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ABSTRACT. Actual (token) causes – e.g. Suzy’s being exposed to asbestos –

often bring about their effects – e.g. Suzy’s suffering mesothelioma – prob-

abilistically. I use probabilistic causal models to tackle one of the thornier

difficulties for traditional accounts of probabilistic actual causation: namely

probabilistic preemption.
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1. INTRODUCTION

Actual (token) causation is the relation that obtains when, for example, Suzy’s being exposed

to asbestos causes her to suffer mesothelioma. A number of theorists (e.g. Halpern and Pearl

2001, 2005; Hitchcock 2001, 2007; Weslake 2016) have deployed structural equations mod-

els (SEMs) in developing novel solutions to difficulties confronting traditional accounts of

this relation. These theorists have focused on deterministic actual causation (DAC).1 I draw

on probabilistic causal models (PCMs) – analogues of deterministic SEMs – to provide an

account of probabilistic actual causation (PAC). I don’t attempt to show that my account can

handle the full battery of test cases discussed in the literature. I simply demonstrate that it

yields an elegant treatment of one very central case – probabilistic preemption – with a view

to motivating further investigation of formal approaches to PAC.

2. PROBABILITY-RAISING

Probability-raising is central to the account developed here – as on traditional accounts of

PAC.2 To explain how I will understand that notion a bit of stage-setting is required.

I take the relata of the actual causal relation to be variable values. Adopting Goldszmidt

and Pearl’s (1992, 669–70) notation, P(W = w|do(V = v)) represents the probability for W =

w that would obtain if V were set to V = v by an ‘intervention’ (Woodward 2005, 98). This

is liable to diverge from the conditional probability P(W = w|V = v): witness the difference

between the probability of a storm conditional upon the barometer needle pointing toward the

1Cf. Halpern and Pearl (2005, 852); Hitchcock (2007, 498).
2Reichenbach (1971, 204); Suppes (1970); Lewis (1986, 175–84); Menzies (1989). The

deficiencies of these accounts have been demonstrated by e.g. Salmon (1984, 192–202);

Menzies (1996, 85–96); Hitchcock (2004).
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word ‘storm’ and the probability of a storm if I had intervened upon the barometer needle to

point it toward ‘storm’.

Variable X taking value X = x (rather than X = x ′) raises the probability of Y = y in the

relevant sense iff:3

(1) P(Y = y|do(X = x))> P(Y = y|do(X = x ′))

Appealing to interventionist probabilities means avoiding probability-raising relations be-

tween independent effects of a common cause, such as the barometer reading and the storm

(cf. Lewis 1986, 178).

Probabilistic preemption cases illustrate that straightforward probability-raising is nei-

ther necessary nor sufficient for causation (Menzies 1989, 1996).

3. PROBABILISTIC PREEMPTION

The following example is inspired by Anscombe (1971).4

3Here and throughout, the probabilities (chances) should be taken to be those obtaining

immediately after the interventions bringing about the variable values specified in the scope

of the do(·) function have occurred (cf. Lewis 1986, 177).
4The probabilities involved (except the decision probabilities) are quantum and therefore

objective and able underwrite causal relations. (If you’re worried that the decision probabil-

ities are not objective, the example could be complicated so that the decisions are made on

the basis of outcomes of quantum measurements.) I find it plausible that the probabilities of

many high level sciences are also objective (cf. e.g. Loewer 2001; Ismael 2009).
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(ProbPre) Someone (neither you nor I) has connected a Geiger counter to a bomb so that the

bomb will explode if the Geiger registers above a threshold reading. I place a place a chunk

of U-232 (half-life = 68.9 years; decays by α-emission) near the Geiger. By chance, enough

U-232 atoms decay within a short enough interval for the Geiger to reach the threshold read-

ing so that the bomb explodes. Unbeknownst to me, you’ve been standing nearby observing.

You have a chunk of Th-228 (half-life = 1.9 years; decays by α-emission), which contains

many more atoms than my chunk of U-232. You’ve decided that you’ll place your Th-228

near the Geiger iff I fail to place my U-232 near the Geiger. There’s a negligible chance that

you won’t follow the course of action you’ve decided on. Seeing that I place my U-232 near

the Geiger, you don’t place your Th-228 near the Geiger.5

Let M, D, Y , T , and E be binary variables which, respectively, take value 1 if the following

things occur (and 0 otherwise): I place my U-232 near the Geiger; you decide to place your

Th-228 near the Geiger iff I don’t place my U-232 near the Geiger; you place your Th-228

near the Geiger; the threshold reading is reached; the bomb explodes.

My act (M = 1) was an actual cause of the explosion (E = 1). Yet plausibly the following

inequality holds:

(2) P(E = 1|do(M = 1))< P(E = 1|do(M = 0))

5The range of α-particles is 3-5 cm. Suppose that, for each of us, a decision to place our

chunk ‘near’ the Geiger counter is a decision to place it < 5cm away and a decision not to

place it nearby is a decision to place it nowhere near (� 5cm away).
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That is, my placing my U-232 near the Geiger lowers the probability of the bomb exploding

because it strongly lowers the probability of your placing your more potent Th-228 near the

Geiger. Probability-raising is therefore unnecessary for actual causation.

Your decision (D = 1) was not an actual cause of the explosion, since you don’t place

your Th-228 near the Geiger. Yet provided there’s some chance that M = 0, the following

inequality holds:

(3) P(E = 1|do(D = 1))> P(E = 1|do(D = 0))

Inequality (3) holds because your decision raises the probability that the bomb will still ex-

plode in the scenario in which M = 0.6 Probability-raising is therefore insufficient for actual

causation.

Actual causation therefore can’t be identified with probability-raising. In developing a

more nuanced analysis, it is helpful to appeal to PCMs.

4. PCMS

A PCM, M , is a 5-tuple 〈V ,C ,Ω,F ,do(·)〉. V is a set of variables. Suppose R de-

notes a function from elements of V to sets of values: for all V ∈ V , R(V ) is the range of

V . In Halpern and Pearl’s (2005, 851–2) terminology, a formula Vi = vi, for Vi ∈ V and

vi ∈ R(V ), is a primitive event. C is the set of all those possible conjunctions of primitive

6D = 0 is multiply realizable: there is more than one alternative to the decision that you in

fact make. E.g. you could decide that you will place your Th-228 near the Geiger no matter

what, or that you will not do so no matter what. We can stipulate that the latter alternative is

much more probable.
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events, V1 = v1& . . .&Vn = vn, such that Vi ∈ V and vi ∈ R(Vi) and such that, for no pair of

conjuncts Vi = vi, Vj = v j is Vi ≡ Vj, and where no two elements of C differ only in the per-

mutation of their conjuncts. Such a conjunction is denoted V = v (primitive events and the

null event are limiting cases of such conjunctions). Abusing notation, the fact that vi ∈R(Vi)

for each primitive event Vi = vi in the conjunction V = v, is abbreviated v ∈R(V) and the set

of variables that appear in V = v is denoted V.

Call a conjunction V = v maximal if it contains a conjunct of the form Vi = vi for each

Vi ∈ V . Ω is the set of all maximal conjunctions of primitive events. F is a sigma algebra

on Ω. Finally, do(·) is a function from elements of C to probability distributions on F (cf.

Pearl 2009, 70, 110): for each element V = v of C , P(·|do(V = v)) is the probability (chance)

distribution on F that would obtain if interventions were performed to bring about V = v.

A PCM can be represented graphically by taking the variables in V as nodes and draw-

ing a directed edge from Vi to Vj (Vi,Vj ∈ V ) iff, where S = V \Vi,Vj, there is some assign-

ment of values s ′ ∈ R(S), some pair of values vi,v′i ∈ R(Vi) (vi 6= v′i) and some value v j ∈

R(Vj) such that P(Vj = v j|do(Vi = vi&S = s ′)) 6= P(Vj = v j|do(Vi = v′i&S = s ′)).

In constructing a PCM, MPre, of (ProbPre) we might take the variable set to be VPre =

{D,M,Y,T,E}. The range of each variable in VPre is the pair {0,1}. CPre, ΩPre, and FPre

are generated by VPre and RPre in the way described above. For each element of CPre, the

function do(·) returns the chance distribution on FPre that would obtain if interventions were

performed to bring about that element of CPre. The graph for MPre is given as figure 1.

M E

D Y

T

FIGURE 1
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A directed path in a graph is an ordered sequence of nodes, 〈V1,V2, . . . ,Vn〉, such that there is

a directed edge from V1 to V2, and a directed edge from V2 to . . .Vn. 〈M,Y,T,E〉 is an example

of a directed path in the graph of MPre.

5. APPROPRIATE MODELS

In Section 6, I provide a definition of what it is for X = x (rather than X = x′) to count as

an actual cause of Y = y relative to a PCM. I then define a non-model-relativized notion of

actual causation by saying that X = x (rather than X = x′) counts as an actual cause of Y = y

simpliciter provided that X = x (rather than X = x′) counts as an actual cause Y = y relative

to at least one appropriate PCM.7 A similar strategy is commonly adopted by those analyzing

DAC in terms of SEMs (Hitchcock 2001, 287, 2007, 503; Weslake 2016). This requires an

account of ‘appropriate’ models.

Many of the criteria for an appropriate SEM for evaluating DAC carry over to PCMs,

including the following three:

(Partition) For all V ∈ V , the elements of R(V ) should form a partition (Halpern and Hitch-

cock 2010, 397–8; Blanchard and Schaffer 2016)

(Independence) For no two variables V,W ∈ V should there be elements v ∈ R(V ) and

w ∈ R(W ) such that the states of affairs represented by V = v and W = w

are logically or metaphysically related (Hitchcock 2001, 287; Halpern and

Hitchcock 2010, 397)

7As the parentheses indicate I define a contrastive relation of actual causation. Where

variables are binary – as in MPre – this is inconsequential and I will typically suppress such

parentheses. But it becomes important in cases of multi-valued variables (see Halpern and

Pearl 2005, 859).
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(Naturalness) For all V ∈ V , R(V ) should include only values that represent reasonably

natural and intrinsic states of affairs. (Blanchard and Schaffer 2016)

The analysis of actual causation proposed below takes all and only values of distinct variables

to be potential causal relata. (Partition) insures that we don’t thereby miss actual causal rela-

tions because they obtain between the values of a single variable. (Independence) insures that

we don’t mistake stronger-than-causal relations for causal relations. (Naturalness) insures that

unnatural or non-intrinsic states of affairs do not get counted as causes and effects (see Lewis

1986, 190, 263; Paul 2000, 245).8

A further condition is that a model is appropriate for evaluating whether X = x is an ac-

tual cause of Y = y in world θ only if it satisfies (Veridicality):

(Veridicality) For any conjunction V = v ∈ C taken as an input, the probability distribu-

tion P(·|do(V = v)) yielded as an output by do(·) should be the objective

chance distribution over F that wouldθ result from interventions setting V = v.

(‘Wouldθ ’ indicates that what is required is that this counterfactual be true in

θ .)

(Veridicality) is an analogue – for PCMs – of the requirement that SEMs encode only true

counterfactuals (Hitchcock 2001, 287, 2007, 503).

In the DAC/SEMs literature another condition on model appropriateness is typically

added:

(Serious Possibilities) V should not be such as to generate elements of Ω that represent pos-

sibilities “that we consider to be too remote” (Hitchcock 2001, 287;

8If absences are unnatural states of affairs (cf. Lewis 1986, 189–93), we might instead

require that each variable have at most one value representing such a state of affairs.
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cf. Woodward 2005, 86–91, Weslake 2016, Blanchard and Schaffer

2016).

We likely need this requirement too. A discussion of whether the vagueness and subjectivity

thereby introduced is problematic would take us too far afield.9 Still, it doesn’t put the present

account in any worse shape than its deterministic analogues. Moreover, traditional accounts

of actual causation – which don’t appeal to causal models – also stand in need of appeal to

‘serious possibilities’ (Woodward 2005, 86–8).

A final requirement – similar to one imposed in the DAC/SEM literature – for a model

M to be an appropriate one for evaluating whether X = x is an actual cause of Y = y in world

θ is:

(Stability) There is no model M ∗ (satisfying Partition, Independence, Naturalness, Veridi-

cality, and Serious Possibilities) with a variable set V ∗ such that V ∗ ⊃ V relative

to which X = x (rather than X = x′) is not an actual cause of Y = y. (Halpern and

Hitchcock 2010, 394–5; Blanchard and Schaffer 2016; Halpern 2014; Hitchcock

2007, 503).

The idea is that an appropriate model is a sufficiently rich representation of causal reality that

moving to a richer representation would not reveal an apparent actual causal relation to be

spurious.10

The converse requirement – that a negative verdict about actual causation should not be

overturned in a richer model – isn’t needed. This is because actual causation (simpliciter)

is defined in terms of actual causation relative to at least one appropriate model. A model

relative verdict that X = x is not an actual cause of Y = y thus automatically fails to translate

9See Woodward (2005, 86–91).
10(Stability) renders the notion of an appropriate model relative to the causal claim being

evaluated.
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into a verdict that X = x is not an actual cause (simpliciter) of Y = y if there is a richer (and

otherwise appropriate) model relative to which X = x is an actual cause of Y = y.

We can now state a definition of actual causation in terms of appropriate PCMs that han-

dles (ProbPre).

6. PAC

Actual causation simpliciter is defined in terms of actual causation relative to an appropriate

PCM. Model-relative actual causation is then defined.11

AC(S)

Where x,x ′ ∈R(X) and y ∈R(Y ), X = x (rather than X = x′) is an actual cause

(simpliciter) of Y = y in world θ iff X = x (rather than X = x ′) is an actual cause of Y =

y relative to at least one model M (with X ,Y ∈ V ) that is appropriate for evaluating

whether X = x (rather than X = x′) is an actual cause (simpliciter) of Y = y in θ .

11Those familiar with Halpern and Pearl’s (2001, 2005) analyses of DAC are invited to see

an analogy with AC(M-R). AC(M-R) was partly inspired by thinking about how a counter-

part of Halpern and Pearl’s analysis might be developed that is adequate to the probabilistic

case. Ultimately, I’m optimistic that an adequate account of DAC will fall out of an adequate

account of PAC as the special case where all probabilities are 1 or 0. This is why my defini-

tions take the definiendum to be ‘actual cause’ rather than ‘probabilistic actual cause’.
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AC(M-R)

Where x,x ′ ∈R(X) and y∈R(Y ), X = x (rather than X = x′) is an actual cause of Y = y

relative to a model M (with X ,Y ∈V ) in world θ iff there is a partition (Z,W) of V \X ,Y

and some setting W = w ′ of the variables in W such that the do(·) function associated

with M entails that, for all subsets Z′ of Z (where, for each such subset, Z′ = z∗ are the

values that the variables in Z′ have in θ ):

(IN) P(Y = y|do(X = x&W = w ′&Z′ = z∗))> P(Y = y|do(X = x ′&W = w ′))

AC(M-R) counts M = 1 as an actual cause of E = 1 relative to MPre (and the world

described in (ProbPre)). Consider the partition of VPre\M,E such that W = {D,Y} and Z =

{T}. And consider the assignment {D = 1,Y = 0} of values to the variables in W. AC(M-R)

is satisfied because (IN) holds for both subsets of Z ( /0 and {T}), as shown by (4) and (5):

(4) P(E = 1|do(M = 1&D = 1&Y = 0))> P(E = 1|do(M = 0&D = 1&Y = 0))

(5) P(E = 1|do(M = 1&T = 1&D = 1&Y = 0))> P(E = 1|do(M = 0&D = 1&Y = 0))

Inequality (4) indicates that my action raises the probability of the explosion under the con-

tingency – i.e. holding fixed – that (you make your decision but) don’t place your Th-228 near

the Geiger. The existence of this contingent probability-raising reflects the fact that there is a

path – 〈M,T,E〉 – along which M = 1 promotes E = 1 (because M = 1 raises the probabil-

ity of E = 1 when we hold fixed the values of all variables off that path). It is the existence of
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such a path – representing the process via which M = 1 produces E = 1 – that appears to drive

our intuitions about actual causation in this case (cf. Hitchcock 2001).

Inequality (5) indicates that, again holding fixed D = 1 and Y = 0, the probability of

E = 1 is higher if I place my U-232 near the Geiger and the threshold reading is reached than

if I’d simply never placed my U-232 near the Geiger in the first place. As will be seen, this

requirement ensures that, not only is there a potential process via which M = 1 threatens to

bring about E = 1, but that process is complete.

Since AC(M-R) implies that M = 1 is an actual cause of E = 1 relative to MPre, AC(S)

yields the (correct) result that M = 1 is an actual cause (simpliciter) of E = 1 provided that

MPre is appropriate. MPre is appropriate. Clearly it satisfies (Partition) and (Independence).

It satisfies (Naturalness) because all of the states that its variables represent are reasonably

natural. It was stipulated that the do(·) function associated with MPre is such that (Veridi-

cality) is satisfied. MPre does not represent the sort of ‘non-serious’ possibility that (Serious

Possibilities) is introduced to rule out (cf. Hitchcock 2001; Woodward 2005, 86–91).

Finally, (Stability) is satisfied because the causal process from my action to the explo-

sion is complete. Holding fixed Y = 0, the probability of the explosion if M = 1 and part(s)

of this process occur(s) is higher than the probability of the explosion if simply M = 0. Any

variable (whose values represent reasonably natural states, form a partition, and are logically

and metaphysically independent from the variables in VPre) that might be added to VPre either

represents part of this process or it doesn’t. If it does, its actual value represents the occur-

rence of part of the process. So, if it is added to VPre, including it in Z will not prevent (IN)

from holding for all subsets Z′ of Z. If it doesn’t, then adding it to VPre, including it in W,

and holding it fixed at its actual value as part of the assignment W = w ′ will not make a dif-

ference to the fact that (IN) holds for all subsets Z′ of Z, since holding fixed Y = 0 as part of

W = w ′ is already sufficient to ensure this.
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AC(M-R) gives the verdict that D = 1 is not an actual cause of E = 1 relative to MPre.

Consider the partition of VPre\D,E such that W = {M} and Z = {Y,T}. Observe that:

(6) P(E = 1|do(D = 1&M = 0))> P(E = 1|do(D = 0&M = 0))

And:

(7) P(E = 1|do(D = 1&M = 1))> P(E = 1|do(D = 0&M = 1))

Thus, whichever possible value we hold fixed M at, the probability of E = 1 is higher if D = 1

than if D = 0. So D = 1 contingently raises the probability of E = 1.12 That’s because there’s

a path – 〈D,Y,E〉 – along which D = 1 promotes E = 1.

AC(M-R) nevertheless entails that D = 1 is not an actual cause of E = 1 relative to

MPre. Consider the subset {Y} of Z, and observe that:

(8) P(E = 1|do(D = 1&Y = 0&M = 0))≤ P(E = 1|do(D = 0&M = 0))

And:

(9) P(E = 1|do(D = 1&Y = 0&M = 1))≤ P(E = 1|do(D = 0&M = 1))

That is, whichever possible value we hold fixed M at, the probability of the explosion is no

higher if you make your decision but don’t place your Th-228 near the Geiger than if you’d

12The obtaining of just one of (6) or (7) would suffice to show this.
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never made that decision in the first place. Thus (IN) does not hold for every subset of Z for

this partition of variables no matter what values we assign to the variables in W. This re-

flects the fact that, because you didn’t place your Th-228 near the Geiger, there is no com-

plete causal process by which your decision produces the explosion. Your non-placement of

your Th-228 ‘neutralizes’ the danger of your decision causing the explosion.

Is there an alternative partition (W, Z) of VPre and assignment W = w′ such that (IN)

holds for all subsets Z′ of Z? (There need only be one for AC(M-R) to be satisfied.) There

isn’t. Assigning Y to W instead of Z won’t help, since the value of Y ‘screens off’ D from

E. So, where Y ∈W, no assignment W = w′ will be such that, holding fixed W = w′, the

probability of E = 1 is higher when D = 1 (and the variables in /0 ⊆ Z are set to their actual

values) than when D = 0. So (IN) doesn’t hold for all subsets Z ′ of Z for any such partition.

On the other hand, if we leave Y in Z and also assign M to Z, then there are no variables

in W to hold fixed. Now consider the subset {Y} of Z, and observe that:13

(10) P(E = 1|do(D = 1&Y = 0))≤ P(E = 1|do(D = 0))

So, with M assigned to Z it remains the case that (IN) doesn’t hold for all subsets of Z.

So there’s no partition of VPre\D,E such that (IN) is satisfied for all subsets of Z when

we consider D = 1 as a putative cause of E = 1. AC(M-R) therefore doesn’t count D = 1 as

an actual cause of E = 1 relative to MPre.

But for AC(S) to count D = 1 as an actual cause of E = 1 simpliciter, there need only be

one appropriate model relative to which AC(M-R) counts D = 1 as an actual cause of E = 1.

Is there such a model? There isn’t. Suppose a candidate such model includes Y . Because D

is only relevant to E because of its relevance to Y , the value of Y ‘screens off’ the value of D

13Note: the fact that Y = 0 due to an intervention doesn’t make M = 1 more likely.
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from that of E. This means that, if Y is included in W in the partition (W, Z) of the model’s

variable set and held fixed (either at 1 or 0) as part of the assignment W = w′, then (IN) won’t

be satisfied for the empty subset of Z. Alternatively, if Y is included in Z then, no matter what

other variables are included in the model and assigned to W, (IN) won’t be satisfied for the

subset {Y} of Z. Specifically, because D = 1 only threatens to bring about E = 1 because it

threatens to bring about Y = 1, no matter what we hold fixed by inclusion on both sides of

(IN), the probability of E = 1 is no higher if D = 1 and Y = 0 than if simply D = 0.

So AC(M-R) doesn’t count D = 1 as an actual cause of E = 1 relative to any appropriate

model with Y in its variable set. This means that any otherwise appropriate model relative to

which D = 1 is an actual cause of E = 1 can be expanded to a model in which D = 1 isn’t an

actual cause of E = 1 simply by the addition of Y . Provided the expanded model is appropri-

ate, the original model violates (Stability) and is inappropriate. So AC(S) will correctly not

count D = 1 as an actual cause simpliciter of E = 1.

Since the values of Y form a partition and represent natural states of affairs, (Partition)

and (Naturalness) will be satisfied by the expanded model if they were satisfied by the orig-

inal model. With regard to (Veridicality), it should be noted that there are multiple ways of

expanding the original model via the addition of Y , each associated with a different do(·)

function from elements of C ∗ to probability distributions over F ∗ (where C ∗ and F ∗ are

generated by the expanded variable set in the way described in Section 4). In looking for an

apt expanded model, we just select the one with the do(·) function that returns the objec-

tive chances on F ∗ that would obtain as a result of interventions bringing about the various

elements of C ∗. With regard to (Serious Possibilities) note that, given your decision, your

placing and your not placing your Th-228 near the Geiger are both salient possibilities in
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(ProbPre). So it doesn’t seem that the expanded model could represent any non-serious pos-

sibilities if the original model doesn’t. (Independence) is a little trickier. Might not the origi-

nal model include a variable whose values are logically or metaphysically related to those of

Y ? Given that the variables in the original model are assumed to satisfy (Partition) it seems

that any variable logically or metaphysically related to Y – e.g. Y ′, which takes value Y ′ = 0 if

you don’t place your Th-228 near the Geiger, Y ′ = 1 if you place it 2.5-5cm from the Geiger,

and Y ′ = 2 if you place it 0-2.5cm from the Geiger – will also be such that its actual value

neutralizes the threat of D = 1 bringing about E = 1, so that AC(M-R) is not satisfied in the

original model. The exception to this would be if the original model included a variable that

represents a gerrymandered states of affairs – e.g. Y ′′, which takes value Y ′′ = 1 if you place

your Th-228 near the Geiger or Obama is US president, and Y ′′ = 0 otherwise – in which case

the original model will violate (Naturalness).

7. CONCLUSION

Drawing upon PCMs, an account of PAC has been given that gives a correct treatment of

probabilistic preemption on intuitive grounds. Traditional accounts of PAC misdiagnose this

central test case (Menzies, 1989, 1996; Hitchcock 2004). Examination of whether PCMs can

help tackle some of the other outstanding problems of PAC is warranted.
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