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. although [mathematicians] make use of the visible forms and reason about

them, they are thinking not of these, but of the ideals which they resemble;
not of the figures which they draw, but of the absolute square and the absolute
diameter, and so on—the forms which they draw or make are converted by them
winto images, but they are really seeking to behold the things in themselves, which
can only be seen with the eye of the mind.

Plato, The Republic, Book VI.

A reasonable programming language for geometry would

implement some kind of uniform representation of geometric entities;

transparently organize geometric entities into natural hierarchical struc-
tures;

be capable of deducing properties of geometric entities from their specifi-
cation alone;

be able to compute geometric quantities such as volume;

embody a formalism which is terse, natural and preferably resembles tra-
ditional mathematical usage;

transparently avoid coordinates whenever possible, but use them when
necessary;

make use of the natural geometric typing that, for example, distinguishes
points from vectors;

handle transparently the symmetries inherent in typical geometric propo-
sitions;

*This paper appeared in Resolution of Equations in Algebraic Structures Volume 1, ed.
Hassan Ait-Kaci and Maurice Nivat, Academic Press, 1989, 127-150.



e be powered by a strong theorem prover, which in the course of attempting
a proof can uncover more useful information than merely whether the
attempt succeeds or fails;

e cope painlessly with the assumptions of genericity that are often implicit
in geometric statements;

e be suited to an interactive implementation (in accordance with the natural
way of applying geometry, for example, in CAAD);

e interface smoothly with graphic and logic languages.

The critical problem in the development of such a language is the first of
these items—how to represent geometric knowledge, and, in particular, capture
the mathematician’s notion of a diagram. This paper focusses on a solution of
this problem. It is presented in terms of a particular formalism, but will be
seen to be meaningful for other algebraic formalisms. Examples are given of
how theorems of affine geometry—properties of diagrams—may be proved by
equational reasoning. The ideas have been partially implemented (see [12]).

1 Grassmann algebras

The basic theory of Grassmann algebras, on which the formalism is based, is
given (with minor differences in terminology from the present paper) in [10].

A Grassmann algebra is a ring which is generated by (the union of) disjoint
subsets K and P such that

GA1 K is afield (under the ring operations);
GAZ2 P is an affine space over K (under the ring operations);
GA3 aA = Aa for every a € K, A € P;
GA4 BA = —AB for every A,B€P.
Here, GA2 means that
A/ BePa,beKanda+b=1=aA+bBeP.

An important consequence of GA4, provided the characteristic of K is not
2,18
GAB A% = ( for every A € P.

It is easy to show that elements of VV = P —P also have the properties GA4
and GAS5.

If there i1s a maximal finite set of elements of P which is linearly independent
over K, then the Grassmann algebra is said to be finite-dimensional, and the



cardinality, less 1, of such a set 1s called its dimension. For a given field K
and natural number n, there is, up to isomorphism, precisely one Grassmann
algebra of dimension n.

In the present paper we take K to be the field of rational numbers.

2 Grassmann geometry

Grassmann geometry is the language in which one speaks about Grassmann
algebras. The expressions of Grassmann geometry are the terms generated by

point variables A, B,C, . ..

vector variables U, V, W, ...

point constant O

vector constants X = X1,Y = X9, 7 = X35, X4, ...

scalar constants 0,1, —1,1 (rational numbers)

3 5’ e
operation symbols +, *, — (of arities 2,2,1)

We use infix notation for addition and multiplication, and usually indicate
multiplication by juxtaposition. An atom 1s a variable or constant. A ground
expression is one all of whose atoms are constants.

Rewrite rules corresponding to the Grassmann algebra axioms (together with
“built-in” addition and multiplication tables for scalar constants) may be used
to transform any expression into a sum of products of atoms. Indeed by ordering
the generating atoms a unique normal form is obtainable. The set of normal
expressions may be endowed with an algebraic structure having the Grassmann
algebra signature in the natural way (by defining, for example, the sum of
two normal expressions exp; and exp, to be the normal form of the expression
exp; + exp,). We call this the UNIVERSE. We refer to an expression in normal
form as a polynomual, and to the equivalence class of all expressions having a
common normal form as a quantity. A polynomial is a sum of products of atoms,
and from now on we call these products the terms of the polynomial (and refer
to elements of the term algebra as expressions).

The degree of a term is the number of point and vector atoms occuring in
it. If all the terms in the normal form of an expression have the same degree,
then the expression is said to be homogeneous.

An expression of degree zero is called a scalar. A first degree homogeneous
expression is called a point, if the sum of the coefficients of all the point atoms
in its normal form is 1, and a vector, if this sum is 0. We denote by NUMBERS,
POINTS and VECTORS the sets, respectively, of all scalar constants, of all
points and of all vectors. This typing may be extended in a natural way to
higher degree terms.



Taking K to be NUMBERS, P to be POINTS and V to be VECTORS, the
UNIVERSE is a Grassmann algebra. For each natural number n, the subalgebra
WORLD,, generated by O, X1, Xs, ..., X, is a Grassmann algebra of dimension
n; we call it the world of dimension n. By convention, WORLD; is NUMBERS.

Although it is the UNIVERSE that we are concerned with, in practice it is
handy to allow its elements to be represented in non-normal form since this
makes interpretation easier—for example (B — A)(D — (') is immediately recog-
nizable as a product of two vectors, while its normal form BD — BC'— AD+ AC
is not.

A configuration of type (k,m) is a finite sequence of k points followed by m
vectors—that is, an element of POINTS® x VECTORS™. A configuration is called
atomic (or variable or constant) if all its elements are atoms (or, respectively,
variables or constants). This notion of configuration, which suffices for the
current purpose, can usefully be generalized.

3 Equations

An equation is simply a monic homogeneous polynomial poly. It is convenient to
allow it to be represented by any pair of expressions (expy, exp,) such that exp; —
exp, represents the same quantity as some non-zero constant scalar multiple of
poly; and to write such a pair in the familiar form

exp; = exp,.

Particularly useful representations are the polynomial representation
poly = 0

and the head-body representation

head = body,

where head is the maximal product term of poly.

A labelled object is a homomorphism of the UNIVERSE into itself which
maps finitely many atomic variables (say, vary, vara,... varg) to constants (valy,
vala,... valg) and leaves fixed all other variables ; it is completely determined
by the set of equations

var; = valy,vary = valy, ... vary = valg.

We denote by LABELLINGS the set of all labelled objects.

If o is a labelled object, we call o(exp) the value of the expression exp on
the labelled object. Tf o(exp) = 0, we say that the expression vanishes on the
labelled object.



Example

The equations

A=0
B=0+X
C=0+X+Y
D=0+Y

describe a labelled object. The expression ABC'— AC'D vanishes on this labelled
object. The expressions (B — A)(C' — A) and AB + BC' + C'A have the same
normal form; and on this labelled object, they have the same value, namely
XYy. O

In general, expressions exp; and exp, have the same normal form (that is,
represent the same quantity) if and only if they have the same value on every
labelled object. Thus quantities have well-defined values on labelled objects.

An object labelling o is said to satisfy (or be a solution of) an equation

exp; = expy

if exp; and exp, have the same value on o .

Example

The labelled object of the previous example satisfies the equations
ABC = ACD

and

C-A=X+Y O

We shall often need to speak of sets of equations, and coin the term descrip-
tion as an abbreviation. We denote by DESCRIPTIONS the set of all descrip-
tions.

A labelled object is said to satisfy a description if it satisfies every equation
in it. For a description eqns, we denote by SOLUTIONS(eqns) the set of all
labelled objects that satisfy it.

A description egns is called

o true or valid if SOLUTIONS(eqns) = LABELLINGS (that is, if every la-

belled object satisfies it), and invalid otherwise;

o unsatisfiable or false if SOLUTIONS(eqns) = @ (that is, if there exists no
labelled object that satisfies it), and satisfiable otherwise.



If eqns consists of ground equations, then eqns is necessarily either true or
false.

Type-checking alone can establish that individual equations are unsatisfiable;
hence an implementation can reject attempts to input equations like C'— B+ A =
0 (because 0 is a vector while ¢'— B + A is not) and AB = XY (because AB
and XY are of different types).

4 Theorems

An elementary assertion is a pair of descriptions (hyps,conc); it is called an
elementary theorem, and we say that hyps semantically implies conc, and write

hyps |= conc,
if SOLUTIONS (hyps) C SOLUTIONS(conc) (that is, if every labelled object that

satisfies hyps satisfies conc). Clearly hyps semantically implies conc if and only
if hyps semantically implies each equation of conc. We say that an equation eqn
is a consequence of a description hyps if hyps |= {eqn}. We denote by CON(hyps)
the set of all consequences of hyps. Then CON is a closure operation on the
space of all descriptions.

Example

It will be helpful to represent a typical assertion like (M = %(A + B),AM =
M B) in the more expansive notation:

hyp M = 3(A+ B)
conc AM =MB

This is actually a theorem, as we show below. O
Two descriptions eqns; and eqns, are called semantically equivalent if
eqns; = eqns, and eqns, = eqns;

(that is, if the sets of labelled objects that satisfy them are identical). Note that
{A=B+C—-D =0}and {P—Q+ R— S = 0} are not semantically equivalent.
For a set of labelled objects objs, the set of quantities

IDEAL (objs) = {poly : & € objs = o (poly) = 0}
= {poly : every o € objs satisfies poly = 0}

is an ideal in the UNIVERSE. In this ring-theoretic notation,
CON(eqns) = IDEAL(SOLUTIONS(eqns)),

and the ideal generated by eqns is a subset (usually proper) of this ideal.



5 Diagrams

The fundamental entities of geometry are diagrams. We now define this simple
but abstract notion.

A diagram definition is a pair (varconfig, eqns), consisting of a variable con-
figuration varconfig = (pty,..., pty,vecy, ..., vecy, ), say, and a description eqns.
The diagram it defines is the map

POINTS® x VECTORS™ — DESCRIPTIONS,
whose value at any configuration
(ptexpy, ..., ptexpy,, vecexp, ..., vecexp,, ) € POINTS* x VECTORS™

is the set of all consequences of the description obtained by replacing each
occurence of pt; in eqns by ptexp;, each occurrence of pt, by ptexp,, and so on.

We use an obvious notation to denote the assignment of a name to a diagram.
For example,

def  parallel(V, W) — VIW = 0,

means that parallel is the name given to the diagram defined by the pair (V, W), {VW =
0.

A call of the diagram dgm 1s a pair consisting of the name dgm and a
configuration of the appropriate type; and, for example, the notation

parallel(U + V. W) — (U + V)W =0

(lacking the annotation def) means that the value of the diagram parallel (previ-
ously defined) at the configuration (U 4+ V, W) is the set CON{(U + V)W = 0}.
In a diagram call, the type of the configuration to which the diagram is applied
must match the type that was (implicitly) declared in the definition.

We may also define a diagram in terms of other diagrams, as in the example

def  vertical(A, B) — parallel(B — A, Y).

(The symbol — may be read as “rewrites to”.) This allows economical storage
of diagram definitions, and imposes a natural hierarchical structure on the set
of diagrams. For example:

def  parallelogram(A, B,C,D)— A—B+C—-D =0
def  wall(A, B,C, D) — parallelogram(A, B, C, D),
horizontal( A, B),
vertical (B, C)

def  door(A, B, C, D) —>parallelogram(A, B, C, D),



B=A+3X,
C=B+T7Y

def  house(A,B,C,D,E, F,G,H,K)— wall(A, B,C, D),
vertical(%(A + B), E),
B—1(C+ D)= YD 4),
door(F, G, H, K),
$(F+G)=1(A+B)

While a diagram definition 1s a finite specification of a function, we may also
conceive it in a procedural way—to show, for example, that a configuration
(A, B) is vertical, show that the configuration (B — A,Y) is parallel.

6 Realizations

We say that a configuration config realizes a diagram dgm if dgm(config) is true.
If config is constant then dgm(config) is necessarily either true or false, and so
we may even view a diagram as a predicate.

A diagram, such as the one defined by

def  fred’s_front.door(A4, B,C, D) — A = O,

B=0+3X,
C=0+3X+7Y,
D=0+7Y,

whose description is a labelled object, is called an object. There is an obvious
one-to-one correspondence between objects and constant configurations, and it
1s sometimes convenient to slur the distinction between the two concepts. An
object may be viewed as belonging to any world that contains all its constants.

For example fred's_front_door belongs to WORLD» (and to WORLD3).

Example

While adding constraints to existing diagrams is a natural mode of definition it
1s not the only way to proceed. For example, new_door defined by

def  new.door(A, B,C,D,V)
— fred’s_front.door(A -V, B—-V,C =V, D —-V)
— A=0+4+V,
s B=0+43X+V,
s C= 043X 4TV +V,
s D=0+TY +V,

is not an object. The realizations of new_door are precisely the translates of
fred’s_front_door. 0O



7 Properties

We say a diagram call (dgml,configl) has the property (dgmz,configz) if ev-
ery labelled object that satisfies the description dgml(configl) also satisfies the
description dgmz(configz), or, in other words, if

dgm, (config,) |= dgm, (config,)

is a theorem. For example, with harmless abuse of language, we may say that
the labelled object fred’s_front.door(B, C, D, E) has the property parallel(C' —
B,E— D).

We say that dgm is_a dgm, if every configuration that realizes dgm, also
realizes dg_m2 (or, equivalently, if, for every configuration config of appropriate
type, (dg_ml, config) has the property (dgmz, config)); for example, according to
our definitions, a door is_a wall. This relation is a partial order on the set of
all diagrams, and objects (being those diagrams that are realized by just one

configuration) are precisely the minimal diagrams under this relation.

Example

The interplay of the different concepts that we have defined 1s exemplified by the
equivalence (given the relevant diagram definitions) of the following statements:

e the configuration (0,0 4+3X,0+3X +7Y,0 + 7Y) realizes the diagram

door;

o for every variable configuration (A, B, C, D) in POINTS?, the labelled ob-
ject given by {A=0,B=0+3X,C=0+4+3X+4+7Y,D=0+7Y}isa
solution of the description {A—B+C—-D =0,B= A+3X,C = B+7Y};

e {A=0,B=0+3X,0=043X+T7Y,D =047V} E{A-B+C—-D =
0,B=A+3X,C=B+T7Y)};

o the assertion (fred’s_front.door(A, B, C, D), door(A, B, C, D)) is a theorem;

o for every configuration (expy,exp,,exps, expy) € POINTS?,
fred’s_front_door(expy , exp,, exps, expy) has the property
door(expy, expsy, exps, expy);

o fred’s_front_door is_a door. O

Quite generally, a configuration realizes a diagram dgm if and only if the
associated object is_a dgm.



8 Proof

The statement of an elementary assertion may be abbreviated (and its geometric
meaning made more obvious) by allowing some of the equations to be replaced
by diagram calls that produce them. Then elementary assertions have the form
of Horn clauses with diagrams as explicit predicates and equations as implicit
ones.

Thus there may be three different types of sentence involving predicates like
“wall” —definitions, hypotheses (definition calls) and conclusions (or queries);
and we also permit un-named equations as hypotheses or conclusion. Equations
may be used directly, on a once off basis, as hypotheses of a theorem, or, for
repeated use, may be incorporated in a data-base of diagrams. Current dia-
gram definitions provide a global environment while un-named equations used
as hypotheses provide a local one.

The simplest theorems are those with no hypotheses—they assert that a
particular configuration realizes a diagram. A very basic mechanism available
for proof is rewriting to normal form—for a single equation is valid if and only
if its polynomial form is 0 = 0. Rewriting alone gives, for example,

conc parallelogram(O, 0+ X, 0+ X +Y,0+Y)
— (0+Y)—-(0+X+Y)+(0+X)-0=0
— 0 =0;

in other words, the points O, 0+ X, 0+ X +Y,0 + Y form a parallelogram.
Variable configurations give more interesting theorems:

conc parallelogram(£(P + Q),Q, 5(Q + 5), (P + 5)
— 3 (P+Q)-Q+3(Q+95) - 3(P+5) =0
— 0 =0;

in other words, for any points P, (), S, the points %(P—i—Q), Q, %(Q—I—S), %(P—I—S)
form a parallelogram.
Another example:

conc vertical(A+ 7V, A+ 7V + 5Y)
s (A+ TV +5Y)Y — (A4 TV)Y =0
— 0 =0;

in other words, for any point A and vector V, the vector from A + 7V to
A+ 7V 4+ 5Y is vertical.

For our purposes a proof of an elementary assertion assert; may be taken to
be a finite tree of elementary assertions with the following properties:

(1) the root is asserty;

(2) every leaf has either a valid conclusion or unsatisfiable hypotheses (and
hence is a theorem);

10



(3) every node is a theorem provided all its children are theorems.

In what follows we shall present some inference rules—they express how to
determine legitimate children of a node. We shall sketch some sample proofs, but
must leave the presentation of an efficient proof strategy for another occasion.

Rewriting of equations to normal form is, so to speak, a tacit inference rule
(that reconciles our desire to work with polynomials with the practical need to
represent them as expressions); we assume that it is automatically performed
whenever new equations are created.

9 Reduction

An equation conc is said to be reducible via a description hyps if the head of
some element of hyps occurs as a subproduct of some term of the conc; and then
we say that conc reduces to conc’ via hyps if conc’ is the equation obtained from
conc when some such occurence of the head of an equation is replaced by its
body. In a proof, the node (hyps, conc) may be followed by (hyps,conc’); we call
this the reduction inference rule. It is sound by virtue of the replacement
property of equality.

Example

hyp  parallel(B—A,D - C)— BD — BC — AD+ AC =0
conc coplanar(A, B,C, D) — ABCD =0

Reduction replaces the conclusion by
—AC(BC+ AD - AC)=0
which rewrites to 0 = 0, completing a proof. O

Note: in such Examples the rewrite symbol — and the equations that follow
it are not part of the theorem statement (and do not represent user input) but
are included simply to remind the reader of how the hypotheses and conclusion
are rewritten when a proof attempt commences (and even, as with coplanar
above, to implicitly supply a definition).

Example
hyp  door(A, B,C, D)
— A-B4+(C-D=0,B=A4+3X,C=B+T7Y
conc wall(A, B,C, D)
— A—-B+C-D=0,(B-A)X=0,(C-B)Y =0
This is the assertion that a door is_a wall, and 1s immediately provable by re-
duction. O

11



Example

hyp, parallelogram(A, B,C,D)— A—B+C—-D =0

hyp, midpoint(A,C, P)— P = £(A+C)—2P-C—-A=0
hyps midpoint(B,D,Q)b—>Q:%(B—I—D)b—)QQ—D—B:O
conc coincides(P, @) — P —Q =0

Proof by reduction is straightforward:

P=Q=1(A+C)(B+ D)= {(A+O)A+C)=0 O

For any finite set of equations hyps iterated reduction of any equation conc
terminates after finitely many steps; however more than one irreducible equa-
tion may be obtainable. This may be remedied by critical pair completion. A
variant of Buchberger’s algorithm [3] can be used to replace the hypotheses by a
semantically equivalent description via which reduction of any equation termi-
nates uniquely. We refer to this process as compilation; though time-consuming,
it need only be applied once to each diagram stored in the data-base.

Even after compilation, there may remain equations that are semantically
implied by the hypotheses but cannot be deduced from them by reduction alone.
Further inference rules are needed.

Example

Compiling the hypotheses

hyp;, AB=0X
hyp, BC =0Y

generates a new hypothesis

hyps OXC = OY A

which may be used to deduce, by reduction alone, the equation
conc OXYC =0,

but not, on the other hand, the equation

conc ABC = 0XY,

which is also implied by the hypotheses. 0O
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10 Quantities

The expressiveness of Grassmann geometry springs, in part, from the fact that
not only diagrams, but the quantities themselves may have geometrical meaning.
For example B — A is to be interpreted as the vector from A to B. Availability
of both the notions of point and vector allows elementary theorems like the
following to be succinctly and naturally expressed.

Example

def  vector_triangle(U, VW) — U+ V +W =0
hyp; midpoint(B,C, D) — D = L(B + C)
hyp, midpoint(C, A, E) — E = £(C + A)
hyps midpoint(A, B, F) — F = %(A + B)
conc vector_triangle(D — A, F — B,C — F)
— A4+ B+C—-D—-—FE—-F=0

Proof by reduction is trivial. O

An attempt to prove an assertion with conclusion
target = 0

may be regarded more generally as seeking to compute the value of the target
expression relative to the hypotheses. From this point of view a negative result
may well convey useful information.

Example

hyp  door(A, B,C, D)
3 A-B4+C—-D=0,B=A+3X,0=B+7Y
conc AB+BC+CD+DA=0

The proof fails, concluding with the useful target value 42 XY —this shows that
any door has area 21 (times the area of the “unit square”). There is a simple

rationale for such interpretations, which we will not go into in the present paper.
O

Example

If the diagonals of a quadrilateral (A4, B, C, D) have midpoints M and N, and a
pair of its opposite sides meet at P, then the triangle (P, M, N) has one quarter
the area of (A, B, C, D). This is easily formalized as an elementary theorem:

13



hypl collinear(A, D, P) — AD+ DP+ PA =10
hyp2 collinear(B,C, P)— BC +CP+ PA=0
hyp3  midpoint(A, C, M) — M = £(A+ C)

hyp4 midpoint(B, D, N) — N = %(B + D)

conc 4{PM+MN+NP)=AB+BC+CD+ DA

And it is provable automatically by reduction:

4(PM + MN + NP)
=2P(A+C)+ (A+C)(B+D)+2(B+ D)P
=2(AD + DP 4+ PA) — 2(BC + CP + PB) + (AB + BC + CD + DA)
= AB+ BC + CD+ DA.

This is to be compared with the proof given in [4, page 55] in which two auxiliary
points are created and two lemmas invoked. 0O

11 Instantiation

An expression of the form

numeO + num; X7 + - -+ num, X,

has normal form 0 if and only if all the coefficients numy are 0; in other words, the
constants O, X1, ..., X, are (linearly) independent over NUMBERS and hence
form a basis for WORLD,,.
points ptq, pty,...,pt,, (which necessarily belong to some finite-dimensional

WORLD,,) are dependent if and only if

A straightforward argument shows that ground

ptipty...pt, =0

A useful “incremental” variant of this is the following result.

Theorem

For ground points pty, pts, ..., pt,,
ptipty...pt, =0
if and only if either

ptipty...pt,_1 =0

or there exist scalars numy, nums,. ..,

pt,, = numipt; + numsypt, + - -

num,,—1 such that

+ numpy,—1pt,, g

14



Proof: Suppose that pt;pt,...pt,, = 0. As observed above, there exist scalars
numi, numsy, . .., num,,, not all zero, such that

numipt; + numapty 4 - - - 4 numy,pt,, = 0.

If num,, is non-zero then the second of the stated alternatives holds. Other-
wise one of pty, pty,...,pt,,_; is a linear combination of the rest and hence
ptipty...pt,,_; = 0.

The converse is obvious. 0O

In the latter case of the theorem, the sum of the coefficients, numy, nums, ..., num,,
1s necessarily 1.

These facts concerning the WORLD (which are valid in all finite- dimensional
Grassmann algebras) are not captured by the algebraic semantics presented so
far, but can be incorporated by the device of introducing scalar variables and
an appropriate new inference rule.

Instantiation inference rule
Suppose that an equation of the form
P1 P2 e Pm == 0

may be deduced from an hypothesis of an assertion. Then the assertion may
be replaced by a pair of assertions of which the first (called the generic case) is
obtained by adding

Po=aiPi+asPo+ - +(1—a1—az— - —ap_2)Pr_1

(where ay,as,...,ax_2 are new scalar variables) to the hypotheses; and the
second (the exceptional case) is obtained by adding

P1P2...Pk_1 IO
to the hypotheses. 0O

This inference rule could be used to eliminate all hypotheses of degree greater
than 1, but it is more efficient to confine its use to situations in which no
reductions are possible.

The work of the prover may be considerably reduced, if desired, by making
an assumption of genericity when appropriate: special relationships which are
not implied by the data are assumed not to hold. This is analagous to the
“negation as failure” rule.

In similar fashion, the fact that NUMBERS is a field is manifested by the
scalar division inference rule: if an hypothesis of an assertion has the form

num.exp = 0.

15



where num is a scalar expression and exp i1s an arbitrary expression, then the
assertion may be replaced by a pair of assertions, of which the first (called the
generic case) is obtained by replacing that hypothesis by

num = 0,
and the second (called the exceptional case) by replacing it by
exp = 0.

In particular, if exp is a non-zero ground polynomial, only the former case occurs.

Example

hyp AM =MB

conc  midpoint(A, B,M) — M = (A + B)

L
7
The hypothesis implies that ABM = 0. No reduction of the target being possi-
ble, M is instantiated as aA 4+ (1 — a)B. Then hyp reduces to

(1—20)AB = 0.

The assumption of genericity (namely that AB is nonzero) gives a = % and
hence M = %(A + B). Finally, reduction of the target produces 0.

In this example, the assertion is also valid in the non-generic case as is easily
proved:

hyp;, AB =0
hyp, AM =MB
conc M = %(A + B)

Instantiation produces, first, B = A and, then, M = A, from which the conclu-
sion follows immediately by reduction.

Since the converse (provable by reduction only) is also valid, the interpreta-
tion of the equation AM = M B is forced. O

Example
hyp, vertical(A, B) — BY — AY =0

hyp, parallel(B—A,D—C)— BD — BC — AD+ AC =0
conc vertical(C, D) — CY — DY =0

Instantiating B as A+ bY reduces hyp, to
bDY —bCY =0

from which the conclusion follows provided that & is not 0. If & = 0 the hy-
potheses are eliminated, and the assertion is not proved. 0O
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12 Inconclusive proofs

An attempt to prove an assertion with satisfiable hypotheses succeeds if the
final value computed for the target expression i1s 0 and fails if this final value is
a non-zero constant. Otherwise the attempt is inconclusive; and this also may
be useful.

Example

hyp  parallelogram(A, B,C, D) — A—B+C—-D =0
conc collinear(A,C, D) — AC+CD+ DA=0

Although the attempt to prove this is inconclusive it terminates with the useful
target value AB+ BC' 4+ C'A. This reveals that the assertion would become valid
either if

AB+BC+CA=0

was added to the hypotheses (that is if A, B and C' were collinear), or if the
conclusion was replaced by

AC+CD+DA=AB+BC+CA

(that is by the conclusion that the triangles (A, C, D) and (A, B, C') have equal
areas). Note that if with the same hypothesis an attempt is made to prove that
AB+ BC + CA =0 the returned target value is AB + BC'+ C'A, which reveals
nothing; the user 1s able to exercise some degree of control by the ordering he
sets up (by the names he gives them) for the points of the assertion. O

Example

hyp, @ =0+ X

hyp, R=0+3X+2Y

hyps P =04 X +yY

conc collinear(P, @, R) — PQ+ QR+ RP =0

We must compute the value of
target = PQ + QR+ RP.

Reduction gives
target = 2(y — z + 1) XVY.

In the generic case the conclusion is false. In the exceptional case, where
y—z+1=0

the conclusion holds. Thus the equation of the line through P and R is obtained.
O
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13 Coordinate proofs

The following inference rule may be used to replace any assertion by an equiv-
alent assertion of standard polynomial algebra over the rationals.

Coordinatization inference rule
An equation of an assertion that has the normal form
ciexp; + - - -cpexp, =0

where expq,...,exp, are ground product terms and ¢, ..., ¢, are scalars may
be replaced by the set of equations

c1=0,...,¢,=0.0

The soundness of this rule follows from the fact that each exp; must be a
product of distinct elements of the sequence O, X7, X5, ... and that any finite
set of distinct such products is necessarily independent.

To prove a theorem using coordinates is effectively to prove it at the semantic
level. For example the coordinate proof below shows directly that any object
labelling that satisfies the hypotheses of the assertion satisfies its conclusion.

Example

The elementary assertion

hyp, D= %(A + B)
hyp, £ = i(A + C)
conc 4ADE = ABC

is easily proved by reduction:

4ADE — ABC = A(A + B)(A + C) — ABC
=0.

We may produce a coordinate proof by incorporating the following equations as
additional hypotheses:

A=04+ a1 Xy 4+ a2Xo + a3 X3+ asa Xy
B=04+0X1 402X+ b3X3+ 01Xy
C=0+c1 X1+ c2Xo+c3X3+caXy
D=0+d X1 +doXo+d3 X3+ daXy4
E=0+e1X1+e2Xo+e3Xz+e1Xy

Pre-processing of the hypotheses followed by application of the coordinatization
inference rule to each of them yields the coordinate constraints:
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2di—ai—bi:0, 1§Z§4,
Qei—ai—cizo, 1§Z§4

And the conclusion, as one easily calculates, is equivalent to the scalar equations

4(di6]’ — djei —ae; +aje; + aidj — ajdi)
—(biCj — bjCZ' — a;¢; + aje; + aibj — ajbi) =0, 1<y < <4,

We see that proving this theorem is equivalent to a standard problem of inferring
polynomial equations (6 of them, each homogeneous of degree 2) from polyno-
mial equations (8 of them, each of degree 1) in several variables (20 of them)
and could be solved, though with much unnecessary labour, by the Grobner
basis method [3]. In practice one may well be happy with proofs that are valid
at least in three dimensions; in that case only three basis vectors are needed and
the complexity of the equivalent set of scalar equations is reduced accordingly.
As a matter of fact, this example is necessarily planar (because the hypotheses
entail that ABCD = 0 and ABCFE = 0) and hence, if one could first somehow
realize this fact, a genuine (not dimension-restricted) proof could be obtained
by deriving just one second degree equation from 4 first degree equations in 10
scalar variables. O

In two dimensions, coordinate proofs become highly feasible as we know from
the remarkable China prover (see [20], [5], and other papers of these authors).
The point to be noted is that by going to coordinates Grassmann geometry
computations are reduced to standard polynomial algebra; hence, what is known
about the power of such methods is pertinent to Grassmann geometry. At the
same time, the comparison makes evident the relative efficiency, even for such
a simple example as the one above, of a proof method that handles geometric
constraints directly without going to coordinates.

14 Conclusion

The specification of a diagram, as described here, 1s geometrical in character.
To produce a picture, topological information must also be provided. We shall
present elsewhere an extension of the formalism which allows this to be done
in an elegant way; moreover topological properties can be proved by equational
reasoning.

A limitation of the language as outlined is that it is confined to affine geom-
etry. This seemed a reasonable discipline to impose in a paper whose purpose 1is
to introduce the idea of a diagram. But the point may also be made that affine
geometry is fundamental to applications such as computer- aided architectural
design, and that it is in the nature of things that affine geometry can be more
efficiently implemented than its extensions. In fact, though there is much work
to be done, we believe that the Grassmann geometry formalism can be gener-
alized to take in convex geometry, on the one hand, and metric geometries, on
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the other. But the idea of a diagram is independent of particular formalisms,
and indeed is pertinent to areas other than geometry.

The pencil sketch which a mathematician draws when he is trying to prove
a theorem about parallelograms is not, of course, a generic parallelogram, only
a helpful representation of one. What, one may ask, is it that is so represented?
The ideal parallelogram does not share all the properties of any given parallel-
ogram, yet has the properties that are shared by all particular parallelograms.
It might be thought that the set of all configurations that “are” parallelograms
adequately represents the idea of a parallelogram, but this is not enough for
practical purposes; for in order to speak about properties, points must be given
names. At the same time, the properties themselves must be independent of
the names—there must be names, but what they are does not matter. It is this
conception that the notion of a diagram attempts to capture.
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