
Towards Mechanism 2.1: A Dynamic Causal Approach 

 

Abstract: I propose a dynamic causal approach to characterizing the notion of a 

mechanism. Levy and Bechtel, among others, have pointed out several critical 

limitations of the new mechanical philosophy, and pointed in a new direction to 

extend this philosophy. Nevertheless, they have not fully fleshed out what that 

extended philosophy would look like. Based on a closer look at neuroscientific 

practice, I propose that a mechanism is a dynamic causal system that involves various 

components interacting, typically nonlinearly, with one another to produce a 

phenomenon of interest.  

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

The last three decades have witnessed the rise of the so-called new mechanical 

philosophy (NMP) in philosophy of science. The emergence of this NMP was largely 

motivated by philosophers’ realization that, in contrast with the physical sciences 

where natural laws play a central role in offering explanation, prediction and 

understanding, the life sciences are best characterized as a hodgepodge of 

subdisciplines that focus on discovering and investigating mechanisms. Another 

motive for the NMP’s arising is related to the shift from the focus on scientific 

theories to on scientific practice.  

Advocates of the NMP provide philosophers with a new framework for 

re-examining many pivotal problems in philosophy of science, e.g., scientific 

explanation, causation, the autonomy of the special sciences, to name just a few. 

However, even though the NMP has significantly reshaped the landscape of 

philosophy of science, there is still a long way to go. Recently, many authors have 

realized that the framework has serious limitations (Brigandt 2013; Levy and Bechtel 

2013; Levy and Bechtel 2016). At the heart of these limitations is the fact that 

previous work tends to center on qualitative aspects of mechanisms and draws on 

examples primarily from textbooks in cell and molecular biology, while neglects 

quantitative/dynamic aspects of mechanisms that are reflected in real scientific 

practice.  

Given these limitations, Levy and Bechtel (2016) call for an extended conception 



of mechanisms and mechanistic explanation, the so-called ‘mechanism 2.0’.1 

Although Levy and Bechtel, among others,2 point in the right direction (or so I 

suppose) and highlight several crucial points regarding what the extended philosophy 

would look like, they have not yet fully developed their proposal. So, I here, 

following in their footsteps, take up the mission of developing one version of such an 

extended philosophy and call it ‘mechanism 2.1’. My approach, largely inspired by 

neuroscientific practice, is capable of capturing both the qualitative and quantitative 

aspects of mechanisms, and dovetails well with real scientific practice.  

The essay unfolds as follows. Section 2 briefly describes the NMP, followed by 

Section 3 where Levy and Bechtel’s proposal for ‘mechanism 2.0’ is introduced. 

Section 4 proposes a dynamic causal approach to characterizing mechanisms, and 

Section 5 discusses what philosophical implications it can deliver.  

 

2. The New Mechanical Philosophy 

 

The NMP represents a bundle of closely connected but slightly different ideas 

 
1 Notice that Levey and Bechtel (2016)’s interest is in expanding the mechanistic 

explanation framework rather than the conception of mechanisms. However, I think 

an extended conception of mechanistic explanation must be built upon an extended 

conception of mechanisms, since the latter is more fundamental. Yet, their project 

does inform me of how to develop an extended account of mechanisms.  

2 E.g., Kaplan and Bechtel (2011), and Brigandt (2013). 



proposed by a number of philosophers concentrating primarily on practice in the life 

sciences (Bechtel and Richardson 1993; Machamer et al. 2000; Glennan 2002, 2005; 

Bechtel and Abrahamsen 2005; Bechtel 2006, 2008; Darden 2006; Craver 2007). 

These philosophers all agree that we place mechanisms on center stage when 

examining those traditional philosophical questions (e.g., explanation, causation), 

even though they have not yet reached a consensus on how to philosophically specify 

the notion of mechanisms. According to one most commonly cited characterization: 

 

“Mechanisms are entities and activities organized such that they are productive 

of regular changes from start or set-up to finish or termination conditions.” 

(Machamer et al. 2000, 3) 

 

In characterizing mechanisms, different authors employ different terminologies which 

reflect their distinct ontological commitments.3 Setting aside these ontological 

disputes, nevertheless, they all seem to agree that a mechanism involves four elements: 

a phenomenon/behavior, components/parts/entities, interactions/activities/operations, 

 
3 Machamer et al. (2000) take a dualistic stance towards mechanisms, holding that a 

mechanism is composed of two ontologically different kinds: entities and activities. 

Bechtel (2006, 2008) also thinks that a mechanism is composed of two different kinds: 

component parts and component operations. Glennan (2002), by contrast, takes a 

monist position, holding that a mechanism is composed of parts that interact to 

produce a phenomenon of interest. 



and spatiotemporal organization/structure. Another element, not clearly shown, is also 

worth mentioning: multilevel hierarchy.  

The multilevel hierarchy is manifested by the fact that the component of a 

mechanism may constitute a sub-mechanism by itself, and that the mechanism may 

constitute a component of an even bigger mechanism. This also implies that a 

mechanism’s identification hinges on what target phenomenon/behavior is under 

question. In other words, there is no mechanism simpliciter, but only a mechanism for 

a particular phenomenon/behavior. With respect to components and interactions—in 

terms of Craver (2007)’s constitutively relevant criterion—only those that contribute 

to producing a particular phenomenon/behavior of the mechanism count as the 

components and interactions of the mechanism. 

This NMP has significant implications for a number of philosophical issues, e.g., 

explanation. This philosophy advocates a new account of explanation, i.e., 

mechanistic explanation. According to this account, explaining a 

phenomenon/behavior (at least in the life sciences) lies in uncovering a mechanism, 

i.e., uncovering how the various components interact with one another in a 

spatiotemporally orchestrated manner to produce the phenomenon of interest. 

Obviously, there is no role for laws to play, and explanation does not proceed in a 

manner suggested by the covering-law model of scientific explanation.  

No doubt, this philosophy’s attractiveness essentially comes down to the fact that 

it goes in concert with the practice in the life sciences. Yet, as many philosophers have 

pointed out, although this framework has come very close to practice, it does not 



come close enough. 

 

3. Mechanism 2.0: Call for An Extension 

 

Recently, many philosophers have cast doubt on the adequacy of the NMP (Bechtel 

and Abrahamsen 2010, 2013; Brigandt 2013; Levy and Bechtel 2013, 2016). 

According to these philosophers, the NMP has the following limitations. First, the 

NMP treats a mechanism as if it is composed of a linear causal sequence. However, 

scientists have recognized that a mechanism can be a very complex network of 

interacting components that possesses feedback/feedforward loops, whose interactions 

are typically non-linear and non-sequential. Second, the NMP routinely concentrates 

on the structural, organizational, and spatial aspects of a mechanism, ignoring that a 

mechanism is essentially a dynamic system within which the parts are changing over 

time. Third, these two features, linear and non-dynamic thinking, are always 

associated with a third feature of that philosophy: qualitative thinking. This feature is 

clearly illustrated by the way the new mechanists qualitatively describe how a 

mechanism is brought about, and by the simple paradigmatic examples drawn from 

textbooks (e.g., the lac operon of E. coli). These qualitative characterizations of 

mechanisms may help unravel some qualitative aspects of the mechanism, but fall 

short of making sense of those quantitative, often more important and more complex, 

aspects.  

Due to these limitations, an extended philosophy of mechanisms, accompanied 



by an updated account of mechanistic explanation, is called for (Bechtel and 

Abrahamsen 2010; Brigandt 2013; Levy and Bechtel 2016). However, although Levy 

and Bechtel (2016), among others, have pointed out the limitations of the NMP and 

signposted the direction for an extension, they have not fully fleshed out what that 

extended philosophy would be. For the moment, let me list those key features, as 

singled out and agreed upon by these philosophers, that an extended conception of a 

mechanism must be able to capture. First, the extended framework must treat a 

mechanism as a non-linear, dynamic complex system that may involve 

feedback/feedforward loops. Second, in addition to the qualitative thinking, the 

extended framework must also facilitate quantitative thinking. Third, as a result, the 

extended philosophy must come even closer to real scientific practice. Given these 

ingredients, it is time to portray the full image.  

 

4. Mechanism 2.1: A Dynamic Causal Approach  

 

I propose that a mechanism is a dynamic causal system that involves various 

components interacting, typically non-linearly (though sometimes linearly), with one 

another to produce a phenomenon of interest. In agreement with the NMP, my 

approach also holds that a mechanism involves four elements: a 

phenomenon/behavior to be explained, components/parts/entities, 

interactions/activities/operations, and spatiotemporal organization/structure. Besides, 

it also considers the multilevel character of mechanisms. However, my approach 



differs from the NMP in two important aspects. First, it treats a mechanism as a 

dynamic system that may involve non-linear interactions and feedback/feedforward 

loops, and second, it explicitly views a mechanism as a causal structure composed of 

components and their causal connections (Here I am not denying that many advocates 

of the NMP also treat a mechanism as a causal structure. The point is that they only do 

so implicitly or qualitatively. So, by ‘explicitly’ I mean a mechanism is formally 

represented as a causal structure using certain quantitative tools, e.g., causal graphs 

(Spirtes et al. 2000; Pearl 2009).  

This approach does not come out of the blue. Rather, it reflects how 

scientists—especially those neuroscientists—in practice conceptualize a mechanism 

(Friston et al. 2003, 2009, 2017; Stephan et al. 2007; Rubenstein et al. 2016). To see 

how this approach can make sense of scientific practice and therefore offer us an 

extended conception of mechanisms, consider an example drawn from neuroscience. 

Neuroscientists wonder how human brains respond to stimuli, e.g., visual words. The 

question they are asking is what mechanism underlies the observed pattern regarding 

humans’ response to visual stimuli. To answer this question, they hypothesize a 

mechanism involving five components (i.e., areas) in the brain: visual areas V1 and 

V4, the inferior temporal gyrus (BA37), the angular gyrus (BA39), and the superior 

temporal gyrus (STG). The hypothesized mechanism is depicted below: 

 

 

 

 



 

Figure 1. A schematic representation of a neuronal mechanism responsible for 

bringing about the observed stimuli-response pattern in humans. The figure is 

adapted from Friston et al. (2003, 1275). 

 

Obviously, this mechanism involves feedback loops. Also, the mechanism can be 

interpreted as a causal structure, for all the arrows, both the one-way and two-way 

arrows, denote causal connections.4 These causal connections are termed effective 

connectivity, denoting “the influence that one neuronal system exerts over another in 

terms of inducing a response” (Ibid., 1277). As can be seen from the figure, there are 

two kinds of stimuli/inputs that influence the system: a stimulus can induce a response 

by either exerting direct influences over a specific region, e.g., 𝑢1, or exerting 

indirect effects by modulating the coupling (i.e., the causal connection) among 

regions, e.g., 𝑢2. Attention to a particular feature is a case of the second kind of 

stimulus/input, for differing degrees of attention usually can result in different 

strengths of the coupling between the same set of regions. In total, there are three 

 
4 Notice that this approach differs from the causal graphical theory (Spirtes et al. 

2000; Pearl 2009), since it allows cyclic causal structures while the latter does not.  



types of interactions: (1) the direct influence of inputs on brain areas, (2) the intrinsic 

coupling among brain areas, and (3) the modulation of the intrinsic coupling induced 

by inputs. 

We have not yet seen how the mechanism can be dynamic. Given Figure 1, 

mental simulation may help us roughly understand how the mechanism works, but it 

offers no help in understanding the mechanism dynamically. To do so, we must be 

equipped with some mathematical tools. The deterministic differential equations are 

often the sought-after tools by neuroscientists.5 Now, we assign a state variable 𝑥𝑖 to 

each region of the mechanism, describing some neurophysiological properties of that 

region, e.g., postsynaptic potentials. These state variables can interact with one 

another, namely, one state variable’s change relies at least upon (the change of) one 

other state variable. The set of interactions between the state variables then can be 

expressed by a set of ordinary differential equations: 

 

𝑑𝑥

𝑑𝑡
=

[
 
 
 
 
𝑓1(𝑥1, … , 𝑥𝑛)

.

.

.
𝑓𝑛(𝑥1, … , 𝑥𝑛)]

 
 
 
 

= 𝐹(𝑥)                             (1) 

 

Yet, this set of equations is insufficient to specify the mechanism. To begin with, the 

set of equations does not give us any information about the specific form, or the 

nature, of the causal relationships, 𝑓𝑖. Hence, a set of parameters, denoted by 𝜃, that 

 
5 The other options are state space models, iterative maps, etc.  



encodes the information about the form and strength of the causal relationships is 

required. The set of dependence/causal relationships, however, does define the 

structure/organization of the mechanism (Stephan et al. 2007, 130). Second, since the 

mechanism is an open system that exchanges matter, energy and/or information with 

its environment, the inputs into the system, denoted by the vector function 𝑢(𝑡), 

should also be considered. By expanding equation (1) along these two lines, we obtain 

a general nonlinear state equation for the system: 

 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢, 𝜃)                                      (2) 

 

This equation describes how a state variable’s change is a function of some 

neurophysiological influences exerted by some state variables (including itself at an 

earlier time) and some inputs, and establishes a mapping between the system 

dynamics and the system structure. It offers  

 

“A causal description of how system dynamics results from system structure, 

because it describes (i) when and where external inputs enter the system; and (ii) 

how the state changes induced by these inputs evolve in time depending on the 

system’s structure. Given a particular temporal sequence of inputs 𝑢(𝑡) and an 

initial state 𝑥(0), one obtains a complete description of how the dynamics of 

the system […] results from its structure […]” (Ibid., 130).  

 



The equation is general because it provides an overarching framework for 

representing neural systems that can be implemented in different ways. One such an 

implementation, a bilinear approximation,6 represents the system dynamics using a 

bilinear differential equation:  

 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢, 𝜃) 

= 𝐴𝑥 + ∑𝑢𝑗𝐵
𝑗𝑥 + 𝐶𝑢  

= (𝐴 + ∑𝑢𝑗𝐵
𝑗)𝑥 + 𝐶𝑢                               (3) 

 

where 𝐴 is the connectivity matrix denoting the intrinsic coupling among brain areas 

when no input is present, 𝐵𝑗 are the induced connectivity matrices denoting the 

change of the intrinsic coupling induced by the 𝑗th input, and 𝐶 is the matrix 

standing for the direct influences of inputs on brain areas. Together, they constitute 

the parameter set 𝜃 = {𝐴, 𝐵𝑗, 𝐶} to be estimated. With the parameter set at hand, the 

mechanism represented in Figure 1 can be redrawn below: 

 

 

 

 

 

 

 

 

 
6 A bilinear approximation is achieved in the following way: the differential 

equations for each state variable and for each input are linear individually, but 

nonlinear jointly. For details of this method, see Svoronos et al. (1980). 
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[

𝑥1
⋮
𝑥5
] + [

𝑐11   0
⋮          ⋮
0      0

] [
𝑢1
𝑢2
] 

 

𝑥̇ = (𝐴 +∑𝑢𝑗𝐵
𝑗

𝑗

)𝑥 + 𝐶𝑢 

 

Figure 2. A schema that re-depicts the mechanism in Figure 1 using the 

differential equations. The lower panel presents the differential equations 

shown in the upper panel in a matrix form, which can be further simplified 

using the parameter matrices 𝐴, 𝐵𝑗 and 𝐶. The figure is adapted from Friston 

et al. (2003, 1279). 

 

In this scenario, each state variable’s change, 𝑥̇𝑖, is a function of its own state at an 



earlier time, at least one other state variable, and some external inputs.  

So far, we have shown in detail how a mechanism can be dynamic, and how a 

mechanism’s dynamic character can be properly captured with the help of certain 

quantitative tools. However, that is not the end of the story. To fully understand a 

mechanism, it is standard practice that neuroscientists look deeply into each area of 

the mechanism and treat each as a dynamic system, i.e., a sub-mechanism.7 More 

specifically, the sub-mechanism in our example is this: changes in neuronal activity 

induce a vasodilatory signal which results in changes in blood flow, which in turn 

cause changes in blood volume and deoxyhemoglobin content. Then, blood volume 

and deoxyhemoglobin content nonlinearly generate measurable responses of that area. 

The sub-mechanism of each area is depicted below: 

 
 

7 Doing so is partly because each state variable, as representing some neuronal 

activities, can induce measurable hemodynamic responses, but the causal architecture 

of the mechanism itself is not observable. So, this is a way to get access to the causal 

architecture of the mechanism. 



Figure 3. A schema that depicts the sub-mechanism of each area of the 

mechanism. The figure is adapted from Stephan et al. (2007, 133). 

 

This sub-mechanism involves four hemodynamic state variables (𝑠, 𝑓, 𝑣 and 𝑞), 

and a parameter set 𝜗. To understand this sub-mechanism dynamically, we, again, 

need appeal to a set of differential equations that captures the (causal) relationships 

between these state variables employing the parameter set 𝜗.8 Finally, we obtain a 

full picture of the mechanism involving two levels (the mechanism-level and the 

component-level): 

 

Figure 4. A schema that represents a mechanism and its sub-mechanisms. 

 
8 This parameter set and the parameter set 𝜃 for the system dynamics constitute the 

whole parameter set {𝜃, 𝜗}, which can be estimated from the measured signal data 

using a Bayesian estimation approach. The estimation procedure can be found in 

Friston et al. (2003). 



 

This schematic graph, as depicting a causal structure, together with the quantitative 

tools necessary to capture the nonlinear, dynamic aspects embodied in the causal 

structure, constitute the basis for proposing that a mechanism is a dynamic causal 

system that involves various components interacting, typically non-linearly, with one 

another to produce a phenomenon of interest.9 The next section will discuss the key 

features of this approach, and the philosophical implication it delivers. 

 

5. Discussion 

 

5.1. What is a mechanism, again?  

 

The dynamic causal approach shares with the NMP all those important insights 

regarding the conception of mechanisms. For example, it agrees that a mechanism 

consists of four basic elements: a phenomenon to be explained, various components, 

interactions among these components, and a spatiotemporal organization/structure. 

Moreover, it treats a mechanism as a multilevel system. Figure 4 in the last section 

 
9 For the limitations of space, this essay does not fully show how the dynamic, 

quantitative aspects of the mechanism under consideration are unpacked. For those 

interested in these details, please see Bechtel and Abrahamsen (2010), where they 

demonstrate via a similar case, i.e., circadian rhythms, that the dynamic, quantitative 

aspects can be understood only when certain quantitative tools are employed. 



unambiguously reflects this multilevel feature of a mechanism. Furthermore, this 

approach subscribes to the view that there is no mechanism simpliciter, but only a 

mechanism for a particular phenomenon/behavior. In our neuroscientific example 

discussed above, neuroscientists only singled out five regions of the brain plus their 

interactions and dismissed all the rest as irrelevant with respect to the 

stimulus-response pattern in question. Last but not the least, I concur that scientific 

practice is our best guide to understanding what a mechanism is—that is, we better 

look at how scientists conceptualize, hypothesize, represent, discover, and entertain 

mechanisms.  

However, a closer look at neuroscientific practice can lead us to some key points 

overlooked by many new mechanists. First, as some authors have pointed out (Bechtel 

and Abrahamsen 2010, 2013; Brigandt 2013; Levy and Bechtel 2013, 2016), a 

mechanism is essentially a dynamic system. Following these authors, I further 

proposed that a mechanism is a dynamic causal system such that dynamic and causal 

aspects are a mechanism’s defining features. This understanding implies that a 

qualitative mindset is no longer sufficient to fully understand mechanisms, so that a 

philosophical conception of mechanisms should be better equipped with a quantitative 

thinking. Second, many new mechanists emphasize the distinction between 

entities/parts and activities/interactions. However, an updated philosophy must be able 

to accommodate the fact that, being a dynamic system, the boundary between 

entities/parts and activities/interactions may become blurred in some cases. This is the 

case in our neuroscientific example, where the boundary is clear in the mechanism 



involving five regions, but unclear in the sub-mechanisms since their components 

stand for some quantities that are not clearly entities, e.g., changes in blood flow, 

changes in blood volume, etc. Though many would think that these quantities are 

better classified as activities/interactions, the practitioners do not find this 

classificatory problem worrisome as long as they believe that the state variables 

denoting them are meaningful and well-defined. 

Third, although some philosophers implicitly regard a mechanism as a causal 

structure, they fail to fully cash out this idea. In my approach, the organization of a 

mechanism now is explicitly treated as a causal structure that can be quantitatively 

described using some mathematical tools, e.g., differential equations. The quantitative 

tools facilitate understanding the nonlinear, dynamic aspects of the causal structure 

that a qualitative thinking usually stops short of making sense.10 Also, this dynamic 

causal approach largely extends the causal graphical theory in characterizing a causal 

structure, because it allows a causal structure to be cyclic.11 The causal structure 

involves both spatial and temporal dimensions, as the spatial dimension is clearly 

represented by Figure 4 and the temporal dimension is captured by the set of 

differential equations (in which each region’s change is a function of its own earlier 

 
10 So, the quantitative tools also facilitate understanding the linear aspects if there are 

such aspects. 

11 Because the variables in the differential equations are somehow time-indexed, e.g., 

each variable’s change is a function of its own state at an earlier time, the problem of 

circularity does not arise here. 



state, at least one other state variable, and perhaps some external inputs).  

Unsurprisingly, the dynamic causal approach ramifies into other issues 

associated with mechanisms, e.g., mechanistic explanation, the way of representing 

mechanisms, etc. 

 

5.2. An updated account of mechanistic explanation 

 

I follow those new mechanists in holding that a mechanistic explanation is one that 

uncovers the underlying mechanism of a phenomenon/behavior of interest. But I 

further add that a mechanistic explanation is a very complicated practice that 

often—if not at all times—involves the employment of many different epistemic 

means, e.g., qualitative tools such schematic drawings and verbal descriptions, and 

quantitative tools such as causal graphs and differential equations, to unpack the 

dynamic, causal aspects of a mechanism. This view does not deny the value of 

qualitative tools in offering mechanistic explanation, but it does insist that those 

qualitative tools can provide explanation only when the explanatory task does not 

require us to unravel the dynamic aspects of the mechanism.  

So, in accordance with Levy and Bechtel (2016), this view regards mechanistic 

explanation as dynamic in two related senses: on the one hand, the mechanism itself is 

a complex, dynamic system, and on the other, the process of constructing, articulating 

and evaluating a mechanistic explanation based on the mechanism in question is also 

a dynamic matter. This dynamic nature can be reflected by, but not restricted to, the 



following scenarios: some parts of a larger system regarded as irrelevant to explaining 

a phenomenon of interest at an earlier time may be incorporated into a new 

explanation that treats them as relevant, an explanation may take a different form 

when a new mathematical tool is invented or when a new component/interaction is 

identified, a mechanism may at some later stage be embedded into a larger 

mechanism to explain a phenomenon of interest, etc.  

This view also suspects the dichotomy made between mechanistic and 

mathematical explanation.12 Some authors maintain that there is a clear-cut boundary 

between mechanistic and mathematical explanation and that they are competitors 

rather than comrades (e.g., Craver 2006; Winter 2006). However, our updated account 

of mechanistic explanation, based on the dynamic causal approach, is able to show 

that mathematical elements play an indispensable role in building a mechanistic 

explanation. This is the case in our neuroscientific example, where the set of 

differential equations is the key to revealing the dynamic aspects of the mechanism. 

This position goes in tune with many philosophers who either show that mathematical 

elements are indispensable for a mechanistic explanation (e.g., Bechtel and 

Abrahamsen 2010, 2013; Brigandt 2013), or demonstrate that constructing 

mechanistic explanation in the life sciences usually takes an integrative strategy 

where both mechanistic and mathematical elements figure prominently and work 

 
12 Mathematical explanation here narrowly means those using mathematics to explain 

physical phenomena, rather than those purely mathematical explanations. See 

Colyvan (2012) for the distinction. 



collaboratively (e.g., Fagan 2012; Boogerd et al. 2013; Green et al. 2015).13  

 

5.3. A new way of representing mechanisms 

 

A new conception of mechanisms is usually coupled with a new way of representing 

mechanisms, and, on the other hand, a new way of representing mechanisms typically 

reflects a new conception of mechanisms. This two-way dependence relationship has 

been instantiated in our neuroscientific example, where neuroscientists’ 

conceptualizing mechanisms as dynamic causal systems urges them to appeal to 

relevant mathematical tools to capture this dynamic causal nature, and the way they 

represent mechanisms employing these tools also reveals that they think of the 

mechanisms as dynamic causal systems. Most prominently, they employ differential 

equations and causal graphs to capture those dynamic causal aspects of a mechanism.  

We must note that there might be different ways of representing mechanisms, 

which may reflect distinct ways of conceptualizing mechanisms. In fact, Casini et al. 

(2011) and Gebharter and Kaiser (2014) have proposed two alternatives. Casini et al. 

(2011) attempt to represent a mechanism as a recursive Bayesian network, where each 

variable at a higher-level can be described as a sub-mechanism at a lower-level. 

However, though this approach captures the hierarchical and causal nature of 

 
13 Some also argue that the mathematical elements are part of a broader practice of 

building mechanistic explanations (Kaplan and Craver 2011; Matthiessen 2017). 



mechanisms, it seems unclear how it can treat mechanisms as dynamic systems.14 

Gebharter and Kaiser (2014)’s approach comes closer to my approach, for it respects 

both the dynamic and causal aspects of mechanisms. But it differs from my approach 

since it brings the dynamics to the scene via adding time index to each variable, e.g., 

𝑥𝑡1, 𝑥𝑡2 denote 𝑛𝑒𝑢𝑟𝑜𝑛𝑥 𝑓𝑖𝑟𝑖𝑛𝑔 𝑎𝑡 𝑡1 and 𝑛𝑒𝑢𝑟𝑜𝑛𝑥 𝑓𝑖𝑟𝑖𝑛𝑔 𝑎𝑡 𝑡2. This usually 

results in a very complicated causal structure and therefore seems unpractical.  

Notice that this short section is not intended to assess the 

plausibility/implausibility of different representational strategies, but rather to point 

out that there are alternatives available and each may have its own merits and 

shortcomings. 

 

6. Conclusion 

 

Based on neuroscientific practice, I have proposed a dynamic causal approach to 

characterizing the notion of mechanisms. This approach shares with the NMP all 

those insights about mechanisms, but also offers an extended, updated conception that 

highlights the dynamic causal aspects of mechanisms and that comes closer to real 

scientific practice. 

 

 

 

 
14 For a more comprehensive criticism, see Gebharter (2014). 
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