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The following section comes from the second chapter  of L. Floridi, Philosophy and Computing 
(London: Routledge, forthcoming). It is an introductory text to ITC (Information Technology 
and Communication) and conceptual issues in computer science written for students in 
philosophy with an elementary training in mathematical logic but no particular competence in 
computer science. 
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2.3. Turing Machines 
For centuries, human ingenuity addressed the problem of devising a conceptual and discrete 
language that would make it possible to assemble and disassemble ever larger semantic 
molecules according to a compositional logic. Today, we know that this was the wrong 
approach. Data had to be fragmented into digital atoms, yet the very idea that the quantity of 
elements to be processed had to be multiplied to become truly manageable was almost 
inconceivable, not least because nobody then knew how such huge amounts of data could be 
processed at a reasonable speed. The road leading to semantic atomism was blocked and the 
analytic engine was probably as close as one could get to constructing a computer without 
modifying the very physics and logic implemented by the machine. This fundamental step was 
first taken, if only conceptually, by Alan Turing. 

Alan Turing's contributions to computer science are so outstanding that two of his seminal 
papers, “On Computable Numbers with an application to the Entscheidungsproblem” and 
“Computing Machinery and Intelligence”, have provided the foundations for the development 
of the theory of computability, recursion functions and artificial intelligence. In chapter five, 
we shall analyse Turing's work on the latter topic in detail. In what follows, I shall merely 
sketch what is now known as a Turing machine and some of the conceptual problems it raises 
in computation theory. In both cases, the scope of the discussion will be limited by the principal 
aim of introducing and understanding particular technologies. 

A simple Turing Machine (TM) is not a real device, nor a blueprint intended to be 
implemented as hardware, but an abstract model of a hypothetical computing system that 
Turing devised as a mental experiment in order to answer in the negative a famous 
mathematical question. In 1928, David Hilbert had posed three questions:  
1. Is mathematics complete (can every mathematical statement be either proved or 

disproved)?  
2. Is mathematics consistent (is it true that contradictory statements such as “1 = 2” cannot be 

proved by apparently correct methods)?  
3. Is mathematics decidable (is it possible to find a completely mechanical method whereby, 

given any expression s in the logico-mathematical system S, we can determine whether or 
not s is provable in S?)  

The last question came to be known as the Entscheidungsproblem. In 1931, Kurt Gödel proved 
that every formal system sufficiently powerful to express arithmetic is either incomplete or 
inconsistent, and that, if an axiom system is consistent, its consistency cannot be proved within 
itself. In 1936, Turing offered a solution to the Entscheidungsproblem. He showed that, given 
the rigorous representation of a mechanical process by means of TM, there are decision 
problems (problems that admit Yes/No answers) that are demonstrably unsolvable by TM.  

To understand what a Turing machine is it may help to think of it graphically, as a 



flowchart—a stylised diagram showing the various instructions constituting the algorithm and 
their relationship to one another—a matrix, or just a program. For our present purposes, we can 
describe a TM as a (possibly fully mechanical) elementary tape recorder/player consisting of  
1. a control unit that can be in only one of two internal states s, usually symbolised by 0/1 (s ∈ 

{0,1}), operating 
2. a read/write head that can move to the right or to the left (m ∈ {R,L}), to scan 
3. an unlimited tape, divided into symmetric squares, each bearing at most one symbol α or β 

(where both α and β ∈ {0,1} and there is a finite number of squares bearing a 1). The tape 
holds the finite input for the machine (the string of 0s and 1s), stores all partial results 
during the execution of the instructions followed by the control unit (the new string of 0s 
and 1s generated by the head), and provides the medium for the output of the final result of 
the computation. 

The computational transitions of TM are then regulated by the partial function: ƒ: (α, s) → (β, 
m, s’) (a function ƒ: S → T is an operation that maps strings of symbols over some finite 
alphabet S to other strings of symbols over some possibly different finite alphabet T, a partial 
function holds only for a proper subset of S) and the machine can be fully described by a 
sequence of ordered quintuples: for example, <0, α, β, R, 1> can be read as the instruction “in 
state 0, if the tape square contains an α, then write β, move one cell right and go into state 1”. 
Note that we have already simplified the finite alphabet of TM by limiting it to only two 
symbols and that we have also limited the number of tapes that TM can use to only one. The 
number of types of operations that TM can perform is very limited. In each cycle of activity 
TM may 
• read a symbol at a time from the current square of the tape (the active square) 
• write a symbol on the active square 
• change the internal state of the control unit into a (possibly) different state 
• move the head one space to the right or to the left (whether it is the tape or the head that 

moves is irrelevant here) 
• halt (i.e. carry out no further operations). 
TM begins its computation by being in a specified internal state, it scans a square, reads its 
symbol, writes a 0 or 1, moves to an adjacent square, and then assumes a new state by 
following instructions such as “if the internal state = 0 and the read symbol on the active square 
= 1 then write 1, move left, and go into internal state = 1”. The logical sequence of TM 
operations is fully determined by TM's internal state (the first kind of input), the symbol on the 
active square (the second kind of input) and the elementary instructions provided by the 
quintuples. The machine can be only in a finite number of states (“functional states”), each of 
which is defined by the quintuples. All this means that a standard TM qualifies as at least a 
deterministic finite state machine (FSM, also known as finite automaton or transducer. Note 
that I say “at least” because a TM can do anything a simple FSM can do, but not vice versa) in 
that it consists of  
• a set of states, including the initial one 
• a set of input events 
• a set of output events 
• a state transition function that takes the current state and an input event and returns as 

values the new set of output events and the next state. 
TM is deterministic because each new state is uniquely determined by a single input event. At 
any particular moment in time, TM is always in a fully describable state. Any particular TM 
provided with a specific list of instructions could be described in diagrammatic form by a flow 



chart, and this helps to explain why TM is better understood as a program or software, and 
therefore as a whole algorithm, than as a mechanical device. After all, the mechanical nature of 
the tape recorder is irrelevant, and any similar device would do. 

Despite the apparent simplicity of a TM, it is possible to specify lists of “instructions” that 
allow specific TMs to compute an extraordinary number of functions (more precisely, if a 
function is computable by a TM this means that its computation can be transformed into a 
series of quintuples that constitute the TM in question). How extended is this class of 
functions? To answer this question we need to distinguish between two fundamental results 
achieved by Turing, which are usually known as Turing’s Theorem (TT) and the Church-
Turing Thesis (CTT), and a number of other corollaries and hypotheses, including Church’s 
thesis.  

The theorem proved by Turing was that there is a Universal Turing Machine (UTM) that can 
emulate the behaviour of any special-purpose TM. There are different ways of formulating this 
result, but the one which is most useful in this context, in order to distinguish TT from other 
hypotheses, refers to the class of functions that are computable by a machine. Turing’s 
Theorem says that there is a UTM that computes any function that is computable by a TM: 
TT) ∀∀ ƒƒ  ∃∃x (TMC(ƒƒ ) →→  (UTM(x) ∧∧  C(x, ƒƒ ))) 
TT means that, given any TM, there is a UTM whose tape contains the description of TM’s 
data and instructions and can mechanically reproduce it or, more briefly, that can be 
programmed to imitate TM. TT is a crucial result in computation theory: to say that a UTM is a 
TM that can encompass any other TM is like saying that, given m specific flow charts, drawn in 
a standard and regimented symbolism, which describe the execution of as many specific tasks, 
there is a universal flow chart n, written with the same symbols, that can reproduce any of them 
and thus perform the same tasks. This “super flow chart”, UTM, is a general-purpose 
programmable computing device that provides the logical foundation for the construction of the 
PC on our desk. Its universality is granted by the distinction between the elementary operations, 
performed by the hardware, and the instructions specified by a given program, contained in the 
software. Unlike the abacus, an analog calculator or a special-purpose TM, the same UTM can 
perform an unlimited number of different tasks, i.e. it can become as many TMs as we wish. 
Change the software and the machine will carry out a different job. In a way that will become 
clearer in a moment, the variety of its functions is limited only by the ingenuity of the 
programmer. The importance of such a crucial feature in the field of computation and 
information theory can be grasped by imagining what it would be like to have a universal 
electric engine in the field of energy production, an engine that could work as a drill, a vacuum 
cleaner, a mixer, a motor bike, and so forth, depending on the program that managed it. Note 
that sometimes UTMs may generically and very misleadingly (see below) be called Super 
Turing Machines. 

Turing's fundamental theorem brings us to a second important result, a corollary of his 
theorem: 
U) a UTM can compute anything a computer can compute. 
This corollary may be the source of some misunderstandings. If by U one means roughly that  
U.a) a UTM can be physically implemented on many different types of hardware  
or, similarly, that  
U.b) every conventional computer is logically (not physically) equivalent to a UTM  
then U is uncontroversial: all computer instruction sets, high level languages and computer 
architectures, including multi-processor parallel computers, can be shown to be functionally 
UTM-equivalent. Since they belong to the same class of machines, in principle any problem 



that one can solve can also be solved by any other, given sufficient time and space resources 
(e.g. tape or electronic memory), while anything that is in principle beyond the capacities of a 
UTM will not be computable by other traditional computers. All conventional computers are 
UTM-compatible, as it were. However, on the basis of a more careful analysis of the concept of 
computability, the corollary U is at best incorrectly formulated, and at worst completely 
mistaken. To understand why we need to introduce the Church-Turing Thesis. 

There are many contexts in which Turing presents his thesis. In 1948, for example, Turing 
wrote that “[TMs] can do anything that could be described as ‘rule of thumb’ or ‘purely 
mechanical’, so that “’calculable by means of a [TM]’ is the correct accurate rendering of such 
phrases” (Turing 1948:7, see webliography). A similar suggestion was also put forward by 
Alonzo Church and nowadays this is known as the Church-Turing Thesis: if a function ƒ is 
effectively computable (EC) then ƒ is computable by an appropriate TM (TMC) hence by a 
UTM (UTMC, henceforth I shall allow myself to speak of TMC or UTMC indifferently, 
whenever the context does not generate any ambiguity), or more formally 
CTT) ∀∀ ƒƒ  (EC(ƒƒ ) →→  TMC(ƒƒ )) 
Broadly speaking, CTT suggests that the intuitive but informal notion of “effectively 
computable function” can be replaced by the more precise notion of “TM-computable 
function”. CTT implies that we shall never be able to provide a formalism F that both captures 
the former notion and is more powerful than a Turing Machine, where “more powerful” means 
that all TM-computable functions are F-computable but not vice versa. What does it mean for a 
function ƒ to be effectively computable? That is, what are the characteristics of the concept we 
are trying to clarify? Following Turing’s approach, we say that ƒ is EC if and only if there is a 
method m that qualifies as a procedure of computation (P) that effectively computes (C) ƒ: 
a) ∀∀ ƒƒ  (EC(ƒƒ ) ↔↔  ∃∃m (P(m) ∧∧  C(m,ƒƒ )) 
A method m qualifies as a procedure that effectively computes ƒ iff m satisfies all the 
following four conditions: 
1. m is finite in length and time 
m is set out in terms of a finite number of discrete, exact and possibly repeatable instructions, 
which, after a given time (after a given number of steps), begin to produce the desired output. 
To understand the finite nature of m in length and time recall that in a TM the set of 
instructions is constituted by a finite series of quintuples (more precisely, we say that a TM is a 
particular set of quintuples), while in an ordinary computer the set of instructions is represented 
by a stored program, whose application is performed through a fetch-execute cycle (obtaining 
and executing an instruction). A consequence of (1) is the halting problem that we shall analyse 
at the end of this section. 
2. m is fully explicit and non-ambiguous 
each instruction in m is expressed by means of a finite number of discrete symbols belonging to 
a language L and is completely and uniquely interpretable by any system capable of reading L. 
3. m is faultless and infallible  
m contains no error and, when carried out, always obtains the same desired output in a finite 
number of steps. 
4. m can be carried out by an idiot savant 
m can (in practice or in principle) be carried out by a meticulous and patient human being, 
without any insight, ingenuity or the help of any instrument, by using only a potentially 
unlimited quantity of stationery and time (it is better to specify “potentially unlimited” rather 
than “infinite” in order to clarify the fact that any computational procedure that necessarily 
requires an actually infinite amount of space and time never ends and is not effectively 



computable, see below). A consequence of (4) is that whatever a UTM can compute is also 
computable in principle by a human being. I shall return to this point in chapter five. At the 
moment, suffice to notice that, to become acceptable, the converse of CTT requires some 
provisos, hidden by the “in principle” clause, for the human being in question would have to be 
immortal, infinitely patient and precise, and use the same kind of stationery resources used by 
UTM. I suppose it is easier to imagine such a Sisyphus in Hell than in a computer room, but in 
its most intuitive sense, the one endorsed by Turing himself (see chapter five), the thesis is 
easily acceptable as true by definition. 
More briefly, we can now write that: 
a) ∀∀ m (((P(m) ∧∧  C(m,ƒƒ )) ↔↔  ({1,2,3,4}(m))) 
When a TM satisfies {1,2,3,4} we can say that it represents a particular algorithm, if a UTM 
implements {1,2,3,4} then UTM is a programmable system and it is not by chance that the set 
of conditions {1,2,3,4} resembles very closely the set of conditions describing a good algorithm 
for a classical Von Neumann Machine (see below). The main difference lies in the fact that 
condition (4) is going to be replaced by a condition indicating the deterministic and sequential 
nature of an algorithm for VNM. Since the criteria are less stringent, any good algorithm 
satisfies {1,2,3,4}, and the three expressions “programmable system”, “system that satisfies the 
algorithmic criterion” and “system that satisfies conditions {1,2,3,4}” can be used 
interchangeably, as roughly synonymous.  

Typical cases of computational procedures satisfying the algorithmic criterion are provided 
by truth tables and tableaux in propositional logic, and the elementary operations in arithmetic, 
such as the multiplication of two integers. It takes only a few moments to establish that a=149 × 
b=193 = c=28757, although, since in this example both a and b are prime numbers (integers 
greater than 1 divisible only by 1 and themselves), it is interesting to anticipate here the fact 
that there is no efficient algorithm to compute the reverse equation, i.e. to discover the values of 
a and b given c, and that the computation involved in the prime factorisation of 28757 could 
take us more than an hour using present methods. This is a question concerning the complexity 
of algorithms that we shall discuss in more detail in chapter five. Here, it is worth remarking 
that the clause “in principle”, to be found in condition (4) above, is important because, together 
with the unbounded resources available to the idiot savant, it means that huge elementary 
calculations, such as 798876 × 38737, do not force us to consider the multiplication of integers a 
procedure that fails the test, no matter how “lengthy” the computation involved is.  

Clearly, conditions {1,2,3,4} are sufficiently precise to provide us with a criterion of 
discrimination, but they are not rigorous and formal enough to permit a logical proof. This 
seems to be precisely the point of CTT, which is perhaps best understood as an attempt to 
provide a more satisfactory interpretation of the intuitive concept of effective computation, in 
terms of TM-computability. From this explanatory perspective, wondering whether it is 
possible to falsify CTT means asking whether it is possible to show that CTT does not fully 
succeed in capturing our concept of “effective computation” in its entirety. To show that CTT 
is no longer satisfactory we would have to prove that there is a class of functions that qualify as 
effectively computable but are demonstrably not computable by TM, that is 
NOT-CTT) ∃∃ ƒƒ  (EC(ƒƒ ) ∧∧  ¬ TMC(ƒƒ )) 
The difficulty in proving NOT-CTT lies in the fact that, while it is relatively easy to discover 
functions that are not TM-computable but can be calculated by other mathematical models of 
virtual machines—all non-recursive functions would qualify (see below)—it is open to 
discussion whether these functions can also count as functions that are effectively computable 
in the rather precise though neither sufficiently rigorous nor fully formal sense, adopted in 



(a)/(b) and specified by the algorithmic criterion. The problem of proving whether NOT-CTT 
is the case can be reformulated in the following terms: does the existence of Super Turing 
Machines (STMs) falsify CTT? STMs are a class of theoretical models that can obtain the 
values of functions that are demonstrably not TM-computable. These include the ARNN 
(analog recurrent neural network) model of Siegelmann and Sontag or the dynamic systems of 
Koiran, Garzon, Cosnard and Moore. ARNNs consist of a structure of n interconnected, parallel 
processing elements. Each element receives certain signals as inputs and computes them 
through a scalar—real-valued not binary—function. The real-valued function represents the 
graded response of each element to the sum of excitatory and inhibitory inputs. The activation 
of the function generates a signal as output, which is in turn sent to the next element involved in 
a given computation. The initial signals originate from outside the network, and act as inputs to 
the whole system. Feedback loops transform the network into a dynamical system. The final 
output signals are used to encode the end result of the computation and communicate it to the 
environment. Recurrent ANNs are mathematical models of graphs not subject to any 
constraints. We shall discuss the general class of artificial neural networks at greater length in 
chapter five. The dynamic systems of Koiran et al. are mathematical structures representing 
models of systems whose state changes with time, and which may therefore exhibit chaotic 
behaviour. Note that neural networks may represent dynamic systems, but the latter can also be 
discrete models. The question concerning the computational significance of such models is 
perfectly reasonable, and trying to answer it will help us to understand better the meaning of 
CTT, and the power of UTM (recall that we began this section by asking how large the class of 
functions that are UTM-computable is). 

Let us begin by presenting a second hypothesis—sometimes simply mistaken for CTT and 
sometimes understood as a “strong” version of it—which is plainly falsified by the existence of 
STM. Following the literature on the topic, I shall label it M: 
M) ∀∀ ƒƒ  (C/M (ƒƒ ) →→  TMC(ƒƒ )) 
M says that if ƒ is a mechanically calculable  (M/C) function—ƒ can be computed by a machine 
working on finite data in accordance with a finite set of conditions—then ƒ is TM-computable. 
M is irrecoverably false. It may never be possible to implement and control actual STMs—
depending on the model, STMs require either an actually infinite number of processing 
elements or, if this number is finite, an infinite degree of precision in the computational 
capacity of each processing element—but this is irrelevant here. A TM is also a virtual 
machine, and the demonstration of the existence of a class of Super Turing (virtual) Machines 
is sufficient to prove, at the mathematical level, that not every function that can in principle be 
calculated by a any machine is also computable by a TM, that is 
STM) ∃∃ ƒƒ  (M/C (ƒƒ ) ∧∧  ¬TMC(ƒƒ )) 
Since we can prove STM, this falsifies M:  
NOT-M) STM →→  ¬ M 
An interesting consequence of what has been said so far is that, while CTT does not support 
any substantial philosophical conclusion about the possibility of strong AI (what is sometimes 
called GOFAI, see chapter five), NOT-M undermines any interpretation of the feasibility of 
strong AI based on M. The brain may well be working as a computational engine running 
mechanically computable functions without necessarily being a UTM (“brain functions” may 
be TM-uncomputable), in which case it would not be programmable nor “reproducible” by a 
UTM-equivalent system. But more on the strong AI program in chapter five. At the moment, 
we may ask whether NOT-M implies that CTT is also falsified, that is, whether we should also 
infer that 



CTT) STM →→  (NOT-CTT) 
Some computer scientists, most notably Hava T. Siegelmann, seem to hold that CTT is the 
case. They interpret the existence of STMs as ultimate evidence that CTT is no longer tenable 
and needs to be revised. They may in fact be referring to M, in which case they are 
demonstrably right, that is CTT = NOT-M. However, if we refer more accurately to NOT-
CTT, CTT is incorrect, for STMs do not satisfy the first half of the conjunction. They are 
theoretical machines that can compute classes of TM-uncomputable functions, but they do not 
qualify as machines in the sense specified by the algorithmic criterion, that is STMs implement 
computational processes but not computational procedures that effectively compute  ƒ in the 
sense specified by {1,2,3,4}. In STMs we gain more computational power at the expense of a 
complete decoupling1 between programming and computation (we have calculation as a 
phenomenon without having computational programmability as a procedure), while in UTM-
compatible systems we gain complete coupling between the programmable algorithmic 
procedure and the computational process of which it is a specification (in terms of computer 
program, the process takes place when the algorithm begins its fetch-execute cycle) at the 
expense of computational power.  

A likely criticism of the previous analysis is that it may end up making the defensibility of 
CTT depend on a mere definitional criterion. There is some truth in this objection, and by 
spelling it out we reach the second important result inferable from the existence of STMs (the 
first is NOT-M).  

A purely definitional position with respect to CTT holds that all computable functions are 
TM-computable and vice versa: 
CTTdef) ∀∀ ƒƒ  (C(ƒƒ ) ↔↔  TMC(ƒƒ )) 
Obviously, if (CTTdef) is the case, then M follows, so defenders of CTT may really be 
referring to (CTTdef) when they seem to move objections against CTT. In which case, it is 
possible to show that they are arguably right in evaluating the significance of STMs for CTT. 
For the existence of STMs proves that (CTTdef) is either false and hence untenable, or that it is 
tenable but then only as a matter of terminological convention, i.e. it should actually be re-
written thus: 
Def.) (∀∀ ƒƒ  (C(ƒƒ ) =def. TMC(ƒƒ )) 
My suggestion is that the possibility of STMs is sufficient to let us abandon (Def.). This is the 
second interesting contribution to our understanding of the validity of CTT, made by defenders 
of the computational significance of STMs. If we adopt (Def.), it becomes thoroughly unclear 
precisely what kind of operations STMs perform when they obtain the values of TM-
uncomputable functions. The acceptance of (Def.) would force us to conclude that STMs are 
not computing and, although this remains a viable option, it is certainly a most counterintuitive 
one, which also has the major flaw of transforming the whole problem of the 
verification/falsification of CTT into a mere question of vocabulary or axiomatic choice. As a 

                                                 

1 Coupling is the technical word whereby we refer to the strength of interrelations between the 
components of a system (e.g. the modules of a program, or the processing elements of an artificial neural 
network). These interrelations concern the number of references from one component to another, the 
complexity of the interface between the components, the amount of data passed or shared between 
components and the amount of control exercised by one component over another. The tighter the 
coupling, the higher the interdependency, the looser the coupling the lower the interdependency. 
Completely decoupled components—systems with the a null degree of interdependency—have no 
common data and no control flow interaction. 
 



result, it is more useful to acknowledge that STMs should be described as computing the values 
of ƒ. We have seen, however, that they do not effectively compute  ƒ, in the sense specified by 
the algorithmic criterion, although they calculate its values. Given the differences between 
TMs and STMs, the class of calculable functions is therefore a superclass of the class of 
effectively computable functions. This is the strictly set-theoretic sense in which Super Turing 
Machines are super: whatever can be computed by a TM can be calculated by a STM but not 
vice versa. Up to Turing power, all computations are describable by suitable algorithms that, in 
the end, can be shown to be equivalent to a series of instructions executable by a Turing 
Machine. This is the Church-Turing Thesis. From Turing power up, computations are no longer 
describable by algorithms, and the process of calculation is detached from the computational 
procedure controllable via instructions. This is the significance of STMs. Since there are 
discrete dynamical systems (including parallel systems, see below) that can have superturing 
capacities, the distinction between effective computability  and calculability cannot be reduced 
to the analog/digital or continuous/discrete systems distinction. It turns out that Turing’s model 
of algorithmic computation does not provide a complete picture of all the types of 
computational processes that are possible. Artificial neural networks and dynamic systems are 
computing models that offer an approach to computational phenomena that is complementary 
and potentially superior to the one provided by conventional algorithmic systems. In terms of 
computational power, digital computers are only a particular class of computers, though so far 
they have been the only physically implemented general-purpose abstract devices. However, 
even if STMs enlarge our understanding of what can be computed, it should be clear that this 
has no direct bearing on the validity of CTT. The fact that there are STMs demonstrates that M 
is false and shows that CTTdef is either provably false or trivially true but useless, but STMs do 
not show that CTT is in need of revision in any significant sense, because the latter concerns 
the meaning of effective computation, not the extent of what can be calculated by a system. 
CTT remains a “working hypothesis”, still falsifiable if it is possible to prove that there is a 
class of functions that are effectively computable in the sense of {1,2,3,4} but are not TM-
computable. So far, any attempt to give an exact analysis of the intuitive notion of an 
effectively computable function—the list includes Post Systems, Markov Algorithms, λ-
calculus Gödel-Herbrand-Kleene Equational Calculus, Horn Clause Logic, Unlimited Register 
Machines, ADA programs on unlimited memory machines—has been proved either to have the 
same computational power of a Universal Turing Machine (the classes of functions computable 
by these systems are all TM-computable and vice versa) or to fail to satisfy the required 
algorithmic criterion, so the Church-Turing Thesis remains a very reasonable way of looking at 
the concept of effective computation. This holds true for classical Parallel Processing 
Computers (PPC) and non-classical Quantum Computers (QC) as well. As I hope it will 
become clearer in chapter five, either PPCs and QCs are implementable machines that perform 
effective computations, in which case they can only compute recursive functions that are in 
principle TM-computable and CTT is not under discussion, or PPCs and QCs are used to 
model virtual machines that can calculate TM-uncomputable functions, but then these idealised 
Parallel or Quantum STMs could not be said to compute their functions effectively, so CTT 
would still hold. From the point of view of what is technologically achievable, not just 
mathematically possible, PPCs and QCs are better understood as “Super” Turing Machines 
only in the generic  sense of being machines that are exponentially more efficient than ordinary 
TMs, so rather than “super” they should be described as richer under time constraints (i.e. they 
can do more in less time). The “richness” of PPCs and QCs lets us improve our conception of 
the tractability of algorithms in the theory of complexity, but does not influence our 



understanding of the decidability and computability of problems in the theory of computation. 
Since they are not in principle more powerful than the classical model, richer computers do not 
pose any challenge to CTT.  

At this point, we can view a UTM as the ancestor of our personal computers, no matter what 
processors the latter are using and what software they can run. The computational power of a 
UTM does not derive from its hardware (in theory a TM and a UTM can share the same 
elementary hardware) but depends on 
• the use of algorithms 
• the intelligence and skills of whoever writes them  
• the introduction of a binary language to codify both data and instructions, no longer as 

actual numbers but as symbols  
• the potentially unlimited amount of space provided by the tape to encode the whole list of 

instructions, the input, the partial steps of computation and the final output, and finally  
• the potentially unlimited amount of time the machine may take to complete the huge 

amounts of very simple instructions provided by the algorithms in order to achieve its task.  
Despite their impressive capabilities, UTMs are really able to perform only the simplest of 
tasks, based on recursive functions. A recursive function is, broadly speaking, any function ƒ 
that is defined in terms of the repeated application of a number of simpler functions to their 
own values, by specifying a recursion formula and a base clause. More specifically, the class of 
recursive functions includes all functions generated from the four operations of addition, 
multiplication, selection of one element from an ordered n-tuple (an ordered n-tuple is an 
ordered set of n elements) and determination of whether a < b by the following two rules: if F 
and G1,…Gn are recursive, then so is F (G1,…,Gn); and if H is a recursive function such that for 
each a there is an x with (Ha, x) = 0, then the least such x is recursively obtainable.  

We can now state the last general result of this section. According to Church’s Thesis, every 
function that is effectively computable is also recursive (R) and vice versa: 
CT) ∀∀ ƒƒ  (EC(ƒƒ ) ↔↔  R(ƒƒ )) 
CT should not be confused with, but can be proved to be logically equivalent to CTT, since it 
can be proved that the class of recursive functions and the class of TM-computable functions 
are identical. Like CTT then, CT is not a theorem but a reasonable conjecture that is supported 
by a number of facts and nowadays results widely accepted as correct. If we assume the validity 
of CT, then we can describe a function ƒ from set A to set B as recursive iff there is an 
algorithm that effectively computesƒ(x), for x ∈ A. This is the shortest answer we can give to 
our original question concerning the extension of the class of functions computable by a UTM. 
We still have to clarify what it means for a problem to be provably uncomputable by a Turing 
Machine. 

Recall clause (1) above: m is finite in length and time. If the task in question is endless, such 
as the generation of the infinite expansion of a computable real number, then there is a sense in 
which the algorithm cannot terminate, but it would still be a correct algorithm. This is a 
different case from that represented by problems that cannot be solved by any TM because 
there is no way of predicting in advance whether or when the machine will ever stop. In the 
former case, we know that the machine will never stop. Likewise, given sufficient resources 
and a record of the complete state of the execution of the algorithm at each step, it is possible to 
establish that, if the current state is ever identical to some previous state, the algorithm is in a 
loop. Algorithmic problems are provably TM-unsolvable when it is possible to demonstrate 
that, in principle, it is impossible to determine in advance whether TM will ever stop or not. 
The best known member of this class is the halting problem (HP). Here is a simple proof by 



contradiction of its undecidability (a direct demonstration of the existence of undecidable 
decision problems is achievable via diagonalisation, but goes beyond the scope of this section): 
1. Let us assume that HP can be solved 
2. if (1) then, for any algorithm N, there is an algorithm P such that P solves HP for N 
3. let us code N so that it takes another algorithm W as input, i.e. W ⇒ N 
4. make a copy of W and code it so that W ⇒ W 
5. let P evaluate whether W ⇒ W halts (i.e. whether W will halt with W as an input) and let 

the algorithm N be coded depending on the output of P 
6. if the output of P indicates that W ⇒ W will halt, then let N be coded so that, when it is 

executed, it goes into an endless loop 
7. if the output of P indicates that W ⇒ W will not halt, then let N be coded so that, when it is 

executed, it halts. 
In other words, let N be coded in such a way that it does exactly the opposite of what the output 
of P indicates that W ⇒ W will do. It is now easy to generate a self-referential loop and then a 
contradiction by assuming N = W. For when we use algorithm N as input to algorithm N 
8. if the output of P indicates that N ⇒ N will halt, then because of (7) when N is executed it 

will enter into an endless loop and it will not halt 
9. if the output of P indicates that N ⇒ N will not halt, then, because of (8) when N is 

executed it will halt.  
So, according to (8), if N ⇒ N halts then it does not halt, but if it does not halt then according 
to (9) it does halt, but then it does not halt and so forth. This is a contradiction: N does and does 
not halt at the same time. Therefore there is at least one algorithm N such that P cannot solve 
HP for it, but (2) is true, so (1) must be false: HP cannot be solved. Sometimes, the simplest 
way to show that a computational problem cannot be solved is to prove that its solution would 
be equivalent to a solution of HP. 

After Turing, we have a more precise idea of the concepts of “mechanical procedure”, 
“effective computation” and “algorithm”. This was a major step, soon followed by a wealth of 
mathematical and computational results. Nevertheless, a UTM leaves unsolved a number of 
practical problems, above all the unlimited resources (space and time) it may require to 
complete even very simple computations. To become a reliable and useful device, a UTM 
needs to be provided with a more economical logic, that may take care of the most elementary 
operations by implementing them in the hardware, and a more efficient architecture (HSA, 
hardware system architecture, that is the structure of the system, its components and their 
interconnections). In summary, one may say that Boole and Shannon provided the former, and 
Von Neumann, with others, the latter. 


