
Causal Set Theory and Growing Block? Not
Quite

Abstract

In this contribution, I explore the possibility of characterizing the
emergence of time in causal set theory (CST) in terms of the growing
block universe (GBU) metaphysics. I show that although GBU seems
to be the most intuitive time metaphysics for CST, it leaves us with a
number of interpretation problems, independently of which dynamics
we choose to favor for the theory —here I shall consider the Classical
Sequential Growth and the Covariant model. Discrete general covari-
ance of the CSG dynamics does not allow us to individuate a single
history of the universe (defined by a causal history of different causal
sets), thereby making the claim that ‘the past exists’ at best prob-
lematic. In addition, because the evolution of the universe in CSG
dynamics leads to an outward branching causal tree, it becomes im-
possible to determine a proper ‘line of becoming’, thereby blurring the
presentists’ claim that only the present exists. Similarly, the covariant
approach runs into the same, if not even more severe problems, since
each configuration of the universe would amount to a set of possible
causal sets, thereby making the individuation of a single configuration
of the universe —and thus the physical interpretation of the theory—
implausible.

1 Introduction

There are several reasons why some physicists believe developing a theory
of quantum gravity would be a good idea. For example, the strong appeal
that reductionism has oftentimes played in science. Many scientists think
it is better to have a single theoretical framework that can explain many
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phenomena, rather than many theories each operating in a different domain.
In this sense, it would be better to have a single theory capable of explaining
phenomena such as black holes and particles’ scattering, rather than having
two different theories: one accounting for the existence of black holes, and
the other providing transition amplitudes for the scattering of subatomic
particles.

However, since reduction might not be enough of a reason to develop a
theory of quantum gravity, one could argue that there are phenomena that
neither of our best theories can explain properly. Indeed, while General Rel-
ativity (GR) tells us about the existence of exotic objects such as black holes,
it does not tell us what happens inside of them at the so-called singularity.
Similarly, quantum field theory (QFT) requires us to use some special tech-
niques to tame the infinities that the theory seems to present us with, leaving
us with the suspicion of some form of ad-hocness of some of our calculation
methods —independently of how accurate they are.

Finally, one can hardly overlook the manifest incompatibility between
GR and QFT: even though they are among the best empirically well-verified
theories that science has ever produced, they also seem to describe a very
different type of reality. On the one hand, GR presupposes that spacetime is
a dynamical entity and that Einstein’s equations constraint which specetimes
are allowed given a certain matter distribution. In addition, the dynamical
fields of the theory are continuous and local, that is, they undergo local
interactions only. On the other hand, QFT describes a very different type
of reality, one which relies on a non-dynamical background that constitutes
the playground of the different quantum fields. In addition, the theory is
fundamentally probabilistic (unlike GR), non-local, and discrete.

In recent years, many research groups have attempted to develop a uni-
fying theory for such apparently incompatible descriptions of the world (for
a general overview see: (Oriti 2009)). One common feature of many of such
new approaches is that spacetime seems to become a derivative entity, an en-
tity that does not partake to the fundamental structure of reality, but rather,
it emerges from the collective behavior of some more fundamental atoms-of-
space. The emergent behavior of spacetime has attracted the attention of
philosophers of science who promptly started to inquire different notions of
emergence, the epistemic possibilities of a theory of quantum gravity, and
the possible mechanisms for the emergence of spacetime. For example, if,
as many approaches seem to suggest, a theory of quantum gravity does not
presuppose spacetime as a fundamental structure, it becomes unclear how to

2



empirically probe the behavior of the new fundamental entities (Huggett and
Wüthrich 2013). The emergence of spacetime seems to suggest that we will
only be able to test the emergent properties derived by the theory, but if the
theory is constructed so that it recovers the results of quantum field theory
and general relativity, how should we assess the validity of the new quantum
gravity framework?1 In sum, it appears evident that a theory whose funda-
mental entities are not in-spacetime, but rather constitute-spacetime, poses
not only some physics challenges, but also many philosophical ones.

Indeed, a second philosophical problem, which is the one I will be dis-
cussing in this paper, is one that concerns the emergence of time starting from
more fundamental entities. In the absence of a spacetime background one
could legitimately ask how to recover the dynamics of the physical systems,
since dynamics is a concept that implies time evolution, but time evolution
is something that requires some form of temporal coordinate —although not
necessarily absolute. In this paper, I will consider the approach to quantum
gravity named Causal Set Theory (CST) and I will explore the possibility
of characterizing the emergence of time in terms of the growing block uni-
verse (GBU) metaphysics. Alas, I will show that although GBU seems to
be the most intuitive time metaphysics for CST, it leaves us with a number
of interpretation problems, independently of which dynamics we choose to
favor for the theory —here I shall consider the Classical Sequential Growth
(Rideout and Sorkin 1999) and the Covariant model (Dowker et al. 2020),
(Zalel 2020). Indeed, I will argue that the discrete general covariance of CSG
does not allow us to individuate a single history of the universe (defined by
a causal history of different causal sets), thereby making the claim that ‘the
past exists’ at best blurred. In addition, because the evolution of the uni-
verse in CSG dynamics leads to an outward branching causal tree, it becomes
impossible to determine a proper ‘line of becoming’, thereby blurring the pre-
sentists’ claim that only the present exists. Similarly, the covariant approach
runs into the same, if not even more severe problems, since each configura-
tion of the universe would amount to a set of possible causal sets, thereby
making the individuation of a single configuration of the universe —and thus
the physical interpretation of the theory— implausible.

The plan for the paper is the following: in Section 2 I will review the
basics of causal set theory and two of the most common dynamics: classical

1Obviously, one still hopes that the new theory will be able to account for new phe-
nomena (or new explanations) within the range of our working experiments.
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sequential growth and covariant model. In Section 3, I will discuss the prob-
lem of time in causal set theory and argue that the growing block view is the
most intuitive metaphysics for CST —some divergent opinions on the matter
can be found in: (Wüthrich 2023), (Arageorgis 2016), and (Huggett 2014). I
will focus on the distinction between the internal time of the theory —that
is, the partial ordering of the individual causal sets— and the emergence of
phenomenological time, associated with the transition between different con-
figurations of the universe (or causal sets). Finally, Section 4 investigates the
compatibility between the dynamics of theory (CSG and Covariant) with the
growing block view. I will show that interpreting CSG in light of the grow-
ing block view leaves open the problem of giving a physical interpretation to
the different histories of the universe. The covariant model does not lead to
any better interpretative results, for each node in the causal tree is consti-
tuted by a set of covariant causets, thereby making a physical interpretation
of the history of the universe even more challenging. Section 5 offers some
concluding remarks.

2 Causal Set Theory Overview

Causal Set Theory, which was originally proposed by (Bombelli et al. 1987),
is oftentimes appreciated for its ‘simple’ approach to understanding space-
time —it is perhaps because of this simplicity, together with a direct refer-
ence to set theory, that the theory is appreciated especially by philosophers
(Wüthrich 2023). While the simplicity of the mathematical structure and
fundamental principles warranted some appreciation, they also come with
the difficulty of formulating a proper dynamics: “One of the primary dif-
ficulties in formulating a dynamics for causal sets is the sparseness of the
fundamental mathematical structure. When all one has to work with is a
discrete set and a partial order, even the notion of what we should mean
by a dynamics is not obvious” (Rideout and Sorkin 1999, p. 1). Far from
being a complete survey, this section offers a brief overview of the mathemat-
ical structure of the theory and of its fundamental principles. More detailed
and comprehensive reviews can be found in (among others): (Surya 2019),
(Henson 2009), (Wallden 2013), (Dowker 2006), (Bombelli et al. 1987).

Causal set theory is inspired by the sum-over-histories approach, which
calculates the transition amplitude as a sum over the many possible histories
of the system. One of the reasons that make the sum over-over-histories an
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appealing formulation is that there no need for a preferred foliation or exter-
nal time parameter; instead, only the total history of the system is relevant.
Then, various observables can be related to the histories, thereby making
them independent of external observers. Causal set theory is inspired by this
formulation in that the domain of the sum in the sum-over-histories approach
corresponds to the sample space Ω of the theory, where the amplitudes are
defined by the dynamical processes and the observables are set of histories.

The two fundamental pillars of causal set theory are discreteness and
causal relations. With respect to the former, the theory assumes from the
very beginning that its fundamental ontology is constituted by discrete ele-
ments (atoms-of-space) related to each other by causal relations. The coarse-
grained approximation of such elements corresponds to (relativistic) space-
time. The assumption of discreteness as a fundamental property, rather than
being derived from a canonical process of quantization, bears some relevant
consequences —especially if we maintain relativistic spacetime as the guiding
star for the emergent properties that CST should reproduce. For example,
CST cannot be diffeomorphism invariant, and yet “the physical content of
a causal set is independent of what mathematical objects the causal set el-
ements are and is also independent of any additional labels those causal set
elements might carry: only the order relation of the elements and the num-
ber of elements has a physical meaning” (Rideout and Sorkin 1999, p. 3).2

I will discuss the principle of discrete general covariance below, since, be-
fore continuing, we need some basic definitions and properties of causal set
theory.

� A causal set (causet) is an ordered pair C : ⟨C,≺⟩ where C corresponds
to a set of discrete elements (atoms-of-space) and the binary relation
i ≺ j is transitive (∀x, y, z x ≺ y, y ≺ z, then x ≺ z), acyclic (∀x, y,
x ≺ y and y ≺ x then x = y), and locally finite (Card(C) <∞).

The expression ‘causal relation’ stands for a partial order relation and thus
it does not imply a metaphysics of time of any sort. Similarly, the defini-
tion of past of a given event does not imply a metaphysical commitment to
the existence of the past, but it simply consists of the set of elements that
precede the given event: past(x) := {y ∈ C|y ≺ x}. In this contribution I
will be using the irreflexive formalism of CST, for which the causal relation

2Notably, the fact that only the number of elements and their order relation has physical
meaning is amenable to a structuralist interpretation, see: (Wüthrich 2023).
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is irreflexive and the past of a given event does not contain the event itself.
Some other useful definitions in the context of CST are:

� A causal set is equipped with a discrete measure which assigns to each
subset of the causal set a volume equal to the number of elements in
fundamental units, up to Poisson-type fluctuations.

� A chain is a linearly ordered subset S of a given causet C in which every
two elements are related by the relation ≺ such that, for example, is
a chain of three elements.

� An anti-chain is a subset S of a given causet C in which there are no
elements related by the causal relation ≺. For example, the following
is a three elements anti-chain: .

� A stem is a subset S of a causet C that contains its own past. A total
stem is such that every element of the complement set of S lies to the
future of an extremal element of S. For example, in the following causal
set, the subset marked in red is a stem (yet, not a total stem) of the

set C:

2

5

1

3
4

6

� A link in a causet C is an irreducible relation between two events a ≺ b
such that there is no event in between a and b. A path is a sequence of
elements all related by a link.

� A family is the class of causets that can be formed by adding a single
maximal element to a given causal set. One can define a parent-child
relation as the transition from one causal set Ci to another causet Cn

such that: C → C ′. A gregarious child and a timid child are formed
by adding one element that is spacelike separated or to the future of
any other elements of the parent set respectively, for example: →
and → .

� An isomorphism is a bijective map between causal sets that preserves
the relations of partial ordering: given two causets C andD, f : C → D
such that f(x) ≺D f(y)↔ x ≺C y, ∀x, y.
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Despite the many definitions, the theory thus far presented does not warrant
the recovery of the relativistic spacetime structure. To ensure this, one needs
the Hawking-Malament theorem, which demonstrates the equivalence up to
conformal factor between the prescriptive spacetime structure of relativity
theory and the description of all causal relations taking place in spacetime
(see: (Hawking, King, and McCarthy 1976) and (Malament 1977)) The con-
dition that the equivalence holds up to a conformal factor means that causal
relations do not provide us with the scale information on the relativistic
manifold and, because of diffeomorphism invariance, we cannot retrieve such
information from an external embedding manifold. The axiom of local finite-

Figure 1: (a) A classical spacetime manifold X, (b) elements of C sprinkled on
X, (c) a causal structure embedded on C, (Dribus 2013, p. 5)

ness and the measure µmake up for the lack of scale data by establishing that
all ordered intervals in a causal set have finite cardinality. This corresponds
to having a finite cut-off interpreted as a measure of volume. Finally, the
continuum based geometry is recovered as a smoothing-out (coarse-graining)
of the discrete causal set. One might ask how many elements of a causal set
can fit in a unit of spacetime volume. (Dowker 2006) estimates that in a
causal set underlying a spacetime volume of 1cm3 · s contains approximately
10143 elements.

The measure µ, the atoms-of-space, and the partial order, should now
warrant a bottom-up reconstruction of spacetime. However, due to the nu-
merous potential configurations of elements in a causal set, the theory makes
use of an injective map ϕ : C → (M, g) from a causal set to a pseudo-
Riemannian manifold, such that given x, y ∈ C:

x ≺CS y ←→ ϕ(x) ≺M ϕ(y) (1)
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That is, the injective map (also called embedding) preserves the causal re-
lations of relativistic spacetime into the causal set, and it is constructed
by a process of Poisson Sprinkiling, as depicted in Figure 1 and remarked
by (Surya 2019, p. 16): “We say that a causal set C is approximated by
spacetime (M, g) if C can be obtained from (M, g) via a high probability
Poisson sprinkling [. . . ]In a Poisson sprinkling into a spacetime (M, g) at
density ρC one selects points in (M, g) uniformly at random and imposes a
partial ordering on these elements via the induced spacetime causality re-
lation”. It remains to determine how a manifold-like causal structure can
uniquely determine large-scale manifolds. Alas, the uniqueness of the con-
tinuum approximation is is warranted by a conjecture, the Hauptvermutung
(fundmanetal conjecture of causal set theory):

The Hauptvermutung of CST: C can be faitfully em-
bedded at density ρC into two distinct spacetimes, (M, g) and
(M ′, g′) iff they are approximately isometric (Surya 2019, p. 19).

The conjecture is not proven yet, but some work in this direction has been
put forward by, among others: (Bombelli 2000), (Noldus 2004), (Bombelli,
Noldus, and Tafoya 2012).

Before moving on, it is useful to visualize the theory as composed of
two levels: the individual causal set defined by all the elements in a partial
order relation, and the space of possible growths. The latter pertains to
the dynamics (as we shall see soon) and it represents the possible transitions
from one causal set to another in a tree of partially ordered causal sets named
poscau.

2.1 Classical Sequential Growth

The most common approach to the dynamics of causal set theory is called
Classical Sequential Growth (CSG) and it was originally developed in (Ride-
out and Sorkin 1999). The main idea of the model is that a causal set
is built one-element-at-a-time via transitions representing the evolutionary
steps. Each transition is associated with a classical probability that encodes
the likelihood of obtaining a causal set Cn among the many possibilities de-
fined by the kinematic space of the theory. The many possible growths and
the process of one-element-accretion give rise to what was defined earlier as
poscau: the tree representing the possible transitions from one causal set to
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another according to the partial order relation. An example of the poscau
up to four elements is represented in Figure 2.

Figure 2: A poscau up to four elements.

In the original formulation of the CSG model, the phenomenological pas-
sage of time was recovered from the process of accretion of the causal set,
as remarked by (Rideout and Sorkin 1999, p. 3): “The phenomenological
passage of time is taken to be a manifestation of this continuing growth of
the causet. Thus, we do not think of the process as happening ‘in time’ but
rather as ‘constituting time’, which means in a practical sense that there is
no meaningful order of birth of the elements other than that implied by the
relation ≺”. The order relation and the birthing of new events seem to allow
for a (natural) labeling that maps the growth of the causal sets to natural
numbers. Consider the interval of natural positive numbers and let Ω̃(N) be
the set of partial orders such that:

Ω̃(N) :=
⋃

C̃(n)

is the set of all finite labeled sets. (2)

A causal set C̃(n) ∈ Ω̃(N) is naturally labeled if there exist a map L : C̃(n)→
N that preserves the order relation in C̃(n), that is: C̃(n) ≺ C̃(n + 1) →
n < (n + 1). However, discrete general covariance is one of the physical
requirements of CSG that determine under what conditions a given history
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in poscau can be considered physically meaningful. The requirement, as we
shall see, undermines the possibility of a physical interpretation of the natural
labeling.

First, we want to know what questions we can ask of the dynamics, and
this corresponds to asking “which classes of causal sets (the ‘histories’ of
the theory) are measurable in a way compatible with general covariance”
(Brightwell et al. 2002, p. 2). To do so, we need to identify the questions,
and then to give an account of how to compute the answers in terms of
probabilities. Second, we set a sample space Ω, a σ-algebra R on the sample
space, and a probability measure µ with domain R. That R “is a σ-algebra
on Ω means that it is a family of subsets of Ω closed under complementation
and countable intersection. That µ is a probability measure with domain
R means that it takes members of R to non-negative real numbers and is
σ-additive, with µ(Ω) = 1. Finally, σ-additivity means that µ assigns to the
union of a countable collection of mutually disjoint sets in its domain the
sum of the measures it assigns to the individual sets” (Brightwell et al. 2002,
p. 6). The triad Ω, µ, and R constitutes a stochastic process that in causal
set theory uses: Ω̃ as the sample space of completed labeled causal sets, a
measure µ̃, and the domain R̃. The domain R̃ is constructed as the smallest
σ-algebra containing all cylinder sets cyl(C̃n) defined as: {C̃ ∈ Ω|C̃n is a
stem in Ω}, where C̃n indicates a labeled causal set.

The condition of discrete general covariance posits that the product of
transition probabilities along different paths in the causal tree (or poscau)
leading to a specific causal set Cn is equivalent to the transition probability
of an alternative path in the poscau that also culminates in Cn. As a con-
sequence, “different paths in P [the causal tree] leading to the same causet
should be regarded as representing the same (partial) universe, the distinc-
tion between them being pure gauge” (Rideout and Sorkin 1999, p. 5). For
example, in the causal tree represented below, the two paths that lead to the
final causet are physically indistinguishable.
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Yet, this does not mean that all paths are the same, but rather that there
is a class of equivalence of paths with the same initial and final causal
sets. Indeed: “just because the ‘arrival probability’ at C is independent
of path/labeling, that does not necessarily mean that it carries an invariant
meaning [. . . ] [r]ather, it limits the physically meaningful questions that we
can ask of the dynamics” (Rideout and Sorkin 1999, p. 10). This means that
a given path in a poscau does not necessarily define an individual causal
history, but rather a class of isomorphic paths: “only the relations between
elements have physical significance: the labels on causet elements are consid-
ered as physically meaningless. Thus, for a subset A ⊂ Ω̃ to be covariant, A
must also belong to R̃” (Brightwell et al. 2003, p. 6). Then, as pointed out
in (among others) (Brightwell et al. 2002), (Zalel 2023), (Rideout and Sorkin
1999), if we let R be the collection of all such sets, any of the elements of R
corresponds to a covariant question that can be answered by the dynamics
in the form of a probability measure. Alternatively, the condition of discrete
general covariance implies that the probability of arriving at a certain labeled
node of the causal tree depends on the sets in R̃.

The condition of discrete general covariance works also for individual
causal sets (the individual nodes in poscau). Indeed, we can label the indi-
vidual elements of a causal set, change the labels, and obtain a causal set
that is physically indistinguishable from the first one, as shown for example
in the following three causets:

1

54

6

2
3

and

1

34

3

2
5

and

1

64

5

2
5

(3)

The internal structure of a causal set needs to follow another physical
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requirement of the dynamics: internal temporality. This imposes that: “each
element [of a causal set] is born either to the future of, or unrelated to, all
existing elements; that is, no elements can arise to the past of an existing
element” (Rideout and Sorkin 1999, p. 9). Internal temporality sets some
limits to label transformations and to the growth of a causal set in a way
that given a new element x in a labeled causal set C̃n, then x ̸≺ y, ∀y ∈ C̃n.
One might notice already that the condition of internal temporality does add
much to the theory in that it replicates the relation of partial order inside
the structure of a causal set. Indeed, the partial order relation allows for the
growth of a causal set one-element-at-a-time insofar as the child element is
not born before its parent —stil allowing for the possibility that a newborn
event can be unrelated to any other element of the set.

Therefore, to further limit the possible growths of causal sets, (Rideout
and Sorkin 1999) adds the condition of Bell’s causality, which introduces an
idea of locality with respect to the causal influence exerted by subsets of C̃n

onto newborn events: “The physical idea behind our condition is that events
occurring in some parts of a causal set C should be influenced only by the
portion of C lying to their past” (Rideout and Sorkin 1999, p. 10). The
physical idea is then formalized in the principle that the ratio of a transition
probability between two distinct paths from the same given causal set C is
the same as the ratio of the transition probabilities of two different paths
from the same set B without spectators:

Prob(C → C1)

Prob(C → C2)
=

Prob(B → B1)

Prob(B → B1)
(4)

where the transitions C → C1 and C → C2 are two paths of poscau starting
from the same causal set, the causet B is the union between the precursor
of the transition C → C1 with the precursor of the transition C → C2, and
B1 and B2 are the union between the set B with the newborn element in C1

and C2 respectively.
Finally, I conclude this review of the CSG models by mentioning the last

physical requirement, the Markov sum, and the formula for the transition
probability at a given stage n of the causal tree. The Markov sum rule de-
mands that the total sum of the transition probabilities of the causal tree
must add to unity. One interesting aspect of this is that the transition prob-
abilities should change with the progressive accretion of the causal set and
they become finalized only when the causal set is ‘run to completion’. This
is made evident in the work by (Rideout and Sorkin 1999) where it is shown
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(Lemma 2) that the addition of a disconnected element does not depend on
the internal structure of the causal set, but only by its cardinality. Transi-
tions can be calculated by associating to each newborn element a probability
of being unrelated to any other element of the set. In general, the probability
for a given transition is given by the formula: (Dowker et al. 2020)

P (C̃n → C̃n+1) =
λ(ω̄,m)

λ(n, 0)
, where: λ(p, k) :=

p−k∑

i=0

(
p− k
i

)
tk+i (5)

where ω̄ is the cardinality of the ancestor set of the newborn element n,
and m is the number of maximal elements of the ancestor set of n. What
the equation emphasizes is that covariant events in CSG are combinations of
stem events, and this implies that every physical statement in CSG dynamics
is a combination of statements about which isomorphism classes of labeled
causal (sub)sets are stems in the causal set representing the universe.

2.2 Covariant Growth

The general consensus is that the elements of a causal set are indistinguish-
able, thereby interpreting general covariance of general relativity as the label-
invariance in causal set theory. This blurs a notion of a total order and
thus of global becoming. While the labeling in CSG contains elements of
gauge invariance, it also reflects the partial order postulated by the theory.
Then, one could imagine to work with unlabeled causal sets and thus elimi-
nate the problem of adding the invariance under label transformations. This
amounts to asking whether it is possible to construct: “[. . . ] a physically
well-motivated measure on the stem algebra R(S) directly, in a manifestly
label-independent way that does not rely on any gauge dependent notion
and which respects the heuristic of growth becoming” (Dowker et al. 2020,
p. 12). Alas, after introducing the covariant dynamics of causal set theory,
I will emphasize that an unlabeled partial order is an equivalence class of
order-isomorphism partial orders. This is to say that the covariant models
do not work with individual configurations that are indistinguishable un-
der label transformations, but they work with sets of isomorphic causal set
configurations. Hence, not only the unlabeled approach (i.e.,: covariant dy-
namics) does not retain a global becoming, but it complicates the physical
interpretation of the covariant causets at a given node.
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First of all, we define as order any unlabeled causal set, which is a class
of equivalence of labeled causal sets.

1

54

6

2
3

and

1

34

3

2
5

and (6)

Then, from the definition of order, one can define S an unlabeled stem if there
is a labeling of S that is a stem in a labeled causal set C̃. In CSG, the new
elements grow one by one and for each labeled causal set one can individuate
a cylinder set as a stem. Then, the set of cylinder sets defines a σ-algebra R̃
which is also the domain of the probability measure µ̃ induced by the causal
histories —in this sense, histories ϵ̃ ∈ R̃ are interpreted as observables of
the theory (Zalel 2023), (Dowker et al. 2020). I have also briefly discussed
how CSG adds discrete general covariance adds the invariance over label
transformations to the theory, thereby limiting the number of possible causal
sets. This limited collection of causal sets is the set of covariant events for
which one cannot distinguish between order-isomorphic causal sets, and it
corresponds to a sub-σ-algebra, R ⊂ R̃.3

If one wishes to interpret a random walk on the covariant tree as a physical
process, then we need to give a physical interpretation to each node in the
tree. Thus, for example, arriving at a given node D should correspond to the
physical occurrence of the causal history stem(D). But, one of the problems
is that some nodes can be associated with different stem sets (unlike for
cylinder sets): stem(A) ∩ stem(B) ̸= ∅. For example, consider the causal

set:

1
2

3

4
5

6

The node labeled (6) can be individuated by two labeled causal

histories [A = (1, 2, 3, 4)]∩ [B = (1, 2, 3, 5)] ̸= ∅. The non-empty intersection
means that the identification of the stem sets with physical occurrences of
causal histories does not warrant the possibility of having a unique physical
causal history. The solution proposed by the covariant approach is that “a
covariant dynamics can be defined as a walk on a tree formed of countably
many levels in which the nodes in level n are not single n-orders, but sets
of n-orders. Each set of n-orders in level n will correspond to the covariant

3A σ-algebra on a set X is a non-empty collection Σ of subsets of X that is closed under
countable unions, complement, and countable intersections. The ordered pair < X,Σ >
is a measurable space.
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event ‘the n-stems of the growing causal set are the elements of this set’. We
call this the covtree, short for covariant tree” (Zalel 2023, p. 10).

{ }

{ , } { } { }

{
,

} { }
{ }. . . . . .

Figure 3: Example of a covariant tree.

A covariant tree (see: Figure 3) is a partial order whose elements are
the collection of sets for which there is a certificate, and the relation is the
usual causal relation ≺. A certificate Γn is an order C such that Γn ⊆ Ωn

is non-empty and Γn is the set of all n-stems in C. For example: given

Ω(3) =
{

, , , ,
}

one of the certificates of Ω(3) is a causal set

that contains all stems of Ω(3) as shown below:

That the nodes of the covtree are collections of sets for which there is a
certificate guarantees that the nodes are not simply combinations of causal
sets with cardinality n. For example, consider again the collection of 3-orders

Ω(3). The subset Γ3 =
{

,
}
⊂ Ω(3) has no certificate because any order

C that is a certificate of Γ3 will contain the order . That is, one cannot
build a certificate from the set Γ3 without including the set as its stem.
Finally, the map in (Dowker et al. 2020)

O(Γn) := {Bn−1 ∈ Ω(n− 1)|∃An ∈ Γn s.t. Bn−1 is a stem in An}

takes the set Γn to the set of (n− 1)-stems of elements of Γn. For example:

O
({

, ,
})

= { , } (7)
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We can now give a better definition of covtree as the partial order < Λ,≺>,
where Γn ≺ Γm if and only if n < m and Om−n(Γn) = Γm.

Thus, the map O helps us navigate covtree backward, but: “[a]t stage
n, we do not know which finite order has grown thus far nor its cardinality,
only which n-stems it contains. While in the CSG models the growth is
explicit, on covtree it is implicit or ‘vague’. But if there is a process of
growth which can be associated with a covtree walk, then it may be that it
is this quality of vagueness which embodies asynchrounous becoming” (Zalel
2023, p. 20).4 Here, the expression ‘asynchronous becoming’ refers to the fact
that new elements of a causal set are born in a partial, order, see: (Sorkin
2007) (Dowker 2014), (Dowker 2020) (Bento and Zalel 2021).

Since the collection of stem and of certificate sets generates the same σ-
algebra, we can define a measure µ on unlabeled causal sets similarly to how
we defined the measure on random walks on labeled poscau in CSG.5 How-
ever, similarly to CSG models, it is not granted that the dynamics defined
on un-labeled causal sets is physically interesting. CSG models limited the
number of possible causal sets by adding the conditions of Bell Causality and
Markov Sum, but this same conditions cannot be applied to the covariant
dynamics since both conditions require labeling. For example, Bell’s causal-
ity applies insofar as the new-born element of a transition can be uniquely
individuated —which is not possible in covtree due to the nature of orders
as isomorphic classes.

Then, even though covtree allows us to define a dynamics that avoids the
problem of introducing gauge elements (labels), it does not escape the prob-
lem of identifying which histories in covtree (paths) are physically salient.
This raises a few pressing questions that make the model less appealing: “is
there a condition on a random walk up covtree which expresses the physical
condition of relativistic causality? [. . . ] is this new condition enough to re-
duce the class to a physically interesting one or are other conditions needed
and what are they?” (Dowker et al. 2020, p. 26).

4This is warranted by a theorem that proves that every path in covtree has at least one
certificate, and it is proven by showing that there is a surjection from the set of infinite
orders Ω to the set of different covariant paths. See: (Zalel 2023), (Zalel 2020) and (Dowker
et al. 2020) for details.

5I shall leave the details of deriving the measure to more mathematically oriented
reviews, for example: (Surya 2019), and (Dribus 2017).
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3 The Problem of Time

3.1 Presentism and Block View

In a recent paper, (Wüthrich 2023) argues that the block view is the best
approach to address time in causal set theory and classical sequential growth,
and that structuralism is the best metaphysics for causal set theory in general.
Here, I shall focus on the former point, and leave the latter to later works.

Let us first consider space and time separately. On the one hand, causal
precedence is structurally similar to some temporal precedence with no time-
extension, nor duration, nor flow. The similarity is so evident that (Dowker
2020, 136n) considered the fundamental relation of causal set as temporal and
not causal. On the other hand, space is usually characterized by topological
and metrical structures that define relations such as: nearby, between, far
away, etc. In relativistic spacetime, space is built as a foliation of Lorentzian
manifolds into 3-d hypersurfaces that are ordered by a time parameter. But,
causal set theory has no such structure, and at best one can use inextensible
anti-chains as equivalent to the foliation of relativistic spacetime. However,
inextensible antichains are un-structured subsets of a causal set, and thus
do not possess an internal structure that can mirror the one of Lorentzian
spacetime hypersurfaces. It seems that not only spacetime is difficult to
recover from causal set theory, but also space alone.

It has been widely discussed in the literature of philosophy of time how
relativistic physics tends to make things difficult to the presentists (and grow-
ing block theorists), due to the lack of a sharp distinction between what is
present and what is not.6 As remarked in (Wüthrich 2023), some solutions
have been attempted and thoroughly discussed in the literature. For ex-
ample, light-cone presentism (Stein 1991) maintains that, given an event in
spacetime, all events in the light-cone are to be considered as co-present.

However, the events on the null-geodesics, and thus those events that are
sitting on the edge of the light-cone, cannot be ordered globally by a relation
of temporal precedence. The reason for this impossibility is that these events
are spacelike separated, and therefore, their ordering is dependent on the
choice of reference frame. In other words, it is a consequence of the relativity
of simultaneity in relativity theory. This is analogous to how the events on
the antichains in causal set theory have no order, although the reason in that

6See, for example: (Ingram and Tallant 2023).
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case is the lack of internal structure of the antichain subsets.
In addition, since a light-cone is always centered around an event, the

present is always dependent on the arbitrary choice of the reference frame
that takes the event as the central point of the light-cone. Yet, an attempt
to make (Stein 1991)’s proposal objective was set forth in (Clifton and Hog-
arth 1995). With their account, the present becomes objective in that it
is identified with a given worldline, but it also becomes inevitably local:
“[w]orldline-dependent becoming is objective in that it only relies on the
geometry of Minkowski spacetime. Furthermore, it is absolute in that it is
frame-independent, i.e., is based only on Lorentz-invariant structures. How-
ever, it is local in that it depends on a particular given worldline. Thus, even
though it does not privilege a particular frame of reference, it sanctions one
particular worldline or observer. I will call this feature of worldline-dependent
becoming local” (Wüthrich 2023, p. 14).

Special relativity is therefore a problem to the advocates of presentism,
since they either give up on their metaphysical desiderata —that is a clear
and well-defined notion of becoming—, or they give up on the compatibility
with relativity. Similar problems arise with general relativity (GR) as well:
on the one hand, some models (such as FLRW models) allow for a foliation of
spacetime into hypersurfaces, but the principle of general covariance brings
back the problems we have seen for light-cone presentism. On the other hand,
other models of GR do not admit a foliation, thereby blurring the distinction
between what is present and everything else. This means that in facing the
theory of relativity, “the presentist has two main strategies available: either
they forgo the idea of global present in favor of a more local notion, or else
they make the case that those unfoliable spacetimes are, although formally
models of GR, not physically reasonable possibilities” (Wüthrich 2023, p. 16).

What about causal set theory? The kinematics does not offer a proper
notion of becoming in that it only consists of the space of the possible con-
figurations of the causal sets. Therefore, real becoming could be based on
the dynamics of the theory, which limits the configurations of the causal sets
to those that are physically possible.

However, we have seen how the principle of discrete general covariance in
causal set theory mirrors the diffeomorphism invariance of general relativity.
It follows that, since general covariance in GR is problematic to the presen-
tist view, the same difficulty manifests in causal set theory due to discrete
general covariance. In addition, light-cone presentism, applied to general rel-
ativity, also fails to provide a proper global line of becoming since only the
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events on the surface of the light-cone (i.e.: edges excluded) can be tempo-
rally ordered. This implies that the ordering of all events on a light-cone
corresponds to a partial order similar to that of causal set theory. The two
partial orders are more than ‘just similar’ in that the Hawking-Malament
theorem guarantees that the totality of causal relations in relativistic space-
time describes the structure of spacetime up to a conformal factor. Causal
set theory is built from such a result, and thus it should be of no surprise
that the two theories display an analogous causal structure. It is by con-
struction that the local temporal becoming of general relativity resembles
the asynchronous becoming of causal set theory.

It is thus explained why causal set theory does not solve the problems
of temporal becoming that were set forth in (Wüthrich 2023), and related
discussions in philosophy of time. The theory is constructed starting from
the very causal structure of relativistic spacetime that makes the presentists’
view at best problematic. In addition, Bell’s causality, which is one of the
requirements imposed to the theory to select physically significant causal
sets, establishes that the growth of a new element does not depend on the
global structure of the causal set. What this means is that there is a locality
condition engrained in the CSG dynamics that affects the causal relation and
the birth of new elements. By affecting the birth of elements, the locality
condition excludes the possibility of having a global temporal coordinate
indexing each birth. Also, the very definition of the causal condition as a
partial order hinders the possibility of a global temporal coordinate, in that
it would become impossible to give a temporal order to newborn un-linked
events. It follows that the difficulties raised by general covariance to the
growing block view and presentism are similar, if not the same, as the ones
raised by the principle of discrete general covariance.

The conclusion of (Wüthrich 2023, p. 20) is that the proper temporal
metaphysics for causal set theory can be determined only when causal sets
run-to-completion: “it thus seems as if all events in a dynamically growing
causal set, including ‘past’ ones, remain ontologically indeterminate until the
growth process is completed. At that stage, finite or not, we have the full
causal set, and the resulting ontology is indistinguishable from one based on
the block universe metaphysics”. It is indeed true that the proper transi-
tion probabilities in CSG can be assigned when the causal set has ‘run-to-
completion’, that is, Ω̃(N) = Ω̃(∞) = Ω̃, but this only avoids the need for
updating all probabilities at each new birth in the causal set. It remains that
a run-to-completion labeled causal set is still subject to the principle of dis-
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crete general covariance, and that a given causal history will be equivalent to
all of the other causal histories that partake to the same isomorphism class.

Perhaps, the best analogy is with the sum-over-histories approach to
quantum mechanics, where the transition amplitude of a given system is
obtained by summing over the individual transition amplitudes of all the
possible trajectories, each weighted by a phase factor that contains the clas-
sical action of the given path.7 In the case of the sum-over-histories, the
initial and final states of the system are fixed, thereby resembling the idea
of a causal set that has run-to-completion. However, (Forgione 2020), for
example, has shown that it is impossible to individuate a physical history
of the quantum system among the ensemble of possible paths, and that the
possible histories are subject to a mechanism of cancellation that involves
paths that are mathematical artifacts, and thus have no physical interpreta-
tion. The CSG dynamics offers no such mechanism of cancellation, and the
principle of discrete general covariance does not allow us to distinguish the
physical history of the universe, even when run-to-completion.8

The eternalist view accommodates causal set theory with respect to the
absence of a global line of becoming, and that is because the block view does
not bestow a special ontological value to presentness and present entities.
This is possible because of the run-to-completion condition, which by defini-
tion excludes the existence of a line of becoming. That is, without becoming,
one does not need to identify a line that separates present from future, and
the metaphysics of eternalism suddenly becomes a viable possibility to ac-
count for time in causal set theory. Yet, even if we accept the eternalist view,
we still have no answers to what causal history represents the history of the
universe, nor we have a clear physical interpretation of what it means to have
a causal set that has run-to-completion.9

3.2 The Growing Block View

By investigating some philosophical questions about temporality and becom-
ing, (Arageorgis 2016) compares aspects of general relativity with the causal
set approach. The conclusion is that, despite some promising assumptions,

7See, for example: (Forgione 2020), (Hartle 1993).
8I will say more about arguments that are based on causal sets that have run-to-

completion in the next section.
9the mathematical aspects of a causal set that has run-to-completion are discussed in

(among others): (Brightwell et al. 2003) and (Brightwell et al. 2002).
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causal set theory fails at identifying a clear ‘line of becoming’, and thus at
fitting in with the metaphysics of the growing block view. In what follows, I
shall integrate the argument presented in the previous section with some con-
siderations from (Arageorgis 2016), and I will expand them to the covariant
dynamics presented in Section 2.

The starting point of (Arageorgis 2016)’s argument is the recognition
of how difficult it is to reconcile a clear notion of becoming and relativis-
tic spacetime. The source of this difficulty is because of the 4-dimensional
manifold that hosts the geometry of spacetime and that seems to favor an
eternalist metaphysical view.

What I advocate as ‘the doctrine of the manifold’ [. . . ] is
simply a philosophical acceptance, as an ultimate literal truth
about the way things are in themselves, of the conception that
nature, all there is, was, or will be, ‘is’ (tenslessly) spread out in a
four dimensional scheme of location relations which intrinsically
are exactly the same, and hence in principle commensurate, in
all directions, but which hapen to be differentiated in our neigh-
borhood at least, by the fact pattern of the things and events in
them. [Cited in: (Savitt 2002, p. 2)].

The debate is again between two major camps: on one side there is the static
notion of the world (block-view and eternalism) for which what exists does
not depend on time and change, but rather it is a matter of what properties
the universe has at a given time. On the other hand, there is the dynamical
view (presentism and growing block view) for which the properties of the
universe (and objects thereof) change with time. For example, the notion of
cause often plays a role in the dynamical view, for the events of the universe
are connected by causal relations in a way that the cause, which is prior-in-
time, produces a temporally subsequent event.

From a philosophical point of view, the problems start to emerge at the
junction point between cause and effect, that is, at the imaginary line of
becoming. Indeed, to support the dynamical view, one needs a robust notion
of becoming that applies to the spacetime manifold that hosts all events. As
I recalled in the previous section, the common solution is to identify the line
of becoming with the spacelike hypersurfaces that foliate spacetime, and to
index the foliation with a global time-function. There are some problems
related to this solution, such as: the fact that some models of general rela-
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tivity do not admit a global time function, or, even if they did, they admit
infinitely many.

While the causal set approach to quantum gravity might seem to provide
a possible solution to the problems of a global time function, (Arageorgis
2016) suggests that such a hope is in the end misplaced. The hope to use
CST to solve the problem of global time is due to the CSG models and to
the growth of one element at-a-time. For example: “By providing a physi-
cal mechanism for producing growth and becoming, this approach promises
to transmute Becoming from a piece of speculative metaphysics to one of
naturalized methaphysics” (Earman 2008, pp. 159–160).

But, in causal set theory, the process of becoming is a stochastic process
that ought to be defined as a family of random variables of a probability
space. To define such a stochastic process with mathematical consistency,
one would need the ‘complete’ causal set: “In order to define µ consistently,
one must take Ω̃ [the sample space] to be a space of infinite causets, ones
for which the growth process has ‘run to completion’. We meet here with an
echo of the block-universe idea, that is in effect built into mathematicians’
formalisation of the concept of stochastic process” (Sorkin 2007, 160, fn.8).

Let us imagine, for the sake of the argument, that the run-to-completion
problem is solved. In this scenario, the probability space would provide an-
swers to questions that do not account for the invariance under label trans-
formation, and thus: “[t]he elements of a causal set are not intrinsically
individuated and, consequently, for each labeled causal set the only repre-
sentation endowed with physical significance is the isomorphism equivalence
class it belongs to (Arageorgis 2016, p. 45)”. Here, the argument presented
by (Arageorgis 2016) is analogous to the one we have seen in the previous
section about the possibility of stopping the process of birth at a given stage:
“[. . . ] stopping the process at a given stage has no objective meaning within
the theory, because with a different choice of birth-order, the causet at the
same stage of growth would look entirely different” (Sorkin 2007, p. 157).

Nonetheless, another possible way to ensure the compatibility between
causal set theory and a well-defined line of becoming is to embrace a notion
of localized becoming, for which: “the temporary locus of becoming at each
stage of growth of a causet contains exactly one element” (Arageorgis 2016,
p. 48). This seems surely appealing, especially because it is consonant with
the condition of Bell’s causality for which the growth of a new element is
only local. Therefore, it seems that the precedence relation (≺) can be good
for distinguishing what has come into existence and what has not, but only
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locally. The idea is not new, as it was already suggested in (Dowker 2005,
p. 458): “[t]here is growth and change. Things happen! But the general
covariance means that the physical order in which they happen is a partial
order, not a total order. This doesn’t give any physical significance to a
universal Now, but rather to events, to a Here-and-Now. I am not claiming
that this picture of accumulating events (which will have to be reassessed
in the quantum theory) would explain why we experience time passing, but
it is more compatible with our experience than the Block Universe View”.
Similarly, (Dieks 2006, pp. 172–173) suggests that “[...] the natural view is
that the history of our universe is realized by events that come into being;
and that they come into being after and before each other as dictated by the
partial ordering relation induced by the spacetime structure. According to
this proposal the life of the universe is not one linear series of events, but a
partially ordered set of events”.10

However, to the possibility of a local becoming, (Arageorgis 2016) adds
two objections: on the one hand the view is not new. It is basically coming
from the literature on philosophy of special relativity in Minkowski space-
time. On the other hand, a local present is too weak to underpin a strong
notion of becoming (see: (Savitt 2021)). The first objection is not much of
a punch against causal set theory and the definition of a line of becoming.
Rather, it is the recognition that the debate on time in special relativity is
not over yet. Arageorgis (2016) reaches the same conclusion: “The only way
out for a proponent of [causal set theory], who wishes to cling to a notion of
Becoming that salvages a dynamic conception of the world, seems to be the
stratagem of localizing Becoming and the present. But this move, whether
on the right track or not, is not novel: it has been proposed and debated
in the context of philosophical attempts to trace a viable notion of Becom-
ing within relativistic spacetime theories on continuous (smooth) manifolds”
(Arageorgis 2016, p. 51). Under such a perspective, which is not too dis-
similar from the one that emerges in the debate on relativity and time, the
heart of the matter seems to be in the hands of the presentists, and on the
difficulty of accepting that the line of becoming can be defined only locally;
but this is for the philosophy of time community to discuss.

In addition, Arageorgis (2016) maintains that causal set theory does not
meet the challenge of the growing block metaphysics also because the dynam-

10The acceptance of a local becoming has also emerged in (Wüthrich 2023) as one of
the only possibilities for the advocate of a metaphysics of presentism.
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ics of the theory is not fully developed yet. The CSG dynamics: “cannot be
defined with mathematical consistency but in the limit of infinite time ‘when’
causal set growth ‘has reached completion’” (Arageorgis 2016, p. 51). As I
mentioned earlier, one could hope for a dynamics that replicate the idea be-
hind the sum-over-histories account, but at least two problems would still
remain. On the one hand, one would need to develop a mechanism of paths
cancellation between causal trajectories, and thus the measure used in CSG
models would need some substantial revisions. On the other hand, it is not
clear what the final state of the universe would amount to —which is also
the problem of having a causal set that is run to completion.

Finally, I wish to explore one more possibility before turning to covariant
dynamics. The dual time view by (Huggett 2014) suggests the existence of a
second time that is not identical to our physical time, but still related. In the
paper, Huggett represents physical time by the term t0, while tT represents
a second more fundamental time. Then, one can express change of one time
with respect to the other and say things like: ‘t0 = Monday is the present at
tT = 0, but not at tT = 1’. This way, the t0-present changes relative to the
tT -time. In causal set theory: the evolution in tT generates a causal set and
hence a spacetime region within which one has metric notions and temporal
extensions. There: tT is the time of the growth and tt is the time internal
to the causal sets. “In those terms [. . . ] there are two kinds of temporal
relations involving t0 times: first, relations to other t0 times, such as Monday
being before Tuesday —these are the ordinary, unchanging B-series relations.
But second, there are relations between t0 and T times, between times in the
causet and the external time: call these ‘T -relations’. Potentially, t0 = 0s
might be the present at T = 1, but t0 = 1s the present at T = 100. With
respect to T , the present changes, time passes” (Huggett 2014, p. 10).

In the dual time model, it seems as if the time tT is absolute and external.
If that is the case, what about relativity and the problems mentioned earlier?
Since CSG dynamics is generally covariant, the probability of the growth of
a causal set is independent from the order in which the growth happens, and
tT is just a label in a theory that is invariant under label transformations:

Put another way, there is no way to determine T beyond what
follows from the causal order given by the effective, internal time:
anything more is, in the general sense, pure gauge. Concretely,
if p is in the absolute future of q, then it is physical that p is in
the future of q with respect to T , since every covariant ordering
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has T (p) < T (q), but |T (p) − T (q)| is unphysical. If p and q
are spacelike, then there is not even a fact about which comes
first with respect to T ; T (p) < T (q) and T (q) < T (p) are phys-
ically indistinguishable. [. . . ] T-relations are fundamental, and
hold just between the discrete nodes of the causet; the relations
internal to spacetime are merely effective, and hold between the
continuous points of the effective manifold. Of course the rela-
tions agree, but that is a consequence of the general covariance
of the dynamics which produces the causet, and does not make
them the same relations (Huggett 2014, p. 10).

This is not a new formal feature of the theory: Dowker has pointed that out
already when she claimed that things happen as a partial order and not as
a total order. Huggett (2014)’s point here is that taking the partial order
proposal requires a distinction between t-relations and phenomenal spacetime
as distinct, but in agreement — and the agreement is explained by the general
covariance of the dynamic.

Thus, instead of having one single relational clock (the labeling of the
internal elements of a causal set) that tracks the partial ordering of the new-
born elements, (Huggett 2014) adds an external clock tT that tracks the
overall growth of the causal set. The labels of the elements of the causal
set can be put in relation with this external clock, which, because of discrete
general covariance, agrees with the internal partial ordering of the causal set.
In other words, the dual time account gives a temporal interpretation to the
two levels of causal set theory (see: (Dribus 2017)): on the one hand, an indi-
vidual node corresponds to a possible configuration of a physical system with
its internal time. On the other hand, there is the objective (external) growth
of the causal set as represented by the causal tree (poscau). I do not wish
to discuss whether the view suggested by Huggett offers a better temporal
metaphysics for causal set theory. It remains that the incompatibility with
presentism persists. For example, consider the causal set to be the present
at the external time tT = 1. Then, while the causal set is in the absolute
future of tT = 1, it is unphysical to ask whether the causal set is in the
absolute future of tT = 1, or whether the causet preceded the causet

. As emphasized by (Huggett 2014), Dowker had already suggested that
things happen in a partial order, but partial orders are incompatible with
presentism (and with the growing block view).
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3.3 Covariant View

What about covariant dynamics, does it solve or help solving some of the
temporal problems we have been addressing so far? The identification of
antichains as a physical line of becoming, or the use of maximal elements
(and corresponding stems) in a causal set have proven to be implausible so-
lutions. On the one hand, antichains are too unstructured to be identified as
a demarcation between what is present and what is not. On the other hand,
maximal elements are subject to the invariance under label transformations,
and thus can be at best used to indicate a local present. The invariance un-
der label transformations blurs the concept of an individual causal history,
as each causal history belongs to an isomorphism class of histories that differ
only in their labeling.

Since many of the problems of accounting for time in causal set theory
stem from the invariance under label transformations, does a dynamics that
has no labels solve, or help solving, some of such problems? Let us begin with
the invariance under label transformation. Since covariant dynamics has no
labels, this should set us on a good start to solve the problem. However,
instead of having nodes of individual causal sets ordered in a poscau, the
covtree of covariant dynamics uses classes of equivalence of labeled causal
sets as the content of each node. This makes the physical interpretation of
each node even more problematic, for each node does not distinguish between
the individual sets of a given class of equivalence. For example, the order
corresponds to a class of equivalence that contains the two causets
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3 and

12

3 . The use of unlabeled sets as representative of a class of equivalence is due
to the gauge invariance of the theory, which is meant to recover the general
covariance of relativity, and it is thereby incompatible with presentism.

As I mentioned in section 2, one of the problems of interpreting the stems
as genuine causal histories is the possible occurrence of non-empty intersec-
tions between different stem sets. Covariant dynamics solves this problem
by using sets of orders as nodes in the covariant tree. Yet, the dynamics
imposes some conditions on which orders are allowed in the covtree: only
those sets for which there is a certificate. While certificates limit the possible
causal sets in a node, it remains that many nodes will be constituted by a
set of classes of equivalence (that is, sets of orders). This implies that, for
example, we can have a transaction { } → { , } which renders the physi-
cal interpretation of which spacetime configuration one has at the given node
impossible.
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Furthermore, within the same node in covtree we can have orders that
represent very different causal connections. For example, consider the node

represented by the set of orders:
{

, ,
}
. Even if we were to identify a

line of becoming with a given order, we would not be able to determine which
order represents a genuine causal history of the universe. Also, because those
different orders instantiate very different causal connections among the same
number of elements, it is impossible to determine the temporal order of the
individual elements.

Finally, that covariant dynamics is not compatible with presentism is also
implied in the words of (Zalel 2023, p. 20): “While in the CSG models the
growth is explicit, on covtree it is implicit or ‘vague’”. As I have argued ear-
lier, one of the problems with the CSG dynamics and its compatibility with
presentism is that the growth of the poscau follows the partial order relation
of the causal sets —which was made evident also in the dual-time account by
(Huggett 2014). It follows that if the covariant dynamics has an even vaguer
mechanism of growth, which also implies the notion of asynchronous becom-
ing, the incompatibility between presentism and CSG can only be reinforced
in covariant dynamics.

4 Conclusions

In this paper, my aim has been to present additional objections to the pos-
sibility of pairing the causal set approach to quantum gravity with prevalent
temporal metaphysics. In the first part of the paper, I have provided a con-
cise overview of causal set theory, specifically delving into classical sequen-
tial growth and covariant dynamics. I emphasized the correlation between
discrete general covariance, invariance under label transformations, and the
general covariance of relativity theory.

The philosophical discussion of the paper focused on the temporal meta-
physics of presentism, with a particular focus on the growing block view of
the universe. I discussed, and expanded upon, the arguments presented in
(Wüthrich 2023) and (Arageorgis 2016), highlighting the incongruities be-
tween causal set theory and those temporal metaphysics frameworks. Specif-
ically, the primary challenge for a presentism metaphysics lies in establishing
a clear line of becoming. Causal set theory complicates this endeavor due
to the lack of structure in the anti-chains, which thus cannot constitute the
equivalent of a sequence of hypersurfaces ordered by a temporal parameter
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(as seen in Lorentzian geometry). Other attempts, such as worldline presen-
tism, fall short in that, while they solve the problem of the objective present,
they also imply that the present is only local. In addition, I used the similar-
ity between discrete general covariance and the general covariance principles
of general relativity to argue that the very same challenges faced by pre-
sentism in the context of relativity theories manifest in causal set theory as
well.

I briefly explored the prospect of a causal set employing a run-to-completion
strategy and how it implies a block view metaphysics. However, this strategy
fails to resolve the issue of invariance under label transformations, rendering
the physical interpretation of a system’s causal history somewhat ambiguous.
Finally, I touched upon covariant dynamics and argued that despite the ab-
sence of labels and label transformations, the challenges for presentism and
eternalism persist in covtree as well.
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