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An ideal constructor produces geometry from scratch, modelled through the bottom-up assembly 
of a graph-like lattice within a space that is defined, bootstrap-wise, by that lattice. Construction 
becomes the problem of assembling a homogeneous lattice in three-dimensional space; that 
becomes the problem of resolving geometrical frustration in quasicrystalline structure; achieved 
by reconceiving the lattice as a dynamical system. The resulting construction is presented as the 
introductory model sufficient to motivate the formal argument that it is a fundamental structure; 
based on which, it is proposed that where mathematics’ numbers conventionally correspond to 
dimensionless points on the stateless number line, numbers more fundamentally correspond to 
an ordering of discrete objects constructed within the stateful number lattice. A second 
observation is that this fundamental lattice structure is helically configured with fractal character, 
which, as it relates to the geometry underlying spacetime, has relevance to questions in physics, 
particularly those involving wave-particle duality.  

 

 

  

1. Introduction 
 

Foundational constructive geometry1 shares with the many forms of constructivism the 
criterion that objects and concepts must be accessible in terms of constructions that can be 
executed. Only finite operations over finite objects are demonstrably executable, consequently 
a geometry on this basis is expected to be discrete. However, while there is a well-established 
research area under the heading “constructive mathematics” and there is an interest in finitism 
in geometry generally, there is no comparable well-established program specifically under the 
heading “constructive geometry”.  

Mathematical constructivism in its various forms has a long history (introduced around 
the turn of the twentieth century), and has become increasingly relevant along with the 
mechanisation of computation – constructive mathematics is sometimes loosely defined as the 
part of mathematics that can be implemented on a computer. From within the incumbent 
classical mathematics tradition, however, constructive mathematics is still regarded with 

 

1 Disambiguated from the elementary sense in which it refers to constructions with a compass and ruler. 
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suspicion. Andrej Bauer refers (somewhat tongue in cheek, granted) to five stages of accepting 
constructive mathematics: those being denial, anger, bargaining and depression, before finally 
acceptance [1].         

In a recent podcast Joscha Bach was asked (rather incredulously), “So real numbers 
don't exist?” He affirmed that they don't, adding, “For something to exist, it has to be 
implemented” [2, 01:14:03–01:14:18]. Elsewhere, Bach elaborates [3, 00:15:25–00:15:52]: 

 
What Gödel and Turing could show is that the assumption that you can have functions that run 
through infinitely many steps and give you a result leads to contradictions. And this was basically 
the constructivist turn in mathematics, the most important result of philosophy in the last century, 
and interestingly one that most philosophers did not understand and did not continue on.  
 

J. A. Wheeler [4] is also on record as having said that real numbers don’t exist: “Then how can 
physics in good conscience go on using in its description of existence a number system 
[speaking of real numbers] that does not even exist?” And further on, “The continuum of 
natural numbers, Weyl taught us, is an illusion. It is an idealization. It is a dream. With numbers 
of ever increasing mathematical sophistication we can approach that infinity ever more closely; 
but we commit a folly if we think we can ever get there. That, in poor man’s language, is the 
inescapable lesson of Gödel's theorem and modern mathematical logic.”   

Bauer refers to a “psychological agony” involved in having to “unlearn certain deeply 
ingrained intuitions and habits acquired during classical mathematical training”[1]. But for 
mathematical constructivists there is at least the comfort of an established approach to turn to, 
defined under its heading. This, however, does not extend to geometry. When Bach, clearly a 
proponent of constructive mathematics, outlines how to build geometry from scratch, it follows 
along conventional lines. Numbers are described as a subsequent labelling scheme combined 
with predecessor and successor operations, which gives the number line; and that can be folded 
into two-dimensions to produce the regular grid of a lattice; and that can be extended into three-
dimensions [3, 1:29:29–1:35:34].   

A conventional construction of geometry, however, typically builds the cubic lattice in 
which the unit cell has face diagonal length = √2 and body diagonal length = √3. Clearly, some 
distance relations with respect to vertices within that lattice have values for which we cannot 
compute the last digit and are therefore not constructible. But there is also a more basic problem 
in having to accept that the process of constructing geometry from first principles must involve 
an arbitrary instruction to proceed differently according to preferred directions through the 
lattice. This presents a problem also for those physical theories in which spatial discreteness is 
either implied or desired. Granular models of space with a fundamental length scale of the order 
of Planck length are not modelled well by a rectilinear lattice for the obvious reason of the 
inhomogeneous length scales mentioned that give preferred directions, implying a deformation 
of Lorentz invariance with respect to the lattice itself (without considering directions extra to 
the lattice).   

The ideal lattice structure that would provide a useful substrate for such programs in 
physics, and more specifically for the constructive geometry that this project is interested in, is 
one in which there is vertex homogeneity (i.e., uniform degree) and edge-length homogeneity. 
This implies a three-dimensional lattice with a homogeneous structure where the vertices are 
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distributed uniformly throughout the space such that all nearest neighbour vertices are the 
endpoints of unit length edges, without preferred directions.  Constructing such a lattice does 
not, on the face of it, appear problematic. In two dimensions it is of course trivial to construct 
the lattice of equilateral triangles that gives a homogeneous tiling of the plane. And the naive 
intuition is (as it was for Aristotle) that this should extend up a dimension to a lattice of identical 
regular tetrahedra that tessellate three-dimensional space.    

In a paper discussing Causal Dynamical Triangulation (CDT), titled, “Quantum 
Gravity, or the Art of Building Spacetime,” [5] the authors ask, “What is more natural than 
constructing space from elementary geometric building blocks?” However, the next sentence 
adds, “It is not as easy as one might think [...]” In fact CDT does not construct the space, but 
rather, it is treated as an ensemble of geometrical objects described by numerical methods, 
typically Monte Carlo simulations. Loop quantum gravity (LQG) [6] also attempts to quantize 
spacetime and also proceeds without the assumption of a background space, but, again, this 
approach does not produce a constructible model. Here the geometry is conceived of in terms 
of abstract connections between points formalised as spin networks, from which space is 
theorised to follow as an emergent property.  

A constructible model of a three-dimensional homogeneous lattice is not generally 
eschewed in favour of purely abstract (often hyperspatial) models on principle, but rather, it is 
because there is no commonly agreed constructible model. This is the problem that this article 
addresses. A first impulse may be to assume that a more complete or somehow more correct 
set of specifications will produce the desired lattice. The approach laid out here, however, 
recognises the problem to be overspecification.  

The aim in this project is to bootstrap an intrinsic notion of the geometrical space, 
growing it from the bottom up, from first principles – to the extent that even the construction 
of the homogeneous lattice, while it becomes the problem that this article addresses, is not 
specified as an objective. Rather, this project’s objective is effectively the null objective; it is 
the construction of the geometric structure that results from not imposing objectives; which 
plays out in the model development, broadly, as a Wheelerian concept of “organization that is 
no organization”, toward producing a pregeometric structure that has no structure [4,7,8].   

In this case, the construction self-organises to produce structure in the common three-
dimensional space, with no obvious reason to adjust that, except that there is, of course, the 
obvious chokepoint that stymies all attempts to construct the homogeneous lattice in three-
dimensional space – that is the problem of geometrical frustration [9]. This problem appears as 
far back as Sanskrit writings, 499 AD, in the form of the sphere-packing problem [10], which 
maps to the problem of packing identical regular tetrahedra. If there was a constructible 
tetrahedra-based homogeneous lattice in three-dimensional space, that geometrical structure 
would obviously be ubiquitous throughout mathematics.     

This project’s approach to resolving the problem can best be introduced by once again 
referencing Bach. In several interviews and discussions Bach has made the distinction between 
classical mathematics that is stateless, and constructive mathematics that is stateful (e.g., [2, 
01:01:15–01:10:34]). Here, we extend that distinction to geometry and argue that classical 
geometry (in which there is no constructive solution to the problem of the homogeneous lattice 
in three-dimensional space) is a stateless model; in contrast to which this project introduces the 
concept of a stateful constructive geometry as a dynamically updating graph-like lattice that 
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can also be conceived of as a type of asynchronous cellular automaton. It will also be argued 
that from the perspective of being embedded in what is empirically a stateful physical universe, 
the universe’s background-running default geometry is a stateful system on top of which the 
proposed stateful lattice should be informationally inexpensive, or perhaps free, to construct.    
  It is understood from algorithmic information theory that an object generated from 
minimal information input can yet have a large information output, or, more generally, apparent 
complexity can arise from minimal rules, in which case it should not be surprising that the 
homogeneous lattice structure, constructed with minimal instructive information input, the 
maximally unbiased, maximum entropy structure that has no structure, is not necessarily a 
mundane object. A key result of this investigation is the bottom-up construction of the graph-
like lattice as a dynamically updating, maximum entropy structure that proves to be helically 
configured in three-dimensional space, from which there is a waveform projection to the image 
plane – which introduces new geometric considerations with relevance to physics. As one 
example, under the current understanding the de Broglie–Bohm pilot wave theory is required 
to unparsimoniously impose a waveform character over top of the existing geometry of 
spacetime. The work outlined here, however, constructs the maximum entropy geometrical 
background structure of spacetime that is inherently waveform, thus potentially removing an 
objection that otherwise stands in the way of the pilot wave interpretation of quantum 
mechanics.  
 
 

2. Construction of the Lattice 
 

The task is to model the structure formed of fundamental elements in fundamental predecessor 
and successor relations through the analogous construction of the lattice. Fundamental 
elements are analogised with vertices. Fundamental predecessor and successor relations have 
their analogue in the positional relations of the vertices within the lattice.  

The first primitive is the vertex, beginning with origin vertex O. Successor vertex A is 
placed at some arbitrary position distinct from O. The graph-like lattice is defined to have 
vertices that are the endpoints of edges, and edges are the struts of the lattice. Importantly, the 
edge/strut is not a primitive. Any object would suffice. The edge/strut is merely a convenient 
construction object with which to model the positional relation between nearest neighbour 
vertices, it does not claim to represent the character of the space between vertices. Specifically, 
the edge/strut is not defined as the Euclidean line or any object that introduces a notion of 
infinitely many points.   

The second primitive is the notion of congruence that enables that initial edge/strut 
object to be iterated over subsequent pairings of adjacent vertices throughout the construction 
– as such the edge/strut can be referred to as the unit length edge (without introducing any 
notion of magnitude). The graph-like lattice will become composed of strictly only those 
primitive objects that the construction is assembling  – that is, vertices. From those vertices and 
the primitive notion of congruence the construction outlined in the following sections will 
bootstrap a space from the bottom up – there is no predefined background space.    
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As part of this program we imagine an ideal constructor who/that2 while carrying out 
the construction is capable of recognising potential instructive information inputs, and who 
pre-emptively blocks those from entering the construction process. At this stage information is 
treated colloquially as semantic content. Instructive information (inputs) and descriptive 
information (outputs) will be recognized as ordinary language statements.  

While there are no extrinsically originating construction rules imposed to manage the 
stepwise assembly of vertices, and construction proceeds without deference to any 
preconceived notion of spatial dimension, there is nevertheless an entropically driven control 
that arrives from the absence of control, from the absence of instructive information input that 
might otherwise impose specificity onto either elements of the construction (vertices), or 
relations between those elements (edges).  The absence of specificity leaves the construction 
process to default toward producing the maximum entropy, spatially uniform distribution of 
vertices. 

The maximally uninformed growth of constructive geometry’s lattice is entropically 
biased toward producing the maximally homogeneous structure. Vertex homogeneity is in 
effect homogeneity of vertex degree, or number of edges incident (given that that is the only 
distinguishing feature available to a vertex – other than, obviously, the sequential labelling and 
location within the lattice). The requirement to default to homogeneity of degree acts as 
geometric entropy that selects for cyclic configurations resulting in cluster morphology 
wherein vertices arrange in a centrally symmetric configuration about the origin vertex O 
(geometric-statistical gravity).   

 

                     
(a)                  (b)                            (c)                              (d)                             (e) 

Figure 1. 

The unbiased constructor assembles the clustering configuration of vertices and edges until, 
ineluctably, four vertices and six connecting edges produce the regular tetrahedron OABC, as 
shown in Figure 1, (a) to (d); at which stage the structure implies (information output) the 
familiar three-dimensional space. There is very little empirical data with which to determine 
how many spatial dimensions there are (see related, [11]), however, it is reasonable to accept 
the observation that the lattice occupies precisely three spatial dimensions. 
 

 

2 Henceforth ‘who’. 
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Figure 1 (e) shows tetrahedron OABC with successor vertex D (and associated edges) 
assembled to face OBC, producing new tetrahedron OBCD. The configuration shown in Figure 
1 (e) can be viewed as tetrahedron OABC with tetrahedron OBCD glued at face OBC. 
Henceforth, lattice growth can equally be conceived of as the sequential addition of vertices 
(and associated edges), or as the accretion of regular tetrahedra glued at faces and sharing 
common central origin vertex O. 
     
 

   
Figure 2. The icosahedral quasicrystal, IQC (constructed as a solid model).  

 
The ideal constructor continues to assemble vertices and associated edges to the lattice. A shell 
of 12 vertices is filled in, which produces the cluster configuration that can also be conceived 
of as twenty regular tetrahedra that share central origin vertex O. The problem, of course, is 
that the dihedral angle of a tetrahedron, cos−1(1/3), is not a submultiple of 2π (although it is 
close to 2π/5), consequently gaps remain between tetrahedra, or, basically, not all vertices and 
edges in the outer shell of the graph-like lattice can connect and the structure is referred to as     
being geometrically frustrated. See Figure 2. This structure is known in materials science as 
the icosahedral quasicrystal, IQC, where all real IQCs are intermetallic compounds [12]. 
 

                                                          
                   (a)                                     (b)                                (c)  
    Figure 3.     
 

 Any attempt to continue construction of the lattice would go on to produce a global model of 
icosahedral quasicrystalline structure that is both geometrically frustrated and aperiodic in three 
dimensions. Unlike the structure analysis of conventional periodic crystals, it is not 
straightforward to find the correct mathematical formalism to express the ideal model. Most 
current approaches hypothesise that there is an ideal model that lives in some higher 
dimensional space that is only captured imperfectly in any projection to three-dimensional 
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space [13]. Figure 3 shows a simplified, lower-dimensional illustration of one such model. A 
frustration gap at A is resolved by pulling the two vertices together (indicated with arrows). 
That action causes the two-dimensional structure to curve so that it becomes three-dimensional 
(Fig. 3 (b) and (c)). By dimensional analogy it is then possible to imagine curving a 
geometrically frustrated three-dimensional object (such as the IQC, Fig. 2) into a frustration-
free structure in a four or higher dimensional space. There, is, however, no intuitive 
visualisation of any higher dimensional model (despite spurious examples) and in this setting 
it is definitely not possible to construct any higher dimensional lattice.  

 
 
3.  The Lattice as a Dynamically Updating System  
 
This project investigates carrying out the construction in the common three-dimensional space, 
but where the lattice is now conceived of as a dynamically updating system. Again, a simplified 
illustration is first obtained by dropping down a dimension to the two-dimensional 
configuration shown in Figure 3 (a). The objective is again to resolve the geometrically 
frustrated structure, this time, however, the frustration problem is resolved by treating the 
configuration of vertices as a dynamically updating system. Figure 4, (a) to (d) shows vertices 
pulled together at A so that the frustration gap is closed - but it follows from that action that a 
neighbouring vertex-edge connection is pulled apart, causing a frustration gap to open there.  
 

     

              (a)                           (b)                             (c)                            (d)                          (e) 

Figure 4. 

 
3.1 Vertex creation and annihilation – the stateful system 
 
The notion of vertices being dragged across a space to close the gap is merely a classical 
analogy of the causal mechanism that updates vertices in the system sequentially between the 
finite state in which the frustration gap is closed, referred to as vertex creation; and the state 
where the frustration gap is pulled open, referred to as vertex annihilation (borrowing the 
terminology, obviously, from particle physics: see also e.g., [14]. Remembering, of course, that 
edges don’t exist but are merely convenient objects to analogise the uniform distance relations 
between pairwise adjacent vertices.    
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The ideal model of the lattice is now conceived of as a dynamically updating graph-like 
construction that is entropically driven toward a structure in which, optimally, there is vertex 
homogeneity (uniform degree) and edge-length homogeneity when averaged over the 
dynamical macrostate. Considering again the simplified system shown in Figure 4: (a) and (d) 
show the vertices and edges in a static snapshot that captures a microstate of the system. In 
each iteration there will be vertices and edges at some position such that they are separated by 
the frustration gap so that the system can be thought of as being in a state of tension as it tends 
toward equilibrium at the maximum entropy uniform distribution, inducing a domino effect 
that perpetuates the gap-closing, gap-opening action cyclically around the configuration, 
captured in Figure 4 (e) as the averaged, centrally symmetric macrostate.  
   
 
3.2 Time and the stateful system 
 
Traditionally, a dynamical system is defined to be evolving over time (where this can be 
continuous or discrete time). Here, however, the geometrically frustrated structure is a 
relational system in geometric disequilibrium, where spatially successive causal relations 
dictate that the update action is triggered and persists via the domino effect – as opposed to 
those updates being linked to the ticking of any external metronome. In this system, time can 
be investigated as an emergent property linked to the entropically driven sequential transition 
of states in the system.  
 
 
3.3 Virtual vertices 
 
It is hypothesised that over the entire, arbitrarily large, asynchronously updating, three-
dimensional model of the graph-like lattice, the mechanics of the creation/annihilation events 
will produce vertex creation at random positions within delineated trajectories. Illustrating that 
concept with the simplified example shown in Figure 4, we can conceive of an animated model 
in which vertices and edges are clicking together and pulling apart, vertices created and 
annihilated in actions that, activated by the sequential domino effect, move cyclically around 
the configuration so that the positions that will be occupied by created vertices over multiple 
updates can be predicted to fill in a fuzzy band around the perimeter of the configuration (Fig. 
4 (e). The geometrically frustrated, asymmetric configuration as it appeared in the static model, 
the microstate (Fig. 4 (a), becomes smoothed out in the dynamically updating system so that it 
produces, in the macrostate (Fig. 4 (e), an unfrustrated configuration with continuous rotational 
symmetry.  

Figure 4: considering the interval AB, for example, the range of possible position that 
vertex creation and annihilation is restricted to, spanning that interval, is delineated by the arc 
AB that has unit length radius centred at O. For every static instance that captures a microstate 
of the system that includes A and B, there is that very basic geometry (arc AB) for the interval 
between those vertices that gives the positions that can probabilistically be occupied by vertices 
produced in some update of the system. The positional placeholders for these probabilistic 
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vertex positions are referred to as “virtual vertices.” Arbitrarily many updates produce 
arbitrarily many positions that the virtual vertices occupy, and in principle it is possible to 
construct those.    
  If the simplified example of the six-vertex system shown in Figure 4 is thought of as 
part of a larger global lattice structure, and the mechanism whereby dynamical update produces 
vertices that fill in the intervals (as described above) applies throughout the structure, then over 
arbitrarily many updates a migration of the structure is expected so that vertex creation fills the 
entire global lattice space. On the basis of that simplified example, it is proposed that a typical 
microstate of the constructed lattice will show the vertices of one iteration of the lattice, 
constructed within the bootstrapped ambient background-cloud populated with virtual vertices 
that indicate probabilistic positions where vertex creation has occurred or will occur. There is 
the hierarchy of vertex ontology: (i) instantiated vertices; (ii) virtual vertices for which the 
trajectory of their positions can be drawn spanning the interval; (iii) the background cloud of 
virtual vertices that result from the migration of the global structure.  

The development of the three-dimensional graph-like lattice operating as a dynamically 
updating system is, in principle, an intuitive and constructible model – we can reasonably 
conceptualise the lattice as a mechanical system in which vertices and edges are clicking 
together and pulling apart, analogising annihilated and created vertex states, and it follows that 
if we can conceptualise that, we can, in principle, construct it.   
  
 
 
4.  Constructing the Static Approximant 
 
With constructive geometry’s graph-like lattice now defined to be the asynchronously 
updating, non-deterministic dynamical system, there are three possible modes of construction:  
 

i. Construct a working model of a representative portion of that dynamical system. This 
is possible in principle (as is required of constructive geometry).   

ii. Construct a static model of the graph-like lattice, representing a specific microstate of 
that dynamical system – but as is the case for complicated dynamical systems generally, 
it is not possible, even in principle, to model the exact positions of all elements.  

iii. The third mode, suitable for this introductory work, is to construct the static three-
dimensional model of the graph-like lattice as an averaged approximant – essentially a 
static representation of the dynamical system as the averaged macrostate. The 
approximant lattice model attaches vertices imprecisely to the ends of edges so that they 
locate within a fuzzy range of position. The IQC that first appeared in Figure 2 as a 
solid model, is now, in Figure 5, constructed as the approximant graph-like lattice.   
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Figure 5. Approximant IQC 

 
 

4.1 The IQC building block 
 
Figure 5 shows the approximant IQC: thirteen vertices (one red + twelve purple); forty-two 
edges; twenty tetrahedra. It is recognised to be the fundamental building block for 
construction of the lattice. This is not an arbitrary designation (compared to, for example, 
Causal Dynamical Triangulation’s building blocks that evolved from Euclidean quantum 
gravity’s arbitrary decision that they should be triangular). In arguing for building block 
status for the IQC, there are the following observations (i.e., information outputs): 
  
• In the bottom-up construction process, assembling the last of the 12 vertices into the 

first shell signals that a phase of construction has auto-terminated. It is observed 
(information output) that all possible vertex positions available within the shell are 
filled.  

• It has been established that the maximally homogeneous lattice is necessarily a centrally 
symmetric configuration, of which the completed IQC is observed to be the first 
produced by the construction. Note: A conventional appraisal may have initially 
considered that the tetrahedron (or 3-simplex) is a superior candidate for building block 
status. However, unlike a group-theoretic interpretation where automorphisms include 
reflections and rotations about a central axis located at a place on an edge or on the 
background, in this project, with respect to a microstate of the system, the edges 
represent nothing real and there is no background that the lattice is constructed over; 
discrete vertices constitute the entirety of the space. Symmetries can only be decided 
with respect to an axis that coincides with a vertex, in which case the bottom-up 
construction produces no centrally symmetric configuration of vertices until the 



 11 

complete IQC arrives – consequently there are no intermediary subunits that suggest 
themselves as building blocks.  

• The IQC is the first configuration in which vertices have optimal degree homogeneity. 
The twelve peripheral vertices are uniformly degree 6. Only central origin vertex O 
(degree12) fails to conform, but this is remedied in the global context developed below.    

  
  
4.2 Penetration twinned IQCs and the quasicrystaline pentakis 
dodecahedron (QPD) 
 
The requirement for vertex degree homogeneity drives the construction process toward 
assembling IQC building blocks, not stacked as contiguous units, but in penetration twinned 
junction, as is found in natural crystallite compounds and in manmade nanoscale synthetic 
materials [15].  
 
 
 

 
 
 
 
 
Figure 6 is a two-dimensional section cut through the lattice, showing the central origin vertex 
O and the first shell of vertices (purple) that make up the IQC. Each of those peripheral vertices 
(purple) are now identically the central origin vertex for additional IQC building blocks 
assembled to that first central IQC in interpenetrating formation with it and with each other, to 
form the second shell (yellow vertices).    
 

Origin vertex O (red).  

Shell of first IQC (purple vertices) 

 

Penetration twinned IQCs (yellow vertices) 

Shell of QPD 

 

Figure 6. Penetration twinned IQCs produce the quasicrystalline pentakis dodecahedron 
(QPD). (Note: illustration, not true projection) 
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Figure 7. Assembly of  penetration twinned IQCs. 

 
Figure 8. The quasicrystaline pentakis dodecahedron.  
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Figure 7 shows the actual construction of the three-dimensional approximant graph-like lattice. 
The penetration twinned IQCs are formed by attaching a pentagonal bipyramid (i.e., tetrahedra 
arranged in five-fold symmetry) to each of the IQC’s twelve peripheral vertices. The Figure 7 
thumbnails show pentagonal bipyramids being added, and Figure 8 shows the completion. The 
construction again reaches a stage where a shell (the second shell) has every available position 
occupied with a vertex (yellow) so that another phase of construction is observed (information 
output) to have auto-terminated. The lattice surface is now faceted with twelve pentagonal 
pyramids (Fig. 8, one is highlighted in blue). If an outer spherical shell was drawn around the 
lattice, the vertices at the apex of the pentagonal pyramids would all sit on that shell, however, 
the non-convexity of the construction has the effect that it does not appear spherical. In the 
Figure 8 thumbnails, the principal axes of rotational symmetry (five-fold and six-fold) are 
highlighted in red, as viewed from two different orientations.  

The surface geometry of this new lattice structure corresponds to that of the deltahedral 
pentakis dodecahedron, shown in Figure 9 as a geometric solid. Because this project’s graph-
like lattice (Fig. 8) includes the interior struts it is consequently geometrically frustrated so that 
the lattice constructed here is referred to as the “quasicrystalline pentakis dodecahedron”, or 
QPD. Components: Forty-five vertices. 204 edges. 110 tetrahedra. It remains, however, that 
although the penetration twin morphology effectively homogenises all vertex degree in the 
interior of the QPD, nonhomogeneous degree count will, of course, persist at the perimeter of 
any clustering structure that has a boundary/edge. This is resolved in subsection 5.2.  

 

                   

4.3 Review of phases of lattice growth 

Note: Vertex colours are keyed to Figures 6, 7, and 8.   

• Phase I: Central origin vertex O (red).  
• Phase II: The first shell is filled with twelve vertices (purple) creating the prototypical 

IQC building block (Figs 2 and 5).  
• Phase III: The construction process assembles IQC building blocks (Figs 6 and 7). Each 

of the twelve vertices (purple) that make up the shell of the first IQC, becomes the 

Figure 9. Deltahedral pentakis 
dodecahedron. The figure is slightly non-
convex due to the height of the pentagonal 
pyramids that make up the surface. 
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central origin vertex for an IQC that is in penetration twin formation with that first 
central IQC, and with each neighbouring IQC (yellow vertices), creating the QPD.  

 
 
5.  The QPD Lattice: Observations and Comments on the Construction Up 
to This Stage 
 
5.1 Observations 
 
(i) There is no allowable instructive information input that would inform the construction 
process when to terminate, or that specifies the cardinality of elements, or that arbitrarily 
determines the bounds of the structure. In principle the sequential assembly of vertices to the 
graph-like lattice is indefinitely extensible.   
(ii) One aspect of the role of the ideal constructor is to block new instructive information from 
entering the system. Effectively, this means that from an early stage the total information 
available to the system is already in the system. It follows that there is some minimal structure 
beyond which no novel structure can appear in the ongoing construction. This observation, 
along with (i) above, implies that the growth of the lattice has fractal character. 
(iii) There is the problem of persistent inhomogeneity of vertex degree count, first mentioned 
in subsection 4.2, where each phase of structure growth merely pushes the problem out to the 
new horizon. Appealing to the indefinitely extensible construction does not fundamentally 
resolve the problem, particularly considering that the fractal character implies that although 
construction is not terminated, we nevertheless have knowledge of the global structure, in that 
it resides also within the initial kernel structure.   
 
 
5.2 Comments 

The fractal character of the lattice entails that there is some minimal kernel structure that is 
iterated to produce the global model, and it follows that the problem of persistent 
inhomogeneity of vertex degree count must be resolved within that kernel structure. The IQC 
has been identified as the first building block. Now the lattice construction that forms the QPD 
operating as the dynamically updating system is identified as that minimal kernel structure that 
is identically the first vertex, and the complete global model. The global, homogeneous, 
maximum entropy lattice structure is now identified to be the stateful QPD, henceforth SQPD 
lattice.   

First, while the presentation of the lattice in this article is limited to conventional images 
from the viewpoint of an extrinsic observer, it has also been noted that the limitation imposed 
on information available to the backgroundless bottom-up construction determines that the 
vertices of the SQPD lattice are all that there is – there is no meta-structure providing a location 
that supports any extrinsic observer viewpoint located anywhere other than on a vertex of the 
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lattice. Consequently, the ideal observer is more correctly to be conceived of as an intrinsic 
observer with a viewpoint looking out from within the lattice structure.      

Referring to Figure 6, consider that within the SQPD lattice the intrinsic ideal observer 
may be located at origin vertex O from which vantage point the lattice appears homogeneous 
and isotropic (as is required of the ideal model). If, however, the observer begins to move 
through that lattice shown in Figure 6, traversing vertices, after two steps that observer may 
arrive at the boundary from where the structure no longer appears isotropic. Confronted with 
this situation, topological models such as Poincaré dodecahedral space glue pairs of opposite 
faces, producing a closed 3-manifold within which a transitioning observer who exits one of 
those faces reappears through the opposite face. This, however, can only be understood 
abstractly, whereas this project is constrained to producing concepts that can in principle be 
demonstrated within the context of the constructible model.   

Based on observations of the constructed lattice it is reasonable to hypothesize the following 
model:  

i. The ideal lattice is a stateful system wherein vertices transition between states of 
creation and annihilation.   

ii. The ideal intrinsic observer viewpoint necessarily occupies a position at a created 
vertex (as opposed to annihilated).  

iii. The transition of the observer viewpoint from one position to another within the lattice 
is necessarily correlated with vertex creation, for which there is (at a causally prior 
location within the lattice) the associated vertex annihilation. 

iv. The progress of the ideal intrinsic observer traversing vertices in the direction of the 
boundary has the effect that frustration gaps are pulled together such that vertices are 
created ahead, but that action also causes gaps to open behind such that vertices are 
annihilated. The observer’s transition through the lattice induces a correlated churn of 
vertex creation/annihilation such that the observer viewpoint appears to drag the SQPD 
structure along with it, thus perpetually remaining at the centre with the boundary 
always on the horizon. Under this mechanism the global SQPD lattice structure is, for 
every intrinsic observer, homogeneous, isotropic and without edge or boundary.  

The initial stages of the bottom-up construction began with primitive vertices and the notion 
of congruence but involved no concept of a straight-line or a ray. At this stage of the lattice 
construction, however, the underlying geometrical chassis of the lattice can now be conceived 
of as twelve rays that radiate outward from the central origin vertex O. These rays extend in 
alignment with the six major icosahedral symmetry axes that the IQC and QPD share (being 
mutually dual).  
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6.  Fractal Structure 
 
A first intuition may be that constructing a homogeneous lattice, starting from a central origin 
vertex, should result in an evenly dense distribution of vertices in multiple successive shells 
propagating out in onion-like layers. Approaches along these lines generally resolve the 
inevitable geometrical frustration problems by hypothesising hyperspatial models that are 
inaccessible to construction. In this project’s specifically constructed lattice, however, from the 
boundary of the initial QPD, continuation of the existing assembly mode produces structure 
that does not fill in a subsequent shell, but instead, the structure seamlessly morphs (absent 
intervention of new instruction) into second fractal layer growth that reproduces the initiator 
QPD; and from there, self-similar fractal structure iterates indefinitely.    

 
 
Figure 10 shows a two-dimensional section that cuts through the QPD and includes six of the 
twelve columns of stacked IQCs that radiate out (aligned with the icosahedral symmetry axes). 
In this diagram (and henceforth) the fractal layer number, or iteration number, is given in 
italicised square brackets. For example, the QPD in the first fractal layer is concomitantly the 
vertex in the second fractal layer, written as, “QPD[1] = vertex[2]”. 
   

 

 
 

                                     
 
                                    Figure 10 

 
 
1. Portion of the lattice structure           
highlighted to show match with 
Figure 12 thumbnail. 
 
2. Shell of IQC[2]  
3. Shell of typical IQC[1] 

 
4. Typical symmetry axis 
 
 
5. Penetration twinned IQCs[1] 
in anisotropic formation aligned 
with symmetry axis = edge[2] 
(See also Fig.13) 
 
 
6. Shell of typical QPD[1] =    
vertex[2].  Interior composed of 
penetration twinned IQCs[1] in 
cluster formation (see also Fig.6).  
 
 
7. Void. No structure or 
background fills these areas (see 
also Appendix, note 2). 
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6.1 Hierarchically nested fractal layers 
 
Fractal Layer [1]:  

The initiator input to Fractal Layer [1] = origin vertex O (under magnification it resolves 
to a QPD). 
Phase I:  Origin vertex O[1]. (See also growth phases, subsection 4.3.)   
Phase II:  Vertices and edges are assembled to form the IQC[1]. (Note 3, Fig. 10).  
Phase III:  Penetration twinned IQCs[1] are assembled to form the QPD[1]. (Note 6, Fig. 
10). 
Output from Fractal Layer [1] = QPD[1].  

Fractal Layer [2]: 
Input to Fractal Layer [2] = QPD[1] = origin vertex O[2]. 
The Fractal Layer [2] growth repeats the Phases I, II and III from above, except that now 
the QPDs[1] act as vertices[2] and the columns of IQCs[1] anisotropically stacked in 
penetration twinned morphology act as edges[2].  
Output from Fractal Layer [2] = QPD[2] 

Fractal Layer [3]: 
Input to Fractal Layer [3] = QPD[2] = origin vertex O[3]. 
Again, lattice growth repeats Phases I, II and III.  
Output from Fractal Layer [3] = QPD[3] 

Fractal Layer [4]: 
Input to Fractal Layer [4 ] = QPD[3] = origin vertex O[4]. 
Lattice growth repeats Phases I, II and III. 

Fractal Layer [5]:  
Hierarchically nested fractal growth continues… 

 
 
6.2 Second fractal layer construction of the graph-like lattice 
 
Having in the previous subsection discussed the fractal character of further lattice growth in 
general terms, now Figure 11 (a) shows the actual continued construction of the approximant 
graph-like lattice following on from Fig. 8. Note: the construction shown in Figure 11 is 
associated to one symmetry axis radiating from O, being, of course, typical of all twelve. 

Figure 11 (a) is reproduced in Figure 11 (b) with features highlighted and notes 
attached. Note 8 indicates a second central origin vertex, labelled O2.  

Figure 12 shows a continuation of the graph-like lattice construction that builds out a 
second QPD structure, formed around O2. The Figure 12 thumbnail shows the main image 
reduced in size, with the QPD/column/QPD structure outlined in green, which is concomitantly 
the fractal layer [2] vertex/edge/vertex (see also Figure 10, note 1).  
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                       (a)                                              (b)  
                                         Figure 11 
 

 

             Figure 12 

 
 
 
 

 8. Central origin 
vertex O2  

 
 
 7. 5th IQC 

 
 

 6. 4th IQC 
 

 5. 3rd IQC 
 

 4. Shell of QPD 
  

 3. 2nd IQC 
 

 2. Shell of 1st 
IQC 

 1.Central origin 
vertex O 

 

 

      See also Figure 10, note 1. 

 
  Central origin vertex O2 

 
QPD[1] = vertex[2] 
 
 
Penetration twinned IQCs[1] 
in anisotropic formation = edge[2] 
 
QPD[1] = vertex[2] 
 
 
Central origin vertex O 
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            (a)                     (b)                                        (c) 

Figure 13. Anisotropic growth of penetration twinned icosahedra: (a) wire skeletal model; (b) twinned 
icosahedra are highlighted; (c) solid model.    

 
 
7.  Pathways Constructed Within the Lattice 
 
The straight rays within the lattice that were referred to in subsection 5.2 are artifacts of 
Euclidean geometry that are overlayed onto the model – the straight rays are nowhere 
constructed (at least, not in the fundamental case, but are only constructible with large input of 
instructive information). To understand the fundamental distance relation between two 
remotely separated locations in the discrete graph-like lattice, it is meaningless to say that they 
are connected by a straight-line (introduced as a primitive and informally defined as the shortest 
distance between those two locations) or by any other arbitrary continuous geodesic. Rather, 
constructive geometry has available an information-theoretic approach that defines the 
fundamental pathway to be the route through the lattice, traversing discrete vertices, that is 
constructed with the minimum instructive information input. Constructive geometry offers, as 
a counterpart to the “line”, the prospect of an extension in space that (contrastingly) does have 
a meaningful definition, and is constructible. An introductory overview of that extension, 
conceived of as a pathway through the lattice, is given in this section.    

In the first instance, the fundamental pathway constructed with zero input of instructive 
information produces the trivial route that makes a circuit that traverses eleven vertices and 
returns to that pathway’s origin. However, the pathway that is of interest is the case where a 
minimal information input instructs the ideal constructor to produce the fundamental pathway 
from some vertex O to some designated vertex F in the lattice, thus introducing directional 
bias.   

First, referring again to the simplified example, Figure 4 (e), that diagram showed the 
two-dimensional graph-like structure tentatively modelled with arbitrary (i.e., not constructed) 
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straight-line edges. Vertices A,B,C,D,E mark out the intervals around the perimeter. For each 
interval it is of course trivial to plot the locations to which vertex creation/annihilation is 
restricted. Those hypothetical vertex positions are plotted in Figure 4 (e), producing the interval 
arcs shown with pink (virtual) vertices.   
 

 
Figure 14. 

  
The principle introduced in the Figure 4 two-dimensional example is applied to the three-
dimensional lattice: The relevant arc located in the three-dimensional lattice requires two radii 
(i.e., it is a compound curve), for which the tetrahedron is the minimum geometric structure 
sufficient to anchor the two foci for those radii. Figure 14, note 1, shows a tetrahedron with arc 
BC constructed (highlighted in red). Arc BC can be continued smoothly to produce arc CD, 
which requires two more tetrahedra to anchor the radii (notes 2 and 3). The ideal constructor 
can then produce arc CE that passes through D (also highlighted in red). From there, arc DF 
that passes through E, and the associated tetrahedra, can be constructed. The minimal lattice 
construction that supports a directed pathway growth becomes a series of face-sharing 
tetrahedra that link together to form three intertwined helices that make up a Boerdijk-Coxeter 
helix (B-C helix) [16]. The minimum-instruction pathway forms a secondary helical coil that 
wraps around the B-C helix substructure; see Figure 15. Allowing that there is, first, an 
initiating instruction that imposes the directional bias, the pathway construction described 
above is the prototypical minimally instructed route that connects remotely separated vertices 
within the lattice structure.  
 

 
                                                   Figure 15.  The Boerdijk-Coxeter helix 
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As described above, considered in isolation from the broader lattice, construction of the 
fundamental pathway has produced the B-C helix. The QPD lattice is now investigated for B-
C helix structure: it is found that the columns formed from stacked penetration twinned IQCs 
(e.g., Figs 11, 12 and 13) can be decomposed into five strands of B-C helix. However, unlike 
any other stacking of Platonic solids, the B-C helix is not rotationally repetitive. In attempts to 
compact multiple B-C helix strands, face contact is always frustrated [17, 18]. However, novel 
to this project’s approximant graph-like lattice construction, those B-C helix strands are also 
helically coiled about a central longitudinal symmetry axis so that face contact is effected. Five 
coiled-Boerdijk-Coxeter helix (C-B-C helix) strands compact in five-fold symmetry such that 
they make up an IQC column. See Figure 16, solid model, and Figure 17.  

Figure 17, image (a) shows the graph-like lattice construction of the stacked penetration 
twinned IQC column. One of the C-B-C helices that contributes to the column has a red tube 
threaded through the centre of it, longitudinally, to identify it, and a second example is 
identified with a green tube. Image (b) shows all five C-B-C helix strands likewise identified 
with coloured tubes (noting that the coloured tubes do not represent an actual object of the 
construction, they merely highlight the shape of the C-B-C helix). Image (c) includes the QPDs 
constructed as a continuation from the IQC column (as was first shown in Fig. 12).   

 
 

 
Figure 16. 
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         (a)                                            (b)                                                       (c) 
 
Figure 17. 
 
 

                               
         (a)                                            (b)                                                       (c) 
 
Figure 18. 
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                                                               Figure 19. 
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Figure 18, image (a) shows one strand of C-B-C helix highlighted with the green tube. The 
prototypical fundamental pathway associated with that C-B-C helix is constructed, indicated 
with a red line. It begins at origin vertex O (indicated with green horizontal line). The pathway 
helically coils around the C-B-C helix (as first shown, Figs. 14 and 15), where that C-B-C helix 
is in turn helically coiled about the longitudinal axis; where that is one of the twelve axes that 
radiate from central origin vertex O, aligned with the icosahedral axes of symmetry.  

To summarize: the fundamental pathway is helically coiled around the helical strand of 
tetrahedra (C-B-C helix), that is helically coiled about the symmetry axis. Duplicate copies of 
that pathway structure are arranged in five-fold symmetry about that axis. Figure 18 image (b) 
shows five colours of pathway that travel upward from origin vertex O. Image (c) fills in the 
five counterpart pathways that travel downward from origin vertex O2. Thus, all fundamental 
pathways that originate from O are constructed. See Figure 19. The construction shown from 
O to O2 is one example that is typical of the twelve columns of IQCs that radiate outward from 
the origin vertex O (and from O2, O3, O4...) in alignment with the six fundamental axes of 
icosahedral symmetry.   

Within the IQC column segment (which is essentially an interval[2]) shown in Figure 
19, the ten fundamental pathways that travel from O to O2 have reflectional symmetry – they 
originate from O located on the longitudinal axis, and they terminate at O2 on that axis. This 
construction of the pathways through the lattice can be read as marking off prototypical 
segments of IQC columns that iterate throughout the lattice structure, where those segments 
have at their endpoints O, O2, O3... Importantly, it is only now, by understanding the 
fundamental pathways, that there is information originating from within the construction itself 
that signals where an edge/column terminates at the formation of an origin vertex/QPD. This 
supports the concept of constructive geometry’s lattice as a minimally instructed, self-
assembling structure. 

 
 
8.  Summary: The Constructed SQPD lattice 
 
A key aspect of developing this theory of constructive geometry has been accepting that the 
homogeneous lattice should be conceived of as a dynamically updating system. It is possible 
to conceptualise an operational, naïve, animated mechanical model; in which case it is, in 
principle, possible to construct that model by employing vertices and edges that pull together 
and connect at some locations, triggering neighbouring vertices and edges to be pulled apart, 
analogising the process of vertex creation and annihilation.  However, the asynchronous update 
feature means that for any static snapshot, not all vertices will be in a created state; some will 
be annihilated, and some will be in an ill-defined transition state, consequently the microstate 
of the system is not, in principle, constructible. There is no static model that has information 
entropy equivalent to that of the dynamical model (in effect, perhaps, a rather literal, 
mechanical, interpretation of the uncertainty principle).     

Accepting those inherent limitations, this project has constructed the static averaged 
approximant as a representative base state of the dynamical graph-like lattice. The approximant 
model has produced a mapping of the space with fundamental, helically coiled pathways that 



 25 

explain where vertices may be found in causally subsequent (or previous) iterations of the 
lattice. Those locations are marked with virtual vertices. The assembly of the lattice is 
essentially the constructive method of deriving those pathways. Consider Figure 20, for 
example: proposed superior graphics will remove the preliminary straight-line edges and show 
only vertices and the ten helically coiled strands of pathway that delineate curved intervals 
composed of virtual vertices. That proposed superior representation, moreover, should not 
merely depict the construction shown in Figure 20 that relates to one symmetry axis, but ideally 
it should include the lattice of helically coiled pathways associated to all twelve rays radiating 
from O (and O2, O3…) in alignment with the six icosahedral symmetry axes, and the 
construction should continue, mapping the space through arbitrarily many fractal layers. 
 Encapsulated: Constructive geometry maps three-dimensional space with a 
dynamically updating, helically configured, icosahedrally ordered lattice with fractal character 
such that both the vertex and the global structure are the SQPD. It is hypothesised that 
continued updates of the lattice through cycles of vertex creation and annihilation cause a 
migration of the global structure that produces the arbitrarily dense and extended cloud of 
virtual vertices that make up the ambient virtual background that any static snapshot of the 
lattice is set within. Updates to the annihilation/creation status of vertices at the SQPD 
boundary have a causal linkage to the transitioning ideal intrinsic observer such that that 
observer remains always at the centre of the homogeneous and isotropic lattice structure.   
  
 

8.1 Constructive geometry’s unconventional geometric objects 
 
The vertex: Introduced as a primitive in Section 2, the vertex was initially assumed to conform 
to the standard definition, “point where edges meet”, with “point” defined as a “zero 
dimensional object that gives an exact location in space.” However, the first principles, 
unbiased construction has revealed the lattice to have a self-similar fractal character such that 
both the global model and the first vertex are the SQPD, which does not have an exact location 
in space.   
In cases where the lattice is calibrated against either physical objects, or mathematical objects, 
construction can be carried out to model the large or fine structure of the lattice to the degree 
that computational resources allow, but there is no resolution of the lattice, zooming in 
arbitrarily finely, such that the vertex resolves to the zero dimensional point. Every vertex 
resolves to the SQPD structure composed of vertices down through arbitrarily many 
hierarchically ordered fractal layers. There is no singularity.   
 
The fundamental extension in SQPD space: A directed extension through the lattice that 
connects separated vertices, e.g., O and F, is considered for the case of (i) the dynamical model 
(ii) the microstate (iii) the static approximant: With respect to (i) the relation between O and F 
considered as a distance measurement or arithmetical operation is best understood from the 
perspective of the ideal intrinsic observer moving through the helically configured lattice as 
outlined in subsection 5.2. There, it was noted that the observer transition is causally correlated 
with vertex annihilation and creation updates. Any measurement or arithmetical operation 
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occurs within the lattice operating as a stateful system and involves position/state update. (ii) 
In any microstate’s ensemble of vertices, such as those that make up the directed extension 
through the lattice, there will be some indeterminacy around vertex creation/annihilation status 
which also reads as imprecision of vertex location. (iii) The static approximant model of the 
lattice represents the indeterminacy of state as an indeterminacy of position (within a range of 
position) averaged over all vertices. The lattice may be constructed to arbitrarily fine scale as 
computational recourses allow, however, precision of any distance measurement for an 
extension within the lattice remains limited by the non-zero size and indeterminacy of position 
of the vertex. 

 
 
9.  Conclusion and Outlook 

This article has reported on an initial trial of a first principles bottom-up approach to 
constructing geometry from scratch. This has involved construction of the SQPD lattice as 
summarised in the previous section, including an initial sketching out of a novel theoretical 
framework for a foundational constructive geometry. It is intended that further work should 
build onto this introductory framework formal treatments, particularly information-theoretic 
treatments with the aim of showing quantitatively (perhaps in terms of Kolmogorov complexity 
[19]) that there is no structure that is constructible with less instructive information input (i.e., 
this is modelling a lattice that effectively self-assembles), and related to that, group-theoretic 
type arguments showing, via counting automorphisms, that the SQPD lattice is indeed the 
maximally symmetric/homogeneous lattice structure that is the prototypical structure-object 
with minimum structure-organization.   

It is reasonable that in the universe of all examples of structure there should be at least 
one structure-object that has the minimum structure-organization – effectively a primordial 
informationally minimal substrate over top of which all other examples of structure involve 
layers of additional structure. Physics, typically, is a reductive process of stripping away 
structure toward an ever more fundamental substrate, arriving at an underlying stratum that (if 
the Standard Model is correct) is best described by quantum field theory, below which it is 
speculated there is a massless, timeless, purely informational field theory. Mathematics, on the 
other hand, can be characterised as building up a self-consistent formalism from an 
axiomatically minimal base. The degree and type of realism that should be assumed is a central 
debate, however, most agree that at its base, mathematics must make sense as a purely 
informational system of abstract relations.  

SQPD space’s stateful, helically configured, icosahedrally ordered lattice is not the 
model that geometric intuition first presents as a candidate for fundamental geometric structure. 
Geometric intuition, however, is conditioned not only by orthodoxy, but also biology. The way 
that the brain acts upon sensory data arriving from the external world determines our 
representations of the world – the insight perhaps associated most with Kant – and there is data 
compression involved in going from the noumena to phenomena; and in turn the reduced 
mental representations that we construct feed into the theories that we develop about the world.   
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Whether conceptualising the fabric of spacetime, vector spaces, fields, or any Euclidean or 
non-Euclidean space, there is at the basis a reflex to embed all examples of geometric structure 
ultimately within the framework of a stateless cubical lattice that maps a three-dimensional 
volume that resides firmly in the mind – not just reflecting learned habits of the mind, but also 
the deeper biological processes and structure by which visual representations are constructed 
in the consciousness.   

It is not isomorphism with the architecture of the universe, rather it is isomorphism with 
the architecture of the brain’s vision processing system that lies beneath our innate 
comfortableness with the static, planar spatial model that is supplied by standard Euclidean 
geometry. Although this project’s development of constructive geometry arrives at the three-
dimensional lattice operating as an asynchronously updating system – perhaps best modelled 
as a self-assembling (i.e., not superimposed over arbitrary grid) cellular automaton within 
which an intrinsic observer is an embedded calculating avatar managed by higher-level 
algorithms so that it traces pathways that essentially are computations – it nevertheless will 
remain necessary to reinterpret that through projections that produce the imprecise and 
compromised static two-dimensional representations that provide the intuitive human interface. 
This is indicative of a peculiar mismatch more broadly where the whole human project of 
accumulating data is the compromised task of putting on record determinate statements of fact 
that refer to static instances, or microstates, of the subject matter, the material universe that is, 
according to the third law of thermodynamics, thoroughly dynamical.   

Traditionally, the two and three-dimensional Euclidean spaces are a model of Hilbert's 
axioms so that the subset, the real line, corresponds to a line in Euclidean geometry that is 
presumed to be composed of infinitely many points. Dedekind and Cantor both postulated that 
there is a one-to-one correspondence between all numbers and points on a line, and although 
Dedekind would have liked to jettison the crutch of the geometric number line in pursuit of 
arithmetizing the completeness of the real numbers, he was unable to do that.  

There is the sense that tying mathematical objects in successor and predecessor 
relations to the static one-dimensional Euclidean line is the obvious, straightforward, and 
intuitive model – primarily on the basis that the line is considered an inherently fundamental 
geometric object; but there is no formal argument for that. In fact, linking the arithmetical 
property of an infinite successive ordering to its static, linear geometric counterpart, is, in the 
real line, only achieved at the cost of informationally expensive and unimplementable, largely 
philosophical, interpretations. As Weyl put it, “The introduction of numbers as coordinates by 
reference to the particular division scheme of the open one-dimensional continuum is an act of 
violence whose only practical vindication is the special calculatory manageability of the 
ordinary number continuum with its four basic operations” [20]. 

A key conclusion of this project is that, indeed, numbers described as a subsequent 
labelling scheme naturally organise linearly, but that linear extension should be constructed, 
not introduced as a primitive, in which case we arrive at the helically configured extension 
described in the previous section that is part of the dynamically updating number lattice. This 
is not an expected result. A comparison can be drawn with quantum field theory unexpectedly 
informing us that empty physical space is roiling with activity; now this project’s investigation 
of constructive geometry is informing us that empty abstract space – the maximally entropic 
geometric ground state – is populated with fundamental geometric objects that are necessarily 
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in a dynamical flux of creation and annihilation. In constructive geometry the vertex/point is 
not arbitrarily defined with the philosophical notion of zero size, rather it is constructed and 
has fractal structure, consequently there are no singularities. The interval between discrete 
vertices is also constructed and is understood in terms of discrete virtual vertices that are 
located probabilistically; consequently, populating the interval arbitrarily densely with discrete 
virtual vertices does not merely reproduce the infinities of the classical continuum – being a 
criticism of some discrete approaches.   

To quote Butterfield and Isham [21]:  

Finally, we note that, from time to time, a few hardy souls have suggested that a full theory of 
quantum gravity may require changing the foundations of mathematics itself. A typical 
argument is that standard mathematics is based on set theory, and certain aspects of the latter 
(for example, the notion of the continuum) are grounded ultimately on our spatial perceptions. 
However, our perceptions probe only the world of classical physics – and hence we feed into 
the mathematical structures currently used in all domains of physics, ideas that are essentially 
classical in nature. The ensuing category error can be remedied only by thinking quantum 
theoretically from the very outset – in other words, we must look for “quantum analogies” of 
the categories of standard mathematics. 

It was, of course, classical mathematics that was available to Schrödinger to develop his 
description of the quantum wave function, constructed as a function of the x axis with the 
incorporation of the complex numbers resulting in a helical path associated to a particle located 
in space and time. This project’s investigation of constructive geometry, however, flips that 
scenario to say that the helical path produced by Schrödinger’s wave function is describing 
something about the shape of the foundational underlying geometry, and it is in fact the x axis 
that has no foundational description and thus requires an informationally expensive 
construction within that fundamental, stateful, helically configured, geometric space. On this 
understanding it is not incumbent on pilot wave theory, for example, to construct a geometry 
of spacetime that explains the wavelike characteristics associated with the particle, and 
certainly there is no need to postulate wave-inducing forces, but rather, a helically configured 
spacetime is the default geometry.  

This investigation of constructive geometry has highlighted the need to make the 
distinction between (a) the geometry that best aligns with the structure of the brain that is trying 
to process sensory inputs, and (b) the geometry that best aligns with the structure of the material 
universe that the senses are reporting on. This article has constructed an introductory model for 
(b). There are already indications that making clear that distinction between (a) and (b) will 
facilitate the shift from difficult and unimplementable, largely philosophical interpretations, 
toward intuitively accessible and constructible models with relevance to the fundaments of both 
mathematics and physics.    
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Appendix   

Preliminary observations on the SQPD lattice in the context of fundamental physical structure: 

1). Helicity is a characteristic of fundamental structure throughout the physical universe, from 
submicroscopic to cosmological scale. In some reference frame every known object in the 
physical universe, and in SQPD space, is carving out a helical trajectory (see also [22]).  

2). A number of theories (e.g., [23]) propose that the distribution of matter in the universe, or 
the structure of the universe itself, is a fractal across a wide range of scales. However, the 
standard model of cosmology assumes that the large-scale structure of the universe is 
homogeneous and isotropic at all points. It may be reasonable to investigate whether those two 
characterisations can be reconciled in the SQPD lattice. Considering that (i) SQPD has 
homogeneous isotropic structure in the macrostate, and (ii) the microstate maps space with 
QPD vertices, being real objects linked with filaments of stacked IQCs constructed of virtual 
vertices and pockets of void within a background cloud also mapped by virtual vertices, but 
nothing real – more specifically, voids have a novel ontology; they are not filled with some 
background geometry given that SQPD claims to model the absolute background geometry.
 When standard Euclidean 3-space (in which the entire volume is filled, with no points 
missing) is compared with SQPD space (that is honeycombed with a high percentage of the 
volume occupied by voids), and those two models are considered as alternative geometries of 
the physical universe in which all matter exists, they will obviously produce different results 
for the calculations of volume and expected total density. Some cosmological theories (e.g., 
[24]) suggest that the measurement anomalies in cosmology, conventionally attributed to dark 
energy, may be explained by a swiss-cheese cosmological model that is sympathetic to the 
sinuous and porous SQPD space that is riddled with voids (that perhaps can be thought of as 
“dark space”).   

3). Although current observational data are at this stage inconclusive regarding the global 
geometry of the universe, Poincaré dodecahedral space, for which there is some correlation 
with SQPD space, is one of only several models currently considered [25].  
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