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1. Introduction 

 

The last two decades or so witnessed a major shift of focus in the philosophical 

literature on scientific explanation, wherein various model-based approaches to 

explanation have been proposed (Hughes 1997; Frisch 1998; Morgan and 

Morrison 1999; Batterman 2002; Parker 2003; Woodward 2003; Giere 2004; 

Craver 2006; Godfrey-Smith 2006; Contessa 2007; Bokulich 2008, 2011, 2012; 

Strevens 2008; Kennedy 2012; Weisberg 2013; King 2016). 1  Among many 

attempts to carve out such a model-based approach to scientific explanation (or 

“model explanation” for short), the counterfactual account of model explanation 

seems to be a promising route that many philosophers have started to pursue (e.g., 

Frisch 1998; Woodward 2003; Bokulich 2008, 2011, 2012; Rice 2015). 

Perhaps James Woodward’s interventionist account of explanation is the most 

influential version of the counterfactual account of model explanation (Woodward 

2003), though Woodward initially intends his account to be a general account of 

scientific explanation rather than an account of model explanation. According to 

Woodward, scientific explanation is associated with whether, and to what extent, 

a generalization can be used to answer “what-if-things-had-been-different 

questions” (“w-questions” hereafter) (Woodward 1997, 2000, 2001, 2003, 2010). 

More specifically, an explanatory generalization is one that can tell us information 

about how changes in variables that figure in the explanans, typically under 

intervention, would be systematically associated with changes in variables that 

figure in the explanandum, i.e., provide us with information about patterns of 

counterfactual dependence between variables. One may find that it is not difficult 

to apply Woodward’s general account of scientific explanation to model 

explanation: an explanatory model is one that tells us information about how 

changes in the explanandum would systematically depend on changes in the 

explanans. This time, the explanandum refers to the output, pattern or 

phenomenon to be explained in the target system (and also reproduced by the 

                                                           
1 Early versions of model-based approaches can be found in McMullin (1978, 1984, 1985). 
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model), and the explanans refers to the mechanisms or dynamics represented by 

the model (and also encoded in the target system). 

Although this is an attractive extension of Woodward’s account, he himself 

does not fully develop it. Fortunately, Alisa Bokulich picks out this thread, 

following Woodward’s track to explore what a counterfactual account of model 

explanation would look like. On her account, a model can explain its 

explanandum because the model shows “how the elements of the model correctly 

capture the pattern of counterfactual dependence of the target system” (Bokulich 

2011, 39). However, I think her account fails, for it seems to assume that a model 

must bear some substantive representational relationship to its target system so as 

to be explanatory (we will see in Section 2 that Bokulich seems to hold 

isomorphism to be the representational relationship between a model and its target 

system). As many authors have pointed out, to be explanatory a model needs not 

bear such a substantive relationship to its target system. For example, a minimal 

model may bear no substantive representational relationship to its target system 

but can still offer explanation (Batterman 2002a, 2002b; Batterman and Rice 2014; 

Rice 2015; for similar views, see Morgan and Morrison 1999; Knuuttila 2005, 

2011; Kennedy 2012).2  

To avoid the problem faced by Bokulich’s account and in the meanwhile 

preserve the insight derived from Woodward that model explanation has 

something to do with the model’s counterfactual structure, this essay suggests an 

alternative account of model explanation based on Suárez’s deflationary approach 

                                                           
2 Notice that some of these views are said to be non-representational because they totally dismiss 

the relevance of any representational relationship between the model and the target in scientific 

modeling. On the other hand, my account to be developed in what follows seems to be 

representational because it proposes that a model represents a target in virtue of some activities 

performed by the modeler involved. So, it appears that my account conflicts with these non-

representational views. However, I think the conflict is only superficial. First, as will become clear, 

the term ‘representation’ employed in my account should be deflationarily construed. Second, my 

account shares with these non-representational views the core idea that it is not any substantive 

representational relationship between the model and the target that makes the model able to do the 

work it is supposed to do in scientific modeling, e.g., model explanation.  
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to scientific representation. Suárez’s approach is deflationary in that it does not 

postulate any substantive representational relationship (e.g., isomorphism, partial 

isomorphism, similarity, etc.) between the model and its target (Suárez 2004, 

2015, 2016).3 This does not mean that there cannot be any relationship between 

the model and the target, but rather that the fact that a model can represent a target 

cannot be reduced to any substantive explanatory properties of the model, or the 

target, or their relations (Suárez 2015, 36). On this account, that a model can 

represent a target is due to the way the model is used by the modeler to make 

inferences about the target—hence this account is also called the inferential 

account of scientific representation. Due to two reasons, I think this path is worth 

pursuing. First, because of its distancing itself from positing any substantive 

relationship between the model and the target, it directly circumvents thorny 

problems many substantive accounts of representation suffer (e.g., for problems 

faced by the isomorphism view see Downes 1992; Suárez 2003; Frigg 2006; 

Odenbaugh 2008; Weisberg 2013). Second, and more importantly, it goes in 

concert with scientific practice since it rightly points to the way of how scientific 

models are used by modelers to explain phenomena in practice, that is, how 

models are used as inferential means in the context of scientific explanation.  

Integrating the counterfactual account of model explanation with the 

inferential approach to scientific representation, an inferential account of model 

explanation is suggested in this essay. According to this account, model 

explanation as a key part of scientific practice proceeds in a two-step manner: (i) 

the modeler first entertains the counterfactual structure of the model in various 

ways such that she can build a whole range of counterfactual statements about the 

model, and (ii) she then infers from the model to the target by making a range of 

hypothetical statements that transfer over claims derived from the model onto 

claims about the target. 

                                                           
3 For a discussion of the isomorphism view, see Sneed (1971), Stegmüller (1976), Suppe (1977), 

Suppes (1962, 1967), Van Fraassen (1970, 1972); the partial isomorphism view, see Bueno (1997), 

Bueno et al (2002, 2012), Da Costa and French (2003), French (1997, 2003), French and Ladyman 

(1998); and the similarity view, see Giere (1988), Godfrey-Smith (2006), Weisberg (2013). 
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Note that the account to be developed in this essay falls within the broad 

category of counterfactual account of explanation, since it shares the core with 

many other counterfactual accounts: offering explanation has something to do 

with providing counterfactual information (Woodward 2003; Bokulich 2011; Rice 

2015). However, some might doubt why the counterfactual account better suits 

model explanation than other accounts, such as the Deductive-Nomological 

account (Hempel 1965), the causal account (Salmon 1984; Woodward 2003; 

Strevens 2008), the non-causal account (Walsh et al. 2002; Lange 2013; Ariew et 

al. 2015; Rice 2015; Baron, Colyvan and Ripley, 2017), the mechanistic account 

(Craver 2007), etc. The first reason is that, except for the Deductive-Nomological 

account,4 the counterfactual account is not a competitor against the other views 

but can work hand in hand with them. For example, Woodward’s work features 

both a counterfactual and a causal characteristic (Woodward 2003), Baron, 

Colyvan and Ripley propose a non-causal counterfactual account (Baron, Colyvan 

and Ripley 2017), and Craver’s mechanistic account is compatible with the 

counterfactual account in the way that his causal-mechanical explanations can be 

rephrased in counterfactual expressions without sacrificing their own 

explanatoriness (Craver 2007). Second, as will be shown in the following sections, 

a counterfactual account can best suit model explanation because it reflects the 

inferential and hypothetical nature of the surrogate reasoning occurring in model 

explanation, that is, using a model—i.e., a surrogate—to explain its target system. 

To elaborate on that account, the essay goes as follows. Section 2 will first 

briefly outline Bokulich’s counterfactual account of model explanation, followed 

by Section 3 describing Suárez’s inferential account of scientific representation. 

Then, in Section 4, based on Bokulich’s and Suárez’s accounts, an inferential 

account of model explanation will be developed. To show how the inferential 

                                                           
4 I think the Deductive-Nomological account is implausible because, first, its requirement for laws 

cannot be met in model explanation—many models do not invoke laws to explain, and second, 

many model explanations do not work in a deductive way but involving empirically finding 

explanatory (causal) variables.  
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account really works, an agent-based simulation model drawn from biology will 

be examined in Section 5. 

 

2. Bokulich’s Counterfactual Account of Model Explanation 5 

 

The idea that a model can be explanatory because it captures the pattern of 

counterfactual dependence of its target system can at least be traced back to 

Margaret Morrison’s work on models, where she claims that “The reason models 

are explanatory is that in representing these systems, they exhibit certain kinds of 

structural dependencies” (Morrison 1999, 63; Cf. Bokulich 2008, 255). Yet, 

Morrison does not develop this sound idea into a philosophical account of model 

explanation. 

Partly due to the popularity of Woodward’s interventionist view of scientific 

explanation, as a version of the counterfactual account of explanation, the 

development of Morrison’s idea has become possible very recently. Alisa 

Bokulich is one author who tries to bring Morrison’s idea into a flesh-and-blood 

form based on Woodward’s counterfactual account of scientific explanation. 

Bokulich’s basic idea is that a model “explains the explanandum by showing how 

the elements of the model correctly capture the pattern of counterfactual 

dependence of the target system” (Bokulich 2011, 39). 

For Bokulich, what makes an explanation an example of model explanation is 

that the explanans in question must make appeal to a scientific model (Bokulich 

2008, 145). Given such, then a general account of model explanation must explain 

how a model can be genuinely explanatory, and must be able to demarcate models 

that are explanatory from those that are not. Her answer has been mentioned 

above, that is,  

 

That model explains the explanandum by showing how the elements of the model 

                                                           
5 Note that Bokulich names her account as an account of structural model explanation (2011, 40). 

However, given that Woodward’s counterfactual account of scientific explanation resides in the 

heart of her account, I view her account as a version of the counterfactual account. 
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correctly capture the pattern of counterfactual dependence of the target system. More 

precisely, in order for a model 𝑀 to explain a given phenomenon 𝑃, we require that 

the counterfactual structure of 𝑀  be isomorphic in the relevant respects to the 

counterfactual structure of 𝑃. That is, the elements of the model can, in a very loose 

sense, be said to ‘reproduce’ the relevant features of the explanandum phenomenon. 

Furthermore, as the counterfactual condition implies, the model should also be able 

to give information about how the target system would behave, if the elements 

described in the model were changed in various ways. (Bokulich 2011, 39) 

 

Here we see both Morrison and Woodward’s influence on Bokulich. For one 

thing, following Morrison, Bokulich states that the explanatory power of a model 

has something to do with the model’s structural dependences. For another, largely 

inspired by Woodward’s account, she thinks that the way a model explains is 

closely associated with how the model can be used to answer various “what-if-

things-had-been-different questions”. Interestingly, we can also see the influence 

of the semantic view on Bokulich from her presentation (e.g., “we require that the 

counterfactual structure of 𝑀  be isomorphic in the relevant respects to the 

counterfactual structure of 𝑃”).  

Finally, for Bokulich an adequate account must satisfy a further ‘justificatory 

step’, which specifies “what the domain of applicability of the model is”, and 

shows that “the phenomenon in the real world to be explained falls within that 

domain” (Bokulich 2011, 39). It will turn out that the justificatory step, which 

somehow resembles Hughes’s interpretation step (Hughes 1997), is of tremendous 

importance to Bokulich’s account, though she does not fully develop it. I will 

return to this point in Section 4. 

To see how Bokulich’s account works, let us consider her example: Niels 

Bohr’s model of the hydrogen atom:  

 

According to Bohr’s model, the electron can orbit the nucleus only in a discrete 

series of allowed classical trajectories known as stationary states. While in a 

stationary state the energy of the electron is constant, and the electron can only gain 

or lose energy by jumping from one stationary state to another. When such a 
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transition or “quantum jump” occurs, a single photon of a given frequency is emitted 

(or absorbed). The frequency of the photon is given by the difference in energy of 

the two allowed orbits. The spectrum of hydrogen […] is built up out of the photons 

being emitted in these jumps between stationary states, where only those frequencies 

(or wavelengths) corresponding to allowed quantum jumps occur, and the intensity 

(or brightness) of a spectral line is given by the probability of that jump occurring. 

(Bokulich 2011, 41)  

 

Bokulich says her account of model explanation can cast light on why Bohr’s 

model is genuinely explanatory. To begin with, the explanans makes appeal to an 

idealized model, i.e., Bohr’s model, hence it is clearly an example of model 

explanation. Moreover, the model explains the explanandum by showing that “the 

counterfactual structure of the model is isomorphic (in the relevant respects) to 

the counterfactual structure of the phenomenon” (Bokulich 2011, 43). This means 

that the model is able to answer a wide range of “w-questions” about its target 

system. For example, the model is able to answer questions such as “how the 

spectrum would change if the orbits were elliptical rather than circular, or how the 

spectral lines would change if the hydrogen atom were placed in an external 

electric field” (Ibid., 43), etc. Finally, there is a justificatory step, “specifying 

what the domain of applicability of the model is, and showing that the 

phenomenon in the real world to be explained falls within that domain” (Ibid., 39). 

In particular, “modern semiclassical mechanics provides a top-down justificatory 

step showing that Bohr’s model—despite failing as a literal description—is 

nonetheless a legitimate guide to quantum phenomena in certain domains” (Ibid., 

43). 

So far so good. A model can explain because the model can capture the 

counterfactual structure of its counterpart in the target. However, it seems 

Bokulich ties her account of model explanation to some substantive 

representational relationship too closely, because—as least from her 

presentation—her account seems to imply that for a model to be explanatory it 

must first bear some relationship such as isomorphism to its target system. We 

will see in the following sections that bearing such a substantive relationship to a 
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target system is not a necessary condition for an explanatory model.  

 

3. Suárez’s Inferential Account of Scientific Representation 

 

It should be clear from the outset that Suárez is not mainly concerned with the 

problem of model explanation. Rather, his focus is on how to make sense of 

scientific representation without postulating any substantive model-world 

relationship. Nevertheless, it will become evident in what follows that his 

inferential conception of scientific representation will lend dramatic support to 

developing an inferential account of model explanation. 

In approaching the notion of scientific representation in a deflationary spirit, 

Suárez characterizes it as a two-part activity involving “its essential directionality 

and its capacity to allow surrogate reasoning and inference” (Suárez 2004, 767). 

More specifically, it involves 

 

[T]he exercise of the inferential capacities of the model source (with respect to the 

target), and the setting of what I call representational force of the source towards the 

target. Both components are elements of practice and ensue in relations only in those 

contexts in which the practice’s outputs include the establishment of a particular 

match or comparison between source and target. (Suárez 2015, 41)  

 

The first part of the activity is called representational force, concerning how a 

source 𝐴, i.e., a model, points to a target system 𝐵, and the second part is called 

inferential capacity, concerning how 𝐴 allows a modeler to draw inferences about 

𝐵. Putting the two parts together, we may say that  

 

A represents B only if (i) the representational force of A points towards B, and (ii) A 

allows competent and informed agents to draw specific inferences regarding B . 

(Suárez 2004, 773) 

 

Although the representational force of a source has something to do with the 

internal structure of the source, it “is essentially linked to a practice of interpreting 
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features of a [source] as standing for features of a [target]” (Suárez 2015, 43). 

Here, the pragmatic dimension comes into play, namely, the essential role played 

by the agents and the purposes of modeling: 

 

First, the establishing and maintaining of representational force in (i) requires some 

agent’s intended uses to be in place; and these will be driven by pragmatic 

considerations. Second, the type and level of competence and information required 

in (ii) for an agent to draw inferences regarding 𝐵 on the basis of reasoning about 𝐴 

is a pragmatic skill that depends on the aim and context of the particular inquiry. 

(Suárez 2004, 773) 

 

Therefore, it is due to the competent modeler who draws inferences regarding the 

target based on the source. The inferences take a form of transferring over the 

claims derived from the source onto the claims about the target, and there are 

inference generation rules that guarantee this form of transferring: “such rules are 

complex features of the practice that involve carrying out demonstrations or 

modifications of the source in order to guide our beliefs regarding the behaviour 

of the target” (Suárez 2015, 45–46). These rules can be grouped into two kinds, 

depending on whether they concern the source or the relation between the source 

and the target. The first kind of rules are related with the internal structure of the 

source, from which we can demonstrate or derive various results about the source 

itself (e.g., “what would happen to this variable if we were to change the value of 

that variable in the source?”). The second kind of rules are about connecting the 

source with the target by interpreting features of the source as referring to features 

of the target.  

The inference from the source to the target can be performed using a number 

of means, as long as they allow the modelers to draw conclusions about the 

aspects of the target system in terms of the corresponding aspects of the source. In 

other words, the inference does not require any particular kind of means, since “it 

just requires that there be some means or other” (Suárez 2004, 775). Therefore, 

the means in some cases might take the form of similarity, isomorphism, partial 

isomorphism, or whatever, so long as they allow the modelers to make inferences 



10 
 

about the target in terms of the source. Notice that means are different from 

constituents of scientific representation, for the latter constitute individually 

necessary and collectively sufficient conditions for scientific representation while 

the former do not (Suárez 2015, 46). Analogously put, we may say that means are 

whatever tools a person might use in undertaking a specific task, and, though 

employed by the person, they are not themselves part of the task. 

An example of Suárez may help us to illustrate the nitty-gritty of his account. 

The North British Railway Company was in charge of building a rail bridge 

across the main estuaries of the Firth of Forth in the east of Scotland in the 1870s. 

It was a very challenging project because it must overcome the problem 

associated with the stronger side winds in that area (Ibid., 42). The project was 

further challenged by an event that happened in 1879: the collapse of the Tay 

Bridge, a nearby estuary bridge, which resulted in breaking down a train with 79 

passengers in it (Ibid., 42). Facing these serious challenges, the chief engineer, 

Benjamin Baker, decided to use a cantilever design instead of a girder design used 

in the Tay Bridge (Ibid., 42). The principle of the cantilever design involves 

tension-compression:  

 

In a cantilever bridge the lower arm of each lever is compressed while the upper 

arm is correspondingly in tension. In the central pier by contrast the lower girder is 

compressed while the upper one is in tension. This led Baker to choose different 

kinds of design for the different arms of the levers—those in tension would be built 

as lattices, while those in compression were tubular. […]. Lattices minimize 

resistance to wind pressure, while tubes maximize resistance to compression shears. 

(Ibid., 42) 

 

According to Suárez, the representational force of the source, i.e., the graphs of 

the bridge written on papers, is towards ‘a very particular bridge’ capable of 

withstanding the strong side winds and avoiding the structural defects of the Tay 

Bridge (Ibid., 43). The inferential capacity of the source, therefore, is “geared 

towards showing clearly how […] a bridge built as designed would indeed 

withstand such shears and stresses” (Ibid., 43). More specifically, the 
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representational force of the bridge model involves an understanding of the 

principles of the cantilever design, and of the various parts of the model (e.g., 

tubes, girders, lattices, etc.) (Ibid., 43); these elements are then interpreted as 

referring to their counterparts in the target. The inferential capacity of the model 

involves not only the principles of the cantilever design but also many other 

principles associated with torsion, compression, tension, etc., which are needed in 

calculating how a bridge could resist the strength of the side winds (Ibid., 43); 

outcomes of reasoning based on these principles and calculations are then 

transferred to claims about the target. 

In sum, Suárez’s inferential account of scientific representation features how 

competent modelers draws inferences about the target based on the source, 

wherein the inferences often take the form of transferring over the claims derived 

from the source onto the claims about the target. There is no need to postulate any 

substantive model-world relationship other than acknowledging the fact that 

different means of representation may be employed in different cases. 

 

4. An Inferential Account of Model Explanation 

 

In Section 2 we mentioned that Bokulich’s account of model explanation ties too 

closely to a substantive representational relationship between a model and its 

target in the manner that for a model to be explanatory it must correctly represent 

the counterfactual structure of its target system. With the aegis of Suárez’s 

inferential account of scientific representation, we are now in a good position to 

develop an alternative account of model explanation that does not rely on any 

substantive representational relationship between the model and its target: an 

inferential account of model explanation. According to such an account, rather 

than making appeal to any substantive model-world relationship, it is the modeler 

who hypothesizes that the counterfactual structure of the model captures it 

counterpart in the target.  

Based on this idea, my claim about model explanation (ME) boils down to the 

following statement: 
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(ME) It is the modeler who (i) entertains the counterfactual structure of the 

model by asking Woodward’s w-questions, and then (ii) hypothesizes that 

the claims derived from the counterfactual structure of the model may be 

applied to its target system. 

 

ME consists of two steps. First, since a model can be described as a structure 

(Weisberg 2013), i.e., a dependence relationship,6 it follows that variables in the 

model counterfactually depend on each other. More specifically, changes (or 

interventions) in explanans variables that figure in the model can be 

systematically associated with changes in explanandum variables that sometimes 

take the form of outputs of the model (note that the explanandum variables, 

represented in the model, are supposed to describe or reproduce their counterparts 

in the world). As such, the model can be used to answer Woodward’s w-questions 

about itself: we can ask how one variable in the model would change as a result of 

intervention on another variable in the model. Second, the modeler then 

hypothesizes that—based on her background knowledge, modeling goals, 

conceptualization of the target, etc.—the counterfactual dependence relationships 

derived from the model may be applied to their counterparts in the target. In other 

words, a kind of inferential relationship can be hypothesized between the model 

and its target. 

The first step of ME typically takes the form of making counterfactual 

statements (CS for short), for instance: 

 

(CS) In the model 𝑀, had the variable 𝑋 taken such-and-such a value 𝑥𝑖 , 

then the variable 𝑌 would have taken such-and-such a value 𝑦𝑗. 

 

The modeler can play the counterfactual structure of the model in whatever ways, 

                                                           
6 Christopher Pincock proposes a similar idea (“objective dependence relations”) when discussing 

non-causal explanations. According to him, in addition to causal dependence relations there are 

abstract dependence relations that can also be used to do explanatory work (Pincock 2015, 878). 
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but there must be a small set of CSs out of the whole set of all possible CSs that 

especially interest her. Which set of CSs would particularly interest her largely 

depends on what kind of questions she would ask and what the modeling goal is 

in her mind. Once a model has been built, more often than not the modeler will 

only concentrate on a few number of focal variables and a few number of 

relations among them, entertaining them in various but constrained ways. For 

example, the modeler must be aware that a variable may only have physical 

meanings within a certain range of values, or her might know prior to building the 

model that a variable is highly likely to be a cause of another variable but not vice 

versa, etc. The first step should remind us of Suárez’s first kind of rules that are 

related with the internal structure of the source, from which we can demonstrate 

or derive various results about the source itself (see Section 3). 

The second step of ME usually takes the form of making hypothetical 

statements (HS), namely hypotheses that transfer over claims derived from the 

counterfactual structure of the model onto claims about the target. Essentially, this 

involves the modeler assuming that the counterfactual structure of the model also 

holds in the target system; this assumption often goes quite quick and unnoticed 

by the modeler, especially when the model employed is well-developed and 

widely accepted, e.g., the Lotka-Volterra model. More specifically, the hypothesis 

usually takes the following form:7 

 

(HS): 

(i) If a model 𝑀 has such-and-such attributes, patterns, or mechanisms, 

(ii) then, hypothetically, its target system 𝑇 would also have such-and-such 

attributes, patterns, or mechanisms. 

 

Notice that making HSs does not require that the model in question must be a 

                                                           
7 I thank XX and YY for alerting me to know that the inference from the model to its target (and 

vice versa) is in fact a hypothesis: because the model behaves in such-and-such a way we 

hypothesize that the target would also behave in such-and-such a way. The formation of the HS is 

indebted to many colleagues, including XX, XY, YY, and ZZ. 
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good model. The absence of this requirement has two implications. First, it leaves 

room for the possibility that a not-so-good model may also offer some 

explanation—though the explanation might be inaccurate. This in turn implies 

that offering explanation is not an all-or-nothing issue but a matter of degree, i.e., 

a model may be more or less better than the other in explaining a phenomenon, 

and this goes in accordance with the fact that the explanatory power of different 

models can be compared (Woodward 1997, 2000; Strevens 2004; Weisberg 2004; 

Weslake 2010). Second, it also leaves room for the possibility that models with 

different explanatory power are employed by the modelers in the same way in 

explaining phenomena—that is, regardless of whether the model is explanatorily 

good or not-so-good, it is put into the same two-step practice by the modeler 

when explaining. Therefore, whether a model is explanatorily good or better than 

the other seems to be a problem independent of how a model explains, and we 

need to set extra conditions for determining when a model is explanatorily good 

or better than the other. However, for the limitations of space, I will leave that 

problem to another occasion. 

Also note that the act of making HSs is insensitive to what kind of model-

world relationship is operating, be it isomorphism, partial isomorphism, structural 

similarity or something the like. This is not denying that there might be such a 

model-world relation; rather, I think whether a model possesses such a model-

world relation or not is orthogonal to the problem of how a model explains. The 

idea is that there might be a number of distinct relations that different kinds of 

models bear to their targets, but the fact that all these different kinds of models 

can be employed to explain essentially converges on one common ground: they 

all help the modelers to draw conclusions about their targets based on claims 

derived from these models.  

One may find that the HS can run in many different ways: from the model to 

its target, or from the target to its model, or back and forth. Moreover, through the 

HS we can see the clear link between prediction and explanation. For any 

established model 𝑀, the fact that 𝑀  has such-and-such attributes, patterns, or 

mechanisms (attributes for short) can lead to the prediction that its target 𝑇 may 
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also have such-and-such attributes. In contrast, exploring the specific way the 

model produces such-and-such attributes leads to the explanation of why 𝑇 

manifests such-and-such attributes. Therefore, the reason why a model can 

explain is spelt out by the fact that we can explain an explanandum (or an output, 

a pattern, a phenomenon) in the target system in terms of the counterfactual 

structure derived from the model. In other words, by appealing to the 

counterfactual structure derived from the model but hypothetically extrapolated to 

the target, we are able to explain why an explanandum would appear in virtue of 

how the explanans would change. 

Ultimately, the inference from the model to its target consists in the 

hypothesis that the counterfactual structure of the model may be applied to the 

target. In light of the HS, the modelers infer that the same interventions or 

changes on the variables of the model and the target will lead to the same changes 

in the outcomes of both the model and the target; that is, the outcomes we get 

from the model by changing certain variables should also be manifested in the 

target by changing the corresponding variables. The inference in the second step 

of ME reminds us of Suárez’s second kind of rules that are associated with 

connecting the source to the target by interpreting features of the source as 

referring to features of the target. Note that the second step does not necessarily 

come after the first step—though they can be conceptually distinguished, they 

often go hand in hand in practice. 

Accordingly, an inferential account of model explanation offers a novel way 

of understanding when a model is explanatorily good and when it is not. For such 

an account, an explanatorily impoverished model is one that leads a competent 

modeler to draw wrong conclusions about the target. A good case in point is the 

phlogiston model: it explains the phenomenon of combustion by postulating that 

combustible materials incorporate an element called phlogiston, and that when 

stuff is burning phlogiston is released into the air. This model is explanatorily 

poor because it inevitably leads a competent modeler to draw conclusions about 

the combustible materials in reality that, first, do not contain such an element, and 

second, do not proceed in the way described by the model when burning. Note 
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that saying that an explanatorily poor model can lead a competent modeler to 

draw wrong conclusions differs from saying that the model is wrong or false, nor 

does it imply that an explanatorily good model is true with respect to the reality it 

is supposed to represent. As William Wimsatt famously puts, all models are 

literally false though false models usually lead to truths about the world (Wimsatt 

2007).  

However, there are other ways to draw wrong conclusions based on models 

aside from the one described above. For example, an incompetent modeler might 

draw mistaken conclusions about the target on the basis of an explanatorily good 

model. This is partly due to the myriad of inferences that can be drawn from a 

model, and partly due to the modeler’s incompetence in distinguishing inferences 

that are appropriate given the modeling goal from those that are not. In addition, 

an incompetent modeler might unluckily come up with an explanatorily poor 

model, resulting in inferences that are wrong-headed compared with the target 

system in question. All in all, making good explanation is therefore partly due to 

the model and partly due the modeler entertaining the model. 

One merit of this inferential account of model explanation is that it provides a 

unified theory to accommodate many (if not all) different kinds of models. A wide 

variety of scientific models are capable of doing explanatory work, e.g., 

mechanistic models, dynamic models, structural models, agent-based simulation 

models (the next section will scrutinize how this kind of models explain), etc. A 

mechanistic model explains by showing how the components of a system interact 

with one another in producing a certain mechanism, a dynamic model explains by 

revealing how a system’s states change over time, a structural model explains by 

manifesting how a phenomenon or an explanandum can be derived from the 

structure of a theory (e.g., explaining the Pauli exclusion principle in fundamental 

physics) (Bokulich 2011, 40). Admittedly, these are different kinds of 

explanations. Nevertheless, they share one thing in common: all these model 

explanations involve drawing inferences that transfer over claims derived from 

the model onto claims about the target. Similar to what discussed above, the 

activity of drawing inferences in these explanations proceeds in a two-step 
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manner: making counterfactual statements about the model and building 

hypothetical statements between the model and the target. For example, a 

mechanistic model explains by, first, specifying how changing key parts of the 

system would lead to changes in the system—i.e., specifying the counterfactual 

structure of the model—and second, extrapolating the results drawn from the 

model to the target.  

Before concluding this section, it is worth briefly discussing the ‘justificatory 

step’ of Bokulich’s account. Bokulich’s justificatory step serves the purpose of 

“specifying what the domain of applicability of the model is, and showing that the 

phenomenon in the real world to be explained falls within that domain” (Bokulich 

2011, 39). My discussion of how the model might be linked to its target through 

the HSs can be viewed as an extension of Bokulich’s justificatory step. This is 

because, on the one hand, the HSs built by modelers concern aspects of the model 

(and its target) that fall within the intended domain of applicability of the model. 

This is the very reason why the modelers bother hypothesizing and entertaining 

these statements. On the other hand, the HSs do not only concern the intended 

domain of applicability of the model in general, but more importantly manifest 

how particular aspects of the model within that domain might correspond to its 

counterparts in the target. More specifically, they manifest how the set of 

counterfactual dependence relationships, i.e., the particular aspects of the model 

within its domain of applicability, can be extrapolated to its counterparts in the 

target. This second dimension of the justificatory step, which renders my view 

distinct from Bokulich’s, is what has not been fleshed out in her account. 

To sum up, the inferential account of model explanation holds that model 

explanation is essentially a two-step activity, in which the first step involves 

making counterfactual statements about the model and the second involves 

making hypothetical statements linking the model to the target. In all these steps, 

the modelers—rather than any substantive representational relationship between 

the model and its target—are of paramount importance to the explanation practice. 

The next section will illustrate the inferential account with a concrete model. 
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5. A Case Study: An Agent-Based Simulation Model 

 

The model is drawn from Senior et al. (2015). We may observe a common pattern 

in many arthropods (e.g., spiders, burying beetles, etc.), such as “the effects of 

contest competition and the number and composition of foods in the nutritional 

environment on the evolution of individual nutritional strategies” (Senior et al. 

2015, 4–5) (the pattern has been shown in Figure 1 below). The observed 

common pattern can be described as having to do with three focal variables: intra-

specific competition for food, food composition, and the evolution of animals’ 

nutritional strategies (namely nutritional latitude in what follows). Then we might 

attempt to understand how the former two variables might affect the last variable. 

According to Lihoreau et al.,  

 

An individual’s nutritional strategy was governed by the fixed global parameter 𝐾, 

which we refer to here as ‘nutritional latitude’. When eating a food that will not 

guide its nutritional state to the IT an individual has some probability of leaving, 

which is both a function of the balance of nutrients in the food being consumed, 

and 𝐾 . Here, a high 𝐾  means an individual is likely to consume the same 

imbalanced food until reaching a point of nutritional compromise (at which point it 

then seeks an alternative). In contrast, a low 𝐾 corresponds to a low probability that 

an individual will continue feeding on a food rail that will not guide its nutritional 

state directly to the IT. (Lihoreau et al. 2014; Cf. Senior et al. 2015, 4) 

 

The IT (Intake Target) mentioned above refers to a coordinate or a region within 

the nutrient space, which denotes “the optimal amount and blend of nutrients that 

the animal requires over a specified period in its life” (Senior et al. 2015, 3). Now 

consider an agent-based simulation model used to explore how the observed 

common pattern could arise based on the three variables mentioned above.8 The 

                                                           
8  “Agent-based modelling (ABM) is a computational modelling paradigm that enables us to 

describe how any agent will behave” (Wilensky and Rand 2015, 22). By the word agent, “we 

mean an autonomous individual element of a computer simulation. These individual elements 

have properties, states, and behaviors” (Ibid., 22). 
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following is the model description:  

 

Each generation consists of 150 individuals that must attain a certain level of 

fitness (i.e. nutritional state) within a fixed number of model iterations for it to be 

considered fit enough to breed. Fitness-proportionate selection then operates 

among those individuals fit enough to breed, with proximity to the IT (optimal 

point of nutrient intake in the nutrient space) determining its fitness. We allowed 𝐾 

to evolve 1000 generations under varying levels of competition and in differing 

nutritional environment (i.e. different abundance and nutritional compositions of 

food). In doing so, we aimed to explore the effects of contest competition and the 

number and composition of foods in the nutritional environment on the evolution 

of individual nutritional strategies. (Ibid., 4-5) 

 

Suppose the population under consideration only feeds on three kinds of food, and 

we perform the model runs under different intensities of competition, 𝑐, which is 

bounded at 0 and 1. The population mean nutritional latitude 𝐾 obtained from 

each model run is also bounded at 0 and 1 (Ibid., 5). Suppose, for simplicity, the 

environment contains one nutritionally balanced food (e.g., it contains the same 

amount of protein and carbohydrate), and two imbalanced but complementary 

foods (e.g., one might contain 40% protein and 60% carbohydrate while the other 

might contain 60% protein and 40% carbohydrate). For the latter two 

complementary foods, we can vary the extent of their nutritional imbalance to be 

either moderate or extreme (see Figure 1 below). 

 



20 
 

 

 

Figure 1. Results for the agent-based simulation model. Lines and crosshairs describe food 

rails and the intake target. This figure comes from Senior et al. (2015, 7). 

 

The results in Figure 1 are summarized as follows: 

 

In these environments when 𝑐 = 0, 𝐾 was stable at a range of values […]. The high 

variance in stable values of 𝐾 suggests that no one level of nutritional latitude is 

optimal where competition is weak, but most low levels are equally fit. In the face 

of increasing 𝑐, 𝐾 was relatively stable up to a point. With mildly imbalanced foods 

at 𝑐 = 0.7, and with extremely imbalanced foods at 𝑐 = 0.67, 𝐾 increased sharply 

to above 0.91. […] At very high 𝑐 the population could not support itself as no 

individuals could fulfil the fitness requirements to be considered in breeding 

condition by the end of the simulation. (Senior et al. 2015, 5)  

 

That is the outline of the agent-based model. Now let us go back to my claim that, 

in the first step of model explanation, a model can be used to make counterfactual 

statements about itself, i.e., can answer how changes in explanans variables that 

figure in the model can be systematically associated with changes in explanandum 
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variables. In the agent-based model described above, there are three focal 

variables: competition for food (𝑐), food composition (𝑟), and nutritional latitude 

(𝐾). The values of both 𝑐 and 𝐾 range continuously from 0 to 1, while 𝑟 only 

takes two values in our model: mildly imbalanced foods ( 𝑟1 ) and severely 

imbalanced foods (𝑟2).  

First, consider the case where the food environment takes the value 𝑟1. In 𝑟1, 

for example, we may ask ourselves: if we were to change the value of 𝑐 from 𝑐1 to 

𝑐2, what would happen to the value of 𝐾. In particular, we may ask if we were to 

change the value of 𝑐 from 0.1 to 0.2, what would happen to the value of 𝐾; if we 

were to change the value of 𝑐 from 0.2 to 0.3, what would happen to the value of 

𝐾; and so on. There are two points that may particularly interest us, i.e., when 𝑐 =

0.7 and 𝑐 = 0.9, because these are points at which 𝐾  changes drastically. The 

corresponding counterfactual questions are (a) if we were to change the value of 𝑐 

from 0.6 to 0.7, what would happen to the value of 𝐾, and (b) if we were to 

change the value of 𝑐 from 0.8 to 0.9, what would happen to the value of 𝐾. 

Based on these counterfactuals and their corresponding answers in 𝑟1 , a 

systematic counterfactual dependence relationship between 𝑐 and 𝐾 can be built, 

which is summarized as follows: 

 

𝑐 = 0, 𝐾 (𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒) = 0.27 

0 < 𝑐 < 0.7, 𝐾 = 0.271 

𝑐 = 0.7, 𝐾 = 0.91 

0.7 < 𝑐 < 0.9, 𝐾 = 0.95 

𝑐 ≥ 0.9, 𝐾 = 0 

 

The similar situation holds for the case where the food environment takes the 

value 𝑟2. Therefore, we have built a whole range of CSs based on the relationships 

between the three focal variables of the model. 

Having shown how to build CSs based on a model, now consider how to make 

HSs that transfer over claims about the model onto claims about the target. We 

know how variables 𝑐, 𝑟 and 𝐾 are involved in producing the pattern of behavior. 
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That is, we know that, for example, “had 𝑐 taken the value 𝑐𝑖 and 𝑟 taken 𝑟𝑛, the 

spider population would have instantiated the pattern of nutritional strategy 𝐾 =

𝑘𝑗”. Given these, we make the following HS: 

 

(HS*): 

(i) In 𝑀 , if 𝑐  takes the value 𝑐𝑖  and 𝑟  takes 𝑟𝑛 , the spider population 

instantiates the pattern of nutritional strategy 𝐾 = 𝑘𝑗; and 

(ii) in 𝑇, if 𝑐 takes 𝑐𝑖 and 𝑟 takes 𝑟𝑛; then 

(iii) hypothetically, the spider population in 𝑇  would also instantiate the 

pattern of nutritional strategy 𝐾 = 𝑘𝑗. 

 

As in the first step, in this step a whole range of HSs linking the model to its 

target can be systematically constructed. For example, we can not only make the 

HS that (i) in 𝑀, if 𝑐 takes the value 0.2 and 𝑟 takes 𝑟1, the spider population 

would instantiate the pattern of nutritional strategy 𝐾 = 0.271, and (ii) in 𝑇, if 𝑐 

takes the value 0.2 and 𝑟 takes 𝑟1, then, (iii) hypothetically, the spider population 

in 𝑇 would also instantiate the pattern of nutritional strategy 𝐾 = 0.271, but also 

the HS that (i) in 𝑀, if 𝑐 takes the value 0.7 and 𝑟 takes 𝑟1, the spider population 

would instantiate the pattern of nutritional strategy 𝐾 = 0.91, and (ii) in 𝑇, if 𝑐 

takes the value 0.7 and 𝑟 takes 𝑟1, then, (iii) hypothetically, the spider population 

in 𝑇 would also instantiate the pattern of nutritional strategy 𝐾 = 0.91, and so on.  

Making these whole range of HSs matters to both model prediction and 

explanation. For instance, given the actually observed or detected values of the 

variables 𝑐  and 𝑟  in a spider population, we are able to predict what kind of 

nutritional strategy 𝐾 that spider population would instantiate. Likewise, we are 

able to explain why a real spider population instantiates a specific nutritional 

strategy 𝐾  by pointing to the two variables 𝑐  and 𝑟  in the population that are 

believed to be causally responsible for bringing about that nutritional strategy. 

Recall that the counterfactual dependence relationships (causal relations in this 

case) among these focal variables are first established within the agent-based 

simulation model, and then hypothetically extrapolated to the reality in order to 
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see whether the established counterfactual dependence relationships can shed 

some light on the phenomenon observed in reality. The thrust of model 

explanation, therefore, relies on how the modeler could appropriately extrapolate 

claims based on the counterfactual structure of the model to the target system. 

And there are many ways that, as discussed in the last section, a modeler may fail 

to do so: (a) she has an explanatorily bad model, or (b) she is an incompetent 

modeler with an explanatorily good model, or (c) she is an incompetent modeler 

with an explanatorily bad model. 

It is time to take stock. So far we have shown that the agent-based simulation 

model is explanatory because (i) it allows the modeler to entertain the 

counterfactual structure of the model in various ways, and (ii) it helps the modeler 

to build hypothetical statements transferring over claims about the model onto 

claims about the target based on the counterfactual statements constructed in (i). 

 

6. Conclusion 

 

Bokulich’s account of model explanation ties too closely to a substantive 

representational relationship between the model and its target system, because it 

holds that to explain a model should correctly represent the pattern of the 

counterfactual structure of its target system. I claimed that to properly account for 

how a model explains, we should divert our attention from postulating any 

substantial representational relationship to something else. That is the essential 

role played by the modeler in modeling practice, rather than any substantive 

model-world relationship between the model and its target system. Putting the 

modeler on center stage, we have seen that model explanation essentially 

proceeds in a two-step way: (i) the modeler first entertains the counterfactual 

structure of the model in various but also constrained ways, and (ii) she then 

infers from the model to the target by making a whole range of hypothetical 

statements that transfer over claims derived from the model onto claims about the 

target. This conception of model explanation does not deny the existence of some 

sort of relationship between the model and its target, but rather suggesting that the 
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relationship itself might be not the right place to look at in understanding model 

explanation. 
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