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Abstract

In this paper, we look at applying the techniques from analyzing su-

perintuitionistic logics to extensions of the cointuitionistic Priest-da Costa

logic daC (introduced by Graham Priest as “da Costa logic”). The rela-

tionship between the superintuitionistic axioms- definable in daC- and

extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to

exploring the gap between the maximal si-logic SmL and classical logic in

the class of sdc-logics. A sequence of strengthenings of Priest-da Costa

logic is examined and employed to pinpoint the maximal non-classical

extension of both daC and Heyting-Brouwer logic HB. Finally, the rela-

tionship between daC and Logics of Formal Inconsistency is examined.

1 Introduction and Semantics for Priest-da Costa

Logic

In [12], Rauszer introduced an extension of intuitionistic logic (Int) called Heyting-

Brouwer logic (HB), in which the language of Int was extended by connectives

for dual implication (coimplication or preclusion in some quarters, symbolized

by “←”) and dual negation (symbolized by “⇁”). Kripke semantics for HB

were offered by Rauszer in [13]. The Gödel-McKinsey Tarski embedding of in-

tuitionistic logic Int into S4 demonstrated in [7] was extended by  Lukowski in

[6] to one from HB to S4
t, the temporal analogue of S4. (If one is approaching

this work from the standpoint of modal logic rather than intuitionistic logic, the

sequel can be easily interpreted in the lights of this embedding.)

Fragments of HB are interesting in their own right. The {∧,∨,←,⇁}-

fragment of HB has been, e.g., dubbed “anti-intuitionistic” logic and explored
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by Carnielli and Brunner in [2]. It is our aim here to explore extensions of the

{∧,∨,→,⇁}-fragment of HB. In Priest [10] this fragment was called da Costa

logic (daC), a name motivated by the observation that the da Costa system Cω

is contained in this fragment; in order to avoid confusion with systems falling

under this title in the literature we will employ the term “Priest-da Costa logic”

to denote the system described in that paper.1 Good overviews of the philo-

sophical motivations underlying the cointuitionistic negation of Priest-da Costa

logic can be found in [10] and Wansing’s [14]; the first section of the latter may

be especially recommended to logicians sympathetic to the constructive bent

yet not entirely sold on the usefulness of paraconsistency.

We may now rehearse the semantics for both Int and daC. A Kripke frame

F = (W,R) is a set of points W and a binary relation R ⊆ W × W such

that R is reflexive, transitive, and antisymmetric. A Kripke model is a frame

together with a valuation V mapping propositional parameters A0, A1, ... to

subsets of points such that for any parameter A, if w ∈ V (A) and wRw′, then

w′ ∈ V (A). It is immediate that this heredity constraint yields the property

that if w /∈ V (A) and w′Rw, then w′ /∈ V (A). It should be noted that we drop

the common assumption from the intuitionistic case that F is a tree; as we shall

see, the class of all frames F such that R forms a tree on W corresponds to a

stronger logic than daC, one we shall soon call PH1.

The model determines a forcing relation, which we properly define as a

relation holding between a point in a model and a formula, e.g., F, V, u 
λ A,

though when the model is clear from context, this will be abbreviated to u 
λ A.

The subscript under the turnstile indicates the method of evaluating the relation

rather than the logic employed; as the languages of Int, daC, and HB are distinct,

some of the below conditions will not apply in some contexts. The forcing

conditions where λ is Int, daC, or HB are defined recursively as follows:

• u 
λ A iff u ∈ V (A) for parameters A

• u 
λ A ∧B iff u 
λ A and u 
λ B

• u 
λ A ∨B iff u 
λ A or u 
λ B

1A referee noted that the name “da Costa logic” has been employed to denote the logical

systems of da Costa himself, in some cases preceding Priest’s introduction of the present

system by nearly three decades. I do not wish to introduce or reinforce confusion between

these systems. I believe that the terminology employed in this paper ought to both be readily

identifiable to readers of Priest’s papers and yet distinct from the unqualified term “da Costa

logic.”
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• u 
λ A→ B iff at all v with uRv, if v 
λ A then v 
λ B

These clauses are common for formulae in the languages of Int and daC. Two

clauses for negation must be offered. One is for intuitionistic negation in the

languages of Int and HB:

• u 
λ∼ A iff for all v such that uRv, v 1λ A

The other is for cointuitionistic negation in the languages of daC and HB:

• u 
λ⇁ A iff for some v such that vRu, v 1λ A

It can be confirmed without difficulty that the heredity constraint extends to all

formulae in the respective languages. This observation allows us to make a note

concerning the inclusion of antisymmetry as a frame condition. While Priest’s

[10] does not include the antisymmetry constraint, we may justify inclusion of

antisymmetry as a property of R.

First, we recall the canonical model for daC found in [10]. A set of formulae

∆ is said to be prime if for any formula A∨B ∈ ∆, either A ∈ ∆ or B ∈ ∆ and

is said to be deductively closed if for any formula A such that ∆ ⊢daC A, A ∈ ∆.

A set ∆ is said to be prime deductively closed (pdc) if it has both properties.

The canonical model for daC is defined as (WC , RC , V C) where:

• WC = {Γ : Γ is nontrivial and pdc}

• RC = {(Γ,∆) ∈WC ×WC : Γ ⊆ ∆}

• V C(A) = {Γ ∈WC : A ∈ Γ}

Now we may justify the inclusion of antisymmetry.

Lemma 1. The proof theories presented in [10] are sound and complete with

respect to the class of reflexive, transitive, and antisymmetric frames.

Proof. For soundness, as daC is sound with respect to reflexive and transitive

frames simpliciter, if A is a theorem, then it is valid in all models on such frames.

But the class of reflexive, transitive, and antisymmetric frames is a subclass of

this class; a fortiori, A is valid in all such models.

For completeness, we appeal to the canonical model as described in [10].

As the accessibility relation RC is defined so that ΓRC∆ iff Γ ⊆ ∆, antisym-

metry may be immediately read off of RC . As the canonical model is itself

antisymmetric, we infer completeness.
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We make one more observation about the canonical model construction found

in [10] that will be useful shortly.

Lemma 2. For any family X of pdc sets of formulae in the language of daC,

∩X is deductively closed.

Proof. Suppose that ∩X ⊢daC A for a formula A. Then for an arbitrary ∆ ∈ X ,

∩X ⊆ ∆ and by monotonicity, ∆ ⊢daC A. By deductive closure of ∆, A ∈ ∆. As

∆ was selected arbitrarily, this holds for any member of X ; hence, A ∈ ∩X .

We will say that a frame F forces a formula A (F 
daC A) if for every valuation on

F and every point u ∈W , F, V, u 
daC A. There at some points will be particular

subsets of W with which we will concern ourselves; on a frame F = (W,R) and

a point w ∈ W , we let w ↑= {y ∈ W : wRy} and w ↓= {y ∈ W : yRw}. These

are the forwards and backwards “cones” of w, respectively.

We call the collections of extensions of daC and Int by the names ExtdaC

and ExtInt, respectively, and likewise refer to a logic λ in one of these collec-

tions either a sdc-logic (super Priest-da Costa) or si-logic (superintuitionistic)

following Chagrov and Zakharyaschev [3]. We moreover call a member of one of

these classes a proper sdc-logic (proper si-logic) if daC ( λ ( CL (Int ( λ ( CL).

A feature of Priest-da Costa logic that is convenient to our purposes is that

intuitionistic negation is definable in daC.

Lemma 3. Fix a formula A in the language of daC and define ⊥ as

⇁ (A∨ ⇁ A). Then for every λ ∈ ExtdaC, intuitionistic negation becomes

definable as ∼̇B =df B → ⊥.

Proof. We can quickly note that ⇁ (A∨⇁ A) is unsatisfiable in any extension

of daC and can thus treat some instance of this formula as a de facto falsum

constant⊥. With a falsum constant, it is well-known that intuitionistic negation

is definable in the above, prescribed manner.

In the sequel, in order to keep clear that intuitionistic negation is not in the

language but a defined notion, we use the symbol “∼̇.” In general, when dealing

with a superintutionistic axiom A, we will refer to the formulae in the language

of daC by substituting ∼̇ or ⇁ for every instance of ∼ in A by A∼̇ and A⇁,

respectively. A further observation concerning the interaction between intu-

itionistic negation and cointuitionistic negation is that, as Priest remarks in
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[10], defined intuitionistic negation is stronger than cointuitionistic negation,

that is, ∼̇A→⇁ A is a theorem of daC.

This motivates us to offer an additional lemma:

Lemma 4. For any frame F, F 
Int A iff F 
daC A∼̇

Proof. Right-to-left is trivial, so we will focus on the left-to-right half. Suppose

that F 1daC A∼̇ and let V be the valuation on F that fails to verify an instance

A′ of A∼̇. Let {Bi : i ∈ I} be an enumeration of the propositional parameters

occurring in A; then for some {Ci : i ∈ I} in the language of daC, A′ =

A∼̇[Bi/Ci]i∈I , that is, the substitution instance of A∼̇ gotten by replacing every

Bi with Ci, fails at some point u.

We can give a valuation V ′ on F showing that A fails intuitionistically on

F, V ′. Take propositional parameters {Di : i ∈ I} and let V ′(Di) = {w ∈ W :

w 
daC Ci}. Since all Ci obey the heredity constraint, we can be assured that V ′

is a proper valuation. Moreover, this entails that F, V, u 
daC Ci iff F, V ′, u 
Int

Di. As A[Bi/Di]i∈I contains no instances of “⇁” except for instances in the de

facto falsum constant, the reasoning that leads to the conclusion that F, V 1daC

A[Bi/Ci]i∈I will only appeal to the intuitionistically acceptable truth conditions

and this will ensure that F, V ′ 1Int A[Bi/Di]i∈I . Hence, we may conclude that

F 1Int A.

We can use this lemma to analyze the strength of the traditional superintu-

itionistic axioms in this context by replacing every instance of ∼ with the

above defined ∼̇. For a set of formulae Γ, Γ∼̇ is the set {A∼̇ : A ∈ Γ}. Fi-

nally, for a logic λ = Int + Γ, where the operation + denotes closure under

modus ponens and uniform substitution, the defined analogue of λ will be called

λ∼̇ = daC + Γ∼̇. We will retain this notation even if there are no instances of

negation, e.g., in the case of LC = Int+(A→ B)∨(B → A), LC∼̇ will be defined

as daC+(A→ B)∨(B → A) despite the additional axiom’s being negation-free.

2 “Pigeonhole” Axioms in ExtdaC

We here discuss a sequence of extensions of daC generated by the addition of

salient axioms and demonstrate their correspondence to classes of frames. We

will also show that the addition of any of several axioms to daC is sufficient to

generate CL.
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Theorem 1. Call the formula (⇁ A∧ ⇁⇁ A) → B weak ex contradictione

quodlibet (WECQ) and call the frame condition

if tRv and uRv, then there exists an w such that wRt and wRu

“backwards convergence.” Then WECQ = daC + WECQ is the sdc-logic of

backwards convergent frames.

Proof. To show soundness, we must show that a frame forces WECQ iff it is

backwards convergent.

· For right-to-left, suppose that a frame F is backwards convergent. Consider an

arbitrary formula A and point w ∈ W . First, we show that w 1daC⇁ A∧⇁⇁ A.

Suppose for contradiction that this formula is verified by w. Both ⇁ A and

⇁⇁ A are then verified by w and there hence exist points u, v with uRw and

vRw such that u 1daC A and v 1daC⇁ A. Since F is backwards convergent,

we infer that there exists a point t such that tRu and tRv. As v 1daC⇁ A, we

may reason that t 
daC A. By heredity, that tRu implies that u 
daC A as well,

contradicting the observation that u 1daC A. Hence, for no point w and formula

A is ⇁ A∧⇁⇁ A verified at w.

Looking to a further, arbitrary point w′, it follows from this that ⇁ A∧⇁⇁

A → B will be vacuously verified by w′. By the preceding observation, the

antecedent will be verified nowhere in w′ ↑, implying that for an arbitrary B,

w′ 
daC⇁ A∧⇁⇁ A→ B. As the formulae A and B were selected arbitrarily,

this will hold for any substitution instance of WECQ.

· For left-to-right, we prove the contrapositive. Suppose that F is not backwards

convergent. Then there exist points tRv and uRv such that for no w does wRt

and wRu. By this, we can infer that (t ↓) ∩ (u ↓) = ∅ and hence that t 6= u.

We provide a valuation V on F such that F, V 1daC WECQ.

Let V (A) = (t ↑) ∪ (t ↓) and V (B) = ∅. Then u 1daC A and so v 
daC⇁ A.

Moreover, at every w such that wRt, w 
daC A, and so t 1daC⇁ A, entailing that

v 
daC⇁⇁ A. Hence, v 
daC⇁ A∧ ⇁⇁ A, though v 1daC B. By reflexivity, v

itself witnesses the failure of (⇁ A∧⇁⇁ A)→ B. Hence, F 1 WECQ.

For completeness, we employ the canonical model method as outlined in [10].

Let WECQ be the set of all substitution instances of WECQ. The canonical

model of WECQ comprises as points the nontrivial pdc sets of daC extending
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WECQ. Let the canonical model for WECQ be defined as before with the

exception that :

• WC = {Γ ⊇WECQ : Γ is nontrivial and pdc}

Given pdc sets ∆,Θ,Γ ∈WC such that ∆ ⊆ Γ and Θ ⊆ Γ, we are able to show

the existence of a pdc set Λ such that Λ ⊆ ∆ and Λ ⊆ Θ.

Define ∆∗ as ∩{∆′ ∈WC : ∆′ ⊆ ∆} and consider the property that

for all pdc sets ∆′ ⊆ ∆ and Θ′ ⊆ Θ, ∆′∗ = Θ′∗.

We first show that ∆ and Θ have the property.

Suppose not; then there are pdc sets ∆′ ⊆ ∆ and Θ′ ⊆ Θ such that either

∆′∗ r Θ′∗ 6= ∅ or Θ′∗ r ∆′∗ 6= ∅. Without loss of generality, assume the latter

and let A be a formula found in Θ′∗ but not in ∆′∗.

That A ∈ Θ′∗ implies that A is a member of every pdc subset of Θ′ and

hence that ⇁⇁ A ∈ Θ′. From A /∈ ∆′∗, we may infer the existence of a pdc set

∆′′ ⊆ ∆′ such that A /∈ ∆′′, whence ⇁ A ∈ ∆′.

By transitivity, ∆′ ⊆ Γ and Θ′ ⊆ Γ. Hence, ⇁ A ∈ Γ and ⇁⇁ A ∈ Γ

and by closure under conjunction, ⇁ A∧ ⇁⇁ A ∈ Γ. But as all formulae of

the form (⇁ A∧ ⇁⇁ A) → B are members of Γ, closure under modus ponens

means that Γ is trivial, contradicting the assumption that Γ is nontrivial.

So ∆ and Θ have the above property. We make one further observation

about the canonical model of WECQ before proceeding.

Suppose that ∆ and Θ are pdc sets with the above property. Suppose also

that ∆∩Θ is not prime with respect to a formula A∨B; then there are ∆′ ⊆ ∆

and Θ′ ⊆ Θ such that A ∨B /∈ ∆′ and A ∨B /∈ Θ′.

Since A∨B ∈ ∆∩Θ, the disjunction is a member of both ∆ and Θ. Hence,

∆ and Θ must each count as members at least one of the disjuncts (as they are

each prime) and each disjunct can be a member of precisely one of these sets

(otherwise it would be a member of ∆∩Θ). This implies that either A ∈ ∆ and

B ∈ Θ or B ∈ ∆ and A ∈ Θ. Without loss of generality, suppose the former

holds.

That A /∈ Θ implies that A /∈ Θ∗; as ∆∗ = Θ∗, there is a pdc ∆′ ⊂ ∆

for which A /∈ ∆′. That ∆′ ⊂ ∆ precludes B from being a member and by

primeness of ∆′, A ∨ B /∈ ∆′ as well. Similar reasoning implies that we can

find a pdc Θ′ ⊆ Θ such that neither A, B, or A ∨B are members of Θ′. In the
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sequel, when using this procedure to choose such sets, we will call the chosen

sets ∆A∨B and ΘA∨B.

We can proceed to construct a pdc Λ. Enumerate the disjunctions of LdaC,

denoting the nth formula in the enumeration by [A∨B]n and recursively define

the following sets:

• ∆0 = ∆

• ∆α+n+1 =



















∆
[A∨B]n
α+n if [A ∨B]n ∈ ∆α+n ∩Θα+n but

A,B /∈ ∆α+n ∩Θα+n

∆α+n otherwise

• ∆α = ∩β<α∆β , for limits α

We define the sets Θα in an analogous fashion. It ought to be shown that for

a limit δ the set ∆δ is pdc as intersections between pdc sets don’t necessarily

preserve primeness. Let δ be the least ordinal indexing a non-prime ∆δ and let

A ∨ B be the formula witnessing the failure of primeness. Then for α, β < δ,

A /∈ ∆α and B /∈ ∆β ; without loss of generality suppose that α < β. But as

defined, the sets constructed are linearly ordered under superset, so ∆α ⊇ ∆β ,

whence neither A nor B is a member of ∆β , entailing that ∆β is not prime,

contradicting the assumption that δ is the least index of a non-prime set.

Now, recursively define sets Λα as:

• Λ0 = ∆0 ∩Θ0

• Λα+n+1 = ∆α+n+1 ∩Θα+n+1

• Λα = ∩β<αΛβ for limits α

Then Λω2 is a pdc subset of both ∆ and Θ.

Lemma 2 entails that Λω2 , as an intersection of pdc sets, is deductively

closed.

For primeness, suppose that for some n, [A ∨ B]n ∈ Λω2 but neither A nor

B are members. Let α < ω2 be the least ordinal at which A /∈ Λα, β < ω2 be

the least ordinal at which B /∈ Λβ, and δ < ω2 the first limit ordinal containing

both α and β. That [A ∨ B]n ∈ Λω2 implies that [A ∨ B]n ∈ Λδ+n, but that

A /∈ Λδ+n and B /∈ Λδ+n entails that [A ∨ B]n /∈ Λδ+n+1, contradicting that

A ∨B ∈ Λω2 .
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As ∆, Θ, and Γ were selected arbitrarily, we conclude that such a Λ exists for

all such pdc sets, entailing that the frame of the canonical model is backwards

convergent.

For every n ∈ ω such that n ≥ 1 let PHn stand in for the formula

[
∧

0≤i≤n ⇁ Ai]→ [
∨

0≤i<j≤n ⇁ (Ai ∨ Aj)]

and let the logic PHn be daC + PHn.

We will make a few observations about this axiom. For one, this is a “pigeon-

hole” axiom; PHn “says” that for m ≥ n, if ⇁ A0, ...,⇁ Am are all verified,

then some ⇁ (Ai∨Aj) must likewise be verified, that is, some point responsible

for verifying one of the negated formulae must be responsible for verifying the

negations of more than one of them. If we consider backwards closed subsets as

possible “negation sinks,” PHn then is the statement that there exist n many

such pigeonholes. Furthermore, we note that one direction of one of the De

Morgan’s laws, (⇁ A0∧⇁ A1)→⇁ (A0 ∨A1), while failing in general for daC,

is just PH1. We may think, then, of the approach of n to 1 as a “tightening

down” towards the restoration of full De Morgan’s laws.

In order to correctly characterize the frame conditions corresponding to the

logics PHn, we first extend the terminology of Chagrov and Zakharyaschev [3]

by generalizing the notion of a “root.” In Chagrov and Zakharyaschev’s termi-

nology, a point w is a root of a frame F if w generates F. Let an aerial root

(a.r.) in our context be a set of points X ⊆ W such that X ↓= X . An a.r.

of a point w will be an a.r. X such that w ∈ X ↑. Finally, a root system for

a point w will be a collection of pairwise disjoint a.r.s of w X0, ..., Xn−1 such

that w ↓⊆ (∪n−1
i=0 Xi) ↑. Under our definition, every point has at least one aerial

root, i.e., the set W itself; moreover, the Chagrov and Zakharyaschev definition

of a frame’s being “rooted” is equivalent to the constraint that the cardinality

of every root system for any point is 1.

Lemma 5. (Aerial Root Splitting) If an aerial root X ⊆W contains two points

w0, w1 such that (w0 ↓) ∩ (w1 ↓) = ∅, then X can be split into two pairwise

disjoint aerial roots X0, X1 such that (X0 ∪X1) ↑= X ↑.

Proof. Suppose that the antecedent holds. Let X0 = w0 ↓ and let X1 = X r

((w0 ↓) ∪ (w0 ↑)). Then X0, X1 meet the criteria of the consequent. X0 and

X1 are, by construction, pairwise disjoint, so we must check that the latter
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criterion is met. Since (X0 ∪ X1) ⊆ X , that (X0 ∪ X1) ↑⊆ X ↑ is immediate.

To show that X ↑⊆ (X0 ∪ X1) ↑ Suppose that a point w ∈ X ↑ and consider

a w′ ∈ X such that w′Rw. Either w0Rw′ or not. If so, then w′ ∈ X0 ↑ and

by transitivity, w′ ∈ X0 ↑. If not, then there is a point w′′ ∈ X r w0 ↑ such

that w′′Rw′. As w0Rw′ does not hold, w′′ /∈ w0 ↓ and w′′ /∈ w0 ↑; but this just

means that w′′ ∈ X1, and hence, w′ ∈ X1 ↑. Either way, x ∈ (X0 ∪ X1) ↑, so

X ↑⊆ (X0 ∪X1) ↑. This shows that X ↑= (X0 ∪X1) ↑

Theorem 2. Call the frame condition that

for all w ∈ W , w has no root system of cardinality greater than n

“n-rootedness.” Then PHn = daC + PHn is the logic of n-rooted frames.

Proof. We must show that a frame F forces PHn iff for every point w, w has

no root system of cardinality greater than n.

· For left-to-right, we prove the contrapositive. Suppose that F does not have

the property. Then there exists a point w with a root system of cardinality

n, i.e., there exist disjoint a.r.s X0, ..., Xn−1 such that w ↑⊆ (∪i<nXi) ↑. We

provide a valuation that fails to verify PHn.

Let V (Ai) = W r Xi for i < n. Then for each Ai there exists a ui ∈ Xi

such that uiRw and ui 1daC Ai. Hence, w 
daC⇁ Ai for all i < n, and

w 
daC

∧

i<n ⇁ Ai as well.

Let us ask if w 
daC⇁ (Aj ∨Ak) for any j, k < n such that j 6= k; the answer

is negative. At any a.r. Xi and every ui ∈ Xi, though ui 1daC Ai, for every

j 6= i, ui 
daC Aj . Hence, for every j 6= k, ui 
daC Aj ∨ Ak. Now suppose

that for some distinct j, k < n, w 
daC⇁ (Aj ∨ Ak); then there would be a

w′Rw such that w′ 1daC Aj ∨ Ak, and by heredity, for some i and a ui ∈ Xi,

ui 1daC Aj ∨ Ak, which we have seen is impossible. Since j, k were selected

arbitrarily, we conclude that no disjunct of
∨

0≤i<j≤n ⇁ (Ai ∨ Aj) is verified

at w, and so the disjunction itself is not verified. With the antecedent verified

at w and the consequent not verified, we conclude that w 1daC PHn and thus,

that F 1daC PHn.

· For right-to-left, suppose that F has no root system of cardinality n and that

for some u ∈ W and formulae A0, ..., An−1, u 
daC

∧

i<n ⇁ Ai. This entails

that for all i < n, there exist points wi such that wiRu and wi 1daC Ai.
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Let m < n be the greatest cardinality of a root system for u and consider

one such root system X0, ..., Xm−1. By the heredity of F, for each i < n there

are w′
iRwi such that w′

i ∈ ∪l<mXl. As m < n, by the pigeonhole principle there

must be an Xh such that there are j, k with w′
j , w

′
k ∈ Xh. We show that there

exists a point w′′ such that w′′Ru and w′′ 1daC Aj ∨ Ak.

Suppose there were no w′′ such that w′′Rw′
j and w′′Rw′

k. Then (w′
j ↓

) ∩ (w′
k ↓) = ∅. But this implies that Xh can be refined into pairwise dis-

joint a.r.s X ′
h, X

′′
h such that w′

j ∈ X ′
h and w′

k ∈ X ′′
h , and the root system

X0, ..., Xh−1, X
′
h, X

′′
h , Xh+1, ..., Xm−1 is a root system for u of cardinality m+1,

which contradicts the hypothesis. So there exists such a w′′ and by heredity,

w′′ 1daC Aj and w′′ 1daC Ak, so w′′ 1daC Aj ∨ Ak. It follows by transitivity of

R that u 
daC⇁ (Aj ∨ Ak) and hence u 
daC

∨

0≤j<k≤n ⇁ (Aj ∨ Ak).

For any m,n ∈ ω such that 0 < m < n, any n-rooted frame will have counter-

models to instances of PHm, and hence PHm is not a theorem of PHn for such

a pair m and n. The closure of daC with any of the above axioms PHn thus

generates a distinct non-classical logic. One further comment on the above set

of axioms should be made before proceeding:

Theorem 3. WECQ = PH1

Proof. For left-to-right, suppose that in a backwards convergent model there is

a point w with a root system of size greater than 1. Then there are distinct,

pairwise disjoint a.r.s Xi, Xj. By backwards convergence, however, for arbitrary

u ∈ Xi and v ∈ Xj , there is a point t bearing R to both u and v. These two

conditions by backwards closure imply that t ∈ Xi and t ∈ Xj , respectively,

contradicting pairwise disjointedness.

· For right-to-left, we note that (⇁ A∧⇁⇁ A)→⇁ (A∨⇁ A) is a substitution

instance of PH1 and that ⇁ (A∨⇁ A)→ B is a theorem of daC and a fortiori

of PH1. Hence, we may derive (⇁ A∧ ⇁⇁ A) → B in PH1, which is just

WECQ.

In essence, then, weak explosion is a side of the same medal as full De Morgan’s

laws in this context, which mirrors the equivalence of the addition of weak

excluded middle (∼ A∨ ∼∼ A) or full De Morgan’s laws to Int; both generate

the logic KC, which is indeed referred to at times as De Morgan logic.
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Now, it is obvious that there exist axioms whose inclusion in daC suffices to

generate CL in the same way in which the inclusion of the axiom A∨ ∼ A to Int

generates CL. The axioms whose inclusion to daC has this effect are quite varied;

though the below three axioms intuitively suggest distinct interpretations, they

are all equivalent modulo daC.

Theorem 4. The weakest logic λ ∈ ExtdaC at which any of the formulae

• ⇁ (A→ B)→ (⇁ A→ B)

• (⇁ B →⇁ A)→ (A→ B)

• (A∧⇁ A)→ B

becomes valid is CL.

Proof. That CL is a solution is trivial; the above formulae, when negation is

construed as classical, are all theorems of classical logic.

To establish that CL is the weakest sdc-logic satisfying the above rules, con-

sider an arbitrary frame F = (W,R) such that the condition of single-pointedness

fails for R. It then has distinct nodes u, v such that uRv but not vRu.

Let v ↑ be the collection of points accessible from v and u ↑ be the collection

of points accessible from u. We can make some initial observations about F.

For no w ∈ v ↑ does wRu; else, by transitivity, it would follow that vRu.

Moreover, by transitivity, we observe that v ↑⊆ u ↑. These general conditions

are illustrated by Figure 2.

We provide a valuation V on F making false each of the above formulae at u.

Let V (A) = v ↑ and V (B) = ∅. Let us demonstrate that F, V fails to confirm

any of the above.

· (F, V ) 1daC⇁ (A → B) → (⇁ A → B): We observe that v 
daC A and

v 1daC B; hence v 1daC A → B and as vRv, v 
daC⇁ (A → B). Yet since

u 1daC A, v 
daC⇁ A, and since v 1daC B, it follows that v 1daC⇁ A→ B. So

v 1⇁ (A → B) → (⇁ A → B) and with such a valuation, we conclude that F

fails to force this formula as well.

However, every point w ∈ v ↑ by transitivity bears R−1 to u, which does

not force A, so at every such point w 
daC⇁ A. Hence, v 1daC ∼̇ ⇁ A. So v

witnesses the failure of the formula and F has a valuation that fails to force the

formula.

13



u v

u ↑

v ↑

Figure 1: Condition on any non-singular frame F.

· (F, V ) 1daC (⇁ B →⇁ A) → (A → B): As u 1daC A and u 1daC B, at every

w ∈ u ↑, w 
daC⇁ A and w 
daC⇁ B; hence, u 
daC⇁ B →⇁ A. Yet v 
daC A

and v 1daC B so, as uRv, u 1daC A → B. Since uRu, u 1daC (⇁ B →⇁ A) →

(A→ B) and as such a valuation exists, F 1daC (⇁ B →⇁ A)→ (A→ B).

· (F, V ) 1daC (A∧ ⇁ A) → B: Immediately, we note that v 
daC A; moreover,

we may observe that u 1daC A and hence, that v 
daC⇁ A. From this, we

infer that v 
daC A∧ ⇁ A. But v 1daC B, so v itself witnesses the failure of

(A∧⇁ A)→ B. We conclude that F 1daC (A∧⇁ A)→ B.

Some notes about the above are in order; for one, we can substitute ⊥ for

B in the first two instances to draw conclusions concerning the relationship

between intuitionistic negation and cointuitionistic negation in this context.

We see, then, that CL is the first point in ExtdaC at which ⇁ A → ∼̇A and

⇁ ∼̇A → ∼̇ ⇁ A become theorems. As ∼̇A →⇁ A and ∼̇ ⇁ A →⇁ ∼̇A are

both theorems of daC (as can be easily checked), the commutativity of these

negations amounts to their equivalence.

Furthermore, we may observe (but leave it to the reader to satisfy him-

or herself) that the contraposition axioms (⇁ B → A) → (⇁ A → B) and

(B →⇁ A) → (A →⇁ B), common in axiomatizations of relevant logics as

described in [1], hold only at CL as well, while the logic PH1 may be also seen

as the addition of the principle (⇁⇁ B →⇁⇁ A)→ (⇁ A→⇁ B).

Finally, if we restrict our attention to the lattermost above axiom- ex con-
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tradictione quodlibet (ECQ)- we also may note that the only fully “explosive”

sdc-logic is classical logic itself. This is interesting within the realm of para-

consistent base logics; note Meyer and Routley’s work on so-called “classical”

relevant logic in [8], in which the inclusion of ECQ to a positive relevant logic

λ+ generates a logic Kλ such that λ+ ( Kλ ( CL.

3 The Maximal Proper sdc-Logic.

In this section, we wish to take a look at how we can define the strongest

proper sdc-logic. In the intuitionistic case, there exists a maximal proper si-

logic, the Smetanich logic SmL, the closure of Int with the axiom SmL = (∼

B → A) → (((A → B) → A) → A). What we will show is that SmL∼̇ does

not determine the maximal proper sdc-logic and that there exist infinitely many

logics intermediate between daC + SmL∼̇ and CL. We will show that the order

type of the extensions of SmL
∼̇ is 1 + ω∗, which will enable us to describe the

maximal proper sdc-logic as well as the maximal proper extension of HB.

When discussing the si-logics Chagrov and Zakharyaschev [3] describe the

frame condition associated with the Smetanich axiom SmL as “two-pointed,

rooted frames.” The traditional frame condition is stated is insufficient in this

context; absent the assumption that all frames considered are trees, there are

an abundance of frames forcing this axiom intuitionistically with more than

two points. The class of frames forcing SmL in this case may be indiscernible

with respect to Int but its members are varied enough that they have different

theories in the setting of Priest-da Costa logic.

Lemma 6. Let SmL
∼̇ = daC + SmL∼̇ and let the frame condition

For all w ∈ W , |{x ∈W : wRx}| ≤ 2

be called “2-sightedness.” Then SmL
∼̇ is the logic of 2-sighted frames.

Proof. We show that F 
daC SmL∼̇ iff F is 2-sighted.

· For left-to-right, suppose that F is 2-sighted. Consider distinct u, v such that

uRv; we can make the immediate observation that the only point accessible

from v is v itself. Immediately, then, we may note that v 
daC SmL∼̇, as v

thinks of itself as a classical model.
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Now, suppose for contradiction that some u and some valuation V on F,

u 1daC SmL∼̇. Then either v 
daC ∼̇B → A and v 1daC ((A → B) → A) → A

or u 
daC ∼̇B → A and u 1daC ((A → B)→ A)→ A. The former case, by the

above, cannot obtain; hence, the latter must hold.

Similarly, this entails that either v 
daC (A → B) → A and v 1daC A or

u 
daC (A→ B)→ A and u 1daC A. The former, as we have seen, is impossible,

so we infer the latter holds. As u 
daC (A→ B)→ A, either u 1daC A→ B or

u 
daC A; as the latter contradicts our observation that u 1daC A, we conclude

the former.

As u 1daC A→ B either v 
daC A and v 1daC B or u 
daC A and u 1daC B.

As u 1daC A, we accept the former. As v 1daC B and uRv, u 
daC ∼̇B. By

reflexivity, there thus exists a point at which ∼̇B is forced but A is not, thus,

u 1daC ∼̇B → A. But by hypothesis u forces ∼̇B → A.

We conclude that there is no such V and hence, that F 
daC SmL∼̇.

· For right-to-left, suppose that F is not 2-sighted. Then there exist distinct

points u, v, w such that uRv and uRw but v 6= w. If F is linearly ordered,

then assume without loss of generality that vRw. We provide a valuation V

on F showing that F 1daC SmL∼̇. Let V (A) = u ↑ r{u} and V (B) = (v ↑

r{v}) ∪ w ↑. Now we may confirm that F, V 1 SmL∼̇.

For one, we can confirm that- as uRw and w 
 B- u 1 ∼̇B; by the definition

of V , we can moreover note that for all w′ ∈ u ↑ r{u}, w′ 
daC A. Hence, at

every point accessible from u forcing ∼̇B, A is forced and so we can conclude

that u 
daC ∼̇B → A.

Now we can show that u 1daC ((A→ B)→ A)→ A. Since uRv while v 
daC

A and v 1daC B, u 1daC A → B. By the above observation that all accessible

points w′ 6= u force A, we can moreover conclude that u 
daC (A → B) → A.

But u 1daC A, so u 1daC ((A→ B)→ A)→ A.

In order to fully describe the “gap” between SmL
∼̇ and the trivial logic LdaC,

we provide a series of additional lemmas:

Lemma 7. For α ∈ Cn, let Sα = (Wα, Rα) with Wα = {w0, w1, ..., wα} and

Rα the reflexive closure of the set {(wβ , wα) : β ≤ α}. Then the class {Sα :

α ∈ Cn} exhaustively characterizes the SmL
∼̇ frames.

Proof. Immediate from the above; all Sα may be seen to be 2-sighted, and hence

each forces SmL∼̇. Moreover, the only frames verifying 2-sightedness are frames

16



with a point w and a class of points W ′ such that R = W ′×{w} ∪ {(u, u) : u ∈

W ′ or u = w}. Such a frame is obviously isomorphic to S|W ′|.

Lemma 8. For every n ∈ ω such that 1 ≤ n, Sn 
daC PHm for m ≥ n and

Sn 1daC PHl for l < n.

Proof. Immediately from the construction, we can observe that Sn is m-rooted

for all m ≥ n but not l-rooted for any l < n. Hence Sn 
daC PHm for all m ≥ n

and Sn 1daC PHl for all l < n.

Lemma 9. The only subsets of {Sα : α ∈ Cn} that correspond to extensions

of daC are either ∅, of the form {Sm : m ≤ n} for some n ∈ ω, or is {Sα : α ∈

Cn} itself.

Proof. To prove this, of a class S ⊆ {Sα : α ∈ Cn} corresponding to an

extension of SmL
∼̇ we must show two things. For one, that if for some ordinal

α, Sα ∈ S, then for all β < α, Sβ ∈ S, that is, that every such S is backwards

closed. Secondly, we must demonstrate that for an infinite cardinal α, if Sα ∈ S,

then S = {Sα : α ∈ Cn}.

To show that any class corresponding to an extension of SmL
∼̇ is backwards

closed, we first show that for α > β and an arbitrary formula A, if Sα 
daC A

then Sβ 
daC A. We prove the contrapositive; suppose that Sβ 1daC A. Then

there is a valuation V on Sβ such that Sβ , V 1daC A′ where A′ is a substitution

instance of A. For an arbitrary α > β, we can extend V to a valuation V ′ on

Sα so that Sα, V
′ 1daC A′. Call the sets of points associated with each frame

Wβ and Wα; by the definition of the frames, Wβ ⊂Wα.

wβ is the point with the largest index in Wβ ; let [w≥β ] denote the set of

points in Wα with indices greater than or equal to β. For all propositional

parameters, define V ′ so that

V ′(B) =







V (B) ∪ [w≥β ] if wβ ∈ V (B)

V (B) otherwise

We can prove by induction on complexity of formulae that Sα, V
′ forces precisely

the same formulae as does Sβ , V . We wish to show that the two properties hold

for all formulae C:

• For all γ < β, Sβ , V, wγ 
daC C iff Sα, V
′, wγ 
daC C and
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• For all δ ≥ β, Sβ , V, wβ 
daC C iff Sα, V
′, wδ 
daC C.

We refer to these as properties 1 and 2, respectively. In the case of a proposi-

tional parameter C, the construction of V ′ guarantees that both properties hold

immediately; we thus assume the induction hypothesis that for formulae C′ of

lesser complexity than C, both properties hold and move to the induction.

· C is C′ ∧ C′′ for some formulae C′, C′′:

Property 1 : For γ < β, Sβ, V, wγ 
daC C′ ∧ C′′ iff Sβ , V, wγ 
daC C′ and

Sβ, V, wγ 
daC C′′, which, by the induction hypothesis, holds iff Sα, V
′, wγ


daC C′ and Sα, V
′, wγ 
daC C′′ and hence, iff Sα, V

′, wγ 
daC C′ ∧ C′′.

Property 2 : For δ ≥ β, similar reasoning shows that Sβ , V, wβ 
daC C′ ∧ C′′

iff Sβ, V, wβ 
daC C′ and Sβ , V, wβ 
daC C′′ iff Sα, V
′, wδ 
daC C′ and

Sα, V
′, wδ 
daC C′′ iff Sα, V

′, wδ 
daC C′ ∧ C′′. As δ was selected arbitrarily,

this holds for all wδ ∈ [w≥β ].

· C is C′ ∨ C′′ for some formulae C′, C′′:

Properties 1 and 2 run identically to the above, replacing “and” with “or” and

“∧” with “∨.”

· C is ⇁ C′ for some formula C′:

Property 1 : For w0, Sβ , V, w0 
daC⇁ C′ iff Sβ , V, wγ 1daC C′ for some

γ ≤ β iff by induction hypothesis for some γ′ ≤ α, Sα, V
′, wγ′ 1daC C′ iff

Sα, V
′, w0 
daC⇁ C′.

For γ < β such that γ > 0, Sβ, V, wγ 
daC⇁ C′ iff, by 2-sightedness,

Sβ, V, wγ 1daC C′, which holds by hypothesis iff Sα, V
′, wγ 1daC C′, holding

iff Sα, V
′, wγ 
daC⇁ C′.

Property 2 : For δ ≥ β, Sβ , V, wβ 
daC⇁ C′ iff Sβ , V, wβ 1daC C′, holding by

induction hypothesis iff Sα, V
′, wδ 1daC C′ iff Sα, V

′, wδ 
daC⇁ C′. As δ was

selected arbitrarily, this holds for all wδ ∈ [w≥β ].

· C is C′ → C′′ for some formulae C′, C′′:

Property 1 : For w0, note that Sβ , V, w0 
daC C′ → C′′ iff either Sβ, V, w0

1daC C′ or Sβ, V, w0 
daC C′′, which we easily see holds iff Sα, V
′, w0 
daC

C′ → C′′.

In the case of wγ such that 0 < γ < β, Sβ, V, wγ 
daC C′ → C′′ iff
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each of the two disjunctions Sβ, V, wγ 1daC C′ or Sβ, V, wγ 
daC C′′ and

Sβ, V, w0 1daC C′ or Sβ , V, w0 
daC C′′ hold. These, by the induction hypothe-

sis, are equivalent to the disjunctions Sα, V
′, wγ 1daC C′ or Sα, V

′, wγ 
daC C′′

and Sα, V
′, w0 1daC C′ or Sα, V

′, w0 
daC C′′, respectively, which is in turn

equivalent to Sα, V
′, wγ 
daC C′ → C′′.

Property 2 : For δ ≥ β, Sβ , V, wβ 
daC C′ → C′′ holds iff Sβ , V, wβ 1daC C′

or Sβ, V, wβ 
daC C′′ and Sβ , V, w0 1daC C′ or Sβ, V, w0 
daC C′′ hold. By

the induction hypothesis, these conditions hold mutatis mutandis for wδ and w0

in the model Sα, V
′, and we reason that Sα, V

′, wδ 
daC C′ → C′′. As δ was

chosen arbitrarily, we conclude that this holds for all wδ ∈ [w≥β ].

The induction complete, we conclude that if Sα forces some set of formulae

then Sβ likewise forces the set of formulae. Now suppose that S characterizes

some λ = SmL
∼̇ + Γ and that Sα ∈ S. Since the theory of Sα is by the

above contained within the theory of Sβ (and a fortiori forces Γ) for all β < α,

Sβ ∈ S.

We now show that if a class of such frames corresponds to an extension of daC

and contains Sω then it contains Sα for all ordinals α. For α < ω, this has been

shown from the above. For α > ω, suppose that Sα 1daC A though Sω 
daC A.

Call the set of points corresponding to these frames Wα and Wω, respectively;

we note that Wω ⊂Wα.

Let V be the valuation on Sα that witnesses the failure of an instance of A-

call it A′. We observe that A′- being a well-formed formula in the language of

daC- contains finitely many propositional parameters so that we may enumerate

these parameters by a set B = {Bi : i < n} for some n. It then follows that

Sα, V 
daC A′ iff Sα, V ↾ B 
daC A′.

We use this feature to construct an equivalence relation on Wα. Define ≈ so

that:

• w0 ≈ w0

• For wγ , wδ ∈ Wα with γ, δ 6= 0, let wγ ≈ wδ iff for all Bi ∈ B, wγ ∈ V (Bi)

iff wδ ∈ V (Bi).

From this, we define the quotient frame S≈
α = (W≈

α , R≈
α ), where W≈

α is the

collection of equivalence classes modulo ≈ on Wα and R≈
α is defined by:

19



[wγ ]R≈
α [wδ] iff there exist w′

γ ∈ [wγ ], w′
δ ∈ [wδ] such that w′

γRαw
′
δ

The analogue of the valuation V modulo ≈ is immediate. Now we show by in-

duction on complexity of formulae that for formulae C whose only propositional

parameters are in B, Sα, V ↾ B, wγ 
daC C iff S≈
α , (V ↾ B)≈, [wγ ] 
daC C. (We

will only reference the points on the left-hand side of the turnstile in the sequel;

the notation will reveal in which model the valuation holds.)

As a basis step, we can note that for C ∈ B, this follows by construction of

≈. For the induction step, C is not atomic; suppose that this result holds for

all formulae of lesser complexity than C and for all points in Wα. Then we may

examine the cases:

· C is C′ ∧ C′′ for some formulae C′, C′′: By the semantics for conjunction,

wγ 
daC C′∧C′′ iff wγ 
daC C′ and wγ 
daC C′′, which by induction hypothesis

holds iff [wγ ] 
daC C′ and [wγ ] 
daC C′′. This moreover holds iff [wγ ] 
daC

C′ ∧ C′′.

· C is C′∨C′′ for some formulae C′, C′′: Immediate from the case of conjunction.

· C is ⇁ C′ for some formula C′: If γ = 0, then there is a wδ with wδRw0 such

that wδ 1daC C′. By the induction hypothesis and definition of R≈, this occurs

iff there is a [wδ] such that [wδ]R[w0] such that [wδ] 1daC C′, holding, in turn,

iff [w0] 
daC⇁ C′. If γ 6= 0, then wδ 
daC⇁ C′ iff wδ 1daC C′ iff [wδ] 1daC C′

iff [wδ] 
daC⇁ C′

· C is C′ → C′′ for some formulae C′, C′′: If γ = 0, then w0 
daC C′ → C′′

iff w0 1daC C′ or w0 
daC C′′. By the induction hypothesis, this holds iff

[w0] 1daC C′ or [w0] 
daC C′′, which holds iff [w0] 
daC C′ → C′′.

If γ 6= 0, then wγ 
daC C′ → C′′ holds iff, of wγ , wγ 1daC C′ or wγ 
daC C′′

and, of w0, w0 1daC C′ or w0 
daC C′′. By the induction hypothesis, these

conditions will be satisfied by [wγ ] and [w0], respectively, and hence [wγ ] 
daC

C′ → C′′.

With the induction complete, we now may observe that S≈
α in virtue of the finite

length of A′ is itself finite and hence isomorphic to a finite Sm and hence there

exists a valuation V ′ on Sm such that S≈
α , (V ↾ B)≈ is identical to Sm, V ′. By

the earlier technique employed in showing backwards closure, we may extend this

valuation to a valuation V ′′ on Sβ so that Sβ , V
′′ 1daC A′, which contradicts

the hypothesis that Sβ 
daC A.
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With these two properties in hand, the lemma is immediately confirmed.

Recall that the order type of an ordered set (A,<) is the isomorphism type of the

set, that is, the class of all sets (B,<) that are order isomorphic to (A,<). For

many linear orderings there are canonical representatives of such order types.

In particular, the order type of (N, <) is naturally denoted ω, while order type

of its reversed order- (N, >)- is denoted ω∗. We may observe that the set of

extensions of SmL
∼̇ ordered under ⊂ has order type 1 + ω∗.

Theorem 5. The set ExtSmL
∼̇ is of order type 1 + ω∗ under ⊂ and can be

exhaustively described as

SmL
∼̇ ( ... ( PHn + SmL

∼̇ ( ... ( PH1 + SmL
∼̇ ( CL ( LdaC

Proof. By Lemma 8, the only classes of SmL
∼̇-frames that determine logics are

the class of SmL
∼̇-frames itself, those gotten by the inclusion of an instance of

PHn for some n, the CL-frame, or the empty class, which vacuously forces every

formula. There are hence ℵ0 many extensions. As every PHn implies every

PHm for m ≥ n, it follows that this is a linear order; that the proper extensions

of SmL
∼̇ are indexed by ω∗, followed by two points, the proper extensions have

order type ω∗ + 1 + 1 ∼= ω∗. With the inclusion of SmL
∗ itself, it can be seen

that the order type of ExtSmL
∼̇ is simply 1 + ω∗.

From the above, we may infer that:

Corollary 1. PH1 + SmL
∼̇ is the maximal proper sdc-logic.

Proof. Immediate from Theorem 5.

We can from this also draw a corollary that holds in the case of Heyting-Brouwer

logic. We can define HB by taking the conditions for Int and daC to hold for HB

and adding truth conditions for the connective ← by the following:

• u 
HB A← B iff there is a w with wRu such that w 
HB A and w 1HB B

As intuitionistic negation is a part of the language of HB, we may employ the

SmL axiom without modification.

Corollary 2. PH1 + SmL is the maximal non-classical extension of HB.
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Proof. By Lemma 4, the class of frames forcing SmL is precisely that of those

forcing SmL∼̇. The inclusion of PH1 will hence “whittle away” all but two

of these frames, by which observation we may conclude for geometrical reasons

that this logic is maximal.

4 The Relationship Between si-Axioms and sdc-

Axioms

Given that intuitionistic logic is definable in Priest-da Costa logic, it is a rea-

sonable question to ask how much influence superintuitionistic axioms have on

the latter. As one ascends the lattice ExtInt, one is met by increasingly greater

restrictions on the frames; a näive assumption might be that the corresponding

sdc-logics place correspondingly greater restrictions on, e.g., the behavior of ⇁.

This is, however, not the case. The superintuitionistic axioms, when trans-

lated into the language of daC, are, in a certain sense, quite inert with even the

strongest of them having virtually no influence on how cointuitionistic nega-

tion behaves. We have axioms for sdc-logics that are wholly independent of the

hierarchy of defined analogues of si-logics in ExtdaC, that is, force no superin-

tuitionistic axiom and are forced by no superintuitionistic axiom. Indeed, we

have already met infinitely many.

Lemma 10. For every n ≥ 1, for no A in the language of Int not a theorem of

Int does �PHn
A∼̇ hold.

Proof. We recall Corollary 2.20 of [3]:

Int = {A : F 
Int A for every tree F}.

We may moreover note that every tree T by definition is backwards convergent.

Since Int is sound and complete with respect to a class of backwards convergent

frames, the property of backwards convergence will force no superintuitionistic

axiom. Since for all n > 1, PHn is weaker than PH1, this carries over to all such

logics.

Lemma 11. For every n ≥ 1, for no proper superintuitionistic logic λ does

�λ∼̇ PHn hold.
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Proof. For an arbitrary such n, suppose that some proper superintuitionistic

logic λ, �λ∼̇ PHn. Then, since λ ⊆ SmL, it would follow that �SmL∼̇ PHn. As

we have seen, however, frames such as Sn+1 are members of the class of SmL
∼̇

frames at which PHn fails. Hence PHn is not a theorem of the logic SmL
∼̇ and

a fortiori for any defined analogue of a proper si-logic.

These lemmas secure for us the next result.

Theorem 6. Every logic PHn is incommensurable with every logic λ∼̇ where λ

is a proper si-logic.

Proof. Immediate from the foregoing lemmas.

While there are sdc-logics wholly independent of any si-logical axioms, this is not

to say that there is no influence. There are cases in which sdc-logical axioms and

si-logical axioms can jointly exert influence where neither could independently.

To demonstrate such a case, we recall the Kreisel-Putnam axioms

KP (∼ A→ (B ∨ C))→ ((∼ A→ B) ∨ (∼ A→ C))

WKP (∼ A→ (∼ B∨ ∼ C))→ ((∼ A→∼ B) ∨ (∼ A→∼ C))

Let KP⇁ and WKP⇁ be the formulae in the language of daC gotten by sub-

stituting every instance of ∼ by ⇁ in the above two schemata. Inasmuch as

WKP⇁ is an instance of KP⇁, it is clear that the latter implies the former in

any λ ∈ ExtdaC.

First, we can give a partial analysis of the strength of WKP
⇁ by the following

pair of results:

Theorem 7. �PH1
KP⇁ and 2PH2

WKP⇁

Proof. To show that �PH1
KP⇁, consider a frame F such that F 
daC PH1

but F 1daC KP⇁; then for some point u, both u 
daC⇁ A → (B ∨ C) and

u 1daC (⇁ A→ B)∨ (⇁ A→ C). By the latter condition, there exist v, w such

that uRv and uRw with v, w 
daC⇁ A, v 1daC B, and w 1daC C.

Now, u ↓⊆ (v ↓) ∩ (w ↓), and as v 1daC B and w 1daC C, u likewise fails to

force these formulae and hence, u 1daC B ∨ C. As u 
daC⇁ A → (B ∨ C) we

infer that u 1daC⇁ A, and so at every u′ ∈ u ↓, u′ 
daC A. But v 
daC⇁ A, so

there must exist a v′ such that both v′Rv and at every point in v′ ↓ does A fail.

As such, v′ ↓ and u ↓ must be pairwise disjoint and backwards closed; but this

would imply that PH1 fails.
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Figure 2: Frame for the countermodel to �PH2
WKP⇁

We provide a general construction to show that 2PH2
WKP⇁. For the initial

setup, suppose there exists a point u such that u 
daC⇁ A→ (⇁ B∨⇁ C) but

u 1daC⇁ A →⇁ B and u 1daC⇁ A →⇁ C. Then there exist v, w accessible

from u such that v, w 
daC⇁ A, v 1daC⇁ B, and w 1daC⇁ C. By the latter

two conditions, we see that every point in v ↓ forces B and every point in w ↓

forces C; a fortiori, every point in u ↓ forces both of these formulae.

But as u 
daC⇁ A → (⇁ B∨ ⇁ C) and both v, w force ⇁ A, we can

easily see that v 
daC⇁ C and w 
daC⇁ B, and hence there exist v′ ∈ v ↓ and

w′ ∈ w ↓ such that at every point in v′ ↓, C fails and that at every point in

w′ ↓, B fails.

Without loss of generality, we examine the backwards cone of v and note that

v′ ↓ and w ↓ are both backwards closed subsets, though at every point in the

former C fails and at every point in the latter C holds. From such observations,

we produce a countermodel. Let F be represented by Figure 2.

Let valuation V on F be V (A) = {u, v, w}, V (B) = {s, u, v, w}, and V (C) =

{t, u, v, w}. We can confirm that F, V 
daC PH2 but F, V 1daC WKP⇁. The

former task can be quickly attained by observing by inspection that no point in

W has a root system of cardinality greater than 2.

For the latter, observe that v, w 
daC⇁ A due to the failure of A at s and

t, respectively. Moreover, as at every point in v ↓ does B hold and at every

point in w ↓ does C hold, v 1daC⇁ B and w 1daC⇁ C, though v 
daC⇁ C and

w 
daC⇁ B. This, in turn, implies that ⇁ B∨⇁ C holds at both v and w.

We immediately see that u 1daC⇁ A, so at every point accessible from u
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such that ⇁ A holds- namely, v and w, ⇁ B∨ ⇁ C holds. Yet by the above

observations, v witnesses the failure of ⇁ A →⇁ B at u and w witnesses

the failure of ⇁ A →⇁ C at u. Hence, neither disjunct in the consequent of

WKP⇁ holds at this point; with the antecedent verified at u and the consequent

not verified, this valuation reveals that 2PH2
WKP⇁.

We now recall the si-logic KC, which is the closure of Int and WEM =∼ A∨ ∼∼

A. Let KC
∼̇ be the sdc-logic daC + WEM∼̇. That KC

∼̇ is a proper extension

of daC may be seen by providing a countermodel to an instance of WEM∼̇.

Let W = {w,w′, w′′}, let R = {(w,w′), (w,w′)} ∪ {(u, u) : u ∈ W}, and let

the only point in W forcing A be w′′. Then, fixing an unsatisfiable formula ⊥,

inasmuch as {w′} = w′ ↑ and w′ 1 A, we may infer that w′ 
daC A → ⊥, i.e.,

w′ 
daC ∼̇A. As w′′ 
daC A, it follows that w′′ 1daC A → ⊥. As wRw′′ and

w′′ 
 A, we infer that w 1daC A → ⊥; likewise that wRw′ and w′ 
daC ∼̇A

implies that w 1daC ∼̇A→ ⊥. This is to say that w 1daC ∼̇A and w 1daC ∼̇∼̇A,

hence ∼̇A ∨ ∼̇∼̇A fails at w, i.e., this is a daC model at which an instance

of WEM∼̇ fails. Hence, the addition of this axiom scheme to daC filters out

frames such as the present one and strictly extends the logic.

We first show that this logic is not in itself sufficient to secure as a theorem

WKP⇁.

Theorem 8. 2KC∼̇ WKP⇁

Proof. Simply add a point x to the above countermodel such that vRx and wRx

and add x to the sets V (A), V (B), V (C). It is easy to check that the frame is

forwards convergent (as is required for KC and, by Lemma 4, for KC∼̇) but that

the model does not verify WKP⇁ at all points, as witnessed by u.

Though Theorem 6 suggests that the si-logical axioms seem inert, in tandem

with sdc-logical axioms, we can construct stronger logics. Let KC
∼̇ + PH2 be

the logic daC+KC∼̇ +PH2. Then, despite the independence of WKP⇁ from

each logic alone, in tandem the axiom is indeed forced.

Theorem 9. �KC∼̇+PH2
WKP⇁

Proof. Recall the general construction from Theorem 7 and note that such re-

quirements hold in any model at which WKP⇁. We had noted that v ↓ contains

a backwards cone v′ ↓ such that every point in this set forces B but fails to force
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C and that w ↓ contains a backwards cone w′ ↓, every point of which forces

C but fails to force B. We had also noted that while u ↓ is a subset of both

v ↓ and w ↓, both B and C are forced at every point in u ↓. In light of these

observations, we may furthermore note that v′ ↓, w′ ↓, and u ↓ are necessarily

pairwise disjoint.

Suppose that we are dealing with a model of KC∼̇ +PH2. Then the frame is

forwards convergent and hence there exists a point x such that vRx and wRx.

This implies that v′ ↓, w′ ↓, and u ↓ are pairwise disjoint, backwards closed

subsets of x ↓; but this is prohibited by the assumption of 2-rootedness. Hence,

the above, general conditions cannot obtain on such a frame.

On their own, it appears, the defined analogues of superintuitionistic logics op-

erate quite independently, though in conjunction with properly cointuitionistic

axioms such “symbiotic” logics can become logically efficacious. While the above

merely shows that there can be such an efficacy, how to properly characterize

the relationship between si-logical axioms and sdc-logical axioms- possibly in

ExtHB itself- deserves further thought.

5 daC as a Logic of Formal Inconsistency

We may make some observations concerning how daC relates to Logics of Formal

Inconsistency (LFIs)2. We appeal to Carnielli, Coniglio, and Marcos’ [?] and

recall the definition of an LFI with respect to a negation −. Two conditions

must hold for a logic to be an LFI. The first is that the logic must not be

explosive, that is,

• there is a set of formulae Γ and formulae A,B such that Γ, A,−A 0 B.

The second condition is that the logic is gently explosive. This demands that

• there is a set of formulae ©(C) depending exactly on parameter C with

the property that

– there are formulae A,B such that ©(A), A 0 B, and

– there are formulae A′, B′ such that ©(A′),−A′ 0 B′

with the property that

2I am grateful to a referee for directing my attention to the fact that daC is an LFI.
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• for all sets of formulae Γ and formulae A,B, the following holds: Γ,©(A),

A,−A ⊢ B.

We may observe a few features concerning daC qua LFI. Denote the set ∪{w′ ↓:

w′ ∈ w ↑} by the notation wց. Then if we extend the forcing relation to 
daC◦

to include a consistency operator ◦ with forcing conditions:

• u 
daC◦ ◦A iff either

– uց ⊆ V (A) or

– uց ∩ V (A) = ∅

we may observe that ◦ is definable in daC. The formula ∼̇(A∧ ⇁ A), i.e.,

(A∧ ⇁ A) → ⊥, with ⊥ an arbitrary, unsatisfiable formula, succeeds in the

task of defining ◦A.

Observation 1. u 
daC◦ ◦A iff u 
daC ∼̇(A∧⇁ A)

Proof. For right-to-left, suppose that in an arbitrary model w 
daC

∼̇(A∧ ⇁ A); then at every point w′ ∈ w ↑ R, w′ 1daC A∧ ⇁ A. This en-

tails that at every such point either w′ 1daC A or w′ 1daC⇁ A. By reflexivity,

w is such a point and hence either w 1daC A or w 1daC⇁ A.

In the case in which w 1daC A, for every w′ ∈ w ↑, either w′ 1daC A or

w′ 1daC⇁ A. The latter can not hold, as this would imply that w 
daC A;

hence, for all such w′, w′ 1daC A. By heredity, for every w′ ∈ w ↑, at no point

in w′ ↓ is A forced, i.e., wց ∩ V (A) = ∅.

In the case in which w 1daC⇁ A, we immediately may infer that w 
daC A

and, by heredity, that for all w′ ∈ w ↑, w′ 
daC A. As before, for all w′ ∈ w ↑,

either w′ 1daC A or w′ 1daC⇁ A. In this case, the former cannot hold, hence

at all such points w′ 1daC⇁ A. From this, we may infer that at every point in

w′ ↓, A is forced, i.e., wց ⊆ V (A).

· For left-to-right, we prove the contrapositive. Suppose that in an arbitrary

model w 1daC ∼̇(A∧⇁ A); as ∼̇ behaves like intuitionistic negation, this entails

that at some w′ such that wRw′, w′ 
daC A∧ ⇁ A. That w′ 
daC A implies

that wց ∩ V (A) 6= ∅. That w′ 
daC⇁ A implies the existence of a w′′ ∈ w′ at

which A fails, implying that wց * V (A). This ensures that w 1daC◦ ◦ϕ.

With this observation, we may employ the defined consistency connective with-

out loss of generality in the sequel.
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Observation 2. daC is an LFI with respect to ⇁

Proof. The failure of explosion simpliciter is immediate. For any propositional

parameters A and B, paraconsistency of daC entails that A,⇁ A 0daC B.

With respect to gentle explosion, we first set©(A) = {◦A}. We may observe

that the selection of © is as required by considering a one point, reflexive

frame with W = {w}. Consider valuations V1 and V2 such that V1(A) = W ,

V2(A) = ∅, and V1(B) = V2(B) = ∅. Clearly, w forces ◦A and fails to verify

B under each valuation, w forces A under V1 and forces ⇁ A under V2. By

soundness, we conclude that both ◦A,A 0 B and ◦A,⇁ A 0 B.

To show gentle explosion of daC, suppose for contradiction that at some point

w in a model, A, ⇁ A, and ◦A are all forced. By the latter, either wց ⊆ V (A)

or wց ∩ V (A) = ∅. By the first two conditions, however, there is a w′ ∈ wց

at which A is false and a w′′ ∈ wց at which A is true. Inasmuch as there can

be no model for this collection of formulae, at all models of this collection, B is

true.

Not only is daC an LFI, it is also a dC-system. To begin, we can rehearse

the definition of a C-system found in [?]. A logic λ2 is a C-system based on a

logic λ1 with respect to a negation − if:

• λ2 is a conservative extension of λ1

• λ2 is an LFI with respect to − such that ©(A) is a singleton

• The negation − is not definable in λ1

• λ1 is non-trivial

Observation 3. daC is a C-system based on positive intuitionistic logic (Int+)

with respect to ⇁

Proof. That Int
+ is non-trivial follows from the non-triviality of daC and that

daC conservatively extends Int
+ is shown in [10]. Observation 2 demonstrates

that daC is an LFI such that ©(A) is a singleton.

As is well-known (and observed in [10]), Int is not definable in the positive

intuitionistic logic Int
+. Suppose that the negation ⇁ were definable in Int

+;

then daC would be definable in Int
+. But inasmuch as Int is definable in daC,

this would entail that Int would be definable in Int
+.
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A dC-system is a C-system in which consistency of a formula is expressible

without extending the signature, that is, a consistency connective ◦ is definable.

Corollary 3. daC is a dC-system

Proof. Immediate from Observations 1 and 3.

We may also make an observation concerning common “axioms of propogation.”

We recall from [?] that, in the Hilbert-style axiomatization of the LFI Cia, the

following axioms govern the consistency operator ◦ (with a negation −):

bc1 ◦A→ (A→ (−A→ B))

ca1 (◦A ∧ ◦B)→ ◦(A ∧B)

ca2 (◦A ∧ ◦B)→ ◦(A ∨B)

ca3 (◦A ∧ ◦B)→ ◦(A→ B)

We can show that the majority of these axioms governing ◦ hold in daC and

consider the points in ExtdaC at which all these axioms hold.

Observation 4. bc1 is a theorem of daC

Proof. Suppose that in some model, there is a point u such that u 
daC ◦A and

u 1daC A → (⇁ A → B). By the latter, then, there exists a u′ ∈ u ↑ such

that u′ 
daC A and u′ 1⇁ A → B. The latter of these consequences implies

the existence of a u′′ ∈ u′ ↑ such that u′′ 
daC⇁ A. This entails that there

is a u′′′ ∈ u′′ ↓ at which A fails. But as uRu′ and u′Ru′′, u′′ ∈ uց; likewise,

as u′′′Ru′′, u′′′ ∈ uց. But there are hence points in uց at which A holds and

others at which A fails, contradicting the hypothesis that u 
daC ◦A.

Observation 5. ca1 and ca2 are theorems of daC

Proof. Suppose that a substitution instance of the common antecedent holds at

a point u, i.e., u 
daC ◦A ∧ ◦B. Four cases emerge:

I uց ⊆ V (A) and uց ⊆ V (B)

II uց ⊆ V (A) and uց ∩ V (B) = ∅

III uց ∩ V (A) = ∅ and uց ⊆ V (B)
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IV uց ∩ V (A) = ∅ and uց ∩ V (B) = ∅

We hence argue by cases, showing that in each case the consequents of ca1 and

ca2 hold at u.

Case I : That A and B are forced at every point in uց implies that A ∧B and

A∨B are likewise forced at every point. Hence, uց is a subset of both V (A∧B)

and V (A ∨B), whence u 
daC ◦(A ∧B) and u 
daC ◦(A ∨B).

Cases II and III : These cases are symmetric to one another. Suppose that

uց ⊆ V (A) and uց ∩ V (B) = ∅. Then at every point u′ ∈ uց, u′ 1daC A ∧B

and u′ 
daC A ∨ B. Hence, uց ∩ V (A ∧ B) = ∅ and uց ⊆ V (A ∨ B); this

implies that u 
daC ◦(A ∧B) and u 
daC ◦(A ∨B).

Case IV : That uց ∩ V (A) = ∅ and uց ∩ V (B) = ∅ implies that at any point

in uց, neither A nor B hold. This is to say that uց ∩ V (A ∧ B) = ∅ and

uց ∩ V (A ∨B), i.e., u 
daC ◦(A ∧B) and u 
daC ◦(A ∨B).

Thus, in any case in which u 
daC ◦A∧◦B, it follows that both u 
daC ◦(A∧B)

and u 
daC ◦(A ∨B).

Observation 6. ca3 is not valid in daC

Proof. Suppose that u 
daC ◦A∧◦B and recall the four cases from Observation

5. Before examining why ca3 is invalid, we first examine the cases in which the

consequent ◦(A→ B) holds.

Cases I and III : From uց ⊆ V (B) alone, we infer from heredity that for every

u′ ∈ uց, u′ ↑⊆ V (B). Hence, every for u′ ∈ uց, u′ 
daC A → B; this implies

that u 
daC ◦(A→ B).

Case II : As every u′ ∈ uց forces A and fails to force B, each u′ itself serves

as a witness to the failure of A → B at u′. Hence, uց ∩ V (A → B) = ∅ and

u 
daC ◦(A→ B).

It is from Case IV that we may draw a counterexample. Suppose that a frame is

not forwards convergent; then there are points t, u, v ∈ W such that uRt, uRv,

but (t ↑) ∩ (v ↑) = ∅. Let V (A) = v ↑ and let V (B) = ∅. Then we have a

countermodel to an instance of ca3.

As V (B) = ∅, that t 
daC ◦B is trivial. From (t ↑) ∩ (v ↑) = ∅, we infer

that at no point in t ↑ is A true and by heredity that at no point in tց is A

true. Hence, t 
daC ◦A and likewise for the conjunction ◦A ∧ ◦B.

30



Now, as at no point in t ↑ is A true, so A → B is forced at t vacuously.

But at u, there exists a point v such that v 
daC A but v 1daC B. Hence,

u 1daC A → B. But both t and u are members of tց; as they disagree with

respect to A→ B, it follows that t 1daC ◦(A→ B).

We are able to pinpoint the weakest point in ExtdaC in which all the above

axioms governing ◦ hold.

Observation 7. KC
∼̇ is the weakest sdc-logic including bc1 and ca1− 3

Proof. That KC
∼̇ extends daC entails not only that bc1, ca1, and ca2 are

theorems, but that in Cases I-III, ca3 holds. To show that ca3 is a theorem of

KC
∼̇ it thus suffices to examine Case IV.

Suppose that u 
daC ◦(A ∧ B) and Case IV holds. Then for contradiction

suppose that u 1daC ◦(A → B). This implies that there exists a v ∈ uց such

that v 1daC A → B. As every point in u ↑ vacuously forces A → B, v has to

be in uց r u ↑ but bears R to a v′ ∈ u ↑. Since v 1daC A → B, there exists a

point v′′ such that vRv′′ at which v′′ 
daC A. However, as A fails at all points

in uց A, we reason that v′′ is not a member of uց.

That v′′ 
daC A implies that v 1daC ∼̇A. Furthermore, as v′ ∈ u↑, v′ ↑⊆ uց

and thus A fails at every point in v′ ↑; that vRv′ thus implies that v 1daC ∼̇∼̇A.

But the model is presumed to be a model of KC∼̇ and hence we may infer that

v 
daC ∼̇A ∨ ∼̇∼̇A.

To show that KC
∼̇ is the weakest sdc-logic for which ca3 is a theorem,

consider a weaker logic λ. Then λ has model in which an instance of WEM∼̇

fails at a point u. The frame of the model is hence not forwards convergent and

the counterexample in Observation 6 is general enough that it can be built on

any such frame. Hence, ca3 is not a theorem of λ.

It is important to note that despite the fact that these axioms of propogation

hold in KC
∼̇ a number of weak principles common to many C-systems generate

classical logic when added to daC. For example, the addition of axiom cl of the

presentation in [?], the formula ⇁ (A∧ ⇁ A) → ◦A, is not a theorem of KC∼̇.

We observe that no proper sdc-logic has cl as a theorem.

Observation 8. The weakest λ ∈ ExtdaC at which cl holds is CL

Proof. Recall the frame described in Theorem 4 and consider a valuation V

in which V (A) = v ↑; immediately we observe that u 1daC A and a fortiori
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u 1daC A∧ ⇁ A. This entails that v 
daC⇁ (A∧ ⇁ A). That u ∈ vց and

v ∈ vց ensures that neither is vց ⊆ V (A) nor is vց ∩ V (A) = ∅. This entails

that v 1daC ◦A, whence we infer that v 1daC⇁ (A∧ ⇁ A)→ ◦A. Hence, every

non-singular frame admits a valuation contradicting an instance of cl, i.e., its

inclusion generates classical logic.

Despite the observation that daC, we close with a negative observation that may

attenuate the relevance of this logic to those primarily concerned with LFIs.

It is suggested in [?] that the logic Cmin, generated by including the axiom

A∨(A→ B) to Cω, is a more appropriate lower bound to the da Costa hierarchy

than Cω itself. Indeed, most of the LFIs warranting discussion, e.g., bC and Cila,

are extensions of Cmin. Yet Cmin and daC cannot be meaningfully combined

due to the following observation:

Observation 9. The only sdc-logic extending Cmin is CL

Proof. Again recalling the details of Theorem 4, consider a valuation V in which

V (A) = W r u ↓ and V (B) = ∅; immediately we observe that u 1daC A.

Moreover that v 
daC A and v 1daC B implies that u 1daC A → B. Hence,

u 1 A ∨ (A→ B). Thus, the only frame verifying Cmin or its extensions is the

singular frame and the only sdc-logic extending Cω is CL.

6 Future Work

A number of things come to mind that warrant further study.

For one, we have dealt only with the propositional Priest-da Costa logic and

its extensions here and have omitted any discussion of quantification. Priest

in [11] considers a first-order logic daCQ extending daC by adding intuitionistic

quantifiers and notes that in general quantifier interchange (or De Morgan’s

laws for quantifiers) between the intuitionistic quantifiers and cointuitionistic

negation fails in this logic; the only valid instance is ¬∃xϕ(x) �daCQ ∀x¬ϕ(x)

where ϕ(x) is atomic. Whether frame conditions may be strengthened to sup-

port a greater number of instances of quantifier interchange rules in Priest’s

daCQ is an interesting question; moreover, whether an alternative approach to

quantification in daC is possible warrants more thought.

Furthermore, the relationship between the lattices ExtInt, ExtHB, and ExtdaC

is worthy of exploration. A number of interesting, related systems- such as Brun-
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ner and Carnielli’s hierarchy AC of dualized Gödel logics outlined in [2]- relate

to a different fragment of HB than that determined by daC. It seems reasonable

that such systems could be semantically explicated by further generalizing the

si-logical approach to full HB.

Moreover, much of the interest in si-logics has historically been exploring

whether, e.g., the disjunction property holds in extensions of Int. Indeed, the

genesis of the si-logical axioms KP and WKP is attributable to such a query.

While the disjunction property fails in every λ ∈ ExtdaC, as can be seen by

taking one of the axioms the addition of which to daC generates CL as a disjunct,

a dual property may well be of interest. It seems possible that the constructible

falsity property, in which �daC⇁ (A∧B) implies that either �daC⇁ A or �daC⇁

B, may hold for some sdc-logics.

Finally, there has been a great deal of work relating the strong (or con-

structible) negation of Nelson’s logic N3 described in [9] to intuitionistic logic,

e.g., exploring the consequences of adding strong negation to superintuitionistic

logics in Kracht’s [5] and Hasuo and Kashima’s [4]. Exploring the relationship

between the strong negation of N3 (and its paraconsistent cousins) and cointu-

itionistic negation- already carried out by Wansing in [14]- is a quite interesting

area; extending the analysis to extensions of daC and HB seems to be as worthy

a project.
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