessary too. Or, more prudently: mathematical
contents and ecological component are not always sufficient to explain.

To see why that is  the case,  I  must first  clarify  how mathematical
contents  are  supposed  to  explain.  On  the  one  hand,  it  seems  that
mathematical  contents  explain  allowing  us  to  predict and  postdict the
behavior of a computational system. If I know that S computes F, I know
how S would behave were it to receive an input i; namely since F(i)= o, S
will  produce  o.  On  the  other  hand,  mathematical  contents  allow  us  to
describe the behavior of the system in terms of successes and failures,
and to account for these successes and failures. If S computes F, S fails
every time it does not output o =F(i) in response to i; and we can say S’s
failure is due to it having miscomputed F. In Egan’s own words: 

“In  attributing  a  competence  to  a  physical  system—to  add,  to
compute a displacement vector, and so on—function-theoretic models
support attributions of correctness and mistakes. Just as the normal
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functioning  of  the  system—correctly  computing  the  specified
mathematical function—explains the subject’s success at a cognitive
task in its normal environment, so a malfunction explains its occasional
failure.  [...]  One’s  hand  overshooting  the  cup  because  the  motor
control  system miscalculated  the  difference  vector  is  a  perfectly
good explanation of  motor control failure” (Egan 2017: 158)

Explanations  of  successes  and  failures  are  always  explanations  of
patterns of successes and failures (as amply clarified in Gładziejewski and
Miłkowski 2017; Shea 2018). This can be easily illustrated elaborating on
Egan’s example above: the hand overshoot because the device outputted a
vector v* larger than of v (the one it should have outputted). And here’s
the  relevant  pattern  of  failures:  the  larger v*,  the  more  severe  the
overshoot. And the larger one specific component of v*, the more severe
the overshoot in a specific direction. And where  v* smaller than  v, then
the system would not have overshoot: it would have under-shoot. That’s
the relevant pattern of successes and failures explained by mathematical
contents.

Crucially,  this  explanation  requires a  systematic  correlation  between
mathematical contents and outcomes: the larger v*, the more severe the
overshoot. This correlation may (and it typically will be) more complex and
less linear, but it  needs to be there. If that correlation is absent, then
mathematical contents do not do the desired explanatory work, and the
deflationary account fails to capture the way in which representations are
used in cognitive science. Now, there is at least one case in which such a
correlation  between  mathematical  contents  and  successes  and  failures
seems to be absent. Mathematical contents seem thus unable to play the
explanatory role the deflationary account assigns them. Worse still, that
role seems to be played by  cognitive contents.19 The counterexample is
provided by adversarial examples induced misclassification (AEIM).

19 Importantly, as a reviewer noticed, the explanatory role of cognitive contents may be way more widespread than the
case study below could suggest. For, saying that one of my brain regions miscomputed a function F explains a failure of
mine  only if we take the values and arguments of F to be values  representing task relevant parameters. Saying, for
example, that I miscomputed the square root of 75 does not explain my failing to grasp a cup unless we don’t take “75”
to be, for example, an estimate of depth. But if we do so, then it’s not clear in what sense I’m not really representing
depth, but only the number 75.
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AEIM is a phenomenon concerning  deep classifiers: a specific class of
deep neural networks. These devices have a clear computational profile:
they compute a probability distribution over class labels, given an input
vector  (cf.  Buckner  2018;  Mitchell  2019;  Skansi  2018).  Thus  their
function-theoretic characterization is well known. Simplifying a lot, for my
purpose  here  deep  classifiers  can  be  considered  as  the  shallow neural
networks of the ‘80s: what changes is just their scale and the number of
computational  layers.  Thus,  deep  classifiers  compute  by  transforming
vectors,  spreading  activations  through  successive  layers  of  “neurons”.
Each neuron yields an output (a vector component) based on the activation
function  it computes. All neurons in a layer thus collectively define the
output  vector  of  that  layer.  That  output  is  then  “funneled  thought”
weighted  connections,  which  modify  it  proportionally  to  their  weights,
thus yielding the input for the next layer. The process is repeated until
the last layer (called output layer), is reached.

Deep classifiers richly trade in mathematical  contents.  The weighted
connections  store  the  parameters of  the  model  the  classifier  uses  to
classify  its  inputs.  Neurons  compute  activation  functions.  They  have
(numeric)  bias.  The  network  also  represents  its  own  learning  rate  -  a
number “telling” the network how much to update its parameters. All these
things,  as  well  as  the  network  topology  (number  of  neurons  and
connections and how they’re disposed) are the  hyperparameters of the
model,  and they influence the classification (and thus the computation)
too.

Suppose now a deep classifier C correctly classifies an input vector  v.
An adversarial example to C is a slightly modified version  v* of v that C
misclassifies with very high confidence, despite the fact that v and v* are
identical  to  human  eyes.  If,  for  example,  v and  v* are  images,  their
difference may be of just one pixel (e.g. Su et al. 2019).20 And, of course,

20 This is a  huge simplification. An “alternative” family of adversarial  examples is constituted by “senseless” (to
human) vectors which the machine classifies with high confidence (cf. Nguyen et al. 2015). See (Yuan et al. 2019) for
an up to date survey on adversarial examples.



22/33

when  v* fools C, we witness an instance of adversarial-example induced
misclassification (AEIM).

AEIMs call for an explanation for a number of reasons. Deep classifiers
are some of our best neurocognitive models of classification,  especially
when it  comes to human visual  classification (Yamins and DiCarlo 2016;
Rajalingham et al. 2018). But we are immune from AEIMs!21 There’s thus a
significant  difference  between us  and some of  our  best  models  of  us.
Understanding  what  this  difference  is  is  pivotal  both to  build  better
models and to understand ourselves.

Yet the explanatory schema the deflationary account proposes seems
unable to account for AEIMs. For one thing, the discovery of adversarial
examples and AEIMs was a surprise (cf. Szegedy et al. 2013). It was not
expected (nor predicted) given the function-theoretic characterization of
deep classifiers. So, they were not predicted given the function-theoretic
characterization  of deep classifiers.  Contrary  to what the deflationary
account  claims,  mathematical  contents  were  not  enough  to  predict  the
relevant behavior of deep classifiers.

Further,  in  spite  of  the  fact  that  we  do  possess  all  the  relevant
function-theoretic knowledge about deep classifiers, AEIMS still stands
in need of an explanation. We don't yet know why such small perturbations
in the input lead to such big changes in the outputs. And in fact, there is
seemingly  no correlation between mathematical contents and the outputs
produced by AEIMs. Given that such a correlation is necessary in order
for  mathematical  contents  to  explain,  then  it  should  be  concluded
mathematical contents do not explain (in the relevant sense).

To see why no such correlation holds, notice that adversarial examples
are  transferable.   If  an  adversarially  perturbed  vector  v* fools  a
classifier  C, then v* is likely to fool also a different classifier  C* in the
exact same way. AEIMs are thus in an important way not random. There is
a clear  pattern in  the failure they induce - a pattern that  prima facie

21  At least, in normal conditions. Time pressured humans may  be fooled by adversarial examples (Elsayed et al. 
2018).
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looks like a primary explanatory target. And yet the pattern stands in no
discernible  correlation  with  mathematical  contents:  ceteris  paribus,
identical  errors  should  correlate  with  identical  (or  at  least  relevantly
similar) mathematical contents. And yet, when it comes to deep classifiers,
identical errors  correlate  with  different  mathematical  contents,  for
different classifiers are bound to have different mathematical contents.
Indeed, not only adversarial examples are transferable across classifiers
with different hyperparameters (such as different topologies, number of
layers,  biases,  learning  rate or  activation  functions,  see  Szegedy  et al
2013), even architecturally identical classifiers trained on the exact same
training  set  with  the  same  training  regime  will  encode  different
parameters  (cf  Churchland  1992:  177-178),  thereby  representing
different mathematical  contents.  Thus,  the situation looks like this:  on
the  one  hand,  a  tight  and  clear  pattern  of  AEIMs;  on  the  other,
mathematical  contents  that  appear  to  vary  ad  libitum.  This  clearly
prevents the two from correlating in any intelligible way.

Worse still (for the deflationary account), the explanations currently
proposed massively involve cognitive contents. Consider the following two
proposed explanations.22

Proposed explanation #1.  Ilyas  et al.  (2019),  start by mathematically
defining  features (the  properties  guiding  classification).  Then  they
mathematically  define  a  subclass  of  features:  useful  features  (i.e.
features  that  correctly guide the classification).  This  subclass  is  then
(again, mathematically) divided into two disjoint subsets: robust and non-
robust. Robust useful features correctly guide classification even  after
the adversarial  perturbation has been applied.  Non-robust ones  do not.
Thus adversarial induced misclassification is due to the classifier reliance
on non-robust useful features. 

Proposed  explanation  #2:  (Zhou  and  Firestone  2019)  tested  human
subjects in a variety of classification tasks using adversarially perturbed

22 I  use them  just as examples.  I do not want to imply they’re  the only,  or even the best, explanations. See also
(Engstrom et al. 2019; Bucker 2020) for discussion.
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images, asking the human participants to pick up the label they think a
machine would assign to the image. Strikingly, they found that in all the
experiments (using a variety of adversarially perturbed images in a variety
of experimental paradigms) participants were able to choose “like a deep
classifier” with a percentage of success well above chance. This led Zhou
and  Firestone  to  suggest  that  adversarial  examples  induce
misclassifications  because  networks  do  not  discriminate  between
appearing  like something and appearing  like being something (e.g. a plush
toy might appear like a tiger, but it does not appear to be a tiger).

The explanation offered by Zhou and Firestone is clearly based around
cognitive contents: distal  targets being represented as similar to or  as
being other  distal  targets.  The  explanation  offered  by  Ilyas  and
colleagues mentions cognitive contents too, although in a roundabout way.
In fact, their mathematical definition of features is intended to capture
the  “folk”  definition  of  features  as  representations  of  salient  distal
properties  (cf Hinton 2014;  Olah  et al.  2018).  Further,  robustness and
non-robustness  are  defined  relative  to a  human-selected  notion  of
similarity. And such a notion is plausibly based on how we represent things
as being alike. 

Notice that these ascriptions  cannot play a heuristic role in orienting
the research for a function-theoretic characterization (Egan 2020a: 46-
48).  We  do  possess the  relevant  function-theoretic  characterization.
Deep classifiers are not  objets trouvé whose computational profile must
be discovered.  They’re artificial  systems we create for the purpose of
computing a mathematical function we already know - in the case at hand,
a probability distribution over labels, given an input vector. So, in the case
of AEIMs, cognitive contents are not just “heuristic patches” we use while
we  wait  for  the  relevant  function  theoretic  characterization  to  come.
They must play a deeper explanatory role.

One could object that I've been too focused on mathematical contents.
Maybe the  ecological component holds the key to explain AEIMs. Maybe
yes, but it is hard to see what the ecological component may be in the case
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at hand. The only window on the world available to classifiers is their input
data. And it seems that it can be altered too without compromising the
transferability of AEIMs (cf Szegedy et al 2013) - changing training sets
does  not appear  to  change  how  classifiers  respond  to  adversarially
perturbed vectors. 

Alternatively,  one  might  object  that  I’ve  mischaracterized  the
explanatory role of mathematical contests. Cognitive contents are said to
explain in many ways. Maybe mathematical contents can explain in multiple
ways too. A popular way in which cognitive contents are said to explain is
by being causes of a system's behavior (e.g. Dretske 1988; O’Brien 2015).
But the deflationary account prevents mathematical contents from playing
this  explanatory  role.  On  the  deflationary  account,  contents  have  no
causal powers (Egan 2014; 2020a). Another popular way in which contents
are  said  to  be  explanatory  powerful  is  that  of  allowing  us  to  grasp
patterns we would otherwise fail to grasp (e.g. Dennett 1991). The possible
physical manifestations of, say, my request to open the window is unruly
and possibly open endedly disjunctive. I can request to open the windows
by asking it. Or by sending an email to the person closer to the window. Or
by making gestures. To explain why, in all these cases, a person reacted by
closing the window, the best thing to do is to appeal to the  content of
these gestures/mail/soundwaves. But mathematical contents cannot play
this explanatory role either: the relation between them and vehicle types
is one-to-one (see point  (ii) in §2). So there’s no pattern holding among
contents that is not also a pattern holding at the level of vehicles.

 Notice, to conclude, that the problem raised here is independent from
the  naturalistic  credentials  of  mathematical  contents.  Even  if
mathematical contents were to be naturalized, the explanatory problems
of the deflationary account would not be solved.  Pace the deflationary
account, cognitive contents do not seem to be just a gloss. Therefore, not
(3): the deflationary account is not empirically accurate.
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5 - Concluding remarks

In this paper, I raised two distinct challenges to Egan’s deflationary
account. But why care about the problems the deflationary account faces?
I think there are two reasons to care about them.

One has to do with a recent, and still young, movement trying to account
for  representations  in  terms  of  computation  (Coelho  Mollo  2021;
Piantadosi  2021). There is something  right in Egan’s view: the repeated
and  constant  failure  of  “classic”  accounts  of  content  does call  for
alternative accounts of representations and content. And, whilst still at
present  quite  amorphous  and disorganized,  that  movement  is  trying  to
answer  this  specific  call  in  a  way  that,  at  least  in  spirit,  is  highly
sympathetic to Egan’s deflationary account - after all,  her account too
makes  computation  central  to  representation.  By  pointing  out  some
problems with mathematical contents I hope to help this movement avoid
some pitfalls.  Although  in  a  purely  negative  way,  I’m  still  helping  that
movement to grow. Or at least, that is one of the reasons that led me to
write this paper.

The other has to do with one of the most discussed neurocomputational
theories right now, namely predictive processing/the free-energy principle
(for introductions, see Hohwy 2013; Clark 2016). There’s a huge debate
concerning the representational credentials of the theory (see Sims and
Pezzulo 2021). If the arguments I’ve provided here are correct, the anti-
representationalist side has a potent weapon in its hands. For, a number of
prominent  accounts  of  representation  within  predictive  processing
elaborate upon Egan’s cognitive/mathematical content distinction, claiming
that  cognitive  contents  are  grounded  upon,  and  determined  by,
mathematical ones (most explicitly the point is made in Wiese 2017; 2018;
Ramstead et al 2020). But if the arguments presented above are on the
right  track,  then  mathematical  contents  are  non-natural  and
indeterminate, in a way that makes the “cognitive” contents non-natural
and  indeterminate,  in  a  way  that  largely  favors  non-representational
interpretations of predictive processing.



27/33

References

Artiga, M., & Sebastian, A. S. (2018). Informational theories of content
and mental representation.  Review of Philosophy and Psychology,  11, 613-
627.

Backer, B., Lansdell, B., Kording, K. (2021). A philosophical understanding
of representations for neuroscience. ArXiv: 2102.06592.

Buckner,  C.  (2019).  Deep  learning:  a  philosophical  introduction.
Philosophy Compass, 14(10), e12625.

Buckner,  C.  (2020).  Understanding  adversarial  examples  requires  a
theory  of  artifacts  for  deep  learning.  Nature  Machine  Intelligence,  2,
731-736.

Burge,  T.  (2010).  The  Origins  of  Objectivity.  New  York:  Oxford
University Press.

Calvo,  P.,  et  al. (2020).  Plants  are  intelligent,  here’s  how.  Annals  of
Botany, 125(1), 11-28.

Chalmers,  D.  J.  (1995).  On  implementing  a  computation.  Minds  and
Machines, 4, 391-402.

Chalmers,  D.  J.  (2011).  A computational  foundation  for  the study of
cognition. Journal of Cognitive Science, 12(4), 325-359.

Churchland,  P.  (1992).  A Neurocomputational  Perspective.  Cambridge,
MA.: The MIT Press.

Clark, A. (2016). Surfing Uncertainty. New York: OUP. 

Coelho  Mollo,  D.  (2020).  Content  pragmatism defended.  Topoi,  39(1),
103-113.

Coelho Mollo, D. (2021). Why go for a computation-based approach to
cognitive representations. Synthese, 199(3-4), 6875-6895.

Copeland, J. (1996). What is computation?. Synthese, 108(3),  335-359.



28/33

Cummins,  R.  (1989).  Meaning  and  Mental  Representation.  Cambridge,
MA.: The MIT Press.

Cummins,  R.  (1996).  Representations,  Targets,  and  Attitudes.
Cambridge, MA.: The MIT Press.

Dennett, D. (1991). Real Patterns. The Journal of Philosophy, 88(1), 27-
51.

Dewhurst, J. (2018a). Individuation without representation. The British
Journal for thePhilosophy of Science, 69(1), 103-116.

Dewhurst, J. (2018b). Computing mechanisms without proper functions.
Minds & Machines, 28(3), 569-588.

Doherty F. T. & Dewhurst, J. (2022). Structuralism, Indiscernibility and
physical computation. Synthese, 200(3), 1-26.

Dretske, F. (1986). Misrepresentation. In Bodgan R. (Ed.). Belief: Form,
Content and Function. (pp. 17-36). New York: Oxford University Press.

Dretske,  F.  (1988).  Explaining  Behavior.  Cambridge,  MA.:  The  MIT
Press.

Egan,  F.  (1999).  In  defense  of  narrow  mindedness.  Mind&Language,
14(2), 177-194.

Egan,  F.  (2010).  Computational  models:  a  modest  role  for  content.
Studies in History and Philosophy of Science Part A, 41(3), 253-259.

Egan, F. (2012). Representationalism. In E.  Margolis,  S. Samuels,  & P.
Stich (Eds.), The Oxford handbook of philosophy of cognitive science (pp.
250–272). Oxford University Press

Egan,  F.  (2014).  How  to  think  about  mental  content.  Philosophical
Studies, 170(1), 115-135.

Egan,  F:  (2017).  Function  theoretic  explanation  and  the  search  for
neural mechanisms. In D. M. Kaplan (Ed.),  Explanation and Integration in
Mind and Brain Science (pp. 145-163). New York: Oxford University Press.



29/33

Egan, F.  (2019).  The nature and function of content in computational
models. In M. Sprevak, M. Colombo, (Eds.),  The Routledge Handbook of
the Computational Mind (pp. 247-258). New York: Routledge.

Egan, F. (2020a). A deflationary account of mental representations. In
J.  Smortchkova,  K.  Dolega,  T.  Schlicht  (Eds.),  What  Are  Mental
Representations? (pp. 26-54), New York: Oxford University Press.

Elsayed, G. et al. (2018). Adversarial examples that fool both computer
vision and time-limited humans. arXiv preprint, 1802.08195.

Engstrom, L., et al. (2019). A discussion of ‘adversarial examples are not
bugs,  they  are  features’.  Distill,  https://distill.pub/2019/advex-bugs-
discussion/

Fodor, J. (1975).  The Language of Thought, Cambridge, MA.: Harvard
University Press.

Fodor,  J. (1990).  A Theory of Content and Other Essays.  Cambridge,
MA.: The MIT Press.

Fresco, N., et al. (2021). The Indeterminacy of Computation. Synthese.
https://doi.org/10.1007/s11229-021-03352-9.

Fresco,  N.,  &  Miłkowski,  M.  (2021).  Mechanistic  computational
individuation  without  biting  the  bullet.  The  British  Journal  for  the
Philosophy of Science, 72(2), 431-438.

Gładziejewski,  P., &  Miłkowski, M. (2017). Structural representations:
causally  relevant  and  distinct  from  detectors.  Biology  and  Philosophy,
32(3), 337-355.

Godfrey-Smith, P. (2009). Triviality Arguments Against Functionalism.
Philosophical Studies. 145(2): 273–295.

Hinton, G. (2014). Where do features come from?.  Cognitive Science,
38(6), 1078-1101.

Hohwy, J. (2013). The Predictive Mind.New York: OUP



30/33

Hutto, D., & Myin, E. (2013).  Radicalizing Enactivism. Cambridge, MA.:
The MIT Press.

Ilyas,  A.,  et al.  (2019).  Adversarial  examples  are not bugs,  they are
features. arXiv: 1905.02175

Lyon,  P.  (2015).  The  cognitive  cell:  bacterial  behavior  reconsidered.
Frontiers in Microbiology, 6:264.

Maly,  C.  (2021).  The  physicality  of  representation.  Synthese,  199,
14725-14750.

Marr, D. (1982). Vision. Henry Holt: New York.

McGivern,  P.  (2019).  Active  materials:  minimal  models  of  cognition?
Adaptive Behavior, 28(6), 441-451.

Miłkowski,  M.  (2013).  Explaining  the  Computational  Mind.  Cambridge,
MA.: The MIT Press.

Millikan,  R.  G.  (1984).  Language,  Thought,  and  other  Biological
Categories. Cambridge, MA.: The MIT Press.

Mitchell, M. (2019). Artificial Intelligence: a Guide for Thinking Humans.
London: Penguin.

Nguyen, A.,  et al. (2015). Deep neural networks are easily fooled: high
confidence  predictions  for  unrecognizable  images.  Proceedings  of  the
IEEE Conference on Computer Vision and Pattern Recognition.  (pp. 427-
436).

O’Brien,  G.  (2015).  How  does  the  mind  matter?  Solving  the  content
causation  problem.  In  T.  Metzinger,  J.  M.  Windt  (Eds.),  Open  MIND:
28(T).  Frankfurt  am  Main,  The  MIND  Group.
https://doi.org/10.15502/9783958570146.

O’Brien, G., & Opie, J. (2004). Notes towards a structuralist theory of
mental  representations,  in  H.  Clapin;  P.  Staines  &  P.  Slezak  (eds.),



31/33

Representation in Mind: New Approaches to Mental Representaion (pp. 1-
20). Oxford: Elsevier.

O’Brien,  G.,  &  Opie,  J.  (2008).  The  role  of  representation  in
computation. Cognitive Processing, 10(1), 53-62.

Olah, C.,  et al. (2018).  The building blocks of interpretability.  Distill,
3(3): e10. https://distill.pub/2018/building-blocks/

Orlandi, N. (2018). Perception without computation? In M. Sprevak, M.
Colombo (eds),  The Routledge Handbook of the Computational Mind (pp.
410-423). New York: Rutledge

Orlandi,  N.  (2020).  Representing  as coordinating  with  absence.  In J.
Smortchkova,  K.  Dolega,  T.  Schlicht  (Eds.),  What  Are  Mental
Representations? (pp. 101-135), New York: Oxford University Press.

Papayannopoulos,  P.,  et  al.  (forthcoming).  On  two  different  kinds  of
computational  indeterminacy.  The  Monist.  Preprint  at:  http://philsci-
archive.pitt.edu/19622/

Piantadosi,  S.  T.  (2021).  The  computational  origin  of  representation.
Mind and Machines, 31, 1-58.

Piccinini,  G.  (2010).  The  mind  as  neural  software?  Understanding
functionalism,  computationalism  and  computational  functionalism.
Philosophy and Phenomenological Research, 81(2), 269-411.

Piccinini, G. (2015).  Physical Computation: a Mechanistic Account.  New
York: OXford University Press.

Piccinini, G., & Maley, C. (2021). Computation in physical systems. In E.
Zalta  (Ed.),  The  Stanford  Encyclopedia  of  Philosophy (summer  2021
edition),
https://plato.stanford.edu/archives/sum2021/entries/computation-
physicalsystems/ last accessed 19/06/2021

Putnam,  H.  (1988).  Representation  and  Reality.  Cambridge,  MA.:  The
MIT Press.



32/33

Rajalingham, R. et al. (2018). Large-scale, high-resolution comparison of
the  core  visual  objects  recognition  behavior  of  humans,  monkeys  and
state-of-the-art deep artificial neural networks. Journal of Neuroscience,
38(33), 7255-7269.

Ramsey,  W.  (2007).  Representation  Reconsidered.  Cambridge:
Cambridge University Press.

Ramstead,  M. D.  et al.  (2020).  Is the free-energy principle a formal
theory of semantics? Entropy, 22(8), 889.

Scheutz, M., (1999). When physical systems realize functions….  Minds
and Machines, 9(2), 161-196.

Schweitzer,  P.  (2019).  Triviality  arguments  reconsidered.  Minds  and
Machines, 29(2), 287-308.

Searle, J. (1992).  The Rediscovery of the Mind. Cambridge, MA.: The
MIT Press.

Shagrir,  O.  (2001).  Content,  computation  and  externalism.  Mind,  110,
477-500.

Shea, N. (2018). Representation in Cognitive Science. New York: Oxford
University Press.

Sims, M., & Pezzulo, G. (2021). Modeling ourselves: what the free energy
principle  reveals  about our  implicit  notion  of  representation.  Synthese,
199(3), 7801-7833.

Skansi, S. (2018).  Introduction to Deep Learning: from logical calculus
to artificial intelligence. Springer.

Sprevak, M. (2010). Computation, individuation and the received view on
representation. Studies in History and Philosophy of Science Part A, 41(3),
260-270.



33/33

Sprevak,  M.  (2011).  Review  of  William  M.  Ramsy  Representation
Reconsidered.  The British Journal of Philosophy  of science.  62(3) 669-
675. 

Sprevak,  M.  (2019).  Triviality  arguments  about  computational
implementation.  In  M.  Sprevak,  M.  Colombo  (Eds.),  The  Routledge
Handbook of the Computational Mind (pp. 175-191). New York: Routledge

Su, J. et al. (2019). One pixel attacks for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation. 23(5), 828-841.

Szegedy,  C.,  et  al.  (2013).  Intriguing  properties  of  neural  networks.
arXiv preprint: 1312.6199.

Tripaldi, L. (2022). Parallel Minds. Cambridge, MA.: The MIT Press.

Wiese,  W:  (2017).  What  are  the  contents  of  representations  in
predictive processing?  Phenomenology and the Cognitive Sciences,  16(4),
715-736.

Wiese, W. (2018). Experienced Wholeness. The MIT Press.

Webb, B. (2006). Transformation, encoding and representation. Current
Biology, 16(6), R184-R185.

Yakura,  H.  (2019).  A  hypothesis:  CRISPR-Cas  as  a  minimal  cognitive
system. Adaptive Behavior, 27(3), 167-173.

Yamins, D., & DiCarlo J. (2016). Using goal-driven deep learning models
to understand sensory cortex. Nature Neuroscience, 19(3), 356-365.

Yuan, X.  et al. (2019). Adversarial examples: attacks and defenses for
deep  learning.  IEEE  Transactions  on  Neural  Networks  and  Learning
Systems, 30(9), 2805-2024.

Zhou,  Z.,  &  Firestone,  C.  (2019).  Humans  can  decipher  adversarial
images. Nature communications, 10(1), 1-9.


	1 - Introduction
	2 - Egan’s deflationary account of representations
	3 - The indeterminacy of mathematical contents
	4 - Deflating the explanatory power of deflated representations
	5 - Concluding remarks
	References

