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ABSTRACT 
 
A quarter of a century ago, the first systematic behavioral experiments were performed to clarify the nature 
of color constancy—the effect whereby the perceived color of a surface remains constant despite changes in 
the spectrum of the illumination. At about the same time, new models of color constancy appeared, along 
with physiological data on cortical mechanisms and photographic colorimetric measurements of natural 
scenes. Since then, as this review shows, there have been many advances. The theoretical requirements for 
constancy have been better delineated and the range of experimental techniques has been greatly expanded; 
novel invariant properties of images and a variety of neural mechanisms have been identified; and increasing 
recognition has been given to the relevance of natural surfaces and scenes as laboratory stimuli. Even so, 
there remain many theoretical and experimental challenges, not least to develop an account of color 
constancy that goes beyond deterministic and relatively simple laboratory stimuli and instead deals with the 
intrinsically variable nature of surfaces and illuminations present in the natural world. 
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1 INTRODUCTION 
In its modern formulation, color constancy is usually taken as the effect whereby the perceived or 

apparent color of a surface remains constant despite changes in the intensity and spectral composition of the 
illumination1. The resulting changes in the spectrum of the light reflected from a scene are readily apparent 
over the course of a day (Romero, et al., 2003), with the gamut of colors at sunset almost doubling under the 
mixture of direct and indirect illuminations (Hubel, 2000). Figure 1 shows an example of the effect of an 
extreme change in daylight spectrum: a pelargonium illuminated by reddish direct sunlight and by bluish 
light from the north sky, along with the corresponding reflected spectra from the surface of a petal2. Isolated 
lights with these two spectra appear very different, but, in context, the petal surface reflecting these lights 
appears to be the same. 

                                                      
1 In a slightly different formulation, Beck (1972) stated that the perceived color of a surface tends to remain constant, 
but the modifier is more commonly omitted and color constancy itself described in graded terms. 
2 A flower from the same family revealed John Dalton’s own particular loss in color constancy (Dalton, 1794; Hunt, et 
al., 1995). 
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Figure 1. Images of a pelargonium under sunlight and skylight with respective correlated color temperatures (a) 
4000 K and (b) 25000 K and the corresponding radiance spectra reflected from the arrowed region of a petal 
(simulated from author’s unpublished hyperspectral data). 

 
Color constancy has had a long history of analysis, with contributions from, among others, Monge 

(1789), Young (1807), Helmholtz (1867), Hering (1920), and von Kries (1902; 1905), and later Helson and 
Jeffers (1940), Judd (1940), and Land and McCann (1971). Over much of this period, two opposing 
theoretical views of the phenomenon of color constancy held: one that it was the result of unconscious 
inference (von Helmholtz, 1867; Judd, 1940) and the other that it was the result of sensory adaptation 
(Hering, 1920; Helson, 1943). The experimental data that were available did not easily discriminate between 
these positions. As Mausfeld (2003) noted, as late as the 1970s, standard textbooks on color science were 
almost silent on the phenomenon: Boynton (1979) had a short section (pp 183, 185) describing chromatic 
adaptation and essentially the coefficient rule of von Kries (1902; 1905), considered here in Section 5.2; 
Wyszecki and Stiles (1982) were similarly reserved, judging that for the more general problem of surface-
color perception in complicated scenes, “the science of color has not advanced far enough to deal with this 
problem quantitatively” (p. 173).  

In the 1980s, however, major developments took place with the first systematic behavioral 
experiments, by Arend and Reeves (1986), aimed at clarifying the nature of observers’ color-constancy 
judgments, and the appearance of new models of color constancy, physiological data on cortical 
mechanisms, and photographic colorimetric measurements of natural scenes. In these and related works, the 
main questions of concern were as follows.  

 (1) How is color constancy physically possible? Following theoretical analyses by Brill (1978), and 
Buchsbaum (1980) using low-dimensional linear representations of illumination and reflectance spectra, a 
succession of linear models were developed and formalized by Maloney and Wandell (1986), D’Zmura and 
Lennie (1986), Hurlbert (1986), and others. These models made explicit the kinds of physical information 
required for color constancy, including the minimum number of degrees of freedom necessary to recover 
surface and illumination spectra uniquely. In practice, application of these models proved to be more difficult 
than expected.  

(2) What do observers judge? The color-matching experiment by Arend and Reeves (1986) revealed 
the importance of using appropriate criteria to distinguish explicitly between adaptational and inferential 
aspects of subjects’ judgments3. Although later researchers introduced criteria that probed other aspects of 

                                                      
3 These terms, adaptational and inferential, are interpreted here in relation to two kinds of observer judgments (Section 
3.1), but see e.g. Mausfeld (2003). 
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color constancy, this experiment was critical in quantifying the dual nature of subjects’ judgments about 
stimulus appearance.   

(3) What experimental methods are suitable? The approaches by Arend and Reeves (1986) and 
afterwards by Troost and de Weert (1991) adapted traditional psychophysical techniques of asymmetric color 
matching and color naming to the measurement of color constancy, and they introduced useful indices of 
subjects’ performance. Other approaches followed, but the increasing variety of methods, adaptational 
conditions, and decision criteria led to uncertainty in assessing the varying levels of observer performance. 
To help comparisons, a table is presented here, in Section 4.1, in which constancy indices from a range of 
experiments are listed.  

(4) What physical scene properties are relevant? Many theoretical approaches to color constancy 
made implicit assumptions about the properties of surface spectral reflectances and illuminants, in particular, 
that the effects of an illumination change could be offset by adapting cone photoreceptor responses to 
reflected light according to the coefficient rule of von Kries (1902; 1905). The rule was understood to be an 
approximation with real scenes, but little was known of its limits.  

  (5) What neural mechanisms support color constancy? Early experiments pointed to a special role 
of cortical area V4. Influential single-cell experiments by Zeki (1980; 1983) showed that monkey V4 cells 
responded to the surface color of a stimulus irrespective of its local spectral composition, and behavioral 
experiments by Wild, Butler, Carden, and Kulikowski (1985) showed that color identification under different 
illuminations was impaired when V4 was lesioned. Later experiments produced a more nuanced 
understanding of cortical and other mechanisms contributing to human color constancy. 

 (6) Are natural scenes and surfaces special? The properties of natural scenes are very different from 
those of traditional laboratory stimuli. Burton and Moorhead (1987), using photographic colorimetry, 
supplied the first detailed colorimetric and spatial analysis of the structure of natural scenes. Subsequent 
studies using different imaging techniques furnished more comprehensive data for modeling color constancy 
and for testing and interpreting observer performance. Even so, a careful study by Arend (2001) identified 
fundamental problems with defining color constancy in complex natural visual environments.  

The aim of this review is to consider more closely how each of these questions has been addressed 
over the last quarter of a century; what new issues have arisen; what broadly constitutes the current state of 
knowledge; and what new challenges have emerged. The concern throughout is with human color constancy. 
References to constancy in animals and in machine vision are included only where they seem directly 
relevant. The review does not deal with color constancy in color-vision deficiency, whether inherited or 
acquired, or with lightness constancy, which has its own specialist literature, or, likewise, with color 
induction and color contrast, except where they also seem directly relevant. Previous reviews of color 
constancy have been provided by Smithson (2005) and Shevell and Kingdom (2008), and, with a more 
theoretical emphasis, by Hurlbert (1998) and Maloney (1999). Some of the historical literature has been 
summarized by Beck (1972) and Jameson and Hurvich (1989). Introductions to the work of Monge (1789) 
have been made available by Kuehni (1997) and Mollon (2006).  

2 HOW IS COLOR CONSTANCY PHYSICALLY POSSIBLE?  
Although rarely articulated, it is implicit in the analysis of color constancy that the source of 

illumination is not known directly to the observer. This presumption is not as unnatural as it might seem, for 
even if the light source or sources are visible (e.g. sun, clear or cloudy sky, incandescent or narrow-band 
lamp), direct inspection with a trichromatic eye allows only a three-dimensional representation of the 
spectrum to be inferred4. Moreover, in the natural environment, the source itself may not be well defined in 
that the illumination at a particular point in a scene is usually a complex mixture of direct and indirect 
irradiation distributed over a range of incident angles, in turn modified by local occlusion and mutual 
reflection, all of which may vary with time and position. Accordingly, two rationales have been advanced for 
color constancy. First, it affords a stable percept of surface identity, independent of variations in the 
illumination spectrum, enabling the observer to interact veridically with the world (von Helmholtz, 1867; 

                                                      
4 Specifications of natural surface and illuminant spectra generally need more than three degrees of freedom (Sections 
2.3, 7.2, and 7.3), and, by definition, metameric lights, whether from sources or reflected from surfaces, cannot be 
distinguished by direct inspection. But there are arguments that observers can, in some viewing conditions, infer more 
degrees of freedom than the number of cone classes available (Broackes, 2010).  
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Zeki, 1993). Second, it makes possible an estimate of the illumination spectrum, including the phase of 
daylight, and, by inference, of the time of day and weather (Jameson & Hurvich, 1989; Reeves, 1992)5.  

The challenge for color constancy is that neither the spectral reflectance of a surface nor the spectral 
irradiance of the incident illumination can be readily estimated directly from the pattern of spectral radiance 
reflected from the surface into the eye. Mathematically, the recovery of reflectance from the image spectrum 
is an ill-posed problem, and, in general, does not have a unique solution: if at wavelength λ the spectral 
reflectance at a point is r(λ) and the spectrum of the illumination is e(λ), then r(λ) cannot be recovered from 
the product, i.e. the reflected spectrum c(λ) = r(λ)e(λ), without knowing e(λ). Consequently, as Maloney and 
Wandell (1986) pointed out, without restrictions on spectral reflectances and illuminants, color constancy is 
impossible.  

There have been several theoretical approaches to the problem of human color constancy, the main 
ones concentrating on so-called lightness algorithms, on directly estimating the illumination spectrum, on 
applying low-dimensional linear models, and on appealing to Bayes’ rule. Despite differences in origin, they 
have some features in common. 

2.1 Lightness algorithms 
 The first explicit algorithms designed to recover an approximation of surface spectral reflectance were 
described by Land in his Retinex models (Land & McCann, 1971; Land, 1983; 1986). These models were 
conceived as a description of human surface-color perception and were supported by demonstrations with 
illuminated Mondrian patterns6 of colored papers (illustrated in Section 4.2). The principle of the models was 
that the spectral reflectance of any area could be approximated by the ratio of the light reflected from that 
area to the light reflected from one or more other areas along a path or paths evaluated within each of several 
spectral channels or bands. Bands were defined typically by the spectral sensitivities of the long-, medium-, 
and short-wavelength-sensitive cones. Although difficult to reconcile with human constancy performance 
(e.g. Brainard & Wandell, 1986; Shapley, 1986; Valberg & Lange-Malecki, 1990), Retinex algorithms 
became popular in color-management systems, with their parameters, including the number of integration 
paths, thresholds, and iterations, optimized for a range of applications (Funt, et al., 2004; Provenzi, et al., 
2005). Land’s Retinex models were a prototype for color-constancy algorithms referred to generically as 
lightness algorithms (Hurlbert, 1986). 
 Retinex models contained two important assumptions. One has already been alluded to: that processing 
in each spectral channel was effectively independent of any other channel. This assumption is contingent on 
the overlap of cone spectral sensitivities and is closely related to the coefficient rule of von Kries (1902; 
1905). The other assumption provided the method of normalizing the calculation of the triplets of ratios with 
respect to the illumination spectrum. In this way, a neutral surface in a Mondrian pattern would produce 
equal values in all three spectral bands. The particular method of normalization was essentially a procedure 
for estimating the illumination spectrum.  
 Both the independent-channels assumption and the illuminant-estimation assumption are statistical 
assertions about the sampling properties of surface spectral reflectances and illuminants in relation to the 
spectral sensitivities of the cones. Both have a significance that goes beyond lightness models. Some of the 
methods used to estimate the illuminant are considered in the next section and the independent-channels 
assumption and von Kries’ coefficient rule are considered in Section 5.2. 
  

  

                                                      
5 In machine vision, because failures in color constancy may be dominated by illuminant estimation, the recovery of 
illuminant information is often given priority over other aspects of the problem (e.g. Hordley, 2006; Gijsenij, et al., 
2010). 
6 These patterns, and similar checkerboard versions, although conventionally referred to as Mondrian patterns, differ 
from the majority of Piet Mondriaan’s “Neo-Plasticist” paintings, which had black gridlines and a constrained color 
gamut. Mondrian patterns have the theoretical and experimental advantage of consisting entirely of patches of uniform 
spectral reflectance separated by step edges: reflectance variations are therefore not confounded with illumination 
variations.  



Foster, Page 5 
 

 Vision Research Author manuscript

 

 
 

Figure 2. Image of scene under a daylight with correlated color temperature 6500 K and samples of (a) space-
average image color, (b) a bright non-specular region, and (c) a specular highlight due to moisture (image from 
Foster, Amano, Nascimento et al., 2006).   

2.2 Estimators of the illuminant  
In the absence of any information about the illuminant, including the family of radiant spectra from 

which it is drawn, a common device has been to assume simply that the spatial average of scene reflectances 
is spectrally neutral, so that the space-average chromaticity of the reflected light provides an estimate of the 
illuminant chromaticity (Evans, 1946/1951). This “gray-world” assumption was part of both Buchsbaum’s 
(1980) model of color constancy and one of Land’s (1983; 1986) Retinex models, although the interpretation 
of what constitutes “gray” has since varied with the application and the population of reflectances. As  
D'Zmura, Iverson and Singer (1995) pointed out, it is sufficient that the space-average spectral reflectance is 
known, not that it is gray.  

In applications, the gray-world assumption is easily violated, but if the surfaces of a scene truly form 
an unbiased sample from the population of such surfaces, then space-average chromaticity can give a reliable 
estimator of illuminant chromaticity (Hurlbert, 1986; Barnard, et al., 2002).  

An alternative approach to estimating the illuminant is to assume that the surface in the scene with 
highest luminance (or brightness) reflects maximally and uniformly over the spectrum (Land & McCann, 
1971; Brill & West, 1981), sometimes known as the “bright-is-white” or in other applications as the “scale-
by-max”, “max-RGB”, or “white-patch” assumption (Barnard et al., 2002)7. As with a gray-world estimate, 
the highest-luminance estimate from matte surfaces may be chromatically biased, but an estimate from a 
specular highlight is more likely to be reliable (D'Zmura & Lennie, 1986; Lee, 1986) or a combination of 
reflections from multiple surfaces (Tominaga, 1991). Figure 2 shows an image of a scene where both the 
space-average chromaticity and the chromaticity of a bright non-specular reflection produced biased 
estimates of the illumination, but where a specular highlight is reliable, signaling the very slightly bluish cast 
of the illumination. Yet specular reflections need not always be spectrally neutral, even with non-metallic 
surfaces (Angelopoulou & Poger, 2003). 

In general, estimates of illumination chromaticity from space-average chromaticity and from the 
brightest patch covary across scenes. For example, with illumination chromaticity inferred from a moving 
spotlight on a variegated scene, space-average chromaticity was found to be as good a model of observer 
estimates as a model weighting the brightest patches (Khang & Zaidi, 2004). By contrast, when space-
average chromaticity and the chromaticity of the brightest patch were independently manipulated in 
Mondrian patterns and the illuminant cues provided were pitted against each other, space-average 
chromaticity was found to dominate observers’ estimates of illumination except in patterns with the fewest 
patches (Linnell & Foster, 2002), a result that was confirmed in a much larger study of surface-color 
matching with Mondrian patterns (Amano & Foster, 2004).  

 From a theoretical stand, estimators based on space-average chromaticity and from the brightest 
patch in a scene fall at the extremes of a continuum, and intermediate versions may be defined by varying the 

                                                      
7 It suffices to have something in the scene reflecting maximally over short-, medium-, and long-wavelength portions of 
the spectrum, but not necessarily all at one point; thus, a white surface is not essential for this approach. 
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way that signals from individual surfaces are summed8. But cues to the illuminant may be better combined 
within a more comprehensive cue-combination framework (Maloney, 2002).  

Higher-order statistical properties offer other potential cues to the illuminant. One such property 
proposed by Golz and MacLeod (2002) was a correlation between the color of the image and its luminance. 
Such a property would allow a reddish scene under a neutral illuminant to be distinguished from a neutral 
scene under a reddish illuminant. The visual extent over which this correlation is used by observers seems to 
be local (Granzier, et al., 2005; Golz, 2008). More importantly, the correlation may be a property of 
particular kinds of scenes where there is a preponderance of foliage. Ciurea and Funt (2004) showed that for 
images simulated from a more uniformly sampled set of hyperspectral images, the predicted correlation was 
weak, and for a very large database of digital camera images, the luminance-redness correlation failed 
completely. There are, however, other regularities of scenes (Hordley, 2006) whose relevance to human 
vision has yet to be tested. The extent to which observers might take advantage of illuminant estimators is 
considered in Section 5.1.  

2.3 Low-dimensional linear models 
Rather than making ad-hoc assumptions about the properties of ensembles of surface spectral 

reflectances in a scene, as described in Section 2.2, some theoretical approaches to color constancy have 
taken a more principled line. Developed within a well-defined linear framework, the emphasis was on how 
individual surface spectral reflectances and illuminant spectra could be described analytically. The key idea 
was that if reflectance and illuminant spectra can be expressed as a weighted sum of a few spectral basis 
functions (Brill, 1978; 1979), and these basis functions are known to the observer (Maloney & Wandell, 
1986; Dannemiller, 1991), then spectral reflectances can be recovered exactly, without, for example, 
assumptions about the mean such as the gray-world assumption (Section 2.2, cf. Buchsbaum, 1980).  

The constraint on the numbers of basis functions, i.e. the dimensionality of the representations, is 
central to such analyses. Maloney and Wandell (1986) showed that if the numbers of reflectance and 
illuminant basis functions are n and m, respectively, the number of surfaces in the scene is s, and the number 
of photoreceptor classes is k, then providing that k> n and s> m, both the illuminant and reflectance at each 
location can be recovered exactly. The practical difficulty is that there are normally only three classes of 
cones and that at least three and generally more basis functions are needed to adequately represent surface 
spectral reflectances (Section 7.2), so the condition k> n is rarely satisfied with real scenes. Significantly, the 
advantages of more cone classes, i.e. k> 3, may not be great as anticipated (Mosny & Funt, 2007). 

One way to overcome the problem of dimensionality is to take multiple views of a scene. D’Zmura 
and Iverson (1993; 1993) showed that if the same scene is illuminated by different illuminants, then higher-
dimensional descriptors can be obtained for both surfaces and illuminants. Certain conditions have to be 
satisfied, which were enumerated in detail by D’Zmura and Iverson (1994). As D’Zmura (1992) nicely 
observed, a change in illumination, which creates the problem of color constancy, also supplies its solution. 

In a different approach to the problem of dimensionality, Funt, Drew, and Ho (1991) showed that if 
there are regions where light reflected from one surface illuminates another, i.e. where mutual reflection is 
present, then the condition for recovery becomes k  ≥ (2n + m)/3, which is satisfied with three basis functions 
for surface spectral reflectances and three for illuminants (see e.g. Bloj, et al., 1999). Funt and Ho (1989) 
showed that the chromatic aberration of the eye could also be used to address the dimensionality problem. 
 Low-dimensional linear models have helped identify what is possible in color constancy and what 
constraints need to be satisfied, although they provide little insight into the perceptual correlates of these 
models. They also prompt other questions, including how many spectral basis functions are needed to 
properly represent surface spectral reflectances and illuminant spectra in real scenes. Consideration of these 
questions is postponed until Sections 7.2 and 7.3.   

2.4 Bayesian models 

Bayes’ rule gives a formal way of incorporating the known statistical structure of scenes into 
estimates of surface color, and it effectively generalizes the gray-world assumption (D'Zmura et al., 1995). It 
requires two functions: a prior distribution, i.e. the probability p(r, e) of surface spectral reflectance r and 
illuminant e, usually expressed in a parametric form p(θ), where θ represents the weight in a linear model of 

                                                      
8 Given a Minkowski norm which has index p and which is defined on the set of surface signals, the norm with p = 1 
corresponds to the gray-world assumption and with p = ∞ to the bright-is-white assumption (Finlayson & Trezzi, 2004).  
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reflectances and illuminants, and the likelihood f(c|θ), which is proportional to the probability of the 
observed reflected spectrum c given θ. Bayes’ rule is used to calculate the posterior distribution p(θ|c), i.e. 
the probability of the reflectance and illuminant given the observed reflected spectrum. Provided that a 
solution can be calculated, it leads to very effective use of data (Forsyth, et al., 2001). Bayesian models have 
been incorporated into a more comprehensive framework for analyzing and modeling color constancy known 
as color by correlation (Finlayson, et al., 2001). 

Disappointingly, the application of Bayesian methods to constancy judgments in the natural world 
has had limited success. There is a basic problem in accurately specifying the prior distribution p(r, e), and 
strong assumptions may need to be made. For example, Brainard and Freeman (1997) and Brainard, 
Longère, Delahunt, Freeman, Kraft, and Xiao (2006) assumed that the set of natural spectral reflectances 
could be represented as randomly weighted combinations of basis functions extracted by principal 
component analysis (PCA) from a set of Munsell surface reflectances (Munsell Color Company, Baltimore, 
MD). Three basis functions were used and the weights were modeled by a truncated multivariate normal 
distribution. They made an analogous assumption about illuminants drawn from the daylight locus. 

The assumptions of the relatively low dimensionality of Munsell reflectances (Section 7.2) and the 
normality of the distributions of weights were not critical, unlike the assumptions about the parameters of the 
distributions. As with the gray-world assumption, a Bayesian model using a prior for reflectances based on a 
particular mean (and variance), here that of the Munsell reflectances, may fail drastically when the spectral 
properties of the application no longer match those assumptions, for example, when the spectra are biased 
away from the assumed mean (e.g. Endler, 1993; Webster, et al., 2007). Even when there is less uncertainty 
about the prior, as with the distribution of daylights, observers’ judgments may be difficult to predict from 
the expected distributions (Delahunt & Brainard, 2004).  

Some of the problems with specifying priors may be avoided by calculating color signals that 
represent relative rather than absolute quantities (Fine, et al., 2003), an approach which is analogous to that 
in relational analyses of surface-color judgments (Sections 3.2 and 5.3).  

A different way of relating the statistical structure of natural scenes to color appearance has been 
advanced by Long and Purves (2003). They proposed that color constancy (and many other perceptual 
phenomena) associated with any particular aspect of the visual stimulus is predicted by the relative frequency 
of the occurrence of that stimulus in relation to all the other instances that have been experienced in the same 
context (Howe, et al., 2006). For example, a stimulus consisting of a yellowish patch in a reddish 
background appears greener because that is the typical chromaticity of such a patch in backgrounds with 
similar spatial complexities in natural scenes (Long & Purves, 2003). As with Bayesian methods, however, 
there remains the problem of determining the appropriate relative frequency of chromaticities and spatial 
complexities in natural scenes.  

3 WHAT DO OBSERVERS JUDGE? 
An intrinsic difficulty with measuring color constancy is that there is often more than one sense in 

which the perceived or apparent color of a surface may be judged as being constant. Observers may make 
decisions based on different internal criteria; they may draw on different invariant properties of images; and 
their ability to extract those invariants may depend on other image properties that covary with illuminant 
changes.  

3.1 Hue, saturation, and brightness constancy versus surface-color 
constancy  

Chromatic adaptation to the prevailing illumination is reasonably complete only if the spectrum of 
the illuminant does not differ too much from daylight (Judd, 1940). But as already indicated in Section 1, 
with the normal variation in daylight, reflected lights may differ in appearance even after full adaptation, as 
Arend (1993) confirmed with Mondrian patterns uniformly illuminated by daylights. With natural scenes, the 
variation of illumination is usually more complicated, with some regions in shadow or illuminated by 
reflected light from the sky and other regions in direct sunlight. With the eye in continual movement over a 
scene, some time-averaged adaptation necessarily takes place, depending on the general spatial and 
chromatic structure of the scene; yet differences in illumination remain visible. The same surface partly in 
shadow and partly in direct sunlight may be seen clearly to be under different illuminations and still have the 
same surface color.  
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This apparent paradox in natural viewing has been long recognized (Lichtenberg, 1793; Katz, 1935; 
Evans, 1974), but was not addressed routinely in experimental practice. Before Arend and Reeves’ (1986) 
work there had been measurements of observers’ responses to the color of the reflected light—hue, 
saturation, and brightness—and to the color of reflecting surfaces, but adaptational and inferential processes 
were not easily distinguished. For example, in a study by McCann, McKee, and Taylor (1976) of color 
matching under different illuminants, a Mondrian pattern of Munsell papers and the Munsell chips used to 
match a test paper within the pattern were viewed monocularly with different eyes. As Arend and Reeves 
(1986) pointed out, the adaptational states of the two eyes were different; and the surrounds of the test and 
match papers were also different, producing a potential confound with the differences in illumination; and, 
crucially, the task given to subjects was unspecific as to whether they should match for hue, saturation, and 
brightness or for surface color. 

The asymmetric color-matching experiment by Arend and Reeves (1986), also using Mondrian 
patterns, contained several novel features, detailed in Section 4.2, but the most important element was that in 
separate tasks subjects were given two specifically differentiated criteria for matching patches across the 
pairs of patterns under different illuminants: with one criterion, the patches were to have the same hue and 
saturation (a “hue-saturation match” or in other circumstances a “hue-saturation-brightness match”); with the 
other criterion, the patches were to look as if they were “cut from the same piece of paper” (a “paper match” 
or “surface match”). To make these matches, subjects controlled the stimuli in two dimensions (the third 
dimension corresponding to brightness or lightness variation was omitted to separate color constancy from 
lightness constancy). Subjects were able to make these color judgments reliably (see also Arend, et al., 1991, 
Fig. 5), much as they can with judgments of size and of shape9. The different levels of performance with the 
two criteria (Arend & Reeves, 1986; Arend et al., 1991), i.e. constancy indices roughly two-times higher 
with paper matches than with hue-saturation matches, were replicated by other authors (e.g. Troost & de 
Weert, 1991; Cornelissen & Brenner, 1995; Bäuml, 1999) and by comparison with other kinds of stimulus 
judgments (Reeves, et al., 2008).  

Arend and Reeves (1986) concluded  (p. 1749) that observers’ hue-saturation judgments were 
determined mainly by sensory or adaptational mechanisms and paper matches mainly by perceptual-
computational or inferential mechanisms. The different kinds of processing required by the two criteria have 
been objectively demonstrated in subjects’ eye movements recorded in a simultaneous asymmetric color-
matching experiment by Cornelissen and Brenner (1995). It was found that when making paper matches 
across Mondrian patterns, subjects usually spent more time looking at the surround of the matching patch 
than at the patch itself, whereas the opposite was true when they were making hue-saturation matches. A 
complementary finding was reported by Golz (2010) in an experiment on achromatic adjustment where 
subjects had to adjust a test patch in a variegated surround so that it appeared gray (Section 4.4). The 
accuracy of subjects’ achromatic settings evaluated by their closeness to the mean surround chromaticity was 
better when they were instructed to explore the surround than when they fixated the test patch. 

To distinguish between changes in sensitivity and changes in response criterion, van Es, Vladusich 
and Cornelissen (2007) presented observers with a colored checkerboard pattern undergoing an illuminant 
change and asked observers in one condition whether the central color patch in the pattern kept the same hue, 
saturation and brightness and in another condition, with the same stimuli, whether there was an overall 
illuminant change across the entire pattern. Randomization of the surround affected subjects’ criteria, but not 
their discrimination performance d' from signal-detection theory (Macmillan & Creelman, 2005) nor their 
constancy indices. 

Reports of the ease of applying hue-saturation and paper-match criteria have varied. Troost and de 
Weert (1991) stated that their subjects found making the equivalent of paper matches much more difficult 
than making hue-saturation matches, despite much higher performance levels being obtained with the former 
than with the latter. Brainard, Brunt, and Speigle (1997) reported difficulty in distinguishing the two tasks, 
yet Bäuml (1999) stated that his subjects found paper matches very natural, seeming “to perceive that a 
certain color was the ‘right’ one, in order for the matching field to represent the same surface as shown in the 
test field” (p. 1548). 

The fact that subjects can make dual judgments suggests that using an undifferentiated criterion for 
color matching may lead to greater response uncertainty. Indeed, the variability found in some constancy 
judgments was claimed by Katz (1935, Section 27) and Judd (1940, Section III, 2(c)) to be due to 
indeterminacy either generally in observer attitude or specifically in assigning chromatic effects to an 
appropriate physical origin. With a properly differentiated criterion for matching, therefore, fewer extreme 
                                                      
9 For some discussion of dual color codes in this context, see e.g. Mausfeld (2003). 
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values should occur. A direct comparison of asymmetric color matching with undifferentiated and 
differentiated criteria appears not to have been reported. There is evidence that with a paper-match criterion 
subjects’ responses are at least close to being normally distributed, with little evidence of outliers. In an 
experiment on simultaneous asymmetric color matching with a paper-match criterion (Foster, Amano, et al., 
2001), the distribution of constancy indices from 20 subjects (Section 4.1) was found to have a standard 
deviation of 0.14 about a mean of 0.66. No subject scored less than 2 s.d. below the mean10.  

Implicit in Arend and Reeves’ (1986) experimental procedure was the assumption that their two 
kinds of judgments were based on two 3-dimensional spaces: one concerned with hue, saturation, and 
brightness, the other with surface color per se. Brainard, Brunt, and Speigle (1997) have also proposed that in 
asymmetric color matching with an undifferentiated color-match criterion, more than three dimensions are 
involved in subjects’ judgments. The question of the number of dimensions underlying color judgments with  
surfaces under variegated illumination was addressed directly by Tokunaga & Logvinenko (2010) in a 
multidimensional scaling experiment. Subjects were asked to judge the dissimilarity of surfaces in a scene 
with multiple illuminants. Their responses were best modeled with three dimensions associated with surfaces 
and another three with the illuminants, but with just one illuminant, responses could be modeled with the 
usual three dimensions.  

3.2 Relational color constancy 

As shown later (Sections 4.2 and 4.5), many experiments aimed at measuring color constancy have 
actually measured a different phenomenon, namely, relational color constancy. This refers to the constancy 
of the perceived relations between the colors of surfaces under illuminant changes, rather than of the 
perceived colors themselves11 (Foster & Nascimento, 1994; Nascimento & Foster, 1997). For example, in 
Figure 3, the scene is illuminated by different daylights, with correlated color temperatures (a) 17000 K, (b) 
4000 K, (c) 6500 K, and (d) 4000 K. The color of the light reflected from the sphere in the bottom left corner 
in a, b, and c is clearly different. Nevertheless, given the limits of the color reproduction of these images on 
the printed page, it can be seen that the sphere has the same or similar surface color in each image by 
comparing it with the nearby foliage and by looking over each image as a whole. By contrast, in d, although 
the color of the light reflected from the sphere is the same as in a, it can be seen that the sphere has a 
different surface color, now more bluish, again by comparing it with nearby foliage or over the image as a 
whole. In a, b, and c, the perceived relations between the colors are largely preserved, and in d, they are not.  

Relational color constancy has been given an operational meaning, independent of its subjective 
content, namely, the ability of an observer to correctly attribute changes in the color appearance of a scene 
either to changes in the spectral composition of the illuminant or to changes in the reflecting properties of 
that scene, i.e. its materials (Foster, et al., 1992; Craven & Foster, 1992) . A similar issue has been 
emphasized by Zaidi (1998). The formal equivalence of perceptual and operational interpretations of 
relational color constancy was set out by Foster and Nascimento (1994, Appendix 1), and its experimental 
application is described here in Section 4.5.  

The phenomenology of illuminant and material changes has been found to be particularly compelling 
when the changes occur as a temporal sequence without an intervening delay. Thus, when subjects were 
presented with successive Mondrian patterns related by illuminant or material changes (Craven & Foster, 
1992), they reported that the “changes of illuminant tended to be perceived as a coloured wash over the 
display, whereas changes of material led to a distinctively uneven appearance” (p. 1364).  

                                                      
10 The kurtosis of the sample, a measure of the potential of the distribution for outliers, was in fact less than that for a 
normal distribution. 
11 The perceived relations between the colors of surfaces should not be confused with what defines related colors, such 
as brown and olive, which require the presence of other colors, achromatic or chromatic, to be perceived. The former 
refers to pairs (or larger groupings) of arbitrary colors; the latter to particular individual colors.  
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Figure 3. Images of a natural scene under different daylights. The scene illuminant is (a) skylight, with correlated color 
temperature 17000 K, (b) sunlight, 4000 K, (c) a mixture of sunlight and skylight, 6500 K, and (d) sunlight, 4000 K. In 
images a, b, and c, the sphere (bottom left corner) is covered with the same gray paint, but in image d it is covered with 
blue-gray paint to give the same reflected light as in image a. In a, b, and c the color relations are largely preserved; in d 
they are not. Images from hyperspectral data in Foster, Amano, Nascimento, and Foster (2006). 
 

As Figure 3 illustrates, reliable discriminations can also be made between simultaneously presented 
images related by an illuminant change, as in a and b, and by an additional material change, as in a and d. 
This ability persists with presentations lasting <200 ms and led to the suggestion that the ability to judge 
whether color relations were preserved or violated was the result of fast, relatively low-level, spatially 
parallel visual processing (Foster et al., 1992). This notion was supported by subsequent measurements in 
which during successive illuminant changes, material changes in one or more surfaces in an array of other 
surfaces were shown to be readily detected almost independently of the numbers of surfaces (Foster, 
Nascimento, et al., 2001). One potential role for this mechanism may be to provide the visual system with 
information about a rapidly changing world in advance of the generation of a more elaborate and stable 
surface-color representation. 

Relational color constancy has a natural physical substrate: the ratios of cone excitations generated 
in response to light reflected from pairs of surfaces or groups of surfaces, which may or may not be adjacent. 
Such ratios, which can also be determined across post-receptoral combinations and spatial averages of cone 
signals, have the remarkable property of being nearly invariant under changes in illuminant and may explain 
performance in several color-constancy tasks (Section 5.3).  

Van Es, Vladusich, and Cornelissen (2007) have proposed that relational color constancy and color 
constancy based on judgments of hue, saturation, and brightness involve mechanisms with distinct spatial 
dependencies. Some support for this proposal comes from data on the effect of the surround field on, 
variously, asymmetric color matching, achromatic adjustment, and color naming (Amano & Foster, 2004; 
Brenner & Cornelissen, 1991; Brenner & Cornelissen, 2002) and from data on eye movements in asymmetric 
color matching (Cornelissen & Brenner, 1995) and achromatic adjustment (Golz, 2010). 
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3.3 Positional and atmospheric color constancy 
Changing the spectrum of reflected light from an object by changing the spectrum of the illumination 

constitutes the most fundamental test of color constancy. But there are other, less direct ways in which the 
illumination on an object may change with a change in viewing conditions. One of the most natural ways 
arises with a change in position or context. For surface color to be perceived as constant, the context of the 
surface needs to be taken into account; otherwise, the spectral reflecting properties of the surface and the 
spectral properties of the illumination cannot be disconfounded. Yet color constancy also requires the context 
to be discounted in some sense; otherwise, perceived surface color would be an accident of position 
(Wachtler, et al., 2001). This apparent contradiction was examined in an experiment (Amano & Foster, 
2004) with Mondrian patterns of simulated Munsell surfaces whose average spatial and spectral properties 
could be accurately controlled. It was found that subjects could make simultaneous asymmetric color 
matches with a paper-match criterion (as in Arend & Reeves, 1986) across simultaneous changes in test-
patch position and illuminant almost as well as across changes in illuminant alone. Performance was no 
poorer when the surfaces surrounding the test patch were randomly permuted (Amano & Foster, 2004; cf. 
van Es et al., 2007). Provided that changes in context do not entail a change in composition and that they are 
not systematic, it seems that color constancy is preserved, at least in Mondrian patterns. This invariance to 
position is not necessarily inconsistent with classical color-contrast or chromatic-induction effects where 
changes to the surrounds are made in a systematic way (Section 5.4). 

Another natural change to viewing conditions that affects the spectrum of the reflected light is a 
change in viewing medium. In the natural world, fog, mist, and smoke can all modify spectral transmission, 
by an amount that depends on the composition of the suspended particles and their density, the ambient 
illumination, and the distance of the reflecting surface from the observer. Despite the ubiquity of this 
experience, little is known about the degree of color constancy under these conditions, except for one study 
with Mondrian patterns by Hagedorn and D’Zmura (2000). Subjects made asymmetric color matches of the 
patterns with and without a colored fog and their performance was represented by an affine combination of 
simulated reflected and scattered light. All the subjects compensated for the loss in contrast due to the 
colored fog, but to differing extents. An automatic compensation for contrast loss may explain the 
observation that the color of a test patch appears more colorful against a low-contrast, neutral background 
than against a high-contrast, multicolored background of the same space-average color (Brown & MacLeod, 
1997). 

4 WHAT EXPERIMENTAL METHODS ARE SUITABLE? 
Four main kinds of psychophysical methods have been used to measure color constancy: asymmetric 

color matching, color naming, achromatic adjustment, and discriminating illuminant from reflectance 
changes. Each of these methods involves design factors that can influence observed performance in different 
ways. Most applications described in the following used the same kind of experimental apparatus, namely, a 
computer-controlled RGB color monitor, although some used physical materials and lights. Before 
considering the advantages and disadvantages of each of these methods, it is useful to summarize the more 
common ways in which the level of color constancy has been quantified. Some of the logical content of this 
section is based on that in Foster (2003). 

4.1 Indices for color constancy 
The basis for quantifying the degree to which color constancy succeeds—or fails—is the difference 

between an observer’s match or setting and its ideal value in some appropriate color space. This space is 
typically either a two-dimensional chromaticity space such as the CIE 1931 (x, y) or CIE 1976 (u', v') 
chromaticity diagram or a three-dimensional space such as CIELAB or CIELUV color space (CIE, 2004). 
Differences between particular measures center on how the difference between observed and ideal settings is 
expressed in the chosen space. 
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Figure 4. Definition of color-constancy index and Brunswik ratios. The coordinates of a test surface under daylight 
with correlated color temperature 6500 K (open circle), the ideal match under daylight with correlated color temperature 
10 000 K (open square), and the corresponding observer match (solid square) are plotted in the CIE (x, y) chromaticity 
diagram. The constancy index is defined by CI = 1 − b/a; the Brunswik ratio by BR = c/a; and its projection by BRφ = c 
cos φ/a. Data from Arend and Reeves (1986, Fig. 4, middle right). 

 
A simple Euclidean distance may be used to quantify the difference, but instead a constancy index 

CI (Arend et al., 1991) or a Brunswik ratio BR (Troost & de Weert, 1991) has often been preferred to scale 
the difference to yield a dimensionless quantity. Figure 4, adapted from data in Arend and Reeves (1986, Fig. 
4, middle right), shows in CIE (x, y) space the coordinates of a test patch under 6500 K (open circle), the 
ideal match under 10 000 K (open square), and the observer match under 10 000 K (solid square), along with 
the Euclidean distances a, b, and c between them and the angle φ between ideal and observer matches. The 
constancy index CI is defined as 1 − b/a; the Brunswik ratio BR as c/a; and its projection BRφ on the ideal-
match line as c cos φ/a. In principle, perfect constancy corresponds to an index or ratio of unity and the 
complete absence of constancy, with no account taken of the illuminant, corresponds to an index or ratio of 
zero.  

All three measures, BR, BRφ, and CI, coincide when the coordinates of the observer match fall on 
the line segment joining the coordinates of the test surface and ideal match, i.e. when φ = 0 and BR <1. But 
only with Arend et al.’s index does the error get smaller as the index gets larger, so that in the limit CI = 1 
implies b = 0, i.e. a perfect match. With the Brunswik ratio, the error b is not a unique function of BR, so that 
b> 0 and BR ≥ 1 can both be true. The result is that both BR and BRφ tend to underestimate the error. The 
differences need not be trivial. For the example in Figure 4, the match is clearly imperfect, and CI = 0.59, 
whereas BR = 1.14 and BRφ = 1.06.  

The inflationary property of ratio measures does not disappear when means are taken over groups of 
observations. Thus, when BR, BRφ, and CI were applied to data from 20 subjects making simultaneous 
asymmetric surface-color matches (Foster, Amano et al., 2001), the mean values of BR and BRφ  were found 
to be higher than the mean value of CI by 27% and 22%, respectively.  

The fact that CI does not underestimate the error gives it an advantage over BR and BRφ. Of course, 
no single measure is perfect. A problem common to BR, BRφ, and CI is that their magnitudes tend to infinity 
as the physical difference a tends to zero. Dividing by a is intended to scale the expected error by the size of 
the change in illuminants, but values of b can be fairly stable across extensive variations in a (see de 
Almeida, et al., 2004, Fig. 3, where a different notation is used). In practice, however, a is usually large and 
held constant over different conditions. 

Because these three measures are mainly of the magnitude of the error, they lose information about 
its direction (Troost & de Weert, 1991; Ling & Hurlbert, 2008). In the machine-vision literature, it is more 
common to record an unscaled measure of the difference between ideal and empirical matches or one 
converted to an angular measure with respect to the origin of the color space of interest (Barnard et al., 2002; 
Hordley & Finlayson, 2006). Perceptually weighted measures have been described by Vazquez-Corral, 
Parrága, Vanrell and Baldrich (2009)  and by Gijsenij, Gevers, and Lucassen (2009). Within the context of a 
given scene, it is also possible to measure the effect of errors in an information-theoretic sense (Foster, et al., 
2009). 
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Figure 5. Mondrian patterns used by Arend and Reeves (1986) in simultaneous asymmetric color matching. The 
patterns consisted of Munsell matte colored papers of Munsell Value 5 simulated under daylight and sunlight with 
correlated color temperatures 6500 K on the left and 4000 K on the right. Patch luminances were varied by ±10%. The 
variable “match” patch arrowed in the right pattern was matched against the corresponding test patch arrowed in the left 
pattern (arrows absent in the original). Recreated from Fig. 1 of Arend and Reeves (1986, pp 1744-5). 

 
Some authors report constancy indices or Brunswik ratios by making fits to multiple response 

categories, for example, by estimating boundaries between regions of color space classified according to 
unique hues or basic color categories. This procedure can remove significant variance in the data and lead to 
higher estimates of performance, but may limit comparisons with indices from single response categories.  

Table 1 shows constancy indices and Brunswik ratios from a sample of experimental studies grouped 
by method. Data from some relevant studies were omitted because of the difficulty in extracting indices. 
Care should be exercised in making simple numerical comparisons of constancy values across different 
methods, especially given differing observer adaptational states and decision criteria, and the unexplained 
variation within some methods. 

 

4.2 Asymmetric color matching  
The method of asymmetric color matching described by Wyszecki and Stiles (1982) involves stimuli 

being compared under different viewing conditions, here different illuminants. Stimuli may be viewed 
simultaneously or successively or in an alternating sequence, binocularly or dichoptically. A critical factor 
for color constancy is whether the adaptational state covaries with the change in illuminant (Section 3.1). In 
the method of asymmetric color matching used by Arend and Reeves (1986), the Mondrian patterns 
consisted of matte, colored Munsell surfaces simulated under different illuminants and presented side by side 
on an RGB monitor, as illustrated in Figure 5. The subject, who viewed the stimuli binocularly, adjusted a 
variable match patch in the right pattern to match the corresponding fixed test patch in the left pattern12. The 
match shown is a perfect paper match. Novel features of the design, in addition to the experimental task 
(Section 3.1), were the simultaneous presentation of the patterns to minimize confounding adaptational 
effects and the use of identical spectral reflectances for corresponding fixed surfaces in the test and match 
patterns so that only the illuminant would affect performance. The mean constancy index obtained by Arend 
and Reeves (1986) with a paper-match criterion was 0.52 averaged over three subjects, but in a closely 
similar replication of this experiment by Bäuml (1999) the mean index was 0.79 averaged over eight 
subjects. With von-Kries-approximated illuminant changes (Section 4.8), Troost and de Weert (1991) 
obtained 0.81 averaged over 14 subjects. Values from some other studies are listed in Table 1.  

A potential nonadaptational confound in asymmetric color matching can come from the introduction 
into the test scene of a surface that duplicates the test surface. As Maloney (1999) cautioned, by setting the 
match patch to have the same hue, saturation, and brightness as the duplicate patch in the match scene, a 
subject can demonstrate perfect constancy when in fact they have none. Duplicate surfaces were actually 
                                                      
12 There is an inconsistent nomenclature for these surfaces: a fixed “test” and variable “match” (or “reference” or 
“comparison”) are common, and used here, but in some reports “test” is replaced by “standard” (or “reference”) and 
“match” by “test”.  
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eliminated by Arend and Reeves (1986), and, in randomly composed scenes such as Mondrian patterns (Fig. 
5), a more stringent constraint may be imposed requiring a minimum chromatic difference between the test 
and other patches in the scene (Foster, Amano et al., 2001).  

Given a particular stimulus geometry, slightly higher constancy indices may be obtained in 
asymmetric color matching by presenting the two differently illuminated Mondrian patterns successively, 
one rapidly after the other in the same position, rather than simultaneously side by side. The improvement is 
about 14% on average (Foster, Amano et al., 2001; compare Troost & de Weert, 1991). It seems probable 
that successive presentation, either as a “one shot” or as an alternating sequence, without an intervening 
delay, can generate a useful cue to changes in reflectance (Section 5.3).  

A novel form of sequential asymmetric color matching was introduced by Barbur, de Cunha, 
Williams, and Plant (2002) in which the two patterns, each presented for 800 ms, were continuously 
alternated. The subject adjusted the match field so that alternating test and match fields appeared invariant 
during the alternating surround illuminant. This dynamic matching technique, applied with a hue, saturation, 
and brightness criterion, yielded a mean Brunswik ratio of 0.50, which is relatively high given the criterion 
and short illuminant durations. The results were interpreted as being due to “instantaneous” constancy 
mechanisms (Barbur et al., 2002; 2004).  

These successive or sequential methods of asymmetric color matching with short illuminant 
durations should be distinguished from more traditional forms of successive asymmetric color matching 
(Brainard & Wandell, 1992; Bäuml, 1995) in which a subject is given greater chance to adapt to the 
differently illuminated patterns or scenes13. For example, in a successive asymmetric color-matching 
experiment by Murray, Daugirdiene, Vaitkevicius, Kulikowski, and Stanikunas (2006), subjects were given 
up to 60 s to adapt to a background field of various sizes. With a 120-degree adapting field, a mean 
constancy index of 0.91 was obtained with judgments based on a hue, chroma, and value. In principle, 
successive asymmetric color matching depends on memory but dichoptic simultaneous asymmetric color 
matching does not, and it allows complete or almost complete adaptation of the eye to each illuminant 
(Chichilnisky & Wandell, 1995). Levels of constancy can be very high. Using this dichoptic technique, a 
Brunswik ratio of 0.89 was obtained by Bramwell and Hurlbert (1996) with an undifferentiated forced-
choice color-matching criterion. Somewhat lower values were obtained by Kuriki and Uchikawa (1996) but, 
significantly, paper matches and the equivalent of hue-saturation-brightness matches produced almost 
identical indices (Table 1).  

In general, asymmetric color matching, whether simultaneous or successive, binocular or dichoptic, 
offers precision and flexibility, with little constraint on the reflectance or geometry of the test stimulus. But it 
has a limitation: it can establish only an equivalence of stimuli (Foster, 2003). To see this, consider Figure 5 
again. The bluish-green test patch in the left pattern has a perfect paper match with the greenish match patch 
in the right pattern (recall that the patterns were produced by simply changing the spectrum of illumination 
on the same set of Munsell surfaces). Suppose a colored filter is placed exactly over the test patch in the left 
pattern. Because the filter is localized and coextensive with the patch, the change in reflected spectrum of the 
pattern is perceived as a change in the test spectral reflectance. Consequently, the paper match with the 
match patch in the right pattern no longer holds. If, now, the same colored filter is applied to the rest of the 
left pattern, the paper match is restored14. Because the filter is then global, the change in reflected spectrum 
of the pattern is perceived as a change in illuminant, not as a localized change in reflectance. Therefore, by a 
manipulation of the surround, two different spectral reflectances in the left pattern (the original bluish-green 
test patch and the same patch with the coextensive filter superimposed) can be matched by the same spectral 
reflectance in the right pattern. Since the same argument may be applied to any other test patch, and—within 
limits—to any other colored filter, it follows that a paper match does not determine the test spectral 
reflectance uniquely, even up to metamerism. What it does determine is the chromatic relationship between 
the test patch and the other patches in the left pattern. This limitation on the scope of asymmetric color 
matching is revealed most clearly with very simple patterns consisting of just two surfaces (Section 5.1). In 
short, asymmetric color matching is a measure of relational color constancy (Section 3.2) rather than of color 
constancy.  

Arend and Reeves (1986) were aware of the importance of within-scene comparisons. They 
informed subjects that other surfaces in the Mondrian patterns had closely related colors and “that the 
                                                      
13 The functional difference between simultaneous and successive presentation is not always well defined: viewing two 
simultaneous patterns with alternating gaze produces almost the same retinal stimulation as viewing successive patterns 
with gaze fixed.  
14 The restoration need not be exact, as made clear in Section 5.3. 
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relations among such groups might be useful” (p. 1745). A similar approach was used by Arend, Reeves, 
Schirillo, and Goldstein (1991), Cornelissen and Brenner (1995), and Bäuml (1999), but not by Brainard, 
Brunt, and Speigle (1997) and Foster, Amano, and Nascimento (2001). Informing subjects about these cues 
seems to have little effect on the recorded degree of color constancy (Table 1). 

4.3 Color naming and related methods 
Unlike asymmetric color matching, color naming provides a direct method of measuring color 

constancy, since it concentrates on identification rather than equivalence. It is also a very natural measure, as 
Jameson (1983) has convincingly argued. Names may be drawn from a fixed, small repertoire, e.g. the 
eleven monolexemic basic color terms (Berlin & Kay, 1969; Boynton & Olson, 1987), or applied without 
constraint.  

There is, in principle, a problem of chromatic resolution in that the number of discernible surface 
colors is more than two million, either by theory (Pointer & Attridge, 1998) or from the computational 
analysis of natural scenes from hyperspectral data (Linhares, et al., 2008), more than can be named 
accurately or consistently. Even when the lightness dimension is ignored, there remain about 26 000 
discernible surface colors (Linhares et al., 2008). Determining the degree of constancy must therefore be 
established by some measure that describes how the distribution of the set of names changes with change in 
illuminant, one of the simplest measures being a location measure such as the centroid. The choice of this 
measure and the choice of the set of names both require care. Too large a set of names can lead to 
uncertainty in individual definitions, and too small a set, e.g. red, green, blue, and yellow, may place too 
much weight on the particular distributional measure, especially with a limited gamut of surface colors 
(Speigle & Brainard, 1996). As explained later, if distributional measures are replaced by boundary tracking, 
some of these problems with small gamuts are avoided. Still, constancy estimates based on particular sets of 
colors such as red, green, blue, and yellow may be misleading, since these surface colors may be more stable 
perceptually than others and therefore lead to higher constancy indices (Kulikowski & Vaitkevicius, 1997).  

For the reasons of naturality just mentioned, color naming was used by Troost and de Weert (1991) 
as a contrast with their experiment on asymmetric color matching. The stimulus was a colored disc presented 
on a background simulated under different illuminants, to which the subject was allowed to become adapted. 
Subjects assigned color names from a set of 12 modified from the categories empirically determined by 
Boynton and Olson (1987). The location in the CIE 1964 (u, v) chromaticity diagram of each of the color 
names was calculated by taking the average u, v values of all color stimuli that were called red, green, purple, 
and so on. The effect of the change in illuminant was quantified by the shift in this average. Despite 
differences in stimulus configuration, adaptation, and task, the mean Brunswik ratio of 0.65 fell between the 
means for simultaneous and successive asymmetric color matching with a paper-match criterion (Table 1).  

The precision of color naming can be increased but only by losing some of its advantages. One way 
to improve it is by adjoining a numerical scale, although the method is then no longer strictly categorical. 
Thus, in an experiment by Speigle and Brainard (1996) with real surfaces and illuminants, subjects named a 
flat test surface using eleven basic color categories and gave a rating from 0 to 9. Rather than being 
described by a stimulus centroid, judgments were expressed as a multi-dimensional vector with differences 
quantified by a city-block metric15. Performance was compared with asymmetric color matching according to 
an undifferentiated color-match criterion and with achromatic adjustment, and was reported to be similar. In 
another experiment by Schultz, Doerschner, and Maloney (2006) with three-dimensional scenes containing 
objects of various shapes and materials simulated on stereo RGB monitors, subjects rated how red, green, 
blue, and yellow a test patch appeared. From these numbers, judgments were expressed as two-dimensional 
vectors, which in turn yielded a mean color constancy index of 0.70.  

A different way of improving the precision of color naming is to determine the location of color 
boundaries. The method has most frequently been applied using the four unique hues, i.e. unique red and 
green, and unique blue and yellow, where each is defined so that it contains none of the other pair (unique 
red, for example, is neither bluish nor yellowish). Unique gray is the special case that is neither reddish nor 
greenish nor bluish nor yellowish. For a given continuum in some appropriate color space, these unique 
colors can define a precise location measure (Valberg, 1971). The stability of these locations was measured 
by Arend (1993) with a test patch presented in a Mondrian pattern of Munsell surfaces, in a neutral surround, 
and with an empty surround (i.e. black), each simulated under different daylights. Over all conditions, the 
unique hues set by subjects, when adapted, produced a mean constancy index of 0.66. The mean index for 

                                                      
15 The city-block metric is a Minkowski metric with index p = 1; i.e. the sum of the absolute coordinate differences. 
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the uniform and Mondrian surrounds was 0.68, slightly higher than for the test patch alone, which yielded 
0.63. The last result is important in showing how categorical judgments may be formed independent of an 
immediate spatial chromatic reference.  

This approach was extended by Smithson and Zaidi (2004) to demarcate whole regions of color 
space with samples being classified as either red or green in one set of trials and either yellow or blue in 
another set. Test patches were presented on variegated backgrounds of natural and manufactured surfaces 
simulated under different daylights. In one condition the illuminant varied consistently across the test and 
background and in another condition it varied inconsistently, with one illuminant for the test and a different 
one for the background, so that on a single trial there was no information about the test illuminant (cf. Arend, 
1993). A form of Brunswik ratio was calculated from the achromatic point estimated from the intersection of 
the two classification boundaries. In the consistent condition, the mean Brunswik ratio was 0.83 and in the 
inconsistent condition it was 0.65. This result shows that some level of spatially highly localized adaptation 
can be maintained across successive test presentations (Smithson & Zaidi, 2004).  

Boundary location can be deployed with larger repertoires of color names. As with unique hues, it 
requires making fits to multiple response categories to estimate the degree of color constancy. This technique 
was used in an experiment by Hansen, Walter, and Gegenfurtner (2007) in which subjects categorized 
colored patches as belonging to one of eight categories (the equivalent of red, orange, yellow, green, 
turquoise, blue, purple, and gray) in the presence of a large neutral background that had the chromaticity of 
the illuminant. The illuminant was one of four colored lights and one effectively white and illuminant 
changes were approximated by uniform chromatic shifts of the patches (Section 4.8). Subjects were adapted 
to the stimuli. A mean Brunswik ratio was estimated from the neutral convergence point of the fitted color 
boundaries: as the background was reduced to a peripheral stimulus, the ratio fell from 0.99 to 0.49.  

An experiment similar to that by Hansen, Walter, and Gegenfurtner (2007) was performed by 
Olkkonen, Hansen, and Gegenfurtner (2009) but with simulations of real surfaces drawn from the Munsell 
set and illuminants from fluorescent illuminant spectra. Again, there was a large neutral background that had 
the chromaticity of the illuminant, and subjects were allowed to adapt. The mean Brunswik ratio from the 
chromatic category boundaries was 0.75 with the full background. A higher ratio was obtained from the 
location of the gray category centroid, but it is unclear whether the categorization of gray was helped by the 
presence of the gray surround, an issue that is considered in the next section.  

With an undifferentiated color-naming criterion, levels of color constancy recorded in the foregoing 
experiments presumably reflected primarily adaptational effects. Curiously, color naming seems not to have 
been used in the differentiated way introduced by Arend and Reeves (1986) in simultaneous asymmetric 
color matching, that is, with one criterion, observers describing the perceived surface color and with the 
other criterion the hue, saturation, and brightness of the stimulus. A revealing test would then be to record 
naming behavior across simultaneously presented surfaces under different illuminants (Section 3.1 and 
Tokunaga & Logvinenko (2010)).  

4.4 Achromatic adjustment 
The method of achromatic adjustment is normally applied in an undifferentiated way. A subject 

typically sets a test stimulus so that it appears “achromatic”, i.e. somewhere on the continuum from gray to 
white (Werner & Walraven, 1982; Fairchild & Lennie, 1992). Measurements are easy to make, and easy to 
analyze (Arend, 1993), but there are interpretational difficulties in that, depending on the criterion used by 
the subject, the achromatic setting provides only an estimate of the illumination spectrum at that point or 
region in the scene (Foster, 2003), i.e. the subject’s local white point (Webster & Leonard, 2008). Like any 
local measurement, it may or may not be influenced by manipulations of the scene elsewhere; for example, 
as with asymmetric color matching of Mondrian patterns, an achromatic setting should be independent of 
resampling changes in the background (Section 3.3). As noted elsewhere (Foster, 2003; Schultz et al., 2006), 
it is uncertain whether achromatic settings can be used to estimate the stability of perceived surface color 
away from the neutral point (see e.g. Delahunt & Brainard, 2004). The bias in the estimate has, however, 
been used successfully to explore the effects of scene structure such as local chromatic context (Brainard, 
1998; Kraft & Brainard, 1999) and to test the role of memory in surface-color judgments (Hansen, et al., 
2006).  

As with color naming, achromatic adjustment could be used in the differentiated way introduced by 
Arend and Reeves (1986); that is, with one criterion, observers making a stimulus look as if it were made of 
gray or white paper and with the other criterion making it appear devoid of hue (again see Section 3.1 and 
Tokunaga & Logvinenko (2010)). With a differentiated criterion, achromatic adjustments might correlate 
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with observers’ eye movements (Golz, 2010), much as asymmetric color matching does (Cornelissen & 
Brenner, 1995). 

 A potential methodological confound with achromatic adjustment, analogous to the one identified 
by Maloney (1999) with asymmetric color matching (Section 4.2), can come from the introduction into the 
scene of a white or gray surface that the subject assumes or is led to believe is spectrally neutral. The subject, 
rather than making an independent achromatic setting of the test stimulus, can instead match it against this 
surface, uninfluenced by whether the test stimulus appears achromatic. The assumed neutral surface may be 
a single patch (e.g. part of a familiar color palette) or the whole room in which the experiment was 
undertaken. There have been reports of subjects’ being asked to ignore such cues (e.g. Kraft, et al., 2002; 
Delahunt & Brainard, 2004), yet apparently rarely. Subjects’ settings may also depend on whether they are 
given explicit instructions about eye movements (Golz, 2010) (Section 3.1).  

4.5 Discriminating illuminant changes from reflectance changes  
If surface color is considered as a proxy for surface spectral reflectance, a more objectively oriented 

method of measuring color constancy is to ask subjects to distinguish between changes in illumination 
spectrum and in surface reflectance (or material) in a scene (Craven & Foster, 1992). In this sense, color 
constancy is interpreted operationally, with reference not to subjectively defined qualia but to the objective 
properties of the world, namely, the stability of surface spectral reflectance under illuminant changes 
(Section 3.2). To take an illustration given by Craven and Foster (1992, p. 1360), turning on an incandescent 
lamp in a room lit partly by daylight may lend a yellowish cast to the surfaces of the objects it illuminates, 
but we do not infer that the reflecting properties of the illuminated objects have changed. In an experimental 
test of this approach using Mondrian patterns of Munsell surfaces simulated under different daylights, it was 
found that subjects were able to make these discriminations quickly, accurately, and effortlessly (Craven & 
Foster, 1992; Foster, Nascimento et al., 2001). As with asymmetric color matching, the task can be 
performed with images of scenes presented simultaneously, side by side, or sequentially, with a variable 
interval. But also like asymmetric color matching, it can establish only an equivalence of stimuli (Section 
4.2). 

A direct comparison of observers’ performance in this objective task with their performance in more 
subjective rating measurements was performed by Reeves, Amano, and Foster (2008) using sequentially 
presented Mondrian patterns of Munsell surfaces simulated under different daylights. Subjects judged 
whether a change of color originated from a change in material and, separately, they rated the stimuli for 
sameness of material appearance and sameness of hue and saturation. Binary judgments of origin were very 
closely correlated with material-appearance ratings (Pearson’s ρ = 0.93) and produced similar constancy 
indices of, on average, 0.76. With hue-saturation ratings, indices fell, on average, to 0.34. Fittingly, when the 
different indices were plotted against each other, judgments of origin were found to be linearly separable 
from hue-saturation ratings (Reeves et al., 2008, Fig. 4). 

This objective discrimination task was also used to compare the degree of color constancy across 
rural and urban natural scenes with the aid of a test probe, a matte gray sphere, physically embedded in each 
scene (Foster, Amano & Nascimento, 2006). Hyperspectral images of twenty-one scenes were rendered 
under two successive daylights on an RGB monitor. Subjects reported whether there was a change in 
reflectance of the test probe. Mean constancy indices were found to range from 0.60 to 0.97 depending on 
the scene and illuminant change. The highest index of 0.97 was obtained with the scene shown in Figure 2 
(the image was cropped to exclude the specular highlight). The main explanatory factor for this dependence 
is discussed in Section 5.3. 

The same task has also been used to demonstrate color constancy with brief simultaneous 
presentations of Mondrian patterns of less than 200 ms duration, and, with one subject, just 1 ms duration 
(Foster et al., 1992); to quantify the color constancy of red-green dichromats and anomalous trichromats 
(Baraas, et al., 2010) and of tritanopes (Foster, et al., 2003); and to compare color constancy in real three-
dimensional tableaux with their two-dimensional planar projections (de Almeida, et al., 2010), discussed in 
Section 4.6.  

Even so, there are difficulties in extending judgments about material constancy under changes in 
illuminant to judgments about material constancy when illuminant changes are combined with changes in 
viewpoint. The problem was demonstrated by Zaidi (2001) with textured surfaces which changed their 
perceived surface texture with a change in orientation. This problem is considered further in Section 7.4. In 
some object-identification tasks, subjects may actually adopt a suboptimal strategy (Zaidi & Bostic, 2008). 
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Nevertheless, with only illuminant changes on a scene, observers seem to be able to separate their 
visual experiences from what those experiences are of. To continue the earlier illustration from Craven and 
Foster (1992), despite a yellowish cast to objects illuminated by an incandescent lamp, we can still tell what 
the surface color is and recognize its constancy under the altered lighting. 

4.6 Differences between real and simulated scenes  
There has been a persistent albeit reasonable expectation, sometimes implicit, that color constancy 

should be better with natural, three-dimensional stimuli than with flat, coplanar, geometric scenes, usually 
generated on an RGB monitor and exemplified by Mondrian patterns (Brainard et al., 1997; Smithson, 2005; 
Boyaci, et al., 2006; Schultz et al., 2006; Hedrich, et al., 2009). Natural scenes offer more cues to surface 
structure allowing spectral reflectance and the illumination spectrum to be more easily disconfounded; the 
illumination itself may be more readily identified; and, unlike simulations on a monitor, natural scenes 
contain a clear physical referent for the notion of a paper match. 

Yet, when quantified by constancy indices and Brunswik ratios, summarized in Table 1, there 
appears little systematic difference in performance that can be attributed to different classes of stimuli and 
methods of presentation, providing that variations in adaptational state are allowed for. Exact comparisons 
across studies are difficult, especially because not all used the same decision criterion and some used 
constancy indices and others Brunswik ratios. Nonetheless, some general conclusions can be drawn, as 
follows. All reported indices and ratios represent means. 

First, there is little difference in the effects of presentations with simulated and real stimulus 
materials. Simultaneous asymmetric color matching with e.g. Mondrian patterns simulated on an RGB 
monitor produced constancy indices of 0.79 (Troost & de Weert, 1991) and 0.81 (Bäuml, 1999) and with e.g. 
a tableau of real solid objects an index of 0.86 (de Almeida et al., 2004) and a Brunswik ratio of 0.84 
(Granzier, et al., 2009), all based on a paper-match criterion.  

Second, there is little effect of stimulus complexity, as defined by the number of surfaces in the 
scene (cf. Section 7.4). Simultaneous asymmetric color matching with Mondrian patterns of two and 49 
simulated Munsell surfaces produced indices of 0.72 and 0.73, respectively (Amano, et al., 2005), based on a 
paper-match criterion16. Achromatic adjustment  of a test surface in a tableau of real surfaces and solids 
produced indices of  0.82–0.87 over 2 and 3 dimensions and differing complexities (Kraft et al., 2002). And 
discriminating sequential illuminant-material changes with a real 3-dimensional test object in an empty 
uniform field and surrounded by many objects of differing shapes produced indices of 0.80 and 0.83, 
respectively (Nascimento, de Almeida, et al., 2005).  

Third, there is little difference in the effects of geometric and natural images on an RGB monitor. 
Judging successive illuminant-reflectance changes with colored checkerboards and natural scenes rendered 
from hyperspectral data yielded constancy indices of 0.74 (van Es et al., 2007) and 0.81 (Foster, Amano & 
Nascimento, 2006), with the latter a mean over a wide range of values (Table 1). 

Fourth, and last, there is little difference in the effects of 3-dimensional and 2-dimensional scenes. In 
an experiment by de Almeida, Fiadeiro, and Nascimento (2010), subjects viewed by means of a novel optical 
system a tableau of real 3-dimensional objects or its 2-dimensional planar projection without depth cues and 
shading. The spectrum of the illumination on a test object or surface changed either consistently or 
inconsistently with the scene illuminant, and subjects reported whether the object underwent a change in 
material. The constancy indices for 3- and 2-dimensional stimuli were 0.85 and 0.83, respectively. This 
result contradicts the outcome of an experiment by Hedrich, Bloj, and Ruppertsberg (2009), in which 
subjects memorized the color of either a solid object in a tableau or a surface in a flat array under one 
illumination spectrum and afterwards selected the closest colored patch from an array under a different 
illumination spectrum. When subjects’ color memory bias was allowed for (compare Section 4.7), Brunswik 
ratios were found to be 0.79 and 0.58, respectively. Comparison of these ratios is problematic, however, as 
the 3- and 2-dimensional learning environments were not exactly the same and 40% of subjects tested could 
not perform the memory task.  

Stereo per se was found by Yang and Shevell (2002) to give improved achromatic settings with 
rendered 3-dimensional objects, but Brunswik ratios were relatively low, both with and without stereo, at 
0.45 and 0.32, respectively.  

                                                      
16 Arend and Reeves (1986), Valberg and Lange-Malecki (1990), and Arend et al. (1991) came to the same conclusion, 
but it was limited by a potential confound (Sections 4.8 and 5.1). 
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Why, then, given an appropriate decision criterion, does the structure of the stimulus seem to have so 
little effect? One possibility is that with real surfaces in real scenes it may be difficult to attend to properties 
other than those related to surface color, whether instructions are undifferentiated, namely “to make color 
matches”, or specific, namely to make paper matches in the sense of Arend and Reeves (1986). With 
simulated surfaces on an RGB monitor, it may be easier to attend to each of the two kinds of properties as 
required (Reeves et al., 2008). This indeterminacy (Section 3.1) may account for the similar degrees of 
constancy recorded in real scenes with an undifferentiated criterion and in simulated scenes with a paper-
match criterion, and for the different degrees of constancy recorded in real and simulated scenes with an 
undifferentiated criterion (Table 1). 

4.7 Effects of familiarity and memory 
 Most experiments on color constancy have been designed so that performance is not confounded by 
the familiarity or the semantic content of the object or surface being judged. But real objects in natural 
scenes are usually familiar and familiarity might be expected to modify perceived surface color, an idea that 
may be traced back to Hering (1920). Extending earlier experiments, Siple and Springer (1983) asked 
subjects to select typical colors of individual fruits and vegetables presented variously as photographic 
images with texture and as silhouettes and collapsed to a disk. The typical-hue judgment was accurate with 
respect to a reference matching condition, but typical chroma was higher than for matched chroma, for all 
three types of presentation (Siple & Springer, 1983, Fig. 4), although the authors eventually concluded that a 
preference for increased saturation occurs only for objects, and not for color patches (pp 367-8). Memory 
effects revealed in judgments of typical color need not, of course, be the same as memory effects revealed in 
delayed matching to specific examples, familiar or otherwise. Amano, Uchikawa, and Kuriki (2002) 
presented subjects with images of natural scenes on an RGB monitor and then tested their recall 30 s later. 
They detected increases in contrast in the recalled images less well than decreases in contrast, suggesting 
that, as with typical color, the chroma or chromaticness of pictures is enhanced in memory. 
 An experiment similar to that of Siple and Springer (1983) was performed by Olkkonen, Hansen, and 
Gegenfurtner (2008) with images of fruits and vegetables presented on an RGB monitor but they also asked 
subjects to make achromatic settings of the stimuli. Stimuli were presented against a neutral background, and 
data for different illuminants were collected in different sessions. Illuminant changes were approximated by 
uniform chromatic shifts of the stimuli (Section 4.8). Subjects’ settings were biased away from neutral 
towards the opposite direction of the typical color, with the strength of the effect decreasing with decreasing 
naturalness of the stimuli, unlike the effects reported by Siple and Springer (1983). As the authors noted, 
subjects could simply have matched the test stimulus to the neutral background field, but shifts were 
obtained only with the fruit stimuli, not with disks (Olkkonen et al., 2008).  
 Semantic content and familiarity were absent in a successive asymmetric color-matching experiment 
by Jin and Shevell (1996) using abstract patterns presented on an RGB monitor. Subjects learned the color of 
a central patch surrounded by an array of other colored patches. After a 10-min delay, they made a match 
using a pattern with a variable center patch. Subjects were encouraged to think of the patches as papers. 
Matches were good, and were consistent with subjects’ remembering surface color. By contrast with some 
experiments in simultaneous asymmetric color matching, replacing the complex surround by a gray 
background produced matches consistent with subjects’ remembering hue, saturation, and brightness (as did 
removing the background altogether). Similar experiments were performed by Uchikawa, Kuriki, and Tone 
(1998) and by Ling and Hurlbert (2008) in which subjects memorized a colored chip or paper sample  under 
one illumination spectrum and, after a delay, matched it by memory under a different illumination spectrum. 
To separate general memory effects from constancy effects, Ling and Hurlbert (2008) subtracted memory 
matches without an illuminant change from those with an illuminant change (cf. Jin & Shevell, 1996; Nieves, 
Romero, et al., 2000). The resulting Brunswik ratios were on average 0.92, similar to those for other 
measures of constancy with adaptation but without a memory component (Table 1). Lower Brunswik ratios 
were obtained by Hedrich, Bloj, and Ruppertsberg (2009) using illuminated papers and objects, and a 
correction for memory effects, although direct comparison is, again, problematic (Section 4.6). 

4.8 Methodological issues 
 Both Arend and Reeves (1986) and Maloney (1999) drew attention to methodological difficulties 
afflicting color-constancy experiments. Several potential confounds have already been mentioned. These 
include the inadequate control of adaptational and inferential contributions to observed performance (Section 
4.2); undifferentiated color judgments, i.e. hue and saturation versus perceived surface color (Section 3.1); 
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and the inclusion of matching surfaces in the stimulus scene that allow the experimental task to be 
circumvented , both in asymmetric color matching (Section 4.2) and in achromatic adjustment (Section 
4.4)17. The inclusion of a gray surface as a background or surround to the test stimulus, thereby providing a 
direct cue to the illumination spectrum, has been surprisingly common (Table 1). Whether subjects are able 
to exploit this cue, consciously or otherwise, is another matter. Nevertheless, it seems prudent to exclude the 
possibility. 

Another methodological difficulty concerns the generalization from local to global measurements. 
Asymmetric color matching, color naming, achromatic adjustment, and discriminating illuminant from 
reflectance changes are typically local measurements. As noted in Section 4.2, to measure the effects of a 
change in illuminant, Arend and Reeves (1986) ensured that the corresponding fixed surfaces in the test and 
match patterns had identical spectral reflectances. If these surfaces had been changed, then there may or may 
not have been an effect on the match, but the absence of an effect would not have implied that subjects were 
insensitive to these changes (Section 4.4). To measure non-local changes, a global measure is needed such as 
discriminating illuminant from reflectance changes that affect the whole field (e.g. Craven & Foster, 1992).  

A different kind of methodological difficulty occurs when the change in cone responses to light 
reflected from a particular surface undergoing an illuminant change is approximated by the corresponding 
change in cone responses to the illuminant. That is, if (l, m, s) and (l0, m0, s0) are the long-, medium-, and 
short-wavelength-sensitive cone excitations in response to the reflected light and light from the illuminant, 
respectively, and (l', m', s') and 0 0 0( , , )l m s′ ′ ′  are the corresponding values with a new illuminant, then (l', m', 
s') is approximated by 0 0 0 0 00( , , )ll l mm m ss s′ ′ ′ . A subject using von Kries’ coefficient rule would then 
show perfect constancy (Section 5.2). Because these and other reflected-light approximations produced by 
uniform chromatic shifts exclude metamerism, estimates of color-constancy performance are likely to be 
elevated with respect to those obtained with real illuminant changes. 

Predictably, higher indices may also be obtained by restricting the degrees of freedom of the 
subject’s match. In simultaneous and sequential asymmetric color matching (Foster, Amano et al., 2001), 
matches based on chromaticity settings alone rather than on chromaticity and luminance settings were found 
to give an increase in the mean constancy index of about 9%. 

Where appropriate, the studies listed in Table 1 indicate the inclusion of cues such as a gray 
background and the use of reflected-light approximations.  

5 WHAT PHYSICAL SCENE PROPERTIES ARE RELEVANT? 
The theoretical approaches to color constancy summarized in Section 2 depend on assumptions about 

surface spectral reflectances and illuminants. These assumptions are important in their own right but also 
have implications for other color-constancy phenomena and the nature of the judgments made by observers, 
as indicated in Section 3. Some scene properties have less behavioral significance than expected, others a 
more pervasive impact, and still others a role that is incompletely elucidated.   

5.1 Illumination spectrum 

The requirement that an estimate of the scene illumination must first be obtained for a surface-color 
description to be retrieved (e.g. Buchsbaum, 1980) is sometimes known as the albedo hypothesis (Beck, 
1972, p. 99) or the illuminant-estimation hypothesis (Maloney & Yang, 2003). Logically, illuminant 
estimation is not a prerequisite for surface-color estimation any more than surface-color estimation is a 
prerequisite for illuminant estimation. Given the one estimate, the other is also implicitly available. 
Nevertheless, as illustrated in Section 2.2, several constancy models have been predicated on obtaining 
independent illuminant estimates. Yet since Beck’s (1972) work in the lightness domain, there has been an 
accumulation of evidence against the direct use of illuminant estimates in observers’ constancy judgments. 
The evidence is of several kinds, as follows. 

First, notwithstanding the fact that in some conditions observers can make precise estimates of the 
illumination spectrum, they may be remarkably insensitive to its variation. Thus, estimates from achromatic 
adjustment in nearly natural scenes (Brainard, 1998) are at least as good as asymmetric color matches (Table 
1), and differences in illuminant can also be inferred reasonably well, even over different scenes, on the 
condition that the scenes retain some regularity. For example, in one experiment by Linnell and Foster 
                                                      
17 A gray background whose reflected light does not covary with the illuminant provides no such cue (van Es et al., 
2007). 
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(2002), subjects were able to detect a change in daylight from a correlated color temperature of the order of 
6000 K to one of 4000 K over two different Mondrian patterns, presented sequentially on an RGB monitor, 
providing that the patterns had sufficiently many different surfaces. But illuminant variation within a scene, 
especially one containing an irregular population of objects, is much more difficult to detect. In an 
experiment by de Almeida and Nascimento (2009), in which subjects were presented binocularly with 
complex real 3-dimensional scenes under spatially smooth color gradients in illumination, a variation in 
correlated color temperature of 4000 K to 25000 K remained undetectable in the absence of  duplicated 
objects in the scene. Only with a still larger color gradient, from 3300 K to 25000 K, was detection possible. 
Although subjects have been shown to be exquisitely sensitive to changes in illuminant position, by as little 
as 4 degrees elevation (Ruppertsberg, et al., 2008), the detectability of these changes may have been more 
through their effects on the luminance distribution of the reflected light than on its chromaticity. 

Second, illuminant estimates and spectral-reflectance estimates may be incompatible. In a test of the 
illuminant-estimation hypothesis by Rutherford  and Brainard (2002), restricted to the lightness domain, 
subjects matched the illumination in one experimental chamber to that in another chamber and then a test 
patch in one chamber to a patch in the other. The results were inconsistent with the illuminant-estimation 
hypothesis. In a broader test of the hypothesis by Granzier, Brenner, and Smeets (2009), four lamps of 
differing chromaticity were used to illuminate a 3-dimensional scene. Subjects’ judgments of the scene 
illuminant based on reflected light were much poorer than their judgments of the spectral reflectances of the 
surfaces in the scene, where the mean Brunswik ratio reached 0.84. 

Third, the use of illuminant estimates appears not to be a question of salience. It might be argued that 
only when illuminant cues are particularly evident, as with specular highlights (Section 2.2), are they 
available to observers. The influence of specular highlights and other cues to the illuminant was tested in an 
experiment by Yang and Maloney (2001) with three-dimensional scenes simulated on stereo RGB monitors. 
The illumination chromaticity signaled by each candidate cue was perturbed to see whether there was an 
effect on subjects’ achromatic settings of a small test patch embedded on a test object. The specular-highlight 
cue did have a significant influence, but the sensitivity of the test patch to each cue depended on its location 
(Section 4.8). In fact, there were abundant specular highlights available in the experiment by Granzier, 
Brenner, and Smeets (2009) and they seem not to have been used by observers. In another test of illuminant 
saliency by Amano, Foster, and Nascimento (2006), subjects discriminated illuminant changes from material 
changes in hyperspectral images of natural scenes rendered on an RGB monitor. In one of those images, the 
sky illuminating the scene was directly visible to the subject and in another image a large gray sphere 
reflecting light from the sun and sky was inserted prominently in the field of view. There was no reliable 
effect of these illuminant cues on color constancy. All this is not to say that illuminants are ignored. Yang 
and Shevell (2003) showed that by adding a second illuminant to a three-dimensional scene simulated on 
stereo RGB monitors, the presence of two different lights illuminating part of the scene actually degraded 
asymmetric color-matching performance.     

Fourth, and last, effectively removing the cues from a stimulus that make illuminant estimation 
possible appears to have little effect, at least in matching tasks. This cue removal can be achieved with flat 
patterns comprising just two surfaces, for then neither space-average color nor the brighter surface gives a 
reliable illuminant estimate (Section 4.6). Unfortunately for this purpose, many of the early experiments with 
patterns of two surfaces were, as noted earlier, center-surround arrangements in which the surround was 
spectrally neutral (Arend & Reeves, 1986; Arend et al., 1991; Tiplitz Blackwell & Buchsbaum, 1988; 
Valberg & Lange-Malecki, 1990) and which could therefore have afforded a direct estimate of the illuminant 
(Section 4.8). Simultaneous asymmetric color matching with patterns of two Munsell surfaces where neither 
was gray was performed by Amano, Foster, and Nascimento (2005) and compared with matching with 
Mondrian patterns of 49 Munsell surfaces of the same size in a 7×7 array. As reported in Section 4.6, the 
mean constancy index was 0.72 with the two surfaces and 0.73 with the 49 surfaces.  

Given the weight of evidence against it, it seems unlikely that the illuminant-estimation hypothesis is 
correct. Additionally, much of the same evidence makes it difficult to conclude that the purpose of color 
constancy is to provide illuminant estimates (Section 2). But this pessimistic conclusion does depend on 
what accuracy is required in practice for illuminant estimates, and indeed surface-color estimates, to be 
useful: that is, what is good enough for the task in hand (Brill, 2008; see also Smithson, 2005). This issue is 
taken up in Section 8.  
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5.2 Von Kries’ rule 

 Originally, the coefficient rule of von Kries (1902; 1905) was formulated to describe the adaptation of 
the eye to colored lights, albeit not necessarily globally (Ives, 1912; Smithson & Zaidi, 2004). That is, a 
triplet of long-, medium-, and short-wavelength-sensitive cone excitations (l, m, s) is scaled to a triplet (kLl, k-

Mm, kSs) in the presence of one adapting light and to another triplet L M S( ,  ,  )k l k m k s′ ′ ′  in the presence of 
another adapting light, where the coefficients kL, kM, kS and  L M S,  ,  k k k′ ′ ′ depend only on the activity within 
the corresponding cone class. This constraint is manifested in lightness algorithms (Section 2.1) as the 
independence of processing within spectral channels. Crucially, von Kries’ rule leaves unspecified precisely 
how the adapting light determines the coefficients (see e.g. Worthey, 1985; Troost, et al., 1992) or 
equivalently the observer’s local white point. Formally, von Kries adaptation constitutes a diagonal matrix 
transformation of cone responses (Terstiege, 1972). 
 In conjunction with a method for determining the scaling coefficients, the coefficient rule offers a way 
of producing an approximately invariant response to a given scene, but only up to an equivalence, depending 
on how the coefficients are normalized (Sections 2.2 and 4.2). Despite limited experimental evidence, many 
models of color constancy, including the multiplication rule in Land’s Retinex models (Land & McCann, 
1971; Land, 1983; 1986), have assumed implicitly or explicitly that the formalism of the adaptation rule 
applied to the light reflected from surfaces, although the dimensional limits on the efficacy of von Kries 
adaptation were recognized early on (West, 1979; Brill & West, 1981; Brill & West, 1986). As Worthey and 
Brill (1986) noted, the overlap of the cone spectral sensitivities restricts the accuracy of von Kries adaptation 
since it introduces nonzero off-diagonal elements in the transformation matrix. 
 As a generalized adaptational mechanism, von Kries’ rule was tested by Dannemiller (1993) in a 
computational study of the rank orderings of cone responses to light from 337 surfaces in the Krinov set  
(Krinov, 1947) of reflectances under daylight and tungsten illuminants18. Within the limits of these 
reflectances, rank orderings were found to be approximately preserved, consistent with cone adaptation 
modeled as a multiplicative, subtractive, or monotonic nonlinear process.  
 With the eye in constant motion over a scene, the time course of chromatic adaptation is critical in 
determining the coefficients kL, kM, kS. Some features of the time course have been established by varying the 
period of adaptation to daylight or tungsten illuminants and measuring its effect on observers’ achromatic 
adjustments (Fairchild & Lennie, 1992) or setting unique hues (Arend, 1993). Detailed data on chromatic 
adaptation with a range of different adapting colors at constant luminance were reported by Fairchild and 
Reniff (1995), again using achromatic adjustment. They found two components of adaptation: a slow one 
with a time course of about 40–50 s and a fast one of about 1 s. A more fine-grained study by Rinner and 
Gegenfurtner (2000), also using achromatic adjustment, obtained similar slow and faster time constants of 20 
s and 40–70 ms, but also a very fast component with a time constant of <10 ms. A complication in this 
analysis is that some of the later aspects of the time course of chromatic adaptation may be affected by the 
structure of the adapting field. With simple and complex adapting fields and a red-green hue-cancellation 
technique, Shevell (2001) showed that adding chromatic context had a proportionately greater effect on color 
appearance after several minutes of adaptation.  
 As well as these three components, another component with an extremely long time course (e.g. 
Belmore & Shevell, 2008) has been considered in relation to seasonal variations in the natural environment 
(Webster et al., 2007; Juricevic & Webster, 2009).    

                                                      
18 Krinov recorded reflected spectra from a distance, effectively averaging spectral reflectances from a mixture of 
sources, including foliage, tree branches and trunks, and some soil, which may have led to a smoothing of the spectra 
and some chromatic bias; see Penndorf (1956). 
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Figure 6. Spatial cone-excitation ratios from a set of natural scenes for (a) long-, (b) medium-, and (c) short-
wavelength-sensitive cones. Each point in each graph represents a pair of ratios of excitations produced by light 
reflected from two randomly chosen surface elements illuminated in turn by sunlight and skylight with 
respective correlated color temperatures 4000 K and 25,000 K (from hyperspectral data in Foster, Amano, 
Nascimento, and Foster (2006), after Nascimento et al. (2002)). 

  

5.3 Spatial ratios of cone excitations 
As indicated in Section 3.2, spatial ratios of cone excitations19 may furnish a physical substrate for 

relational color constancy and the discriminations which depend on it (Sections 4.2, 4.5). Unlike the 
constancy associated with absolute judgments of surface color, relational color constancy does not require 
even implicitly an estimate of the spectrum of the illumination on the scene. Given long-, medium-, and 
short-wavelength-sensitive cone excitations (l1, m1, s1) and (l2, m2, s2) generated in response to light reflected 
from a pair of surfaces (or groups of surfaces) 1 and 2, their spatial ratios 1 2 1 1 22( , , )l l m m s s  show 
extensive stability under changes in illuminant. In numerical simulations, ratios were found to be invariant to  
within 4% both for the Munsell set of reflectances under randomly sampled daylights (Foster & Nascimento, 
1994) and for 640 000 reflectance spectra from each of 30 hyperspectral images of natural scenes under 
daylights with correlated color temperatures 4300 K and 25 000 K  (Nascimento, et al., 2002).  

Figure 6 shows by cone class spatial ratios of cone excitations from randomly chosen natural 
surfaces under daylights e and e′with correlated color temperatures 4000 K and 25 000 K, respectively, over 
a four-decade range: (a) 1 2l l vs. 1 2l l′ ′ ,  (b) 1 2m m vs. 1 2m m′ ′ , and (c) 1 2s s vs. 1 2s s′ ′ . The near 
invariance of spatial cone-excitation ratios propagates through to  the corresponding invariances in affine 
combinations of cone signals (Zaidi, 1998) and in isoluminant and achromatic images (Nascimento & Foster, 
2000). Notice that the near invariance of spatial cone-excitation ratios, unlike the near invariance of cone 
responses from von Kries adaptation (Section 5.2), does not depend on specific normalizing assumptions, i.e. 
the determination of the coefficients kL, kM, kS. 

Spatial cone-excitation ratios provide a compelling cue to observers trying to distinguish between 
illuminant and reflectance changes in scenes (Section 4.5). The significance of this cue was demonstrated in 
a psychophysical experiment (Nascimento & Foster, 1997) that made use of the small natural departures of 
ratios of excitations from perfect invariance, mentioned earlier. Mondrian patterns of Munsell surfaces were 
simulated on an RGB monitor in a two-interval experimental design: in one interval, the surfaces of the 
pattern underwent an illuminant change; in the other interval, the surfaces underwent the same change but 
the images were then corrected so that, for each cone class, ratios of excitations were preserved exactly. 
Subjects had to report which interval contained the natural illuminant change. The intervals with corrected 
images corresponded individually to highly improbable natural events, yet subjects systematically 
misidentified them as containing the natural illuminant changes. For the range of illuminants and surfaces 
tested, subjects’ sensitivity to violations of invariance was found to depend on cone class: greatest for long-
wavelength-sensitive cones and least for short-wavelength-sensitive cones.  

                                                      
19 The term cone contrast is sometimes preferred, but since that term may also be taken to refer to a perceptual 
enhancement of the physical quantity (Gilchrist, 2006, pp.. 8–9), it is not used here.  
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Although ratios may act as indicators of scene stability under illuminant changes, they need to be 
combined in some way for individual objects to be indentified within a larger environment. Funt and 
Finlayson (1995) proposed forming histograms of ratios to characterize objects in an illuminant-invariant 
way, a procedure called color-constant color indexing. In simulations with a large set of Mondrian patterns 
as a test set, they found that the broadness of the cone absorption spectra impaired indexing performance. 
But by transforming cone responses so that they were spectrally narrower or sharper (Finlayson, et al., 1994; 
Finlayson, et al., 1994), almost perfect identification was achieved (Funt & Finlayson, 1995). The sharpening 
transformations they employed corresponded well (Finlayson et al., 1994) to the cone-opponent interactions 
used to model sharpening of test and field spectral sensitivities in increment-threshold measurements 
(Sperling & Harwerth, 1971; Foster & Snelgar, 1983). 

The near invariance of spatial cone-excitation ratios—and of cone-opponent ratios (Nascimento & 
Foster, 2000) and affine combinations (Zaidi, et al., 1997)—has been used to account for a variety of 
phenomena related to surface-color perception in addition to relational color constancy and the 
discrimination of illuminant and reflectance changes. They have been used to explain the properties of visual 
transparency, i.e. the perception of multi-colored surfaces through transparent colored filters (Westland & 
Ripamonti, 2000; Khang & Zaidi, 2002; 2002; Ripamonti & Westland, 2003), where ratios were found to 
give a better account than convergence models (Ripamonti, et al., 2004). They have also been used to explain 
the effect of background articulation on visual search (Plet & Gerbino, 2001); the identification of a spotlight 
across disparate brightly lit variegated scenes (Khang & Zaidi, 2004); the invariance of asymmetric color 
matching to test-patch position and background permutation in Mondrian patterns, where ratios were 
computed between the test patches and a spatial average over the whole pattern (Amano & Foster, 2004); the 
properties of asymmetric color matching with individual surfaces in three-dimensional tableaux 
(Nascimento, et al., 2004); the compatibility of chromatic shadows in the chromatic wall-of-blocks illusion 
(Heckman, et al., 2005);  the effect of natural scene structure on detecting material changes in a test probe 
(Foster, Amano & Nascimento, 2006); the variability in symmetric and asymmetric color matching (Brenner, 
et al., 2007); and the role of wavelength ratios in defining lines of constant spectral and nonspectral hue 
across illuminant changes (Pridmore, 2008; 2010).  

Spatial ratios of cone excitations or of opponent combinations may also be calculated temporally 
rather than spatially. Eye movements back and forth across an edge separating different surfaces define a 
ratio signal over recent time that is nearly invariant under changes in illuminant, and which may assist 
surface-color judgments (Cornelissen & Brenner, 1995). Temporal variations in spatial ratios of cone 
excitations appear to have an added salience and may be exploited in a similar way (Section 4.2). Thus 
evidence has been obtained of a low-level transient signal which is generated in response to rapid changes in 
scene reflectance and therefore presumably in spatial ratios of cone excitations and which is progressively 
attenuated as these changes occur more and more gradually (Linnell & Foster, 1996). The rate constant 
associated with this signal was found to be approximately 2.5 s−1. 

5.4 Spatial structure 
The physical properties of scenes can influence color constancy through more than just illuminant 

and reflectance spectra. Spatial properties of scenes are also relevant, not least in determining which 
elements contribute to illuminant estimation (Section 2.2).  

Most data on the effects of scene structure on constancy judgments have come from classical color-
contrast or chromatic-induction effects, in which the hue of a test stimulus is normally shifted away from the 
hue of an immediate surround or background field. The relationship of these effects to color constancy is 
uncertain. One interpretation is that they facilitate color constancy or signal the error in achieving it (e.g. 
Walraven, et al., 1987; Tiplitz Blackwell & Buchsbaum, 1988; Shepherd, 1992), specifically, as local 
illuminant compensation (Hurlbert & Wolf, 2004). The effects have been found to be spatially limited, to 
about 1 degree of visual angle from the point of gaze (Brenner & Cornelissen, 1991; Brenner, et al., 2003; 
Monnier & Shevell, 2003; see also Barbur et al., 2004), with significant modulatory effects extending to 10 
degrees (Walraven, 1973; Wachtler et al., 2001). Both the average chromaticity (e.g. Brenner & Cornelissen, 
1998; Brenner et al., 2003) and chromatic inhomogeneity or chromatic variability of the surround (e.g. 
Jenness & Shevell, 1995; Brown & MacLeod, 1997; Shevell & Wei, 1998; Brenner & Cornelissen, 2002; 
Brenner et al., 2003) can affect color appearance. In these manipulations, however, the physical origin of the 
relationship between test and surround stimuli is generally not the primary concern, whereas it is central to 
color constancy. 
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For color constancy, the surround should have an effect only if it and the test stimulus, both 
understood as surfaces, are seen to be under the same illumination; otherwise, the chromatic properties of the 
surround are irrelevant to making surface-color estimates—an exception is when the same surfaces appear 
under different illuminants; see e.g. D’Zmura (1992). The conclusion that there is a shared illuminant 
obviously depends on how the surfaces of the scene are visually segmented. Motion and depth between a test 
and background field might both be expected to increase segmentation and reduce the effect of the 
background. But experimental results have varied according to whether chromatic induction or color 
constancy was being assessed. Relative motion was found not to disrupt chromatic induction measured by 
nulling (Hurlbert & Wolf, 2004) but to improve constancy by achromatic adjustment (Werner, 2007). 
Relative depth was reported to have no effect on chromatic contrast induction (Hurlbert & Wolf, 2004), a 
weak effect on red-green equilibria (Shevell & Miller, 1996), and a strong effect on constancy by achromatic 
adjustment (Werner, 2006). In the last experiment, changes in the spectrum of illumination on the test and 
background areas were used that were either consistent or inconsistent with each other. Werner (2006) found 
that with consistent illuminant changes, color constancy was reduced when the test and background were 
separated in depth; conversely, with an inconsistent illuminant change, constancy was reduced when the test 
and background were in the same depth plane, but not if they were in different depth planes.  

6 WHAT NEURAL MECHANISMS SUPPORT COLOR CONSTANCY? 

Given the variety of cues to color constancy and the several forms it can manifest, it is not surprising that 
multiple neural mechanisms have been identified, operating at different levels in the visual system. Broadly 
speaking, evidence has been reported of three kinds of activity contributing to color constancy: within-class 
cone adaptation, spatial comparisons of cone and cone-opponent signals, and invariant cell responses. How 
these separate signals are related to each other and combined with other non-chromatic signals is unclear. 

6.1 Cone adaptation 

  Substantial chromatic adaptation takes place in the retina, although it is incomplete. Recordings 
from horizontal cells in monkey have shown that adaptation is cone-specific at moderate light levels and 
spatially local (Lee, et al., 1999), and consistent with von Kries’ rule. Changes in chromaticity of the 
illumination, as distinct from changes in luminance, cause correspondingly smaller changes in adaptation. 
Normalizing shifts in chromatic sensitivity have also been found in monkey parvocellular lateral geniculate 
neurons and their retinal afferents (Creutzfeldt, Crook, et al., 1991; Creutzfeldt, Kastner, et al., 1991). 
Recordings from goldfish, which can make color-constant judgments (Neumeyer, et al., 2002), have 
indicated that cone synaptic gains are modulated by the horizontal cell network in such a way that the ratios 
of cone outputs are almost invariant with the illumination spectrum (Kraaij, et al., 1998; Kamermans, et al., 
1998). A retinal contribution linked to Land’s Retinex models (Section 2.1) has also been proposed on the 
basis of subjective reports of color-induction in hemianopia (Pöppel, 1986).  

6.2 Spatial comparisons 
Experiments with dichoptically presented stimuli have also pointed to spatial chromatic comparisons 

taking place retinally or in the lateral geniculate nucleus or the monocularly driven part of V1. In a 
psychophysical experiment by Moutoussis and Zeki (2000), subjects were presented with a Mondrian pattern 
through one eye and an isolated patch from the pattern through the other, with the result that the patch had 
the appearance of the void color, rather than its normal appearance when both it and the Mondrian surround 
were viewed monocularly or binocularly. In another psychophysical experiment by Nascimento and Foster  
(2001) with dichoptically presented simulations of two Munsell surfaces undergoing an illuminant change, it 
was found that the detection of a small change in reflectance was poorer than when the pair was presented 
binocularly (see also Barbur et al., 2004). Performance in asymmetric color matching by patients with 
lesions higher than V1 has also led to the suggestion that chromatic-contrast effects are calculated in area V1 
or lower (Hurlbert, et al., 1998; Kentridge, et al., 2004; Barbur et al., 2004).  

Relatively early in the visual system, therefore, there is significant local normalization to the 
illumination spectrum and signaling of invariants associated with surface spectral reflectance. But it is not 
until the cortex that signals from more spatially extended regions are available which can better capture the 
nonlocal effects of the prevailing illumination.  
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6.3 Invariant cell responses  
Recordings from single neurons in primary visual cortex (area V1) of awake monkeys to chromatic 

stimuli presented on large neutral and colored backgrounds have shown changes in tuning consistent with 
sensitivity to chromatic contrast between stimulus and background (Wachtler, et al., 2003). Average 
response changes matched psychophysical color-induction effects in human subjects under corresponding 
stimulus conditions, and the presence of colored stimuli remote from the test stimuli produced changes that 
paralleled some human chromatic-induction effects (Wesner & Shevell, 1992; Wachtler et al., 2001; Shevell 
& Wei, 1998). These cells in V1, with their extended spatial sensitivities, probably differ from the double-
opponent cells in area V1 of macaque which have been reported by Conway and Livingstone (Conway, 
2001; Conway & Livingstone, 2006). These have circular receptive-field centers and crescent-shaped 
surrounds with opposite chromatic tuning. With their sharpened spectral responses, they offer greater 
invariance to changes in illumination spectrum (Section 5.3), albeit over a more constrained extent, of the 
order of 1 degree (Conway & Livingstone, 2006) (see commentary by Hurlbert, 2003). 

Color-selective influences from far beyond the classical receptive field have been demonstrated not 
only in V1 but also in area V4 (Schein & Desimone, 1990). In these V4 cells, although stimulation of the 
surround by itself did not cause any response, it could completely suppress the response to even optimally 
colored stimuli in the receptive field. More direct comparisons with human behavioral experiments 
analogous to those of Land and McCann (1971) have come from studies of neurons in V4 of awake and 
anesthetized cynomolgus and rhesus monkeys. Single-cell recordings by Zeki (1980; 1983) in anesthetized 
monkeys revealed responses to the surface color of a stimulus irrespective of its local spectral composition. 
In related experiments by Kusunoki, Moutoussis, and Zeki (2006), stimuli of different colors were presented 
within a pattern background and the illumination of the background then varied. The majority of V4 neurons 
shifted their color tuning in the direction of the chromatic shift of the background, exactly what would be 
needed to achieve a color-constant response. Kusunoki et al. confirmed the behavioral significance of these 
shifts by recording single-unit activity while the animals performed a color-discrimination task against 
different-colored backgrounds: the shift in monkey psychometric function was similar to the shift in the cell 
population response. 

The importance of V4 for color constancy was tested in lesion studies by Wild, Butler, Carden, and 
Kulikowski (1985) and Walsh, Carden, Butler, and Kulikowski (1993). They showed that intact rhesus 
monkeys could identify a colored patch under different illuminations but this ability was impaired in animals 
with V4 lesions, with little if any loss in color discrimination.  

Interestingly, cells in inferior temporal cortex, which have chromaticity tuning similar to that in V4 
though with even larger receptive fields (Komatsu, et al., 1992), have been reported as changing activity 
depending on the visual task, either color categorization or color discrimination (Section 3.1) (Koida & 
Komatsu, 2007). These cells appear not to have been tested specifically for color constancy. 

Evidence from humans with natural lesions is complicated. Patients with lesions of the lingual and 
fusiform gyri, which include part of the putative human area V4, show impaired color naming and 
asymmetric color matching (Kennard, et al., 1995; Clarke, et al., 1998), and patients with lesions of the 
parieto-temporal cortex show impaired constancy in making achromatic settings although having normal 
color discrimination (Rüttiger, et al., 1999). Additionally, fMRI experiments in humans have shown that 
instantaneous color constancy (Section 4.2) involves strong activation in both the fusiform color area and 
V1, along with significant activity in V2 and V3 (Barbur & Spang, 2008).  

7 ARE NATURAL SCENES AND SURFACES SPECIAL?  
As made clear in Section 4.6, there seems to be little difference between levels of color constancy recorded 
in the laboratory with natural or manufactured three-dimensional stimuli and with flat, coplanar, geometric 
scenes generated on an RGB monitor. Yet these comparisons, including those with rendered natural scenes, 
did not really address the question of whether the surfaces and objects of the natural environment present a 
special problem for color constancy. Not only do natural scenes contain color gamuts very different from 
those of typical laboratory stimuli, they contain very different spectral and spatial structures.   

7.1 Colors of natural surfaces  
As expected, the colors of natural scenes are dominated by browns, greens, and blues, from earth, 

vegetation, and sky. Although there had been earlier direct measurements of the colors of the surfaces in 
natural scenes (grass, soil, foliage, etc.) by Hendley and Hecht (1949), it was not until the work of Burton 
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and Moorhead (1987) using photographic colorimetry that data became available on the detailed spatial 
chromatic variation of natural scenes, their color statistics, and spatial-frequency content. Subsequent 
imaging studies yielded more comprehensive data which have been important in the interpretation of the 
evolution of trichromacy and the trade-off between chromatic and luminance vision (e.g. Osorio & 
Bossomaier, 1992; Párraga, et al., 1998) and in analyzing the effects of different adaptational mechanisms 
(Webster & Mollon, 1997; Juricevic & Webster, 2009), the chromatic diversity of natural scenes 
(Nascimento et al., 2002; Linhares et al., 2008), and the limitations of color for identifying surfaces in 
natural scenes (Foster et al., 2009). 

Despite their selective color gamuts, the reflectance spectra of surfaces in natural scenes may present a 
stronger test of color constancy than the spectra of the Munsell set used in laboratory measurements. The 
Munsell pigments are low in metamerism (Worthey, 1985), whereas the chlorophylls and carotenoids in 
foliage have multiple absorbance peaks, which should lead to a higher metamerism of the surfaces 
containing them (Wyszecki & Stiles, 1982). As an indicator, the relative frequency of natural metamers has 
been found to be higher in vegetated natural scenes than in non-vegetated ones (Foster, Amano, Nascimento, 
et al., 2006), a property that may be linked to variations in observers’ levels of color constancy over different 
scenes (Foster, Amano & Nascimento, 2006). For surfaces and objects within the mid-to-near visual field, 
however, a more influential feature of natural scenes may be surfaces with high chroma, which empirically 
and from theoretical considerations (Nascimento et al., 2004; Morovič & Morovič, 2005) can markedly 
attenuate constancy levels.  

7.2 Spectral basis functions for surfaces 
The linear models of color constancy discussed in Section 2.3 required surface reflectance and 

illuminant spectra to be represented as a linear combination of a few spectral basis functions (Maloney & 
Wandell, 1986; D'Zmura & Lennie, 1986; Wandell, 1989; see also Brainard & Freeman, 1997; Brainard et 
al., 2006). The dimensionality of the spectral representation of surfaces is particularly problematic20. Some 
theoretical analyses have suggested that for sets of artificial surfaces such as the 1269 samples in the Munsell 
matte set, 3 to 8 basis functions would suffice, depending on the criterion of fit and whether part or all of the 
set was used (Cohen, 1964; Parkkinen, et al., 1989). A decisive factor is the method of approximation. 
Maloney (1986) repeated Cohen's (1964) analysis with the full Munsell set and 337 samples from one of the 
few sets of natural spectra available at the time, namely, the Krinov set. He concluded that 5–7 basis 
functions were needed numerically, but 3–4 would suffice if the luminous efficiency function were taken 
into account. Even so, the adequacy of the approximation may be context dependent, for as Maloney (1986) 
noted, when natural spectral reflectances are sampled, each spectral reflectance is weighted by its prevalence. 
Threshold numbers of basis functions need to be determined behaviorally. 

To this end, Nascimento, Foster, and Amano (2005) undertook a psychophysical study with 
hyperspectral images of 20 outdoor scenes with reflectance spectra approximated with a variable number of 
basis functions. The scenes were rendered under a common daylight on an RGB monitor, and subjects had to 
discriminate the approximated images from the originals. In theory, an average of 5 basis functions should 
have made the two indistinguishable, with respect to a standard threshold color difference, but the original 
images were visually indistinguishable from their approximations only if there were at least 8 basis 
functions. A separate psychophysical study by Oxtoby and Foster (2005) using Mondrian patterns of Munsell 
surfaces simulated on an RGB monitor showed that it mattered little whether the approximations were 
produced by PCA, by independent component analysis, or by artificial neural networks, and that at least 5 
basis functions were needed for discrimination to be at chance levels. The differences between 
approximations to natural scenes and to Munsell surfaces may be due to the differing frequencies of 
metamerism (Section 7.1).  
 

                                                      
20  See Brill (2003) for remarks on how basis functions may be counted. 
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Figure 7. Plant structures whose color appearance depends on complicated optics (Arend, 2001, Fig. 9; original 
image supplied by L. E. Arend). 
 

7.3 Spectral basis functions for illuminants 

The spectral representation of natural illuminants is a little less demanding than that of natural 
surfaces. A characteristic-vector analysis of 622 samples of daylight by Judd, MacAdam, and Wyszecki 
(1964) showed that three basis functions sufficed numerically. A principal component analysis of over 1500 
skylight spectra measured with a narrow field of view during a seven-month period in Granada, Spain,  by 
Hernández-Andrés et al. (Hernández-Andrés, Romero & Lee, 2001; Hernández-Andrés, Romero & Nieves, 
2001) showed also that, although six basis functions were necessary for spectral analysis, three were 
sufficient for accurate clear-sky colorimetry. Correlated color temperatures ranged from 3800 K to infinity. 
In fact, the distribution of the Granada spectra in the CIE (x, y) chromaticity diagram revealed marked 
departures from the CIE daylight locus at high correlated color temperatures.  
Forests exhibit more spectral variation depending on the distribution of foliage and gaps in the canopy 
(Endler, 1993). A principal component analysis performed on illumination spectra in forest scenes by 
Chiao, Osorio, Vorobyev, and Cronin (2000) yielded good numerical approximations with 3 basis 
functions, but no behavioral discrimination experiments seem to have been performed with spectra 
based on these approximations. Given the greater degrees of freedom of forest illumination spectra, it 
might be expected that more than the 3 basis functions  of Judd, MacAdam, and Wyszecki (1964) 
would be needed.  

7.4 Color constancy and the spatial variation of natural scenes 
As Arend (2001) emphasized, human color constancy is fundamentally about perception in the 

natural world. Yet constancy experiments concerned with naturalistic stimuli have, in one way or another, 
been limited, variously using sets of simple real objects or surfaces in laboratory tableaux (e.g. Kraft & 
Brainard, 1999; Zaidi, 2001; de Almeida et al., 2010) or simulated on an RGB monitor with physics-based 
rendering (e.g. Yang & Maloney, 2001); colored papers moved between indoor and outdoor locations (e.g. 
Granzier, et al., 2009); and hyperspectral images of natural scenes rendered with uniform illuminant changes 
on an RGB monitor (e.g. Foster, Amano & Nascimento, 2006). 

 
In many natural environments, however, surfaces and objects are complex and spatially 

inhomogeneous: spectral reflectance varies over surfaces and uneven geometry alters reflections and casts 
local shadows; and microscopic specular reflections as well as pigment effects may vary with depth, as 
illustrated in Figure 7 (Arend, 2001). In this context, the notion of a unique surface spectral reflectance to be 
recovered visually is not well defined. Color constancy for these surfaces—which are the norm rather than 
the exception for vision—needs to be defined in such a way that it is congruent with their natural statistical 
variation.  
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8 CURRENT STATE AND SIGNIFICANT PROBLEMS 
The understanding of human color constancy has advanced considerably since Wyszecki and Stiles’ 

bleak assessment of 1982. As shown here, the theoretical requirements for constancy have been better 
delineated; the nature of visual judgments has been clarified; the range of experimental techniques has been 
greatly expanded; novel invariant properties of images and a variety of neural mechanisms have been 
identified; and increasing recognition has been given to the relevance of natural surfaces and scenes as 
laboratory stimuli. Even so, the questions posed in Section 1 have been answered at best only in part, and 
there remain significant uncertainties and new challenges:  

 
(1) Although the local illumination at a point or region in a scene can be accurately estimated, it 

seems to be largely irrelevant to judgments about surface spectral reflectances, especially under 
spatially varying illumination. In such circumstances, it is unclear what sets an observer’s white 
point (Section 5). 

(2) The precise relationship between color constancy and chromatic induction remains to be 
determined (Section 5). 

(3) Multiple mechanisms underlie constancy judgments, each providing cues to the state and 
stability of the observed surface, object, or scene (Section 6). Which surface-color attribute is 
given perceptual prominence may depend simply on the task at hand, but at present it is not 
possible to identify uniquely either the neural substrate for these attributes or how they are 
combined with other non-chromatic attributes to determine surface-color appearance.  

(4) The levels of color constancy recorded experimentally vary with observers’ adaptational state 
and decision criteria and with experimental method (Sections 3 and 4, Table 1). But what 
degree of color constancy is good enough in practice is not known; that is, how color constant 
surfaces really have to be in order for objects to be reliably recognized. 

(5) More generally, color constancy needs to be formulated in such a way that it can apply to the 
recovery of surfaces that are not spectrally uniform, or uniformly lit, or consistently structured 
(Section 7).  

 
Of these, the last two challenges are potentially the most demanding. The developments of the last 

quarter of a century have been founded on analytical experiments with stimuli that, with a few exceptions, 
have been laboratory-based, deterministic, and relatively simple. A proper account of color constancy would 
deal with the intrinsically variable nature of real surfaces and illuminations, not by compiling summary 
measures involving prior probabilities but by properly capturing the complex statistical structure of natural 
environments. Within such an account, it may then be feasible to determine the extent of color constancy 
necessary for an observer’s reliable interaction with the real world. 
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Table 1  
Levels of color constancy from some experimental studies. Average constancy indices CI and Brunswik ratios BR are tabulated against experimental method, stimulus configuration, 
illuminants, judgment by subject, experimental apparatus, illuminant change, cues other than those defined by the experimental method, constraints on stimulus variation, the number 
of subjects N, and source of data. Values of CI and BR are averages over subjects and conditions, with some entries estimated from published figures. Not all entries were calculated 
exactly as in Section 4.1, but they retain the properties that CI values cannot exceed unity and BR values can. See text for further details. 
 

Experimental method Stimulus 
configuration 

Illuminants  Judgment Experimental 
apparatus 

Illuminant 
change 

Other cues Constraints N CI BR  Source 
  
  

Simultaneous 
asymmetric matching 

 

                        
 2D 

multielement  
daylights same paper monitor spectral 

product 
  chromaticity 3 0.52   Arend & Reeves (1986, Fig. 4) 

 2D 
multielement 

daylights same hue, 
saturation 

monitor spectral 
product 

  chromaticity 3 0.20   Arend & Reeves (1986, Fig. 4) 

                      
 2D patch in 

surround 
daylights, 
others 

same hue, 
saturation 

monitor spectral 
product 

  chromaticity 4 0.30   Tiplitz Blackwell, and Buchsbaum 
(1988, Tables 1,3,6,8,10) 

 2D patch in far 
surround 

daylights, 
others 

same hue, 
saturation 

monitor spectral 
product 

  chromaticity 4 0.15   Tiplitz Blackwell, and Buchsbaum 
(1988, Tables 1,3,6,8,10) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

    4 0.44   Arend et al. (1991, Fig. 7) 

 2D 
multielement 

daylights same hue, 
saturation,  
brightness 

monitor spectral 
product 

    4 0.18   Arend et al. (1991, Fig. 7) 

 2D patch in 
surround 

daylights same paper monitor spectral 
product 

gray surround   3 0.35   Arend et al. (1991, Fig. 9) 

 2D patch in 
surround 

daylights same hue, 
saturation,  
brightness 

monitor spectral 
product 

gray surround   3 0.11   Arend et al. (1991, Fig. 9) 

 2D 
multielement 

colored lightssame papera monitor von Kries 
shift 

gray 
background 

chromaticity 14 0.81 0.82 Troost & de Weert (1991, Table 2) 

 2D 
multielement 

colored lightssame hue,  
saturationa 

monitor von Kries 
shift 

gray 
background 

chromaticity 14 0.46 0.46 Troost & de Weert (1991, Table 2) 

 2D 
multielement 

daylights same paper monitorb von Kries 
shift 

  chromaticity 5 0.37   Cornelissen & Brenner (1995, Fig. 
4B) 

 2D 
multielement 

daylights same hue, 
saturation 

monitorb von Kries 
shift 

  chromaticity 5 0.18   Cornelissen & Brenner (1995, Fig. 
4B) 
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 3D room colored lightsundifferentiated 
color 
match 

illuminated 
surfaces 

physical 
reflection 

gray room   5 0.61   Brainard et al. (1997, Table 3) 

 2D 
multielement 

daylights same paper monitor approx. 
spectral 
product 

   8 0.79   Bäuml (1999, pp 1537,1541) 

 2D 
multielement 

daylights same hue, 
saturation, 
brightness 

monitor approx. 
spectral 
product 

    6 0.23   Bäuml (1999, pp 1537,1541) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

    20 0.60   Foster, Amano, et al. (2001, Table 2) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

  chromaticity 20 0.66   Foster, Amano, et al. (2001, Table 2) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

    11 0.74   Amano & Foster (2004, Table 1) 

 2D 
multielement, 
transposed test 

daylights same paper monitor spectral 
product 

    11 0.70   Amano & Foster (2004, Table 1) 

 2D 
multielement, 
permuted 

daylights same paper monitor spectral 
product 

    11 0.75   Amano & Foster (2004, Table 2) 

 3D tableau daylight 
metamers  

same paper illuminated 
surfaces 

physical 
reflection 

gray 
background 

  4 0.86   de Almeida et al. (2004, Fig. 5) 

 3D tableau daylight, 
colored lights

undifferentiated
color match 

stereo monitor spectral 
product 

gray 
background 

  4 0.23   Delahunt & Brainard (2004, Fig. 11) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

    6 0.73   Amano et al. (2005, Table 1) 

 2D pairc daylights same paper monitor spectral 
product 

    6 0.72   Amano et al. (2005, Table 1) 

 3D tableau colored lightsphysical match illuminated 
surfaces 

physical 
reflection 

    7  0.84  Granzier et al. (2009, Fig. 7) 

                        
Dichoptic simultaneous 
asymmetric matching 

 

                        
 2D 

multielement 
daylights, 
other 

undifferentiated 
color match 

monitor spectral 
product 

  chromaticity 3 0.89d Bramwell & Hurlbert (1996, Table 2) 

                    
Successive asymmetric matching  
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 2D 
multielement 

colored lightssame papera monitor von Kries 
shift 

gray 
background 

chromaticity 8 0.59 1.38 Troost & de Weert (1991, Table 3) 

 2D 
multielement 

colored lightssame hue, 
saturationa 

monitor von Kries 
shift 

gray 
background 

chromaticity 8 0.41 0.42 Troost & de Weert (1991, Table 3) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

    20 0.69  Foster, Amano, et al. (2001, Table 2) 

 2D 
multielement 

daylights same paper monitor spectral 
product 

  chromaticity 20 0.75  Foster, Amano, et al. (2001, Table 2) 

 2D 
multielement 

daylight, 
tungsten 

same hue, 
saturation, 
brightness 

monitor spectral 
product 

  chromaticity 3 0.50 Barbur et al. (2004, Fig. 2b) 

 2D patch in 
surround 

daylight, 
tungsten 

same hue, 
saturation, 
brightness 

monitor spectral 
product 

gray surround chromaticity 3 0.44 Barbur et al. (2004, Fig. 2b)  

                    
Successive asymmetric 
matching with adaptation 

 

                    
 2D 

multielement 
daylights same paper illuminated 

surfaces 
physical 
reflection 

gray 
background 

  4 0.69  Kuriki & Uchikawa (1996, 
Fig. 6) 

 2D 
multielement 

daylights same hue, 
saturation, 
brightnessa 

illuminated 
surfaces 

physical 
reflection 

gray 
background 

  4 0.56  Kuriki & Uchikawa (1996, 
Fig. 6) 

 2D patch in 
background 

colored lights undifferentiated 
color match 

illuminated 
surfaces 

physical 
reflection 

gray 
background 

  6 0.46-0.63e  Kulikowski & Vaitkevicius 
(1997, Fig. 3) 

                      
Dichoptic successive 
asymmetric matching 
with adaptation 

 

                    
 2D 

multielement 
daylights same paper illuminated 

surfaces 
physical 
reflection 

gray 
background 

  4 0.77  Kuriki & Uchikawa (1996, 
Fig. 8) 

 2D 
multielement 

daylights same hue, 
saturation, 
brightnessa 

illuminated 
surfaces 

physical 
reflection 

gray 
background 

  4 0.72  Kuriki & Uchikawa (1996, 
Fig. 8) 

 2D 
multielement 

daylights same hue, 
saturation, 
brightness 

monitor spectral 
product 

    3 0.69  Lucassen & Walraven (1996, 
Table 3) 

 2D 
multielement 

metamersf same hue, 
saturation, 
brightness 

monitor spectral 
product 

    3 0.47  Lucassen & Walraven (1996, 
Table 3) 
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Successive asymmetric 
memory matching with 
adaptation 

 

                    
 2D 

multielement 
daylights, 
other 

physical match illuminated 
surfaces 

physical 
reflection 

gray 
background 

 2 0.64g  Uchikawa et al. (1998, Fig. 5) 

 2D 
multielement 

daylights, 
others 

same papera monitor approx. 
spectral 
product 

    3 <0.44  Nieves, García-Beltrán, and 
Romero (2000, p. 55) 

 2D patch in 
120-deg 
background 

daylights, 
tungsten 

undifferentiated 
color match 

monitor spectral 
product 

gray 
background 

  4 0.91  Murray et al. (2006, Fig. 7B) 

 2D patch in 
background 

daylight 
metamers, 
others 

physical match illuminated 
surfaces 

physical 
reflection 

white 
background 

samples 7 0.92a,h  Ling & Hurlbert (2008, Table 
6) 

 3D tableau daylights, 
others 

same paper illuminated 
surfaces 

physical 
reflection 

white 
background 

samples 28 0.79i Hedrich et al. (2009, p. 12) 

 2D 
multielement 

daylights, 
others 

same paper illuminated 
surfaces 

physical 
reflection 

  samples 28 0.58i Hedrich et al. (2009, p. 12) 

                    
Color naming and 
related methods 

 

                        
 2D patch in 

background 
colored lights from 12 colors monitor von Kries 

shift 
gray 
background 

  30 0.65 0.65 Troost & de Weert (1991, 
Table 4) 

 2D 
multielement 

daylights from unique hues 
and gray 

monitor spectral 
product 

  chromaticity 2 0.66  Arend (1993, p. 2141) 

 2D patch in 
surround 

daylights from unique hues 
and gray 

monitor spectral 
product 

gray surround chromaticity 2 0.70  Arend (1993, p. 2141) 

 2D patch in 
void 

daylights from unique hues 
and gray 

monitor spectral 
product 

  chromaticity 2 0.63  Arend (1993, p. 2141) 

 2D 
multielement 

daylights from 4 colors monitor spectral 
product 

global 
illuminant 

  3 0.83j Smithson & Zaidi (2004, Fig. 
5) 

 2D 
multielement 

daylights from 4 colors monitor spectral 
product 

test illuminant   2 0.86j Smithson & Zaidi (2004, Fig. 
12) 

 3D tableau daylights, 
colored lights

from 4 colors, 
7 numbers 

stereo monitor spectral 
product 

   5 0.70  Schultz et al. (2006, Table 3) 

 2D patch in 
background 

neutral and 
colored lights

from 8 colors monitor chromatic 
shift  

gray 
background 

 11 0.99j Hansen et al. (2007, Fig. 5b) 
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 2D patch in far 
surround 

neutral and 
colored lights

from 8 colors monitor chromatic 
shift  

gray surround  11 0.49k Hansen et al. (2007, Fig. 5b) 

 2D patch in 
background 

neutral and 
colored lights

from 8 colors monitor spectral 
product 

gray 
background 

  4 0.75j Olkkonen et al. (2009, Fig. 
10) 

 2D patch in 
background 

neutral and 
colored lights

gray monitor spectral 
product 

gray 
background 

  4 0.94l Olkkonen et al. (2009, Fig. 
10) 

 2D fruit images colored lights typical color monitor chromatic 
shift  

gray 
background 

chromaticity 10 0.76 Olkkonen et al. (2008, Fig. 
7A) 

                    
Achromatic adjustment  
                   
 3D room  colored lights achromatic illuminated 

surfaces 
physical 
reflection 

gray room  chromaticity 5 0.85  Brainard (1998, Table 2) 

 3D tableau colored lights achromatic illuminated 
surfaces 

physical 
reflection 

gray chamber chromaticity 4 0.83m  Kraft & Brainard (1999, p. 
310) 

 3D tableau daylight, 
tungsten 

achromatic stereo monitor spectral 
product 

specularity chromaticity 3 0.45 Yang & Shevell (2002, Fig. 8) 

 3D tableau, no 
stereo 

daylight, 
tungsten 

achromatic stereo monitor spectral 
product 

specularity  chromaticity 3 0.32 Yang & Shevell (2002, Fig. 8) 

 3D tableau daylight, 
tungsten 

achromatic stereo monitor spectral 
product 

 chromaticity 3 0.28 Yang & Shevell (2002, Fig. 8) 

 3D tableau, 
complex 

colored lights achromatic illuminated 
surfaces 

physical 
reflection 

gray wall chromaticity 10 0.86 Kraft et al. (Kraft et al., 2002, 
p. 255) 

 3D tableau, 
simple, 

colored lights achromatic illuminated 
surfaces 

physical 
reflection 

gray wall chromaticity 10 0.87 Kraft et al. (2002, p. 255) 

 3D tableau daylight, 
colored lights

achromatic stereo monitor spectral 
product 

gray 
background 

chromaticity 7 0.73  Delahunt & Brainard (2004, 
Fig. 7) 

 2D 
multielement 

neutral and 
colored lights 

achromatic stereo monitor chromatic 
shift  

   2 0.69 Werner (2006, Fig. 2) 

 2D 
multielement, 
test in depth  

neutral and 
colored lights 

achromatic stereo monitor chromatic 
shift  

   2 0.61 Werner (2006, Fig. 2) 

 2D 
multielement, 
moving test 

neutral and 
colored lights 

achromatic monitor chromatic 
shift  

    3 0.82 Werner (2007, Fig. 7) 

 2D 
multielement, 
static test 

neutral and 
colored lights 

achromatic monitor chromatic 
shift 

    3 0.63 Werner (2007, Fig. 7) 
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Successive illuminant-
reflectance-change 
judgment 

 

                       
 3D object, 

uniform 
surround 

daylight 
metamers  

same material illuminated 
surfaces 

physical 
reflection 

  chromaticity 4 0.80   Nascimento, de Almeida, et 
al. (2005, Fig. 2b) 

 3D object, 
complex 
surround  

daylight 
metamers 

same material illuminated 
surfaces 

physical 
reflection 

  chromaticity 4 0.79n  Nascimento, de Almeida, et 
al. (2005, Fig. 2b) 

 2D natural 
scenes 

daylights same material monitor spectral 
product 

sky, sphere chromaticity 12 0.71  Amano et al. (2006, Fig. 3, 4) 

 2D natural 
scenes 

daylights same material monitor spectral 
product 

   chromaticity 12 0.69-0.97o Foster, Amano & Nascimento 
(2006, Fig. 3) 

 2D 
multielement 

daylights illuminant change monitor von Kries 
shift 

   5 0.74p  van Es et al. (2007, p. 151) 

 2D 
multielement 

daylights same hue, 
saturation, 
brightness 

monitor von Kries 
shift 

    5 0.23p  van Es et al (2007, p. 151) 

 2D 
multielement 

daylights material 
appearance  

monitor spectral 
product 

   daylight locus 8 0.75  Reeves et al. (2008, Table 2) 

 2D 
multielement 

daylights hue-saturation 
appearance 

monitor spectral 
product 

   daylight locus 8 0.35  Reeves et al. (2008, Table 2) 

 2D 
multielement 

daylights same material monitor spectral 
product 

   daylight locus 8 0.77  Reeves et al. (2008, Table 2) 

                    
 3D tableau daylight 

metamers 
same material illuminated 

surfaces 
physical 
reflection 

  chromaticity 4 0.85  de Almeida et al. (2010, Fig. 
5) 

 2D projectionq daylight 
metamers  

same material illuminated 
surfaces 

physical 
reflection 

  chromaticity 4 0.83  de Almeida et al. (2010, Fig. 
5) 

 
                                                      
a actual definition differs slightly from that used by Arend & Reeves (1986) 
b eye movements also recorded 
c same size patches as in multielement array 
d bias-corrected ratio 0.91 
e range over 40 Munsell hues 
f daylights vs. two monochromatic lights 
g excluding data with no illuminant shift 
h eliminates memory shift 
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i relative to memory shift; also 40% subjects excluded 
j fitted color-classification boundaries 
k fitted neutral convergence point 
l gray-category centroid 
m control condition 
n average of 2 scene types 
o range over 21 scenes 
p ratio of responses 
q 2D collage, without shading 


