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ABSTRACT

In this Chapter we obtain a contradictions in formal set theories under assumption that these
theories have omega-models or nonstandard model with standard part. An posible generalization
of Lob’s theorem is considered. Main results are:

(i) ¬Con(ZFC + ∃MZFC
st ),

(ii) ¬Con(NF + ∃MNF
st ),

(iii) ¬Con(ZFC2),

(iv) let k be an inaccessible cardinal then ¬Con(ZFC + ∃κ),
(v) ¬Con(ZFC + (V = L)),

(vi) ¬Con(ZF + (V = L)).

Keywords: Gödel encoding; Russell’s paradox; standard model; Henkin semantics; inaccessible
cardinal.
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1 INTRODUCTION

1.1 Main Results

Let us remind that accordingly to naive set theory, any definable collection is a set. Let R be the
set of all sets that are not members of themselves. If R qualifies as a member of itself, it would
contradict its own definition as a set containing all sets that are not members of themselves. On the
other hand, if such a set is not a member of itself, it would qualify as a member of itself by the same
definition. This contradiction is Russell’s paradox. In 1908, two ways of avoiding the paradox were
proposed, Russell’s type theory and Zermelo set theory, the first constructed axiomatic set theory.
Zermelo’s axioms went well beyond Frege’s axioms of extensionality and unlimited set abstraction,
and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC .”But how do we know that
ZFC is a consistent theory, free of contradictions? The short answer is that we don’t; it is a matter
of faith (or of skepticism)”- E.Nelson wrote in his paper [1]. However, it is deemed unlikely that
even ZFC2 which is significantly stronger than ZFC harbors an unsuspected contradiction; it is
widely believed that if ZFC and ZFC2 were inconsistent, that fact would have been uncovered by
now. This much is certain-ZFC and ZFC2 is immune to the classic paradoxes of naive set theory:
Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1. The inconsistency of the second order set theory ZFC2082 originally have been
uncovered in [2] and officially announced in [3], see also ref. [4], [5], [6].
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Remark 1.1.2. In order to derive a contradiction in second order set theory ZFC2 with the Henkin
semantics [7], we remind the definition given in P.Cohen handbook [8], (see [8] Ch.III,sec.1,p.87).
P.Cohen wroted: ”A set which can be obtained as the result of a transfinite sequence of predicative
definitions Godel called ”constructible”. His result then is that the con-structible sets are a model
for ZF and that in this model GCH and AC hold.The notion of a predicative construction must
be made more precise,of course, but there is essentially only one way to proceed. Another way to
explain constructibility is to remark that the constructible sets are those sets which jnust occur in
any model in which one admits all ordinals.The definition we now give is the one used in [9].

Definition 1.1.1. [8]. Let X be a set. The set X ′ is defined as the union of X and the set Y of all
sets 443 for which there is a formula A (z, t1, ..., tk) in ZF such that if AX denotes A with all bound
variables restricted toX, then for some ti, i = 1, ..., k. inX, 443 =

{
z ∈ X | AX

(
z, t1, ..., tk

)}
. (1.1.1)

Observe X ′ j P (x) ∪ X, X
′
= X if X is infinite (and we assume AC). It should be clear to the

reader that the definition of X ′, as we have given it, can be done entirely within ZF

and that Y = X ′ is a single formula A(X,Y ) in ZF. In general, one’s intuition is that all normal
definitions can be expressed in ZF, except possibly those which involve discussing the truth or
falsity of an infinite sequence of statements. Since this is a very important point we shall give a
rigorous proof in a later section that the construction of X ′ is expressible in ZF.”

Remark 1.1.3. We will say that a set y is definable by the formula A (z, t1, ..., tk)relative to a
given set X.

Remark 1.1.4. Note that a simple generalsation of the notion of of the definability which has
been by Definition1.1.1 immediately gives Russell’s paradox in second order set theory ZFC2 with
the Henkin semantics [7].

Definition 1.1.2. [6]. (i) We will say that a set y is definable relative to a given set X iff there is
a formula A (z, t1, ..., tk) in ZFC then for some ti ∈ X, i = 1, ..., k. in X there exists a set z such that
the conditionA

(
z, t1, ..., tk

)
is satisfied and y = z or symbolically ∃z

[
A
(
z, t1, ..., tk

)
∧ y = z

]
. (1.1.2)

It should be clear to the reader that the definition of X ′, as we have given it, can be done entirely
within second order set theory ZFC2 with the Henkin semantics [7] denoted by ZFCHs

2 and that
Y = X ′ is a single formula A(X,Y ) in ZFCHs

2 .

(ii)We will denote the set Y of all sets 443 definable relative to a given set X by Y , ℑHs
2 .

Definition 1.1.3. Let ℜHs
2 be a set of the all sets definable relative to a given setX by the first order

1-place open wff’s and such that ∀x
(
x ∈ ℑHs

2

) [
x ∈ ℜHs

2 ⇐⇒ x /∈ x
]
. (1.1.3)

Remark 1.1.5.(a) Note that ℜHs
2 ∈ ℑHs

2 since ℜHs
2 is a set definable by the first order 1-place

open wff Ψ
(
Z,ℑHs

2

)
:

Ψ
(
Z,ℑHs

2

)
, ∀x

(
x ∈ ℑHs

2

)
[x ∈ Z ⇐⇒ x /∈ x] , (1.1.4)

Theorem 1.1.1. [6].Set theory ZFCHs
2 is inconsistent. Proof. From (1.1.3) and Remark 1.1.2 one

obtains

ℜHs
2 ∈ ℜHs

2 ⇐⇒ ℜHs
2 /∈ ℜHs

2 . (1.1.5)

From (1.1.5) one obtains a contradiction
(
ℜHs

2 ∈ ℜHs
2

)
∧
(
ℜHs

2 /∈ ℜHs
2

)
. (1.1.6)

Remark 1.1.6. Note that in paper [6] we dealing by using following definability condition: a set
443 is definable if there is a formula A (z) in ZFC such that
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∃z [A (z) ∧ y = z] . (1.1.7)

Obviously in this case a set Y = ℜHs
2 is a countable set.

Definition 1.1.4. Let ℜHs
2 be the countable set of the all sets definable by the first order 1-place

open wff’s and such that

∀x
(
x ∈ ℑHs

2

) [
x ∈ ℜHs

2 ⇐⇒ x /∈ x
]
. (1.1.8)

Remark 1.1.7. (a) Note that ℜHs
2 ∈ ℑHs

2 since ℜHs
2 is a ZFC-set definable by the first order

1-place open wff

Ψ
(
Z,ℑHs

2

)
, ∀x

(
x ∈ ℑHs

2

)
[x ∈ Z ⇐⇒ x /∈ x] , (1.1.9)

one obtains a contradiction
(
ℜHs

2 ∈ ℜHs
2

)
∧

(
ℜHs

2 /∈ ℜHs
2

)
. In this paper we dealing by using

following definability condition.

Definition 1.1.5.(i) Let Mst = MZFC
st be a standard model of ZFC. We will say that a set y is

definable relative to a given standard model Mst of ZFC if there is a formula A (z, t1, ..., tk)
in ZFC such that if AMst denotes A with all bound variables restricted to Mst, then for some
ti ∈ Mst, i = 1, ..., k. in Mst there exists a set z such that the condition AMst

(
z, t1, ..., tk

)
is

satisfied and y = z or symbolically

∃z
[
AMst

(
z, t1, ..., tk

)
∧ y = z

]
. (1.1.10)

It should be clear to the reader that the definition of M ′
st, as we have given it, can be done entirely

within second order set theory ZFC2 with the Henkin semantics.

(ii) In this paper we assume for simplicity but without loss of generality that

AMst

(
z, t1, ..., tk

)
= AMst (z) . (1.1.11)

Remark 1.1.8.Note that in this paper we view (i) the first order set theory ZFC under the
canonical first order semantics (ii) the second order set theory ZFC2 under the Henkin semantics
[7] and (iii) the second order set theory ZFC2under the full second-order semantics [8] , [9], [10],
[11], [12] but also with a proof theory bused on formal Urlogic [13].

Remark 1.1.9.Second-order logic essantially differs from the usual first-order predicate calculus in
that it has variables and quantifiers not only for individuals but also for subsets of the universe and
variables for n-ary relations as well [7], [8], [9], [10], [11], [12], [13]. The deductive calculus DED2

of second order logic is based on rules and axioms which guarantee that the quantifiers range at
least over definable subsets [7]. As to the semantics, there are two tipes of models: Suppose U is
an ordinary first-order structure and S is a set of subsets of the domain A of U. The main idea is
that the set-variables range over S,i.e. ⟨U,S⟩ |= ∃XΦ(X) ⇐⇒ ∃S (S ∈ S) [⟨U,S⟩ |= Φ(S)] .

We call ⟨U,S⟩ a Henkin model, if ⟨U,S⟩ satisfies the axioms of DED2 and truth in ⟨U,S⟩ is
preserved by the rules of DED2. We call this semantics of second-order logic the Henkin semantics
and second-order logic with the Henkin semantics the Henkin second-order logic. There is a special
class of Henkin models, namely those ⟨U,S⟩ where S is the set of all subsets of A.

We call these full models. We call this semantics of second-order logic the full semantics and second-
order logic with the full semantics the full second-order logic.

Remark 1.1.10.We emphasize that the following facts are the main features of second-order logic:

1. The Completeness Theorem: A sentence is provable in DED2 if and only if it holds in all
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Henkin models [7], [8], [9], [10], [11], [12], [13].

2. The Löwenheim-Skolem Theorem: A sentence with an infinite Henkin model has a
countable Henkin model.

3. The Compactness Theorem: A set of sentences, every finite subset of which has a Henkin
model, has itself a Henkin model.

4. The Incompleteness Theorem: Neither DED2 nor any other effectively given deductive
calculus is complete for full models, that is, there are always sentences which are true in all full
models but which are unprovable.

4. Failure of the Compactness Theorem for full models.

6. Failure of the Löwenheim-Skolem Theorem for full models.

7. There is a finite second-order axiom system Z2 such that the semiring N of natural numbers is
the only full model of Z2 up to isomorphism.

8. There is a finite second-order axiom system RCF2 such that the field R of the real numbers is
the only full model of RCF2 up to isomorphism.

Remark 1.1.11.For let second-order ZFC be, as usual, the theory that results obtained from ZFC
when the axiom schema of replacement is replaced by its second-order universal closure,i.e.

∀X [Func (X) =⇒ ∀u∃ν∀r [r ∈ ν ⇐⇒ ∃s (s ∈ u ∧ (s, r) ∈ X)]] , (1.1.12)

whereX is a second-order variable, and where Func (X) abbreviates ”X is a functional relation”,see
[12].

Thus we interpret the wff’s of ZFC2 language with the full second-order semantics as required in
[12], [13] but also wit a proof theory bused on formal Ur logic [13].

Designation 1.1.1. We will denote: (i) by ZFCHs
2 set theory ZFC2 with the Henkin semantics,

(ii) by ZFCfss
2 set theory ZFC2 with the full second-order semantics,(iii) by ZFC

Hs
2 set theory

ZFCHs
2 + ∃MZFCHs

2
st and (iv) by ZFCst set theory ZFC + ∃MZFC

st , where MTh
st is a standard

model of the theory Th.

Remark 1.1.12. There is no completeness theorem for second-order logic with the full second-
order semantics. Nor do the axioms of ZFCfss

2 imply a reflection principle which ensures that if a

sentence Z of second-order set theory is true, then it is true in some model MZFC
fss
2 of ZFCfss

2

[11]. Let Z be the conjunction of all the axioms of ZFCfss
2 . We assume now that: Z is true,i.e.

Con
(
ZFCfss

2

)
. It is known that the existence of a model for Z requires the existence of strongly

inaccessible cardinals, i.e. under ZFC it can be shown that 3ba is a strongly inaccessible if and
only if (H3ba,∈) is a model of ZFCfss

2 . Thus

¬Con(ZFCfss
2 ) =⇒ ¬Con(ZFC + ∃κ)). (1.1.13)

In this paper we prove that:

(i) ZFCst , ZFC + ∃MZFC
st (ii) ZFC

Hs
2 , ZFCHs

2 + ∃MZFCHs
2

st and (iii) ZFCfss
2 is inconsistent,

where MTh
st is a standard model of the theory Th.

Axiom ∃MZFC . [8]. There is a set MZFC and a binary relation ϵ ⊆ MZFC ×MZFC which makes
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MZFC a model for ZFC.

Remark 1.1.13. (i) We emphasize that it is well known that axiom ∃MZFC a single statement
in ZFC see [8], Ch.II,section 7.We denote this statement throught all this paper by symbol
Con

(
ZFC;MZFC

)
.

The completness theorem says that ∃MZFC ⇐⇒ Con (ZFC) .

(ii) Obviously there exists a single statement in ZFCHs
2 such that ∃MZFCHs

2 ⇐⇒ Con
(
ZFCHs

2

)
.

We denote this statement throught all this paper by symbol Con
(
ZFCHs

2 ;MZFCHs
2

)
and there

exists a single statement ∃MZHs
2 in ZHs

2 . We denote this statement throught all this paper by

symbol Con
(
ZHs

2 ;MZHs
2

)
.

Axiom ∃MZFC
st . [8].There is a set MZFC

st such that if R is{
⟨x, y⟩ |x ∈ y ∧ x ∈ MZFC

st ∧ y ∈ MZFC
st

}
then MZFC

st is a model for ZFC under the relation R.

Definition 1.1.6. [8].The model MZFC
st is called a standard model since the relation ∈ used is

merely the standard ∈- relation.

Remark 1.1.14. Note that axiom ∃MZFC doesn’t imply axiom ∃MZFC
st ,see ref. [8].

Remark 1.1.15. We remind that in Henkin semantics, each sort of second-order variable has a
particular domain of its own to range over, which may be a proper subset of all sets or functions
of that sort. Leon Henkin (1950) defined these semantics and proved that Gödel’s completeness
theorem and compactness theorem, which hold for first-order logic, carry over to second-order logic
with Henkin semantics. This is because Henkin semantics are almost identical to many-sorted
first-order semantics, where additional sorts of variables are added to simulate the new variables of
second-order logic. Second-order logic with Henkin semantics is not more expressive than first-order
logic. Henkin semantics are commonly used in the study of second-order arithmetic.Väänänen [13]
argued that the choice between Henkin models and full models for second-order logic is analogous
to the choice between ZFC and V (V is von Neumann universe), as a basis for set theory: ”As
with second-order logic, we cannot really choose whether we axiomatize mathematics using V or
ZFC. The result is the same in both cases, as ZFC is the best attempt so far to use V as an
axiomatization of mathematics.”

Remark 1.1.16.Note that in order to deduce: (i) ˜Con(ZFCHs
2 ) from Con(ZFCHs

2 ),

(ii) ˜Con(ZFC) from Con(ZFC),by using Gödel encoding, one needs something more than the

consistency of ZFCHs
2 , e.g., that ZFCHs

2 has an omega-model M
ZFCHs

2
ω or an standard model

M
ZFCHs

2
st i.e., a model in which the integers are the standard integers and the all wff of ZFCHs

2 ,
ZFC,etc. represented by standard objects.To put it another way, why should we believe a statement
just because there’s a ZFCHs

2 -proof of it? It’s clear that if ZFCHs
2 is inconsistent, then we won’t

believe ZFCHs
2 -proofs. What’s slightly more subtle is that the mere consistency of ZFC2 isn’t

quite enough to get us to believe arithmetical theorems of ZFCHs
2 ; we must also believe that these

arithmetical theorems are asserting something about the standard naturals. It is ”conceivable” that

ZFCHs
2 might be consistent but that the only nonstandard models M

ZFCHs
2

Nst it has are those in
which the integers are nonstandard, in which case we might not ”believe” an arithmetical statement
such as ”ZFCHs

2 is inconsistent” even if there is a ZFCHs
2 -proof of it.

Remark 1.1.17. Note that assumption ∃MZFCHs
2

st is not necessary if nonstandard model M
ZFCHs

2
Nst
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is a transtive or has an standard part M
ZHs

2
st ⊂ M

ZHs
2

Nst ,see [14], [15].

Remark 1.1.18. Remind that if M is a transitive model, then 3c9M is the standard 3c9. This
implies that the natural numbers, integers, and rational numbers of the model are also the same
as their standard counterparts. Each real number in a transitive model is a standard real number,
although not all standard reals need be included in a particular transitive model. Note that in any

nonstandard model M
ZHs

2
Nst of the second-order arithmetic ZHs

2 the terms 0, S0 = 1,SS0 = 2, . . .

comprise the initial segment isomorphic to M
ZHs

2
st ⊂ M

ZHs
2

Nst . This initial segment is called

the standard cut of the M
ZHs

2
Nst . The order type of any nonstandard model of M

ZHs
2

Nst is equal to
N+A× Z,see ref. [16], for some linear order A

Thus one can to choose Gödel encoding inside the standard model M
ZHs

2
st .

Remark 1.1.19. However there is no any problem as mentioned above in second order set theory
ZFC2 with the full second-order semantics because corresponding second order arithmetic Zfss

2 is
categorical.

Remark 1.1.20. Note if we view second-order arithmetic Z2 as a theory in first-order predicate
calculus. Thus a model MZ2 of the language of second-order arithmetic Z2 consists of a set M
(which forms the range of individual variables) together with a constant 0 (an element of M),
a function S from M to M , two binary operations + and × on M, a binary relation < on M ,
and a collection D of subsets of M , which is the range of the set variables. When D is the full
powerset of M, the model MZ2 is called a full model. The use of full second-order semantics is
equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms
of second-order arithmetic have only one full model. This follows from the fact that the axioms of
Peano arithmetic with the second-order induction axiom have only one model under second-order
semantics, i.e. Z2, with the full semantics, is categorical by Dedekind’s argument, so has only one
model up to isomorphism. When M is the usual set of natural numbers with its usual operations,
MZ2 is called an 3c9-model. In this case we may identify the model with D, its collection of sets
of naturals, because this set is enough to completely determine an 3c9-model. The unique full

omega-model M
Z

fss
2

ω , which is the usual set of natural numbers with its usual structure and all its
subsets, is called the intended or standard model of second-order arithmetic.

1.2 Remarks on the Tarski’s Undefinability Theorem

Theorem 1.2.1.(Tarski’s undefinability theorem) LetTh be first order theory with formal language
,which includes negation and has a Gödel numbering g(◦) such that for every -formula A(x) there
is a formula B such that B ↔ A(g(B)) holds. Assume that Th has a standard model MTh

st and
Con (Th,st) where

Th,st , Th + ∃MTh
st . (1.2.1)

Let T ∗be the set of Gödel numbers of -sentences true in MTh
st . Then there is no -formula True(n)

(truth predicate) which defines T ∗.That is, there is no -formula True(n) such that for every -formula

A, True(g(A)) ⇐⇒ [A]
M

Th
st

(1.2.2)

where the abbraviation [A]
M

Th
st

means that A holds in standard model MTh
st ,i.e. [A]

M
Th
st

⇐⇒
|=

M
Th
st

A.Thus Con (Th,st) implies that

¬∃True(x)
(
True(g(A)) ⇐⇒ [A]

M
Th
st

)
(1.2.3)
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Thus Tarski’s undefinability theorem reads

Con (Th,st) =⇒ ¬∃True(x)
(
True(g(A)) ⇐⇒ [A]

M
Th
st

)
. (1.2.4)

Remark 1.2.2. By the other hand the Theorem 1.2.1 says that given some formal theory Th,st

that contins formal arithmetic, the concept of truth in that formal theory Th,st is not definable
using the expressive means that that arithmetic affords. This implies a major limitation on the
scope of ”self-representation.” It is possible to define a formula True(n),but only by drawing
on a metalanguage whose expressive power goes beyond that of .To define a truth predicate for the
metalanguage would require a still higher metametalanguage, and so on.

Remark 1.2.3. In this paper under the following assumption

Con
(
ZFC + ∃MZFC

st

)
(1.2.5)

in particular we prove that there exists countable Rassel’s set ℜω such that the following statement
holds:

ZFC + ∃MZFC
st ⊢

∃ℜω

(
ℜω ∈ MZFC

st

)
∧ (card (ℜω) = ℵ0) ∧

[
|=MZFC

st
∀x (x ∈ ℜω ⇐⇒ x /∈ x)

]
.

(1.2.6)

From (1.2.6) immediately follows a contradiction

|=MZFC
st

(ℜω ∈ ℜω) ∧ (ℜω /∈ ℜω) . (1.2.7)

From (1.2.5) and (1.2.7) by reductio ad absurdum it follows

¬Con
(
ZFC + ∃MZFC

st

)
. (1.2.8)

Remark 1.2.4. It follows from (1.2.8) that Tarski’s undefinability theorem (Theorem 1.2.1)
obviously no longer holds.

Definition 1.2.1. Let Th# be first order theory and Con
(
Th#

)
. A theory Th# is complete if,

for every formula A in the theory’s language , that formula A or its negation ¬A is provable in
Th#,i.e., for any wff A, always Th# ⊢ A or Th# ⊢ ¬A.

Definition 1.2.2.Let Th be first order theory and Con (Th) .We will say that a theory Th# is
completion of the theory Th if (i) Th ⊂ Th#,(ii) a theory Th# is complete.

Theorem 1.2.2. [4], [5]. Assume that:Con (ZFCst) ,where ZFCst , ZFC + ∃MZFC
st .Then there

exists completion ZFC#
st of the theory ZFCst such that the following condtions holds:

(i) For every formula A in the language of ZFCst that formula [A]MZFC
st

or formula [¬A]MZFC
st

is

provable in ZFC#
st i.e., for any wff A, always ZFC#

st ⊢ [A]MZFC
st

or ZFC#
st ⊢ [¬A]MZFC

st
.

(ii) ZFC#
st = ∪m∈NThm,where for any m a theory Thm+1 is finite extension of the theory Thm.

(iii) Let Prstm (y, x) be recursive relation such that: y is a Gödel number of a proof of the wff of the
theory Thm and x is a Gödel number of this wff.Then the relation Prstm (y, x) is expressible in the
theory Thm by canonical Gödel encoding and really asserts provability in Thm.

(iv) Let Pr#st (y, x) be relation such that: y is a Gödel number of a proof of the wff of the theory
ZFC#

st and x is a Gödel number of this wff.Then the relation Pr#st (y, x)

32



Advances in Mathematics and Computer Science Vol. 1
There is No Standard Model of ZFC and ZFC2

is expressible in the theory ZFC#
st by the following formula

Pr#st (y, x) ⇐⇒ ∃mPrstm (y, x)) (1.2.9)

(v) The predicate Pr#st (y, x) really asserts provability in the set theory ZFC#
st .

Remark 1.2.5.Note that the relation Prstm (y, x) is expressible in the theory Thm since a theory
Thm is an finite extension of the recursively axiomatizable theory ZFCst and therefore the predicate
Prstm (y, x) exists since any theory Thm is recursively axiomatizable.

Remark 1.2.6. Note that a theory ZFC#
st obviously is not recursively axiomatizable nevertheless

Gödel encoding holds by Theorem 1.2.2.

Theorem 1.2.3. Assume that:Con (ZFCst) ,where ZFCst , ZFC+∃MZFC
st .Then truth predicate

True(n) is expressible by using first order language by the following formula

True(g(A)) ⇐⇒ ∃y (y ∈ N) ∃m (m ∈ N) Prstm (y, g(A)) . (1.2.10)

Proof.Assume that:

ZFC#
st ⊢ [A]MZFC

st
. (1.2.11)

It follows from (1.2.11) there exists m∗ = m∗ (g(A)) such that Thm∗ ⊢ [A]MZFC
st

and therefore by

(1.2.9) we obtain Pr#st (y, g(A)) ⇐⇒ Prstm∗ (y, g(A))) . (1.2.12)

From (1.2.12) immediately by definitions one obtains (1.2.10).

Remark 1.2.7. Note that Theorem 1.2.3 reads

Con (ZFCst) =⇒ ∃True(x)
(
True(g(A)) ⇐⇒ [A]MZFC

st

)
. (1.2.13)

Theorem 1.2.4. ¬Con (ZFCst) .

Proof.Assume that: Con (ZFCst) .From (1.2.10) and (1.2.13) one obtains a condradiction Con (ZFCst)∧
¬Con (ZFCst) and therefore by reductio ad absurdum it follows ¬Con (ZFCst) .

Theorem 1.2.5. [4], [5]. Let MZFC
Nst be a nonstandard model of ZFC and let MPA

st be a standard
model of PA.We assume now that MPA

st ⊂ MZFC
Nst and denote such nonstandard model of the set

theory ZFC by MZFC
Nst = MZFC

Nst [PA] .Let ZFCNst be the theory ZFCNst = ZFC +MZFC
Nst [PA] .

Assume that:Con (ZFCNst) ,where ZFCst , ZFC+∃MZFC
Nst .Then there exists completion ZFC#

Nst

of the theory ZFCNst such that the following condtions holds:

(i) For every formula A in the language of ZFC that formula [A]MZFC
Nst

or formula [¬A]MZFC
Nst

is

provable in ZFC#
Nst i.e., for any wff A, always ZFC#

Nst ⊢ [A]MZFC
Nst

or ZFC#
Nst ⊢ [¬A]MZFC

Nst
.

(ii) ZFC#
Nst = ∪m∈NThm,where for any m a theory Thm+1 is finite extension of the theory Thm.

(iii) Let PrNst
m (y, x) be recursive relation such that: y is a Gödel number of a proof of the wff of the

theory Thm and x is a Gödel number of this wff.Then the relation expressible in the theory Thm

by canonical Gödel encoding and really asserts provability in Thm.

(iv) Let Pr#Nst (y, x) be relation such that: y is a Gödel number of a proof of the wff of the theory
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ZFC#
Nst and x is a Gödel number of this wff.Then the relation Pr#Nst (y, x) is expressible in the

theory ZFC#
Nst by the following formula

Pr#Nst (y, x) ⇐⇒ ∃m
(
m ∈ MPA

st

)
PrNst

m (y, x)) (1.2.14)

(v) The predicate Pr#Nst (y, x) really asserts provability in the set theory ZFC#
Nst.

Remark 1.2.8.Note that the relation PrNst
m (y, x) is expressible in the theory Thm since a theory

Thm is an finite extension of the recursively axiomatizable theory ZFC and therefore the predicate
PrNst

m (y, x) exists since any theory Thm is recursively axiomatizable.

Remark 1.2.9. Note that a theory ZFC#
Nst obviously is not recursively axiomatizable nevertheless

Gödel encoding holds by Theorem 1.2.5.

Theorem 1.2.6. Assume that:Con (ZFCNst) ,where ZFCNst , ZFC + ∃MZFC
Nst .Then truth

predicate True(n) is expressible by using first order language by the following formula

True(g(A)) ⇐⇒ ∃y
(
y ∈ MPA

Nst

)
∃m

(
m ∈ MPA

Nst

)
PrNst

m (y, g(A)) . (1.2.15)

Proof.Assume that:

ZFC#
Nst ⊢ [A]MZFC

Nst
. (1.2.16)

It follows from (1.2.14) there exists m∗ = m∗ (g(A)) such that Thm∗ ⊢ [A]MZFC
Nst

and therefore by

(1.2.14) we obtain

Pr#Nst (y, g(A)) ⇐⇒ PrNst
m∗ (y, g(A))) . (1.2.17)

From (1.2.17) immediately by definitions one obtains (1.2.15).

Remark 1.2.10.Note that Theorem 1.2.6 reads

Con (ZFCNst) =⇒ ∃True(x)
(
True(g(A)) ⇐⇒ [A]MZFC

Nst

)
. (1.2.18)

Theorem 1.2.7. ¬Con (ZFCNst) .

Proof. Assume that: Con (ZFCNst) .From (1.2.15) and (1.2.18) one obtains a condradiction
Con (ZFCNst)∧¬Con (ZFCNst) and therefore by reductio ad absurdum it follows ¬Con (ZFCNst) .

2 DERIVATION OF THE INCONSISTENT DEFINABLE SET

IN SET THEORY ZFCHS
2 AND IN SET THEORY ZFCST

2.1 Derivation of the Inconsistent Definable Set in Set Theory

ZFC
Hs
2

In this section we obtain a contradiction in set theory ZFC
Hs
2 by using a set of the all sets definable

by first order 1-place open wff’s of the set theory ZFC
Hs
2 .
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We start to explain main idea from some simply formal definitions.

Definition 2.1.1. Let Mst , M
ZFCHs

2
st . Let Hs

X ,Hs
X,Mst

be a set of the all first order 1-place open

wff’s Ψ (X) = ΨMst (X) (wff1) of the set theory ZFC
Hs
2 with all bound variables restricted to

standard model Mst and that contains free occurrences of the first order individual variable X and
quantifiers only over first order individual variables, i.e. Hs

X is a set of the all first order 1-place

open wff’s with all bound variables restricted to standard model M
ZFCHs

2
st .

We define now a set ΓHs
X , ΓHs

X,Mst
$Hs

X,Mst
by the following (second order) formula

∀ΨMst (X)
[
ΨMst (X) ∈ ΓHs

X,Mst
⇐⇒(

∃!X
(
X ∈ M

ZFCHs
2

st

)
ΨMst (X)

)
∧
(
ΨMst (X) ∈Hs

X,Mst

)]
,

(2.1.1)

or in the following equivalent form

∀ΨMst (X)
[
ΨMst (X) ∈ ΓHs

X,Mst
⇐⇒ ∃yF̂rHs

1 (y, v) ↘[(
g
ZFC

Hs
2

(ΨMst (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

∧
(
∃!X

(
X ∈ M

ZFCHs
2

st

)
ΨMst (X)

)
∧
(
ΨMst (X) ∈Hs

X,Mst

)]
,

(2.1.1.a)

see Remark 2.1.10 (ix) and Eq.(2.1.28). Note that there exist a set ΓHs
X,Mst

by the second order
separaton axiom.

Notation 2.1.1. In this subsection we often write for short Ψ (X) ,Hs
X ,ΓHs

X instead ΨMst (X) ,
Hs
X,Mst

,ΓHs
X,Mst

but this should not lead to a confusion.

Assumption 2.1.1. We assume now for simplicity but without loss of generality that

Hs
X,Mst

∈ Mst (2.1.1.b)

and therefore by definition of model Mst one obtains ΓHs
X,Mst

∈ Mst.

Definition 2.1.2. Let Ψ1 = Ψ1 (X) = Ψ1,Mst (X) and Ψ2 = Ψ2 (X) = Ψ2,Mst (X) be a first order

1-place open wff’s of the set theory ZFC
Hs
2 and with all bound variables restricted to standard

model Mst .

(i) We define now the equivalence relation (· ∼X ·) , (· ∼X,Mst ·) ⊂ ΓHs
X,Mst

× ΓHs
X,Mst

by the
following formula

∀Ψ1∀Ψ2 (Ψ1 ∼X Ψ2) ⇐⇒ ∀Ψ1 (X) ∀Ψ2 (X) {[Ψ1 (X) ∼X Ψ2 (X)]

⇐⇒ ∀X
(
X ∈ M

ZFCHs
2

st

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

}
⇐⇒

∀Ψ1 (X) ∀Ψ2 (X) {[Ψ1 (X) ∼X Ψ2 (X)] ⇐⇒[
∀X

(
X ∈ M

ZFCHs
2

st

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ M

ZFCHs
2

st

)
Ψ2 (X)

]}
.

(2.1.2)

or in the following equivalent form
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∀Ψ1∀Ψ2 (Ψ1 ∼X Ψ2) ⇐⇒ ∀Ψ1 (X) ∀Ψ2 (X) {[Ψ1 (X) ∼X Ψ2 (X)]

⇐⇒ ∃y1F̂rHs
1 (y1, v)∃y2F̂rHs

1 (y2, v)∀X
(
X ∈ M

ZFCHs
2

st

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

}
⇐⇒

∀Ψ1 (X) ∀Ψ2 (X) {[Ψ1 (X) ∼X Ψ2 (X)] ⇐⇒ ∃y1F̂rHs
1 (y1, v)∃y2F̂rHs

1 (y2, v) ↘[(
g
ZFCHs

2
(Ψ1 (X)) = y1

)
∧
(
g
ZFCHs

2
(Ψ2 (X)) = y2

)
∧
(
g
ZFCHs

2
(X) = ν

)]
∧[

∀X
(
X ∈ M

ZFCHs
2

st

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ M

ZFCHs
2

st

)
Ψ2 (X)

]}
.

(2.1.2.a)

(ii) Note that the equivalence relation (· ∼X ·) well defined as a set of ordered pair Z1,2

such that

Z1,2 =
{
(Ψ1,Ψ2) |

[
(Ψ1,Ψ2) ∈ ΓHs

X × ΓHs
X

]
∧ [Θ (Ψ1,Ψ2)]

}
,

Θ(Ψ1,Ψ2) , |=
M

ZFCHs
2

st

∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] , (2.1.3)

or in the following equivalent form

Z1,2 =
{
(Ψ1,Ψ2) |

[
(Ψ1,Ψ2) ∈ ΓHs

X × ΓHs
X

]
∧ ∃y1F̂rHs

1 (y1, v)∃y2F̂rHs
1 (y2, v) ↘[(

g
ZFC

Hs
2

(Ψ1 (X)) = y1
)
∧
(
g
ZFC

Hs
2

(Ψ2 (X)) = y2
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

∧
[Θ (Ψ1,Ψ2)]} ,

Θ(Ψ1,Ψ2) , |=
M

ZFCHs
2

st

∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] ,

(2.1.3.a)

i.e. (Ψ1,Ψ2) ∈ Z1,2 if and only if the sentence ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] holds in standard model

M
ZFCHs

2
st .Note that the relation |=

M
ZFCHs

2
st

∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] is expressible in ZFCHs
2 by

a single formula Θ (Ψ1,Ψ2) of the set theory ZFCHs
2 , since there exists a single statement

Con
(
ZFCHs

2 ,MZFCHs
2

)
in ZFCHs

2 such that Con
(
ZFCHs

2 ;MZFCHs
2

)
⇐⇒ ∃MZFCHs

2 ⇐⇒
⇐⇒ Con

(
ZFCHs

2

)
.see Remark 1.1.4(ii).

(iii) It follows from the statement (ii) and Axiom schema of separation that Z1,2 is a set in the
sense of the set theory ZFCHs

2 .

(iv) A subset ΛHs
X of ΓHs

X such that Ψ1 (X) ∼X Ψ2 (X) holds for all Ψ1 (X) and Ψ2 (X) in ΛHs
X ,

and never for Ψ1 (X) in ΛHs
X and Ψ2 (X) outside ΛHs

X , is called an equivalence class of ΓHs
X by ∼X .

(v) A set of the all possible equivalence classes of a set ΓHs
X devided by ˜X , will by denoted by

ΓHs
X / ∼X

ΓHs
X / ∼X,

{
[Ψ (X)]Hs |Ψ(X) ∈ ΓHs

X

}
, (2.1.4)

is the quotient set of a set ΓHs
X devided by the equivalence relation ∼X .

(vi) For any Ψ (X) ∈ ΓHs
X by symbol [Ψ (X)]Hs ,

{
Φ(X) ∈ ΓHs

X |Ψ(X) ∼X Φ(X)
}
we denote the

equivalence class to which Ψ (X) belongs. All elements of ΓHs
X that equivalent to each other are

also elements of the same equivalence class.

Definition 2.1.3. We define now the operations join ∨,meet ∧,and complementation, denoted
[Φ (X)]′on ΓHs

X / ∼X by :

(1) [Φ (X)] ∨ [Ψ (X)] = [Φ (X) ∨Ψ(X)] ,

36



Advances in Mathematics and Computer Science Vol. 1
There is No Standard Model of ZFC and ZFC2

(2) [Φ (X)] ∧ [Ψ (X)] = [Φ (X) ∧Ψ(X)] ,

(3) [Φ (X)]′ = [¬Φ(X)] .

The resulting bulean algebra BX is the Lindenbaum-Tarski algebra of the second order

language Hs
2 of ZFC

Hs
2 and it may be shown that

t∈T [Φ (t)] =
[
∃X

(
X ∈ M

ZFCHs
2

st

)
Φ(X)

]
,

t∈T [Φ (t)] =
[
∀X

(
X ∈ M

ZFCHs
2

st

)
Φ(X)

]
,

(2.1.5)

where t ∈ T = M
ZFCHs

2
st and T is the set of all terms in the language Hs

2 .

Remark 2.1.1. Note that in bulean notations definition (2.1.2) reads

Z1,2 =
{
(Ψ1,Ψ2) |

(
(Ψ1,Ψ2) ∈ ΓHs

X × ΓHs
X

)
∧ ([Ω (Ψ1,Ψ2)] = 1BX )

}
,

Ω(Ψ1,Ψ2) , ∀X
(
X ∈ M

ZFCHs
2

st

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

(2.1.6)

Definition 2.1.4. [17]. Let Th be any theory in the recursive language Th ⊃PA, where PA is
a language of Peano arithmetic.We say that a number-theoretic relation R (x1, ..., xn) of n

arguments is expressible in Th if and only if there is a wff R̂ (x1, ..., xn) of Th with the free
variables x1, ..., xn such that,for any natural numbers k1, ..., kn, the following holds:

(i) If R (k1, ..., kn) is true, then ⊢Th R̂
(
k1, ..., kn

)
.

(ii) If R (k1, ..., kn) is false, then ⊢Th ¬R̂
(
k1, ..., kn

)
.

Remark 2.1.2. Recoll that any recursive language Th except logical connectives and quantifiers
contains the following sets of symbols (see for example ref. [17], p.51):

(i) a set of symbols ∆0 = {(, ), ,,¬, =⇒ , ∀} and we will identify these symbols with a

1-tuples ∆̂0 = {{(} , {)} , {, } , {¬} , { =⇒ , {∀}}} by using a one-one function℘∆0 :

℘∆0 ({(}) = (, ℘∆0 ({)}) =), ℘∆0 ({, }) =, , ℘∆0 ({¬}) = ¬, ℘∆0 ({ =⇒ }) = =⇒ ,
℘∆0 ({∀}) = ∀,

℘−1
∆0

(() = {(} , ℘−1
∆0

()) = {)} , ℘−1
∆0

(, ) = {, } , ℘−1
∆0

(¬) = {¬} , ℘−1
∆0

( =⇒ ) = { =⇒ } ,
℘−1
∆0

(∀) = {∀} ,

(2.1.7)

and we will be often abbreviate

(̂ = {(} , )̂ = {)} , ,̂ = {, } , ¬̂ = {¬} , =̂⇒ = { =⇒ } , ∀̂ = {∀} ; (2.1.8)

(ii) a set of the first order individual variables: ∆1 = {x1, x2, ..., xn, ...} and we will identify

these individual variables with a 1-tuples ∆̂1 = {{x1} , {x2} , ..., {xn} , ...} by using a one-one
function℘∆1 :

℘∆1 ({xn}) = xn, ℘
−1
∆1

(xn) = {xn} , (2.1.9)

and we will be often abbreviate x̂n = {xn} ;

(iii) a set of the second order individual variables: ∆̃ = {y1, y2, ..., yn, ...}
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(iv) a set of the individual constants: ∆2 = {a1, a2, ..., an, ...} and we will identify these individual
constants with a 1-tuples ∆2 = {{a1} , {a2} , ..., {an} , ...} by using a one-one function℘∆2 ({an})

℘∆2 ({an}) = an, ℘
−1
∆2

(an) = {an} , (2.1.10)

and we will be often abbreviate ân = {an} ;

(v) for every integer n ≥ 0 there is a set of n-ary, or n-place, predicate symbols:

∆3 = {An
k}n,k∈N and we will identify these predicate symbols with a 1-tuples

∆̂3 = {{An
k}}n,k∈N by using a one-one function ℘∆3 :

℘∆3 ({An
k}) = An

k , ℘
−1
∆3

(An
k ) = {An

k} ; (2.1.11)

and we will be often abbreviate Ân
k = {An

k} ;

(vi) for every integer n ≥ 0 there is a set of n-ary, or n-place, function symbols:

∆4 = {fn
k }n,k∈N and we will identify these predicate symbols with a 1-tuples

∆̂4 = {{fn
k }}n,k∈N by using a one-one function ℘∆4 :

℘∆4 ({fn
k }) = fn

k , ℘
−1
∆4

(fn
k ) = {fn

k } , (2.1.12)

and we will be often abbreviate f̂n
k = {fn

k } ;

(vii) A theory Th is said to have a primitive recursive vocabulary (or a recursive vocabulary) if the
following predicates are primitive recursive (or recursive)

(a) ICHs(x): x is the Godel number of an individual constant of ZFC
Hs
2 ,

(b) FLHs(x): x is the Godel number of a function letter of ZFC
Hs
2 ,

(c) PLHs(x): x is the Godel number of a predicate letter of ZFC
Hs
2 .

Remark 2.1.3. (i) Note that in fact it was alwais implicitly assumed that these sets ∆1, ∆2,∆3,∆4

are a sets in a sense of ZFC (ZFC-set),see ref.[8],[17].

(ii) we will write for short A is a ZFC-set instead A is a set in a sense of ZFC,etc.

Remark 2.1.4.(a) Recoll that the function symbols applied to the variables and individual
constants inductively generate a full ZFC-set of the terms [8], [17]:

(1) Variables and individual constants are terms.

(1.a) First order variables and individual constants are first order terms.

(1.b) Second order variables are second order terms.

(2) If f n
k is a function symbol and t1, t2, ..., tn, are terms, then f n

k (t1, t2, ..., tn) is a term.

(2.a) If f n
k is a function symbol and t1, t2, ..., tn, are first order terms, then f n

k (t1, t2, ..., tn) is a
first order term.
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(2.b) If f n
k is a function symbol and sequence t1, t2, ..., tn, contain at least one second order term,

then f n
k (t1, t2, ..., tn) is a second order term.

(2.b) If f n
k is a function symbol and sequence t1, t2, ..., tn, contain at least one second order term,

then f n
k (t1, t2, ..., tn) is a second order term.

(3) An expression is a term only iff it can be shown to be a term on the basis of conditions (1) and
(2).

(3.a) An expression is a first order term only iff it can be shown to be a term on the basis of
conditions (1.a) and (2.a).

(3.b) An expression is a second order term only iff it can be shown to be a term on the basis of
conditions (1.b) and (2.b).

(3.c) We will be identify the first order terms with ordered n+ 3-tuples

{{f n
k } , {(} , {t1} , {t2} , ..., {tn} , {)}} (2.1.13)

by using a one-one function ℘τ :

℘τ ({{f n
k } , {(} , {t1} , {t2} , ..., {tn} , {)}}) = f n

k (t1, t2, ..., tn) ,
℘−1
τ (f n

k (t1, t2, ..., tn)) = {{f n
k } , {(} , {t1} , {t2} , ..., {tn} , {)}} .

(2.1.14)

It follows from Remark 2.1.2 and Remark 2.1.4 that there is a ZFC-set of the all first order terms
Υ1:

Υ1 = ∆1 ∪∆2 ∪ {f n
k (t1, t2, ..., tn)}n,k∈N . (2.1.15)

(3.d) We will be denoted the image ℘−1
τ (Υ1) by

℘−1
τ (Υ1) = Υ̂1. (2.1.16)

(4) Recoll that the predicate symbols applied to terms yield the atomic formulas; that is, if Ak
n is

a predicate letter and t1, t2, ..., tn, are terms, then Ak
n (t1, t2, ..., tn) is an atomic formula.

(4.a) The predicate symbols applied to the first order terms yield the first order atomic formulas;
that is, if Ak

n is a predicate letter and t1, t2, ..., tn, are first order terms, then Ak
n (t1, t2, ..., tn) is an

first order atomic formula.

(4.b) The predicate symbols applied to the second order terms yield the second order atomic formulas;
that is, if Ak

n is a predicate letter and t1, t2, ..., tn, are second order terms, then Ak
n (t1, t2, ..., tn) is

an second order atomic formula.

(4.c) We will be identify the first order atomic formulas with ordered n+ 3-tuples

{A n
k , (, t1, t2, ..., tn, )} by using a one-one function ℘π :

℘π ({A n
k , (, t1, t2, ..., tn, )}) = A n

k (t1, t2, ..., tn) ,
℘−1
π (A n

k (t1, t2, ..., tn)) = {A n
k , (, t1, t2, ..., tn, )} .

(2.1.17)

It follows from Remark 2.1.2 and Remark 2.1.4 that there is a ZFC-set of the all

first order atomic formulas Σ1:

Σ1 = {A n
k (t1, t2, ..., tn)}n,k∈N . (2.1.18)
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(4.d)We will be denoted the image ℘−1
π (Σ) by

℘−1
π (Σ1) = Σ̂1. (2.1.19)

(5) We introduce now a one-one function ℘τ,π such that

℘τ,π|Υ1
= ℘τ , ℘τ,π|Σ1

= ℘π. (2.1.20)

(6) Recoll that the well-formed formulas (wff’s) of quantification theory are defined inductively as
follows [8], [17], [18]:

(6.a) Every atomic formula is a wff.

(6.b) Every first order atomic formula is a first order wff.

(6.c) Every second order atomic formula is a second order wff.

(6.d) If B and C are wff’s and y is a variable, then (¬B) , (B =⇒ C) and ((∀y)B) are wff’s.

(6.e) An expression is a wff only if it can be shown to be a wff on the basis of conditions (6.a) and
(6.d).

(7) If B and C are first order wff’s and y is a first order variable, then (¬B) , (B =⇒ C) and
((∀y)B) are first order wff’s.

(7.a) An expression is a first order wff only if it can be shown to be a wff on the basis of conditions
(6.b) and (6.d).

Remark 2.1.5. It follows from Remark 2.1.1-Remark 2.1.3 that there is a ZFC-set Ξ1 of the all
first order wff’s and in partcular

Υ1 ∪ Σ1 ⊂ Ξ1. (2.1.21)

We extend now one-one function℘τ,π up one-one function ℘Ξ1 by natural way,i.e.,

℘Ξ |Υ∪Σ = ℘τ,π and we will be denoted the image ℘−1
Ξ1

(Ξ1) by

℘−1
Ξ1

(Ξ1) = Ξ̂1. (2.1.22)

Remark 2.1.6. Recoll that for an arbitrary second-order theory Th, we correlate with each
symbol u of Th an odd positive integer g(u), called the Godel number of u, in the following rules
[10] [[10]]:1.g (() = 3,2.g ()) = 5,3.g (, ) = 7,4.g (¬) = 9,5.g ( =⇒ ) = 11,6.g (∀) = 13,

7.g (xk) = 13 + 8k,8.g (ak) = 7 + 8k,9.g (fn
k ) = 1 + 8

(
2n3k

)
,10.g (An

k ) = 3 + 8
(
2n3k

)
,

11.g (yk) = 15 + 8k, where k, n ≥ 1.

Example 2.1.1.g (x2) = 29; g (a4) = 39; g
(
f 2
1

)
= 97; g

(
A1

2

)
= 147.

Remark 2.1.7. Note that g is a bijection and therefore there exist a functon g−1such that

1.g−1 (3) = (;2.g−1 (5) =);3.g−1 (7) =, ;4.g−1 (9) = ¬;5.g−1 (11) = =⇒ ,6.g−1 (13) = ∀;

7.g (13 + 8k) = xk;8.g (7 + 8k) = ak;9.g
(
1 + 8

(
2n3k

))
= fn

k ;10.g
(
3 + 8

(
2n3k

))
= An

k ,where k, n ≥
1.
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Example 2.1.2.g−1 (29) = x2; g
−1 (39) = a4; g

−1 (97) = f 2
1 ; g−1 (147) = A1

2.

Remark 2.1.8. Note that g ◦ g−1 (x) = x.

Remark 2.1.9. Given an expression u0u1..uj ...ur,where each uj is a symbol of Th, i.e.,
each uj ∈ ∆0 ∪ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4 (∆0 = {(, ), , ,¬, =⇒ , ∀}) we define its Godel number
g
ZFC

Hs
2

(u0u1..uj ...ur) , ğ (u0u1..uj ...ur) by the formula:

g , ğ (u0u1..uj ...ur) = ğ (u0) · ğ (u1) · ... · ğ (uj) · ... · ğ (ur) =

= 2g(u0) · 3g(u1) · ... · pg(uj)
j · ... · pg(ur)

r ,
(2.1.23)

where ğ (uj) = p
g(uj)
j and where pj denotes the j-th prime number and we assume that p0 = 2.

Example 2.1.3. g
(
A1

2 (x1, x2)
)

= 2g(A
1
2) · 3g(() · 5g(x1) · 7g(,) · 11g(x2) · 13g()) = 299 · 33 · 521·

·77 · 1129 · 135.

Definition 2.1.5. Given any natural number k ∈ N wich has representation of the form

k = 2g(u0) · 3g(u1) · ... · pg(uj)
j · ... · pg(ur)

r for some sequance of a symbols u0, u1, .., uj , ..., ur,

where each uj is a symbol of Th, we define a function ğ−1 : N → Ξ1 by the following formula

ğ−1 (k) = ğ−1
(
2g(u0)

)
· ... · ğ−1

(
p
g(uj)
j

)
· ... · ğ−1

(
p
g(ur)
r

)
=

= u0u1..uj ...ur ∈ Ξ1,
(2.1.24)

where ğ−1

(
p
g(uj)
j

)
= g−1 (g (uj)) = uj ∈ ∆0 ∪∆1 ∪∆2 ∪∆3 ∪∆4.

Definition 2.1.6. [10] Thus g is one-one function from the set S# = ∪n∈NS
n,where S = ∆0 ∪

∆1 ∪∆2 ∪∆3 ∪∆4,of symbols of Th, first order expressions of Th and finite sequences of first order
expressions of Th into the set of positive integers.

The following conditions are to be satisfied by the function g : (1) g is effectively computable, (2)
there is an effective procedure that determines whether any given positive integer m is in the range
of g and, if m is in the range of g, the procedure: finds the object z ∈ ∪n∈NΞ

n
1 = Ω1 such that

g(z) = m.

We extend now one-one function℘Ξ1 up one-one function ℘Ω1 by natural way,i.e.,

℘Ω1 |Ξ1
= ℘Ξ1 , ℘Ω1 |Ξn

1
= ℘Ξ1×...×︸ ︷︷ ︸

n

℘Ξ1 , (2.1.25)

n ∈ N, and we will be denoted the image ℘−1
Ω1

(Ω1) by

℘−1
Ω1

(Ω1) = Ω̂1. (2.1.26)

Proposition 2.1.1. Let Th be a theory with a primitive recursive (or recursive) vocabulary.

Then withe following relations and functions (1-11) are primitive recursive (or recursive).

In each case, we give first the notation and intuitive definition for the relation or function, and then
an equivalent formula from which its primitive recursiveness (or recursiveness)
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can be deduced.

(1) EVbl1(x) : x is the Godel number of an expression consisting of a first order variable,

(∃z)z<x(1 ≤ z ∧ x = 213+8z). By [17], Proposition 3.18, this is primitive recursive.

EVbl2(x) : x is the Godel number of an expression consisting of a second order variable,

(∃z)z<x(1 ≤ z ∧ x = 215+8z). By [17], Proposition 3.18, this is primitive recursive.

EVbl1∨2(x) : x is the Godel number of an expression consisting of a variable,

(∃z)z<x(1 ≤ z ∧
(
x = 213+8z

)
∨
(
x = 215+8z

)
). By [17], Proposition 3.18, this is primitive recursive.

EIC(x) : x is the Godel number of an expression consisting of an individual constant, (∃y)y<x(IC(y)∧
x = 2y) [17], Proposition 3.18).

EFL(x) : x is the Godel number of an expression consisting of a function letter, (∃y)y<x(FL(y) ∧
x = 2y) [17], Proposition 3.18.

EPL(x) : x is the Godel number of an expression consisting of a predicate letter,

(∃y)y<x(PL(y) ∧ x = 2y) [17], Proposition 3.18.

(2) ArgT(x) = (qt(8, x
·
−1))0 : If x is the Godel·number of a function letter f n

j , then ArgT(x) =
n. ArgT(x) is primitive recursive [17], Proposition 3.18.

ArgP(x) = (qt(8, x
·
− 3))0 : If x is the Godel number of a predicate letter A n

j , then

ArgP(x) = n.ArgP(x) is primitive recursive [17], Proposition 3.18.

(3) Gd1(x) : x is the Godel number of an first order expression of Th,

EVbl1(x) ∨EIC(x) ∨EFL(x) ∨ EPL(x) ∨ x = 23 ∨ x = 25 ∨ x = 27 ∨ x = 29 ∨ x =

211 ∨ x = 213 ∨ (∃u)u<x(∃v)v<x(x = u ∗ v ∧Gd1(u) ∧Gd1(v)).

Gd1∨2(x) : x is the Godel number of an expression of Th,

EVbl1∨2(x) ∨EIC(x) ∨EFL(x) ∨ EPL(x) ∨ x = 23 ∨ x = 25 ∨ x = 27 ∨ x = 29 ∨ x =

211 ∨ x = 213 ∨ x = 215 ∨ (∃u)u<x(∃v)v<x(x = u ∗ v ∧Gd1∨2(u) ∧Gd1∨2(v)).

(4) MP1(x, y, z) : The first order expression with Godel number z is a direct consequence of the

first order expressions with Godel numbers x and y by modus ponens, y = 23 ∗ x ∗ 211 ∗ z ∗ 25 ∧
Gd1(x) ∧Gd1(z).

MP1∨2(x, y, z) : The expression with Godel number z is a direct consequence of the expressions
with Godel numbers x and y by modus ponens,

y = 23 ∗ x ∗ 211 ∗ z ∗ 25 ∧Gd1∨2(x) ∧Gd1∨2(z).

(5)Gen1(x, y) : The first order expression with Godel number y comes from the first order expression
with Godel number x by the generalization rule:

(∃v)v<y(EVbl1(v) ∧ y = 23 ∗ 23 ∗ 213 ∗ v ∗ 25 ∗ x ∗ 25 ∧Gd1(x)).
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Gen1∨2(x, y) : The expression with Godel number y comes from the an expression with Godel
number x by the generalization rule:

(∃v)v<y(EVbl1∨2(v) ∧ y = 23 ∗ 23 ∗ 213 ∗ v ∗ 25 ∗ x ∗ 25 ∧Gd1∨2(x)).

(6) Trm1(x) : x is the Godel number of an first order term of Th.

Trm1(x) is equivalent to the following relation: ’

EVbl1(x) ∨EIC(x) ∨ (∃y)y<(px!)x [x = (y)
lh(y)

·
−1

∧

lh(y) = ArgT((x)0) + 1 ∧ FL(((y)0)0) ∧ ((y)0)1 = 3∧

lh((y)0) = 2 ∧ (∀u)
u<lh(y)

·
−1

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧Trm1(v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
lh(y)

·
−2

∗ v ∗ 25 ∧Trm1(v))].

(7) Atfml1(x) : x is the Godel number of an atomic first order wff of Th.

Atfml1(x) is equivalent to the following:

(∃y)y<(px!)x [x = (y)
lh(y)

·
−1

∧ lh(y) = ArgP((x)0) + 1∧

PL(((y)0)0) ∧ ((y)0)1 = 3 ∧ lh((y)0) = 2 ∧

(∀u)
u<lh(y)

·
−2

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧Trm1(v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
u<lh(y)

·
−2

∗ v ∗ 25 ∧Trm1(v))].

(8)Fml1(y) : y is the Godel number of an first order formula of Th:

Atfml1(y) ∨ (∃z)z<y[(Fml1(z)∧ = 23 ∗ 29 ∗ z ∗ 25)∨

(Fml1((z)0) ∧ Fml1((z)1 ∧ y = 23 ∗ (z)0 ∗ 211 ∗ (z)1 ∗ 25)∨

(Fml1((z)0) ∧EVbl1((z)1) ∧ y = 23 ∗ 23 ∗ 213 ∗ ((z)1 ∗ 2
5 ∗ (z)0 ∗ 25)].

(9) Subst1(x, y, u, v) : x is the Godel number of the result of substituting in the first order expression
with Godel number y the first order term with Godel number u for all free occurrences of the variable
with Godel number v.

(10) Sub1(y, u, v) : the Godel number of the result of substituting the first order term with Godel
number u for all free occurrences in the first order expression with Godel number y of the variable
with Godel number v :

Sub1(y, u, v) = µxx<(puy !)uySubst1(u, y, u, v).

(11) Fr1(y, v) : y is the Godel number of the first order wff or the first order term of Th that
contains free occurrences of the variable with Godel number v :

(Fml1(y) ∨Trm1(y)) ∧EVbl1(2
v) ∧ ¬Subst1(y, y, 213+8v, v).

Remark 2.1.10.Note that in order to obtain completely formal definitions of the first order
predicates EVblHs

1 (x),EICHs
1 (x),EFLHs

1 (x), ...,FrHs
1 (y, v) one needs the following second order

predicates:

(i) EVblHs
1 (x, α) : x is the Godel number of the first order expression α ∈ ∆1 consisting of a first

order variable;

(ii) EICHs
1 (x, β) : x is the Godel number of the first order expression β ∈ ∆2 consisting of individual
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constant;

(iii) EFLHs
1 (x, γ) : x is the Godel number of the first order expression γ ∈ ∆3 consisting of function

letter;

(iv) EPLHs
1 (x, δ) : x is the Godel number of the first order expression δ ∈ ∆4 consisting of predicate

letter;

(v) GdHs
1 (x, ζ) : x is the Godel number of the first order expression ζ ∈ Sn, n ∈ N of the ZFC

Hs
2 ;

(vi) TrmHs
1 (x, τ) : x is the Godel number of the first order term τ ∈ Υ1 of the ZFC

Hs
2 .

(vii) AtfmlHs
1 (x, π) : x is the Godel number of the first order atomic wff π ∈ Σ1 of the ZFC

Hs
2 .

(viii) FmlHs
1 (y, φ) : y is the Godel number of the the first order wff formula φ ∈ Ξ1 of the ZFC

Hs
2 .

(ix) FrHs
1 (y, v,ϖ) : y is the Godel number of the the first order wff ϖ or the the first order term

ϖ ∈ Ξ1 of the ZFC
Hs
2 that contains free occurrences of the variable with Godel number v.

Thus finally we obtain:

EVblHs
1 (x) ⇐⇒ ∃α (α ∈ ∆1)EVblHs

1 (x, α) ⇐⇒ (∃z)z<x(1 ≤ z ∧ x = 213+8z),

EICHs
1 (x) ⇐⇒ ∃β (β ∈ ∆2)EICHs

1 (x, β) ⇐⇒ (∃y)y<x(ICHs(y) ∧ x = 2y),

EFLHs
1 (x) ⇐⇒ ∃γ (γ ∈ ∆3)EFLHs

1 (x, γ) ⇐⇒ (∃y)y<x(FLHs(y) ∧ x = 2y),

EPLHs
1 (x) ⇐⇒ ∃δ (δ ∈ ∆4)EPLHs

1 (x, δ) ⇐⇒ (∃y)y<x(PLHs(y) ∧ x = 2y),

GdHs
1 (x) ⇐⇒ ∃ζ∃n (ζ ∈ Sn)GdHs

1 (x, ζ) ⇐⇒
EVblHs

1 (x) ∨ EICHs
1 (x) ∨ EFLHs

1 (x) ∨ EPLHs
1 (x)∨

x = 27 ∨ x = 29 ∨ x = 211 ∨ x = 213∨
(∃u)u<x(∃v)v<x(x = u ∗ v ∧ GdHs

2 (u) ∧ GdHs
2 (v)).

TrmHs
1 (x) ⇐⇒ ∃τ (τ ∈ Υ)TrmHs

1 (x, τ) ⇐⇒
EVbl(x) ∨ EIC(x) ∨ (∃y)y<(px!)x [x = (y)

lh(y)
·
−1

∧

lh(y) = ArgT((x)0) + 1 ∧ FL(((y)0)0) ∧ ((y)0)1 = 3∧
lh((y)0) = 2 ∧ (∀u)

u<lh(y)
·
−1

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧ TrmHs
1 (v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
lh(y)

·
−2

∗ v ∗ 25 ∧ TrmHs
1 (v))].

AtfmlHs
1 (x) ⇐⇒ ∃π (π ∈ Σ1)AtfmlHs

1 (x, π) ⇐⇒
(∃y)y<(px!)x [x = (y)

lh(y)
·
−1

∧ lh(y) = ArgP ((x)0) + 1∧

PLHs
1 (((y)0)0) ∧ ((y)0)1 = 3 ∧ lh((y)0) = 2∧

(∀u)
u<lh(y)

·
−2

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧ TrmHs
1 (v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
u<lh(y)

·
−2

∗ v ∗ 25 ∧ TrmHs
1 (v))].

FmlHs
1 (y) ⇐⇒ ∃ (φ ∈ Ξ1)FmlHs

1 (y, φ) ⇐⇒
AtfmlHs

1 (y) ∨ (∃z)z<y [(FmlHs
1 (z)∧ = 23 ∗ 29 ∗ z ∗ 25)∨

(FmlHs
1 ((z)0) ∧ FmlHs

1 ((z)1 ∧ y = 23 ∗ (z)0 ∗ 211 ∗ (z)1 ∗ 25)∨
(FmlHs

1 ((z)0) ∧ EVblHs
1 ((z)1) ∧ y = 23 ∗ 23 ∗ 213 ∗ ((z)1 ∗ 25 ∗ (z)0 ∗ 25)].

FrHs
1 (y, v) ⇐⇒ ∃ϖ [(ϖ ∈ Ξ1) ∨ (ϖ ∈ Υ1)]FrHs

1 (y, v,ϖ) ⇐⇒
(FmlHs

1 (y) ∨ TrmHs
1 (y)) ∧ EVblHs

1 (2v) ∧ ¬SubstHs
1 (y, y, 213+8v, v).

(2.1.27)

Designation 2.1.2. (i) Let gZFCHs
2

(u) be a Gödel number of an given expression u of the set

theory ZFC
Hs
2 , ZFCHs

2 + ∃MZFCHs
2

st .

(ii) Let FrHs
1 (y, v) be the relation : y is the Gödel number of a first order wff of the set theory

ZFC
Hs
2 that contains free occurrences of the variableX with Gödel number v,see Remark 2.1.10(ix).

(iii) Note that the relation FrHs
1 (y, v) is recursive and thus an equivalent from which it recursiveness

can be deduced,i.e. the relation FrHs
1 (y, v) is expressible in ZFC

Hs
2 by a wff F̂rHs

1 (y, v) :

F̂rHs
1 (y, v) ≡

(
FmlHs

1 (y) ∨TrmHs
1 (y)

)
EvblHs

1 (2ν) ∧ ¬SubstHs
1

(
y, y, 213+8ν , ν

)
. (2.1.28)
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(iv) Note that for any y, v ∈ N by the definition of the relation FrHs
1 (y, v) follows that

F̂rHs
1 (y, v) ⇐⇒ ∃!Ψ (X)

[(
g
ZFC

Hs
2

(Ψ (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

, (2.1.29)

where Ψ (X) is a unique wff of ZFC
Hs
2 which contains free occurrences of the variable X with

Gödel number v.We will be often denote the unique wff Ψ (X) defined by using

equivalence (2.1.29) by the symbol Ψy,ν (X) ,i.e.

F̂rHs
1 (y, v) ⇐⇒ ∃!Ψy,ν (X)

[(
g
ZFC

Hs
2

(Ψy,ν (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)]

. (2.1.30)

Remark 2.1.11. (i) Note that a function g
ZFC

Hs
2

(Ψy,ν (X)) = y is expressible in set theory

ZFC
Hs
2 by a wff of the set theory ZFC

Hs
2 (see Remark 2.1.13) that contains free occurrences of the

variable y ∈ N.Note that formula Ψy,ν (X) is given by an expression u0u1..uj ...ur,i.e.Ψy,ν (X) =
u0u1..uj ...ur,

where each uj is a symbol of ZFC
Hs
2 .

(ii) Note that in order to obtain Gödel encoding (2.1.23) rigorously without any refference to non
formal notion of the expression u0u1..uj ...ur and by using only notion of ZFC-set Ξ1(see Remark

2.1.5) we remind that Ψy,ν (X) = u0u1..uj ...ur ∈ Ξ1 and therefore Ψ̂y,ν (X) = û0û1..ûj ...ûr ∈ Ξ̂1.

(iii) In order to obtain Gödel encoding as required above in Remark 2.1.11(ii) we introduce now a
countale secuence of the functions

[Ψy,ν (X) ; j] : Ξ1 × N → ∆0 ∪∆1 ∪∆2 ∪∆3 ∪∆4, j = 0, 1, ... (2.1.31)

which are defined by the following formulas

[Ψy,ν (X) ; j] = uj , j = 0, 1, ..., (2.1.32)

and we revrite now the expression u0u1..uj ...ur ∈ Ξ1 in the following equivalent form

[Ψy,ν (X) ; 0] [Ψy,ν (X) ; 1] ... [Ψy,ν (X) ; j] ... [Ψy,ν (X) ; r] . (2.1.33)

By definitions are given above (see Remark 2.1.11(i)-(ii)) we obtain that

g
ZFC

Hs
2

(Ψy,ν (X)) = y ⇐⇒

y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r .
(2.1.34)

Let us denote by (y)j (see ref.[10] [[10]]) the exponent g ([Ψy,ν (X) ; j]) in this factorization:

y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r . (2.1.35)

Recoll that every positive integer y has a unique factorization into prime powers:

y = pa0
0 · pa1

1 · ... · paj

j · ... · p ar
r (2.1.36)

Let us denote by (y)j the exponent aj in this factorization (2.1.29).If y = 1, (y)j = 1 for all j.

If y = 0, we arbitrarily let (y)j = 0 for all j. Then the functions (y)j , j = 0, 1, ... is primitive
recursive, since (y)j = µz<y

(
pzj |y ∧ ¬pz+1

j |y
)
,see [17], p.181.

Remark 2.1.12. Thus the functions (y)j = g ([Ψ (X) ; j]) , j = 0, 1, ... are expressible in set theory

ZFC
Hs
2 by the formulas denoted below for a short by the symbol λj (y, g ([Ψ (X) ; j])) .
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For y > 0, let lh(y) be the number of non-zero exponents in the factorization of y into powers of
primes, or, equivalently, the number of distinct primes that divide y. Let lh(0) = 0, then lh(y) is
primitive recursive.

Remark 2.1.13. (i) Note that a function
(
g
ZFC

Hs
2

(Ψ (X)) = y
)
∧
(
g
ZFC

Hs
2

(X) = ν
)
is

expressible in set theory ZFC
Hs
2 by the following formula Ξ̃1 (Ψ (X) , y, ν) :

Ξ̃1 (Ψ (X) , y, ν) ⇐⇒ (y ∈ N) ∧ (ν ∈ N) F̂rHs
1 (y, v) ∧

[
j≤lh(y)λj (y, g ([Ψ (X) ; j]))

]
, (2.1.37)

where Ψ (X) is 1-open first order wff of the set theory ZFC
Hs
2 .

(ii) Note that the length of the formula (2.1.37) depend on numerals y, ν but nevertheless

Ξ̃ (Ψ (X) , y, ν) is a single 3-open wiff of ZFC
Hs
2 .

(iii) Note that

g
ZFC

Hs
2

(Ψy,ν (X)) = y ⇐⇒ Ξ̃
(
ğ−1 (y) , y, ν

)
. (2.1.38)

Definition 2.1.7.LetHs
X,ν be a set of the all 1-place open wff’s Ψ (X) of the set theory ZFC

Hs
2

that contains free occurrences of the individual variable X with Gödel number v and quantifiers
only over individual variables.We define now a set ΓHs

X,ν $Hs
X,ν by the

following formula

∀Ψ(X)
[
Ψ(X) ∈ ΓHs

X,ν ⇐⇒
(
∃!X

(
X ∈ M

ZFCHs
2

st

)
Ψ(X)

)
∧
(
Ψ(X) ∈Hs

X,ν

)]
. (2.1.39)

Remark 2.1.14. Let g
ZFC

Hs
2

(X) = ν.We define now a set ΓHs
ν $ N by the following formula

ΓHs
ν =

{
y ∈ N|

(
⟨y, ν⟩ ∈ FrHs

1 (y, v)
)
∧ ğ−1 (y) ∈ ΓHs

X,ν

}
, (2.1.40)

or in the following equivalent form:

∀y (y ∈ N)
[
y ∈ ΓHs

ν ⇐⇒ (y ∈ N) ∧ F̂rHs
1 (y, v) ∧ ğ−1 (y) ∈ ΓHs

X,ν

]
. (2.1.41)

Definition 2.1.8. Let Ξ1,X be a ZFC-set of the all first order 1-open wiff’s of the set theory

ZFC
Hs
2 ,see Remark 2.1.4, then we abbreviate Ξ1,X , Wff1,X

[
ZFC

Hs
2

]
.

Remark 2.1.15.(a) Note that a ZFC-setWff1

[
ZFC

Hs
2

]
in canonical handbooks always considered

as an standard set in the sense of the set theory ZFC,see ref. [8].

See for example the proof of the Gödel Completness Theorem, ref. [8] Theorem 2, sect.4,p.13.

(b) Note that from statement (a) (see also Remark 2.1.4) and from the axiom of separation it

follows directly that ΓHs
ν is a standard set in the sense of the set theory ZFC

Hs
2 ,

(441) note that the collections ΓHs
X and ΓHs

X,ν in fact can be considered as a standard set directly
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without any reference to Gödel number, since a countable collection of the all first order wff’s of the

set theory ZFC
Hs
2 is a set in the sense of the set theory ZFC.

Definition 2.1.9.(i) We define now the equivalence relation

(· ∼ν ·) ⊂ ΓHs
ν × ΓHs

ν (2.1.42)

in the sense of the set theory ZFC
Hs
2 by the following formula

∀y1∀y1
[
y1 ∼ν y2 ⇐⇒

(
∀X

(
X ∈ M

ZFCHs
2

st

)
[Ψy1,ν (X) ⇐⇒ Ψy2,ν (X)]

)]
. (2.1.43)

Remark 2.1.16. Note that (2.1.43) by using second order lenguage of the set theory

ZFC
Hs
2 can be written in the following equivalent form

y1 ∼ν y2 ⇐⇒
FrHs

1 (y1, v) ∧ FrHs
1 (y2, v) ∧ ∃Ψy1,ν (X)

(
g
ZFC

Hs
2

(Ψy1,ν (X)) = y1
)
∧

∃Ψy2,ν (X)
(
g
ZFC

Hs
2

(Ψy2,ν (X)) = y2
)
∧
(
g
ZFC

Hs
2

(X) = ν
)
∧[

∀X
(
X ∈ M

ZFCHs
2

st

)
[Ψy1,ν (X) ⇐⇒ Ψy2,ν (X)]

]
.

(2.1.44)

Remark 2.1.17. Note that from the axiom of separation it follows directly that the equivalence

relation (· ∼ν ·) is a relation in the sense of the set theory ZFC
Hs
2 .

(i) A subset ΛHs
ν of ΓHs

ν such that y1 ∼ν y2 holds for all y1 and y1 in ΛHs
ν , and never for y1 in ΛHs

ν

and y2 outside ΛHs
ν , is an equivalence class of ΓHs

ν .

(iii) For any y ∈ ΓHs
ν by symbol [y]Hs ,

{
z ∈ ΓHs

ν |y ∼ν z
}
we denote the equivalence class to which

y belongs. All elements of ΓHs
ν equivalent to each other are also elements of the same equivalence

class.

(iii)The collection of all possible equivalence classes of ΓHs
ν by ˜ν , denoted by symbol

ΓHs
ν / ∼ν :

ΓHs
ν / ∼ν,

{
[y]Hs |y ∈ ΓHs

ν

}
. (2.1.45)

Remark 2.1.18. Note that from the axiom of separation it follows directly that ΓHs
ν / ∼ν is a set

in the sense of the set theory ZFC
Hs
2 .

Definition 2.1.10. Let ℑHs
2 be the countable ZFC-set of the all sets definable by the first order

1-place open wff’s of the set theory ZFC
Hs
2 , i.e.

∀Y
{
Y ∈ ℑHs

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Hs ∈ ΓHs

X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.1.46)

Definition 2.1.11. We rewrite now (2.1.46) in the following equivalent form

∀Y
{
Y ∈ ℑHs

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Hs ∈ Γ∗Hs

X / ∼X

)
∧ (Y = X)

]}
, (2.1.47)

where the countable set Γ∗Hs
X / ∼X is defined by the following formula

∀Ψ(X)
{
[Ψ (X)] ∈ Γ∗Hs

X / ∼X ⇐⇒
[(
[Ψ (X)] ∈ ΓHs

X / ∼X

)
∧ ∃!XΨ(X)

]}
(2.1.48)

Definition 2.1.12. Let ℜHs
2 be the countable set of the all sets definable by the first order 1-place
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open wff’s and such that

∀X
{(

X ∈ Mst ∧X ∈ ℑHs
2

) [
X ∈ ℜHs

2 ⇐⇒ X /∈ X
]}

. (2.1.49)

Remark 2.1.19.(a) Note that ℜHs
2 ∈ ℑHs

2 since ℜHs
2 is a ZFC-set definable by the first order

1-place open wff

ΨMst

(
Z,ℑHs

2

)
, Ψ

(
Z,ℑHs

2

)
, ∀X

{(
X ∈ Mst ∧X ∈ ℑHs

2

)
[X ∈ Z ⇐⇒ X /∈ X]

}
, (2.1.50)

and obviously ΨMst

(
Z,ℑHs

2

)
∈ Wff1,Z

[
ZFC

Hs
2

]
.

From (2.1.47)-(2.1.50) one obtains

ℜHs
2 ∈ ℜHs

2 ⇐⇒ ℜHs
2 /∈ ℜHs

2 . (2.1.51)

But (2.1.51) immediately gives a contradiction(
ℜHs

2 ∈ ℜHs
2

)
∧
(
ℜHs

2 /∈ ℜHs
2

)
. (2.1.52)

(b) Note that the contradiction (2.1.52) that is a contradiction inside ZFC
Hs
2 for the reason that

the countable set ℑHs
2 is a standard set in a sense of the set theory ZFC

Hs
2 ,

see Remark 2.1.15 (a)-(c) and Remark 2.1.4.

Theorem 2.1.1.Let ZFC
Hs
2 be a theory ZFC

Hs
2 , ZFCHs

2 + ∃MZFCHs
2

st and Wff1

[
ZFC

Hs
2

]
∈

∈ M
ZFCHs

2
st .Then set theory ZFC

Hs
2 is inconsistent.

Proof. Immediately from (2.1.52).

Remark 2.1.20. In order to obtain a contradiction inside ZFC
Hs
2 , in more general case,i.e.,

without any refference to Assumption 2.1.1 we introduce the following definitions.

Definition 2.1.13. We define now the countable set Γ∗Hs
ν / ∼ν by the following formula

∀y
{
[y]Hs ∈ Γ∗Hs

ν / ∼ν ⇐⇒
(
[y]Hs ∈ ΓHs

ν / ∼ν

)
∧ F̂rHs

2 (y, v) ∧ [∃!XΨy,ν (X)]
}
. (2.1.53)

Remark 2.1.21. Note that from the axiom of separation it follows directly that Γ∗
ν/ is a set in the

sense of the set theory ZFC
Hs
2 .

Definition 2.1.14. We define now the countable set ℑ∗Hs
2 by the following formula

∀Y
{
Y ∈ ℑ∗Hs

2 ⇐⇒ ∃y
[(
[y] ∈ Γ∗Hs

ν / ∼ν

)]}
. (2.1.54)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗Hs
2 is a set in a

sense of the set theory ZFC
Hs
2 .

Definition 2.1.15. We define now the countable set ℜ∗Hs
2 by formula

∀X
{[(

X ∈ ℑ∗Hs
2

)
∧ (X ∈ Mst)

]
∧
[
X ∈ ℜ∗Hs

2 ⇐⇒ X /∈ X
]}

. (2.1.55)
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Note that from the axiom schema of separation it follows directly that ℜ∗Hs
2 is a set in the sense of

the set theory ZFC
Hs
2 .

Remark 2.1.22. Note that ℜ∗Hs
2 ∈ ℑ∗Hs

2 since ℜ∗Hs
2 is definable by the following formula

Ψ∗
Mst

(
Z,ℑ∗Hs

2

)
, Ψ∗ (Z,ℑ∗Hs

2

)
, ∀X

{(
X ∈ ℑ∗Hs

2 ∧X ∈ Mst

)
[X ∈ Z ⇐⇒ X /∈ X]

}
, (2.1.56)

where obviously Ψ∗ (Z,ℑ∗Hs
2

)
∈ Wff1,X

[
ZFC

Hs
2

]
.

Theorem 2.1.2.Set theory ZFC
Hs
2 is inconsistent.

Proof. From (2.1.55) and Remark 2.1.22 we obtain

ℜ∗Hs
2 ∈ ℜ∗Hs

2 ⇐⇒ ℜ∗Hs
2 /∈ ℜ∗Hs

2 . (2.1.57)

From (2.1.57) one obtains a contradiction(
ℜ∗Hs

2 ∈ ℜ∗Hs
2

)
∧
(
ℜ∗Hs

2 /∈ ℜ∗Hs
2

)
. (2.1.58)

Definition 2.1.16. Let Z̃FC
Hs

2 be a set theory Z̃FC
Hs

2 , ZFCHs
2 + ∃MZFCHs

2
Nst .

We assume now that:∃MZFCHs
2

st such that M
ZFCHs

2
st ⊂ M

ZFCHs
2

Nst .Then we will say that M
ZFCHs

2
st is a

standard

part of M
ZFCHs

2
Nst .

Theorem 2.1.3. Set theory Z̃FC
Hs

2 is inconsistent.

Proof. Similarly to proof of the Theorem 2.1.2 but with quantifiers bounded on standard part

M
ZFCHs

2
st of M

ZFCHs
2

Nst .

Definition 2.1.17. Let ∆ be an standard set in the sense of the set theory ZFC.We will say that:

(i) a set ∆ is admissible relative to model M
ZFCHs

2
Nst iff

Con

(
Z̃FC

Hs

2

)
=⇒ Con

(
Z̃FC

Hs

2 +
(
∆ ∈ M

ZFCHs
2

Nst

))
. (2.1.59)

(ii) a set ∆ is not admissible relative to model M
ZFCHs

2
Nst iff

Con

(
Z̃FC

Hs

2

)
=⇒ ¬Con

(
Z̃FC

Hs

2 +
(
∆ ∈ M

ZFCHs
2

Nst

))
. (2.1.60)

(iii) a set ∆ is absolute not admissible iff ∆ is not admissible relative to any model M
ZFCHs

2
Nst .

Definition 2.1.18. Let Ξ1,X by a ZFC-set of the all the first order 1-place open wff’s of the set

theory ZFC
Hs
2 , then we abbreviate Ξ1,X , Wff1,X

[
Z̃FC

Hs

2

]
.

Theorem 2.1.4.(1) Set theory Z̃FC
Hs

2 +

(
Wff1,X

[
Z̃FC

Hs

2

]
∈ M

ZFCHs
2

Nst

)
is inconsistent.

(2) A set Wff1,X

[
Z̃FC

Hs

2

]
absolute is not admissible.
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Proof. Similarly to proof of the Theorem 2.1.2 since canonical Gödel encoding holds by property

N ∈ M
ZFCHs

2
Nst .

Proof. (2) Immediately from (1) and Definition 2.1.17.

2.2 Derivation of the Inconsistent Definable Set in Set Theory
ZFCst

In this section we obtain a contradiction in the set theory ZFCst , ZFC+∃MZFC
st . by using a set

of the all sets definable by 1-place open wff’s of the set theory ZFCst.

Definition 2.2.1. Let st
X be a set of the all 1-place open wff’s Ψ (X) of the set theory ZFCst with

all bound variables restricted to standard model Mst that contains free occurrences of the individual
variable X with Godel number v and we will be denoted these

wff’s by Ψ (X) = ΨMst (X) ,ΨX = ΨX,Mst ,Ψy,ν (X) = Ψy,ν,Mst (X) , y, ν ∈ N.We define now a set
Γst
X $st

X by the following second order formula

∀Ψ(X)
[
Ψ(X) ∈ Γst

X ⇐⇒
(
∃!X

(
X ∈ MZFC

st

)
Ψ(X)

)
∧
(
Ψ(X) ∈st

X

)]
. (2.2.1)

or in the following equivalent form

∀Ψ(X)
[
Ψ(X) ∈ Γst

X ⇐⇒ ∃yF̂rZFC(y, v) ↘
[(gZFC (Ψ (X)) = y) ∧ (gZFC (X) = ν)]

∧
(
∃!X

(
X ∈ MZFC

st

)
Ψ(X)

)
∧
(
Ψ(X) ∈st

X

)]
,

(2.2.1.a)

see Remark 2.2.2 (ix) and Eq.(2.2.). Note that there exist a set Γst
X by the second order separaton

axiom of ZFCHs
2 .

Notation 2.2.1. In this subsection we often write for short Ψ (X) ,ΨX ,Ψy,ν (X) instead

ΨMst (X) ,ΨX,Mst ,Ψy,ν,Mst (X) but this should not lead to a confusion.

Assumption 2.2.1. We assume now for simplicity but without loss of generality that

st
X ∈ Mst (2.2.1.b)

and therefore by definition of model Mst one obtains Γst
X ∈ Mst.

Definition 2.2.2. Let Ξ1,X be a ZFC-set of the all 1-open wiff’s of the set theory ZFCst,then we
abbreviate Ξ1,X , Wff1,X [ZFCst] .

Definition 2.2.3.Let̂stX be a set̂stX = ℘−1
Ξ1

(
st
X

)
,and Ψ̂ (X) , Ψ̂X = ℘−1

Ξ1
(Ψ (X)) where one-one

function ℘−1
Ξ1

defined in sec.2.1,see Remark 2.1.5 and Eq.(2.1.22).

Remark 2.2.1.(i)We define now a set Γ̂st
X = ℘−1

Ξ1

(
Γst
X

)
, Γ̂st

X $̂stX by the following first order formula

with quantifiers over first order individual varables Ψ̂X and X :

∀Ψ̂X

[
Ψ̂X ∈ Γ̂st

X ⇐⇒ ∃!X
(
X ∈ MZFC

st

)
ΨX ∧

(
Ψ̂X ∈̂stX)]

, (2.2.2)

(where we write ΨX instead Ψ (X)) or in the following equivalent form
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∀Ψ̂X

[
Ψ̂X ∈ Γ̂st

X ⇐⇒ ∃yF̂rZFC(y, v) ↘[(
ĝZFC

(
Ψ̂X

)
= y

)
∧
(
ĝZFC

(
X̂
)
= ν

)]
∧
(
∃!X

(
X ∈ MZFC

st

)
ΨX

)
∧
(
Ψ̂X ∈̂stX)]

,

(2.2.2.a)

where one-one function ĝZFC

(
Ψ̂X

)
= y is defined below by Eq.(2.2.4), see Remark 2.2.3.

Note that there exist a set Γ̂st
X by the (first order) separaton axiom of ZFC.

(ii) Note that second order definition (2.2.1) and first order definition (2.2.2) are equivalent.

We abbreviate now:

(a) ICZFC(x): x is the Godel number of an individual constant of ZFC,

(b) FLZFC(x): x is the Godel number of a function letter of ZFC,

(c) PLZFC(x): x is the Godel number of a predicate letter of ZFC.

Remark 2.2.2. Note that in order to obtain by using only first order logic the formal definitions
of the first order predicates EVblZFC(x),EICZFC(x),EFLZFC(x), ...,FrZFC(y, v)

from the first order predicates ICZFC(x),FLZFC(x),PLZFC(x) one needs the following first order
predicates:

(i) EVblZFC(x, α̂) : x is the Godel number of the 1-tuple α̂ ∈ ∆̂1, ∆̂1 = ℘−1
∆1

(∆1)

correspondinging to the individual variable α ∈ ∆1, α = ℘∆1 (α̂) ,see Remark 2.1.2 (i).

(ii) EICZFC(x, β̂) : x is the Godel number of the 1-tuple β̂ ∈ ∆̂2, ∆̂2 = ℘−1
∆2

(∆2)

correspondinging to the individual constant β ∈ ∆2, β = ℘∆2

(
β̂
)
,see Remark 2.1.2 (ii).

(iii) EFLZFC(x, γ̂) : x is the Godel number of the 1-tuple γ̂ ∈ ∆̂3, ∆̂3 = ℘−1
∆3

(∆3)

correspondinging to the function letter γ ∈ ∆3, γ = ℘∆3 (γ̂) ,see Remark 2.1.2 (iii).

(iv) EPLZFC(x, δ̂) : x is the Godel number of the 1-tuple δ̂ ∈ ∆̂4, ∆̂4 = ℘−1
∆4

(∆4)

correspondinging to the predicate letter δ ∈ ∆4, δ = ℘∆4

(
δ̂
)
,see Remark 2.1.2 (iv).

(v) GdZFC(x, ζ̂) : x is the Godel number of the element ζ̂ ∈ Ŝ# of the set Ŝ# = ∪n∈NŜ
n,

Ŝ = ∆̂1 ∪ ∆̂2 ∪ ∆̂3 ∪ ∆̂4, correspondinging to the expression ζ ∈ S#, of ZFC,where

S# = ∪n∈NS
n,S = ∆1 ∪∆2 ∪∆3 ∪∆4,see Definition 2.1.6.

(vi) TrmZFC(x, τ̂) : x is the Godel number of the element τ̂ ∈ Υ̂1 of the set

Υ̂ = ℘−1
τ (Υ1) ,corres-pondinging to the term τ = ℘τ (τ̂) of ZFC.

(vii) AtfmlZFC(x, π̂) : x is the Godel number of the element π̂ ∈ Σ̂1 of the set Σ̂1 =
℘−1
π (Σ1) ,corres-ponding-ing to atomic wff π = ℘π (π̂) of ZFC.
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(viii) FmlZFC(y, φ̂) : y is the Godel number of the element φ̂ ∈ Ξ̂1 of the set Ξ̂1 =
℘−1
Ξ1

(Ξ1) ,corres-pondinging to the wff formula φ = ℘Ξ1 (φ̂) of ZFC.

(ix) FrZFC(y, v, ϖ̂) : y is the Godel number of the element ϖ̂ ∈ Ξ̂1,ν of the set Ξ̂1,ν =
℘−1
Ξ1,ν

(Ξ1,ν) ,correspondinging to the wff formula or term ϖ = ℘Ξ1,ν (ϖ̂)

of ZFC that contains free occurrences of the variable with Godel number v.

Thus finally we obtain:

EVblZFC(x) ⇐⇒ ∃α̂
(
α̂ ∈ ∆̂1

)
EVblZFC(x, α̂) ⇐⇒ (∃z)z<x(1 ≤ z ∧ x = 213+8z),

EICZFC(x) ⇐⇒ ∃β̂
(
β̂ ∈ ∆̂2

)
EICZFC(x, β̂) ⇐⇒ (∃y)y<x(IC

ZFC(y) ∧ x = 2y),

EFLZFC(x) ⇐⇒ ∃γ̂
(
γ̂ ∈ ∆̂3

)
EFLZFC(x, γ̂) ⇐⇒ (∃y)y<x(FL

ZFC(y) ∧ x = 2y),

EPLZFC(x) ⇐⇒ ∃δ̂
(
δ̂ ∈ ∆̂4

)
EPLZFC(x, δ̂) ⇐⇒ (∃y)y<x(PLZFC(y) ∧ x = 2y),

GdZFC(x) ⇐⇒ ∃ζ̂∃n
(
ζ̂ ∈ Ŝn

)
GdZFC(x, ζ̂) ⇐⇒

EVblZFC(x) ∨EICZFC(x) ∨EFLZFC(x) ∨EPLZFC(x)∨
x = 27 ∨ x = 29 ∨ x = 211 ∨ x = 213∨

(∃u)u<x(∃v)v<x(x = u ∗ v ∧GdZFC(u) ∧GdZFC(v)).

TrmZFC(x) ⇐⇒ ∃τ̂
(
τ̂ ∈ Υ̂

)
TrmZFC(x, τ̂) ⇐⇒

EVblZFC(x) ∨EICZFC(x) ∨ (∃y)y<(px!)x [x = (y)
lh(y)

·
−1

∧
lh(y) = ArgT((x)0) + 1 ∧ FLZFC(((y)0)0) ∧ ((y)0)1 = 3∧

lh((y)0) = 2 ∧ (∀u)
u<lh(y)

·
−1

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧TrmZFC(v))∧
(∃v)v<x((y)

lh(y)
·
−1

= (y)
lh(y)

·
−2

∗ v ∗ 25 ∧TrmZFC(v))].

AtfmlZFC(x) ⇐⇒ ∃π̂
(
π̂ ∈ Σ̂

)
AtfmlZFC(x, π̂) ⇐⇒

(∃y)y<(px!)x [x = (y)
lh(y)

·
−1

∧ lh(y) = ArgP ((x)0) + 1∧
PLZFC(((y)0)0) ∧ ((y)0)1 = 3 ∧ lh((y)0) = 2∧

(∀u)
u<lh(y)

·
−2

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧TrmZFC(v))∧
(∃v)v<x((y)

lh(y)
·
−1

= (y)
u<lh(y)

·
−2

∗ v ∗ 25 ∧TrmZFC(v))].

FmlZFC(y) ⇐⇒ ∃φ̂
(
φ̂ ∈ Ξ̂

)
FmlZFC(y, φ̂) ⇐⇒

AtfmlZFC(y) ∨ (∃z)z<y[(FmlZFC(z)∧ = 23 ∗ 29 ∗ z ∗ 25)∨
(FmlZFC((z)0) ∧ FmlZFC((z)1 ∧ y = 23 ∗ (z)0 ∗ 211 ∗ (z)1 ∗ 25)∨

(FmlZFC((z)0) ∧EVblZFC((z)1) ∧ y = 23 ∗ 23 ∗ 213 ∗ ((z)1 ∗ 2
5 ∗ (z)0 ∗ 25)].

FrZFC(y, v) ⇐⇒ ∃ϖ
[
(ϖ ∈ Ξ1,ν) ∨

(
ϖ ∈ Υ̂1

)]
FrZFC(y, v,ϖ) ⇐⇒

(FmlZFC(y) ∨TrmZFC(y)) ∧EVblZFC(2v) ∧ ¬SubstZFC(y, y, 213+8v, v).

(2.2.3)

Remark 2.2.3. (i)LetgZFCst (u) be a Gödel number of given an expression u ∈ Ω of the language

of the set theory ZFCst , ZFC + ∃MZFC
st . Recall that ℘−1

Ω1
(Ω1) = Ω̂1 see Definition 2.1.6. We set

now

ĝZFCst (u) = gZFCst (u) . (2.2.4)
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(ii) Let FrZFC(y, v) be the relation : y is the Gödel number of a wff of the set theoryZFCst that
contains free occurrences of the variable X with Gödel number v,see Eq.(2.2.3).

(iii) Note that the relation FrZFC(y, v) is expressible in ZFCst by a wff F̂rZFC(y, v)

(iv) Note that for any y, v ∈ N by definition of the relation FrZFC(y, v) follows that

F̂rZFC(y, v) ⇐⇒ ∃!ΨX [(gZFCst (ΨX) = y) ∧ (gZFCst (X) = ν)] ⇐⇒
∃!Ψ̂X

[(
ĝZFCst

(
Ψ̂X

)
= y

)
∧
(
ĝZFCst

(
X̂
)
= ν

)]
,

(2.2.5)

where ΨX = Ψ(X) is a unique wff of ZFCst which contains free occurrences of the variable X
with Gödel number v.We denote such unique wff Ψ (X) defined by equivalence (2.2.5) by symbol
Ψy,ν (X) ,i.e.

F̂rZFC(y, v) ⇐⇒ ∃!Ψy,ν (X) [(gZFCst (Ψy,ν (X)) = y) ∧ (gZFCst (X) = ν)] ⇐⇒
∃! ̂Ψy,ν (X)

[(
gZFCst

(
̂Ψy,ν (X)

)
= y

)
∧
(
gZFCst

(
X̂
)
= ν

)]
.

(2.2.6)

Remark 2.2.4. Note that a function gZFCst (Ψy,ν (X)) = y is expressible in set theory ZFCst

by a wff of the set theory ZFCst that contains free occurrences of the variable y ∈ N.

Note that any formula Ψy,ν (X) is given by an expression u0u1..uj ...ur,i.e. Ψy,ν (X) =: u0u1..uj ...ur,
where each uj is a symbol of ZFCst.We introduce now a functions [Ψy,ν (X) ; j] : Ψy,ν (X) → uj , j =
0, 1, ...,i.e. [Ψy,ν (X) ; j] =: uj and revrite expression u0u1..uj ...ur in the following equivalent form

[Ψy,ν (X) ; 0] [Ψy,ν (X) ; 1] ... [Ψy,ν (X) ; j] ... [Ψy,ν (X) ; r] . (2.2.7)

By definitions we obtain that

gZFCst (Ψy,ν (X)) = y

⇐⇒ y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r .
(2.2.8)

and

ĝZFCst

(
̂Ψy,ν (X)

)
= y

⇐⇒ y = 2
ĝ
([

̂Ψy,ν(X);0
])

· 3ĝ
([

̂Ψy,ν(X);1
])

· ... · p
ĝ
([

̂Ψy,ν(X);j
])

j · ... · p
ĝ
([

̂Ψy,ν(X);r
])

r .
(2.2.9)

correspondingly. Let us denote by (y)j the exponent g ([Ψy,ν (X) ; j]) in this factorization

y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r . (2.2.10)

If y = 1, (y)j = 1 for all j. If x = 0, we arbitrarily let (y)j = 0 for all j. Then the functions
(y)j , j = 0, 1, ... is primitive recursive, since (y)j = µz<y

(
pzj |y ∧ ¬pz+1

j |y
)
,is primitive recursive.

Thus the function (y)j is expressible in set theory ZFCst by formula denoted below by
λj (y, g ([Ψy,ν (X) ; j])) .

For y > 0, let lh(y) be the number of non-zero exponents in the factorization of y into powers of
primes, or, equivalently, the number of distinct primes that divide y. (i) Let lh(0) = 0, then lh(y)
is primitive recursive. Thus function gZFCst (Ψy,ν (X)) = y is expressible in set theory ZFCst by

the following formula Ξ̃ (Ψy,ν (X) , y)

Ξ̃ (Ψy,ν (X) , y) ⇐⇒ j≤lh(y)λj (y, g ([Ψy,ν (X) ; j])) . (2.2.11)
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(ii) function gZFCst (Ψy,ν (X)) = y is expressible in set theory ZFCst by the following formula

Ξ̃ (Ψy,ν (X) , y)

Ξ̃
(

̂Ψy,ν (X), y
)

⇐⇒ j≤lh(y)λj

(
y, ĝ

([
̂Ψy,ν (X); j

]))
. (2.2.12)

Definition 2.2.4. Let st
ν be a set of the all Gödel numbers of the 1-place open wff’s of the set

theory ZFCst that contains free occurrences of the variable X with Gödel number v,i.e.

st
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ FrZFC(y, v)

}
, (2.2.13)

or in the following equivalent form:

∀y (y ∈ N)
[
y ∈st

ν ⇐⇒ (y ∈ N) ∧ F̂rZFC(y, v)
]
. (2.2.14)

We define now a set Γst
ν $Hs

ν by the following first order formula

∀y (y ∈ N)
{
y ∈ Γst

ν ⇐⇒
(
y ∈st

ν

)
∧∃Ψ̂X

[(
ĝZFCst

(
Ψ̂X

)
= y

)
∧
(
ĝ
ZFC

Hs
2

(
X̂
)
= ν

) (
∃!X

(
X ∈ MZFC

st

)
ΨX

)]} (2.2.15)

where ΨX = Ψ(X) is a unique wff of ZFCst which contains free occurrences of the variable X
with Gödel number v. or in the following equivalent form

∀y (y ∈ N)
[
y ∈ Γst

ν ⇐⇒
(
y ∈st

ν

)
∧ ∃yF̂rZFC(y, v) ↘

∧∃Ψ̂X

[(
ĝZFC

(
Ψ̂X

)
= y

)
∧
(
ĝ
ZFC

Hs
2

(
X̂
)
= ν

)]
∧
(
∃!X

(
X ∈ MZFC

st

)
ΨX

)]
,

(2.2.16)

Remark 2.2.5. Note that from the axiom of separation it follows directly that Γst
ν is a set in the

sense of the set theory ZFCst.

Definition 2.2.5. Let Ψ1 = Ψ1 (X) and Ψ2 = Ψ2 (X) be 1-place open wff’s of the set theory ZFC.

(i) We define now the equivalence relation
(
· ∼X̂ ·

)
⊂ Γ̂st

X × Γ̂st
X by

Ψ̂1 (X) ∼X̂ Ψ̂2 (X) ⇐⇒
Ψ1 (X) ∼X Ψ2 (X) ⇐⇒

(
∀X

(
X ∈ MZFC

st

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

) (2.2.17)

or more precisely

∀Ψ̂1∀Ψ̂2

(
Ψ̂1 ∼X̂ Ψ̂2

)
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

{[
Ψ̂1 (X) ∼X̂ Ψ̂2 (X)

]
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

[
∀X

(
X ∈ M

ZFCHs
2

st

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

]}
⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
{[

Ψ̂1 (X) ∼X̂ Ψ̂2 (X)
]

⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
[
∀X

(
X ∈ M

ZFCHs
2

st

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ M

ZFCHs
2

st

)
Ψ2 (X)

]}
.

(2.2.18)

or in the following equivalent form

∀Ψ̂1∀Ψ̂2

(
Ψ̂1 ∼X̂ Ψ̂2

)
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

[
Ψ̂1 (X) ∼X̂ Ψ̂2 (X)

]
⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
{[

Ψ̂1 (X) ∼X Ψ̂2 (X)
]

⇐⇒ ∃y1F̂rHs
1 (y1, v)∃y2F̂rHs

1 (y2, v) ↘[(
ĝZFC

(
Ψ̂1 (X)

)
= y1

)
∧
(
ĝZFC

(
Ψ̂2 (X)

)
= y2

)
∧
(
ĝZFC

(
X̂
)
= ν

)]
∧[

∀X
(
X ∈ MZFC

st

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ MZFC

st

)
Ψ2 (X)

]}
.

(2.2.19)

54



Advances in Mathematics and Computer Science Vol. 1
There is No Standard Model of ZFC and ZFC2

(ii) A subset Λ̂st
X of Γ̂st

X such that Ψ̂1 (X) ∼X̂ Ψ̂2 (X) holds for all Ψ̂1 (X) and Ψ̂2 (X) in Λ̂st
X , and

never for Ψ̂1 (X) in Λ̂st
X and Ψ̂2 (X) outside Λ̂st

X , is an equivalence class of Γ̂st
X .

(iii) For any Ψ̂ (X) ∈ Γ̂st
X let

[
Ψ̂ (X)

]
st

,
{
Φ̂ (X) ∈ Γ̂st

X

∣∣∣Ψ̂ (X) ∼X̂ Φ̂ (X)
}

denote the equivalence

class to which Ψ̂ (X) belongs. All elements of Γ̂st
X equivalent to each other are also elements of the

same equivalence class.

(iv) The set of all possible equivalence classes of Γ̂st
X by ˜X̂ , denoted Γ̂st

X/ ∼X̂

Γ̂st
X/ ∼X̂,

{[
Ψ̂ (X)

]
st

∣∣∣Ψ̂ (X) ∈ Γ̂st
X

}
. (2.2.20)

Definition 2.2.6.(i)We define now the equivalence relation (· ∼ν ·) ⊂ Γ̂st
ν × Γ̂st

ν in the sense of the
set theory ZFCst by

y1 ∼ν y2 ⇐⇒
[

̂Ψy1,ν (X) ∼X̂
̂Ψy2,ν (X)

]
(2.2.21)

Note that from the axiom of separation it follows directly that the equivalence relation (· ∼ν ·)
is a relation in the sense of the set theory ZFCst.

(ii) A subset Λ̂st
ν of Γ̂st

ν such that y1 ∼ν y2 holds for all y1 and y1 in Λ̂st
ν ,and never for y1 in Λ̂st

ν

and y2 outside Λ̂st
ν , is an equivalence class of Γ̂st

ν .

(iii) For any y ∈ Γ̂st
ν let [y]st ,

{
z ∈ Γ̂st

ν |y ∼ν z
}

denote the equivalence class to which y belongs.

All elements of Γ̂st
ν equivalent to each other are also elements of the same equivalence class.

(iv)The set of all possible equivalence classes of Γ̂st
ν by ˜ν , denoted Γ̂st

ν / ∼ν

Γ̂st
ν / ∼ν,

{
[y]st |y ∈ Γ̂st

ν

}
. (2.2.22)

Remark 2.2.6. Note that from the axiom of separation it follows directly that Γ̂st
ν / ∼ν is a set in

the sense of the set theory ZFCst.

Definition 2.2.7. Let ℑst be the countable set of the all sets definable by 1-place open wff of the
set theory ZFCst, i.e. by using second order lenguage correspondng definition reads

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ(X)

[(
[Ψ (X)]st ∈ Γst

X/ ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.2.23)

We rewrite now (2.2.23) by using first order lenguage of the set theory ZFCst in the following
equvalent form

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ̂ (X)

[([
Ψ̂ (X)

]
st

∈ Γ̂st
X/ ∼X̂

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (2.2.24)

Remark 2.2.7. Note that from the axiom of replacement it follows directly that Γst
ν / ∼ν is a set

in the sense of the set theory ZFCst.

Definition 2.2.8. We rewrite now (2.2.24) in the following equivalent form

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ̂ (X)

[([
Ψ̂ (X)

]
st

∈ Γ̂∗st
X / ∼X̂

)
∧ (Y = X)

]}
, (2.2.25)
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where the countable set Γ∗st
X / ∼X is defined by

∀Ψ̂ (X)
{[

Ψ̂ (X)
]
st

∈ Γ̂∗st
X / ∼X̂ ⇐⇒

[([
Ψ̂ (X)

]
st

∈ Γ̂st
X

/
∼X

)
∧ ∃!XΨ(X)

]}
(2.2.26)

Definition 2.2.9. Let ℜst be the countable set of the all sets such that

∀X (X ∈ ℑst) [X ∈ ℜst ⇐⇒ X /∈ X] . (2.2.27)

Remark 2.2.8. Note that ℜst ∈ ℑst since ℜst is a set definable by 1-place open wff

Ψ (Z,ℑst) , ∀X (X ∈ ℑst) [X ∈ Z ⇐⇒ X /∈ X] . (2.2.28)

From (2.2.27) and Remark 2.2.8 one obtains directly

ℜst ∈ ℜst ⇐⇒ ℜst /∈ ℜst. (2.2.29)

But (2.2.29) immediately gives a contradiction

(ℜst ∈ ℜst) ∧ (ℜst /∈ ℜst) . (2.2.30)

The contradiction (2.2.30) it is a true contradiction inside ZFCst for the reason that the countable
set ℑst is a set in the sense of the set theory ZFCst.

Definition 2.2.10. Let Ξ1,X be a ZFC-set of the all first order 1-open wiff’s of the set theory
ZFCst,then we abbreviate Ξ1,X , Wff1,X [ZFCst] .

Theorem 2.2.1.Let ZFC∗
st be a theory ZFC∗

st , ZFC + ∃MZFC
st and Wff1,X [ZFCst] ∈ MZFC

st .

Then set theory ZFC∗
st is inconsistent.

Proof. Immediately from (2.2.29).

Remark 2.2.9. In order to obtain a contradiction inside ZFC
Hs
2 , in more general case,i.e., without

any refference to Assumption 2.2.1 we introduce the following definitions.

Definition 2.2.11.We define now countable set Γ̂∗st
ν / ∼νby the following formula

∀y
{
[y]st ∈ Γ̂∗st

ν / ∼ν ⇐⇒
(
[y]st ∈ Γ̂st

ν / ∼ν

)
∧ F̂rst(y, v) ∧ [∃!XΨy,ν (X)]

}
. (2.2.31)

Remark 2.2.10. Note that from the axiom of separation it follows directly that Γ̂∗st
ν / ∼ν is a set

in the sense of the set theory ZFCst.

Definition 2.2.12. We define now the countable set ℑ∗
st by the following formula
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∀Y
{
Y ∈ ℑ∗

st ⇐⇒ ∃y
[(

[y]st ∈ Γ̂∗st
ν / ∼ν

)
∧ (ĝZFCst (X) = ν) ∧ Y = X

]}
. (2.2.32)

Note that from the axiom schema of replacement it follows directly that ℑ∗
st is a set in the sense of

the set theory ZFCst.

Definition 2.2.13. We define now the countable set ℜ∗
st by the following formula

∀X (X ∈ ℑ∗
st) [X ∈ ℜ∗

st ⇐⇒ X /∈ X] . (2.2.33)

Note that from the axiom schema of separation it follows directly that ℜ∗
st is a set in the sense of

the set theory ZFCst.

Remark 2.2.11.Note that ℜ∗
st ∈ ℑ∗

st since ℜ∗
st is a definable by the following formula

Ψ∗ (Z) , ∀X (X ∈ ℑ∗
st) [X ∈ Z ⇐⇒ X /∈ X] . (2.2.34)

Theorem 2.2.2. Set theory ZFCst is inconsistent.

Proof. From (2.2.34) and Remark 2.2.11 we obtain

ℜ∗
st ∈ ℜ∗

st ⇐⇒ ℜ∗
st /∈ ℜ∗

st . (2.2.35)

From (2.2.34) immediately one obtains a contradiction (ℜ∗
st ∈ ℜ∗

st) ∧ (ℜ∗
st /∈ ℜ∗

st) .

2.3 Derivation of the Inconsistent Definable Set in ZFCNst

Definition 2.3.1. Let PA be a first order theory which contain usual postulates of Peano
arithmetic [17] and recursive defining equations for every primitive recursive function as desired.So
for any (n+1)-place function f defined by primitive recursion over any n-place base function g and
(n+ 2)-place iteration function h there would be the defining equations:

(i) f (0, y1, ..., yn) = g (y1, ..., yn) ,(ii) f (x+ 1, y1, ..., yn) = h (x, f (x, y1, ..., yn) , y1, ..., yn) .

Designation 2.3.1.(i) Let MZFC
Nst be a nonstandard model of ZFC and let MPA

st be a standard

model of PA.We assume now that MPA
st ⊂ MZFC

Nst and denote such nonstandard model of the set
theory ZFC by MZFC

Nst

[
PA

]
.(ii) Let ZFCNst be the theory

ZFCNst = ZFC +MZFC
Nst

[
PA

]
. (2.3.1)

Designation 2.3.2.(i) Let gZFCNst (u) be a Gödel number of given an expression u of the set
theory ZFCNst , ZFC + ∃MZFC

Nst

[
PA

]
.

(ii) Let FrNst(y, v) be the relation : y is the Gödel number of a wff of the set theory ZFCNst that
contains free occurrences of the variable X with Gödel number v,see Remark 2.3.2.

(iii) Note that the relation FrNst(y, v) is expressible in ZFCNst by a wff F̂rNst(y, v)

(iv) Note that for any y, v ∈ N by definition of the relation FrNst(y, v) follows that

F̂rNst(y, v) ⇐⇒ ∃!Ψ (X) [(gZFCNst (Ψ (X)) = y) ∧ (gZFCNst (X) = ν)] , (2.3.2)
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where Ψ (X) is a unique wff of ZFCst which contains free occurrences of the variable X with Gödel
number v.We denote a unique wff Ψ (X) defined by using equivalence (2.3.2)

by symbol Ψy,ν (X) ,i.e.

F̂rNst(y, v) ⇐⇒ ∃!Ψy,ν (X) [(gZFCNst (Ψy,ν (X)) = y) ∧ (gZFCNst (X) = ν)] , (2.3.3)

Definition 2.3.2. Let Nst
X be a set of the all 1-place open wff’s Ψ (X) (with all bound variables

restricted to nonstandard model MZFC
Nst of the set theory ZFC) that contains free occurrences of

the individual variable X with Godel number v and we will be denoted these wff’s by
Ψ (X) ,ΨX ,Ψy,ν (X) , y, ν ∈ N. We define now a set ΓNst

X $Nst
X by the following second order

formula

∀Ψ(X)
[
Ψ(X) ∈ ΓNst

X ⇐⇒
(
∃!X

(
X ∈ MZFC

Nst

)
Ψ(X)

)
∧
(
Ψ(X) ∈st

X

)]
. (2.3.4)

or in the following equivalent form

∀Ψ(X)
[
Ψ(X) ∈ ΓNst

X ⇐⇒
(
∃y ∈ MPA

st

)
̂FrZFCNst(y, v) ↘

[(gZFCNst (Ψ (X)) = y) ∧ (gZFCNst (X) = ν)]
∧
(
∃!X

(
X ⊂ MZFC

Nst

)
Ψ(X)

)
∧
(
Ψ(X) ∈Nst

X

)]
,

(2.3.4.a)

Note that there exist a set ΓNst
X by the second order separaton axiom of ZFCHs

2 .

Assumption 2.3.1. We assume now for simplicity but without loss of generality that

Nst
X ∈ MNst (2.2.1.b)

and therefore by definition of model MZFC
Nst one obtains ΓNst

X ∈ MZFC
Nst .

Definition 2.3.3. Let Ξ1,X be a ZFC-set of the all 1-open wiff’s of the set theory ZFCNst, then
we abbreviate Ξ1,X , Wff1,X [ZFCNst] .

Definition 2.3.4.Let̂Nst
X be a set̂Nst

X = ℘−1
Ξ1

(
Nst
X

)
,and Ψ̂ (X) , Ψ̂X = ℘−1

Ξ1
(Ψ (X)) where one-one

function ℘−1
Ξ1

defined in sec.2.1,see Remark 2.1.5 and Eq.(2.1.22).

Remark 2.3.1. (i)We define now a set Γ̂Nst
X = ℘−1

Ξ1

(
ΓNst
X

)
, Γ̂Nst

X $̂Nst
X by the following first order

formula with quantifiers over first order individual varables Ψ̂X and X :

∀Ψ̂X

[
Ψ̂X ∈ Γ̂Nst

X ⇐⇒ ∃!X
(
X ∈ MZFC

Nst

)
ΨX ∧

(
Ψ̂X ∈̂Nst

X

)]
, (2.3.5)

(where we write ΨX instead Ψ (X)) or in the following equivalent form

∀Ψ̂X

[
Ψ̂X ∈ Γ̂st

X ⇐⇒
(
∃y ∈ MPA

st

)
̂FrZFCNst(y, v) ↘[(

ĝZFCNst

(
Ψ̂X

)
= y

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
∧
(
∃!X

(
X ∈ MZFC

Nst

)
ΨX

)
∧
(
Ψ̂X ∈̂Nst

X

)]
,

(2.3.5.a)

where one-one function ĝ where one-one function ĝZFCNst

(
Ψ̂X

)
= y is defined below by Eq.(2.3.),

see Remark 2.3.. Note that there exist a set Γ̂Nst
X by the (first order) separaton axiom of ZFC.

(ii) Note that second order definition (2.3.4) and first order definition (2.3.5) are equivalent.
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We abbreviate now:

(a) ICZFCNst(x): x is the Godel number of an individual constant of ZFCNst,

(b) FLZFCNst(x): x is the Godel number of a function letter of ZFCNst,

(c) PLZFCNst(x): x is the Godel number of a predicate letter of ZFCNst.

Remark 2.3.2. Note that in order to obtain by using only first order logic the formal definitions
of the first order predicates EVblZFCNst(x),EICZFCNst(x),EFLZFCNst(x), ..., FrZFCNst(y, v)
from the first order predicates ICZFCNst(x),FLZFCNst(x),PLZFCNst(x) one needs the following
first order predicates:

(i)EVblZFCNst(x, α̂) : x is the Godel number of the 1-tuple α̂ ∈ ∆̂1, ∆̂1 = ℘−1
∆1

(∆1) correspondinging
to the individual variable α ∈ ∆1, α = ℘∆1 (α̂) ,see Remark 2.1.2 (i).

(ii)EICZFCNst(x, β̂) : x is the Godel number of the 1-tuple β̂ ∈ ∆̂2, ∆̂2 = ℘−1
∆2

(∆2) correspondinging

to the individual constant β ∈ ∆2, β = ℘∆2

(
β̂
)
,see Remark 2.1.2 (ii).

(iii)EFLZFCNst(x, γ̂) : x is the Godel number of the 1-tuple γ̂ ∈ ∆̂3, ∆̂3 = ℘−1
∆3

(∆3) correspondinging
to the function letter γ ∈ ∆3, γ = ℘∆3 (γ̂) ,see Remark 2.1.2 (iii).

(iv)EPLZFCNst(x, δ̂) : x is the Godel number of the 1-tuple δ̂ ∈ ∆̂4, ∆̂4 = ℘−1
∆4

(∆4) correspondinging

to the predicate letter δ ∈ ∆4, δ = ℘∆4

(
δ̂
)
,see Remark 2.1.2 (iv).

(v) GdZFCNst(x, ζ̂) : x is the Godel number of the element ζ̂ ∈ Ŝ# of the set Ŝ# = ∪n∈NŜ
n,

Ŝ = ∆̂1 ∪ ∆̂2 ∪ ∆̂3 ∪ ∆̂4, correspondinging to the expression ζ ∈ S#, of ZFCNst,where

S# = ∪n∈NS
n,S = ∆1 ∪∆2 ∪∆3 ∪∆4,see Definition 2.1.6.

(vi) TrmZFCNst(x, τ̂) : x is the Godel number of the element τ̂ ∈ Υ̂1 of the set Υ̂ = ℘−1
τ (Υ1) ,corres-

pondinging to the term τ = ℘τ (τ̂) of ZFCNst.

(vii) AtfmlZFCNst(x, π̂) : x is the Godel number of the element π̂ ∈ Σ̂1 of the set Σ̂1 =
℘−1
π (Σ1) ,correspondinging to atomic wff π = ℘π (π̂) of ZFCNst.

(viii) FmlZFCNst(y, φ̂) : y is the Godel number of the element φ̂ ∈ Ξ̂1 of the set Ξ̂1 =
℘−1
Ξ1

(Ξ1) ,correspondinging to the wff formula φ = ℘Ξ1 (φ̂) of ZFCNst.

(ix) FrZFCNst(y, v, ϖ̂) : y is the Godel number of the element ϖ̂ ∈ Ξ̂1,ν of the set Ξ̂1,ν =
℘−1
Ξ1,ν

(Ξ1,ν) ,correspondinging to the wff formula or term ϖ = ℘Ξ1,ν (ϖ̂)

of ZFCNst that contains free occurrences of the variable with Godel number v.

Thus finally we obtain:
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EVblZFCNst (x) ⇐⇒ ∃α̂
(
α̂ ∈ ∆̂1

)
EVblZFCNst (x, α̂) ⇐⇒ (∃z ∈ MPA

st )z<x(1 ≤ z ∧ x = 213+8z),

EICZFCNst (x) ⇐⇒ ∃β̂
(
β̂ ∈ ∆̂2

)
EICZFCNst (x, β̂) ⇐⇒ (∃y ∈ MPA

st )y<x(ICZFCNst (y) ∧ x = 2y),

EFLZFCNst (x) ⇐⇒ ∃γ̂
(
γ̂ ∈ ∆̂3

)
EFLZFCNst (x, γ̂) ⇐⇒ (∃y ∈ MPA

st )y<x(FLZFCNst (y) ∧ x = 2y),

EPLZFCNst (x) ⇐⇒ ∃δ̂
(
δ̂ ∈ ∆̂4

)
EPLZFCNst (x, δ̂) ⇐⇒ (∃y ∈ MPA

st )y<x(PLZFCNst (y) ∧ x = 2y),

GdZFCNst (x) ⇐⇒ ∃ζ̂∃n
(
n ∈ MPA

st ∧ ζ̂ ∈ Ŝn
)
GdZFCNst (x, ζ̂) ⇐⇒

EVblZFCNst (x) ∨ EICZFCNst (x) ∨ EFLZFCNst (x) ∨ EPLZFCNst (x)∨
x = 27 ∨ x = 29 ∨ x = 211 ∨ x = 213∨

(∃u ∈ MPA
st )u<x(∃v ∈ MPA

st )v<x(x = u ∗ v ∧ GdZFCNst (u) ∧ GdZFCNst (v)).

TrmZFCNst (x) ⇐⇒ ∃τ̂
(
τ̂ ∈ Υ̂

)
TrmZFCNst (x, τ̂) ⇐⇒

EVblZFCNst (x) ∨ EICZFCNst (x) ∨ (∃y ∈ MPA
st )y<(px!)x [x = (y)

lh(y)
·
−1

∧

lh(y) = ArgT((x)0) + 1 ∧ FLZFCNst (((y)0)0) ∧ ((y)0)1 = 3∧
lh((y)0) = 2 ∧ (∀u)

u<lh(y)
·
−1

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧ TrmZFCNst (v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
lh(y)

·
−2

∗ v ∗ 25 ∧ TrmZFCNst (v))].

AtfmlZFCNst (x) ⇐⇒ ∃π̂
(
π̂ ∈ Σ̂

)
AtfmlZFCNst (x, π̂) ⇐⇒

(∃y)y<(px!)x [x = (y)
lh(y)

·
−1

∧ lh(y) = ArgP ((x)0) + 1∧

PLZFCNst (((y)0)0) ∧ ((y)0)1 = 3 ∧ lh((y)0) = 2∧
(∀u)

u<lh(y)
·
−2

(∃v)v<x((y)u+1 = (y)u ∗ v ∗ 27 ∧ TrmZFCNst (v))∧

(∃v)v<x((y)
lh(y)

·
−1

= (y)
u<lh(y)

·
−2

∗ v ∗ 25 ∧ TrmZFCNst (v))].

FmlZFCNst (y) ⇐⇒ ∃φ̂
(
φ̂ ∈ Ξ̂

)
FmlZFCNst (y, φ̂) ⇐⇒

AtfmlZFCNst (y) ∨ (∃z ∈ MPA
st )z<y [(FmlZFCNst (z)∧ = 23 ∗ 29 ∗ z ∗ 25)∨

(FmlZFCNst ((z)0) ∧ FmlZFCNst ((z)1 ∧ y = 23 ∗ (z)0 ∗ 211 ∗ (z)1 ∗ 25)∨
(FmlZFCNst ((z)0)∧

∧EVblZFCNst ((z)1) ∧ y = 23 ∗ 23 ∗ 213 ∗ ((z)1 ∗ 25 ∗ (z)0 ∗ 25)].

FrZFCNst (y, v) ⇐⇒ ∃ϖ
[(

ϖ ∈ Ξ1,ν
)
∨
(
ϖ ∈ Υ̂1

)]
FrZFCNst (y, v,ϖ) ⇐⇒

(FmlZFCNst (y) ∨ TrmZFCNst (y)) ∧ EVblZFCNst (2v) ∧ ¬SubstZFCNst (y, y, 213+8v , v).

(2.3.6)

Remark 2.3.3. Let gZFCNst (u) be a Gödel number of given an expression u ∈ Ω of the language

of the set theory ZFCNst , ZFC + ∃MZFC
Nst . Recall that ℘−1

Ω1
(Ω1) = Ω̂1 see Definition 2.1.6. We

set now

ĝZFCNst (u) = gZFCNst (u) (2.3.7)

(ii) Let FrZFCNst(y, v) be the relation : y is the Gödel number of a wff of the set theoryZFCNst

that contains free occurrences of the variable X with Gödel number v,see Eq.(2.2.3)

(iii) Note that the relation FrZFCNst(y, v) is expressible in ZFCNst by a wff ̂FrZFCNst(y, v)

(iv) Note that for any y, v ∈ N by definition of the relation FrZFCNst(y, v) follows that

̂FrZFCNst(y, v) ⇐⇒ ∃!ΨX [(gZFCst (ΨX) = y) ∧ (gZFCNst (X) = ν)] ⇐⇒
∃!Ψ̂X

[(
ĝZFC

Nst

(
Ψ̂X

)
= y

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
,

(2.3.8)

where ΨX = Ψ(X) is a unique wff of ZFCNst which contains free occurrences of the variable X
with Gödel number v.We denote such unique wff Ψ (X) defined by equivalence (2.3.8) by symbol
Ψy,ν (X) ,i.e.

̂FrZFCNst(y, v) ⇐⇒ ∃!Ψy,ν (X) [(gZFCNst (Ψy,ν (X)) = y) ∧ (gZFCNst (X) = ν)] ⇐⇒
∃! ̂Ψy,ν (X)

[(
ĝZFCNst

(
̂Ψy,ν (X)

)
= y

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
.

(2.3.9)

where ΨX = Ψ(X) is a unique wff of ZFCNst which contains free occurrences of the variable X
with Gödel number v.We denote such unique wff Ψ (X) defined by equivalence (2.3.9) by symbol
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Ψy,ν (X) ,i.e.

̂FrZFCNst (y, v) ⇐⇒ ∃!Ψy,ν (X)
[(

gZFCNst

(
Ψy,ν (X)

)
= y

)
∧
(
gZFCNst

(X) = ν
)]

⇐⇒

∃! ̂Ψy,ν (X)
[(

ĝZFCNst

(
̂Ψy,ν (X)

)
= y

)
∧
(
ĝZFCNst

(
X̂
)

= ν
)]

.
(2.3.10)

Remark 2.3.4. Note that a function gZFCNst (Ψy,ν (X)) = y is expressible in set theory ZFCNst

by a wff of the set theory ZFCNst that contains free occurrences of the variable y ∈ N.

Note that any formula Ψy,ν (X) is given by an expression u0u1..uj ...ur,i.e. Ψy,ν (X) =:
u0u1..uj ...ur,
where each uj is a symbol of ZFCNst. We introduce now a functions [Ψy,ν (X) ; j] : Ψy,ν (X) →
uj , j = 0, 1, ...,i.e. [Ψy,ν (X) ; j] =: uj and revrite expression u0u1..uj ...ur in the following equivalent
form

[Ψy,ν (X) ; 0] [Ψy,ν (X) ; 1] ... [Ψy,ν (X) ; j] ... [Ψy,ν (X) ; r] . (2.3.11)

By definitions we obtain that

gZFCNst (Ψy,ν (X)) = y

⇐⇒ y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r .
(2.3.12)

and

ĝZFCNst

(
̂Ψy,ν (X)

)
= y

⇐⇒ y = 2
ĝ
([

̂Ψy,ν(X);0
])

· 3ĝ
([

̂Ψy,ν(X);1
])

· ... · p
ĝ
([

̂Ψy,ν(X);j
])

j · ... · p
ĝ
([

̂Ψy,ν(X);r
])

r .
(2.3.13)

correspondingly.Let us denote by (y)j the exponent g ([Ψy,ν (X) ; j]) in this factorization

y = 2g([Ψy,ν(X);0]) · 3g([Ψy,ν(X);1]) · ... · pg([Ψy,ν(X);j])
j · ... · pg([Ψy,ν(X);r])

r . (2.3.14)

If y = 1, (y)j = 1 for all j. If x = 0, we arbitrarily let (y)j = 0 for all j. Then the functions
(y)j , j = 0, 1, ... is primitive recursive, since (y)j = µz<y

(
pzj |y ∧ ¬pz+1

j |y
)
,is primitive recursive.

Thus the function (y)j is expressible in set theory ZFCNst by formula denoted below by
λj (y, g ([Ψy,ν (X) ; j])) .

For y > 0, let lh(y) be the number of non-zero exponents in the factorization of y into powers of
primes, or, equivalently, the number of distinct primes that divide y. Let lh(0) = 0, then lh(y)
is primitive recursive.

Thus (i) function gZFCNst (Ψy,ν (X)) = y is expressible in set theory ZFCNst by the following

formula Ξ̃ (Ψy,ν (X) , y)

Ξ̃ (Ψy,ν (X) , y) ⇐⇒ j≤lh(y)λj (y, g ([Ψy,ν (X) ; j])) . (2.3.15)

(ii) function gZFCNst (Ψy,ν (X)) = y is expressible in set theory ZFCNst by the following formula

Ξ̃ (Ψy,ν (X) , y)

Ξ̃
(

̂Ψy,ν (X), y
)

⇐⇒ j≤lh(y)λj

(
y, ĝ

([
̂Ψy,ν (X); j

]))
. (2.3.16)

Definition 2.3.5. Let gZFCNst (X) = ν.Let ΓNst
ν be a set of the all Gödel numbers of the 1-place

open wff’s of the set theory ZFCNst that contains free occurrences of the variable X with Gödel
number v,i.e.

ΓNst
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ FrZFCNst(y, v)

}
, (2.3.17)

or in the following equivalent form:
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∀y (y ∈ N)
[
y ∈ ΓNst

ν ⇐⇒ (y ∈ N) ∧ ̂FrZFCNst(y, v)
]
. (2.3.18)

Remark 2.3.5. Note that from the axiom of separation it follows directly that ΓNst
ν is a set in the

sense of the set theory ZFCNst.

We define now a set ΓNst
ν $Nst

ν by the following first order formula

∀y (y ∈ N)
{
y ∈ ΓNst

ν ⇐⇒
(
y ∈Nst

ν

)
∧∃Ψ̂X

[(
ĝZFCNst

(
Ψ̂X

)
= y

)
∧
(
ĝZFCNst

(
X̂
)
= ν

) (
∃!X

(
X ∈ MZFC

Nst

)
ΨX

)]} (2.3.19)

where ΨX = Ψ(X) is a unique wff of ZFCNst which contains free occurrences of the variable X
with Gödel number v. or in the following equivalent form

∀y (y ∈ N)
[
y ∈ ΓNst

ν ⇐⇒
(
y ∈Nst

ν

)
∧ ̂FrZFCNst(y, v) ↘

∧∃Ψ̂X

[(
ĝZFCNst

(
Ψ̂X

)
= y

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
∧
(
∃!X

(
X ∈ MZFC

Nst

)
ΨX

)]
,

(2.3.20)

Remark 2.3.6. Note that from the axiom of separation it follows directly that ΓNst
ν is a set in the

sense of the set theory ZFCNst.

Definition 2.3.6. Let Ψ1 = Ψ1 (X) and Ψ2 = Ψ2 (X) be 1-place open wff’s of the set theory
ZFCNst.

(i) We define now the equivalence relation
(
· ∼X̂ ·

)
⊂ Γ̂Nst

X × Γ̂Nst
X by

Ψ̂1 (X) ∼X̂ Ψ̂2 (X) ⇐⇒
Ψ1 (X) ∼X Ψ2 (X) ⇐⇒

(
∀X

(
X ∈ MZFC

Nst

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

) (2.3.21)

or more precisely

∀Ψ̂1∀Ψ̂2

(
Ψ̂1 ∼X̂ Ψ̂2

)
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

{[
Ψ̂1 (X) ∼X̂ Ψ̂2 (X)

]
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

[
∀X

(
X ∈ MZFC

Nst

)
[Ψ1 (X) ⇐⇒ Ψ2 (X)]

]}
⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
{[

Ψ̂1 (X) ∼X̂ Ψ̂2 (X)
]

⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
[
∀X

(
X ∈ MZFC

Nst

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ MZFC

Nst

)
Ψ2 (X)

]}
.

(2.3.22)

or in the following equivalent form

∀Ψ̂1∀Ψ̂2

(
Ψ̂1 ∼X̂ Ψ̂2

)
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

[
Ψ̂1 (X) ∼X̂ Ψ̂2 (X)

]
⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
{[

Ψ̂1 (X) ∼X̂ Ψ̂2 (X)
]

⇐⇒(
∃y1 ∈ MPA

st

)
̂FrZFCNst(y1, v)

(
∃y2 ∈ MPA

st

)
̂FrZFCNst(y2, v) ↘[(

ĝZFCNst

(
Ψ̂1 (X)

)
= y1

)
∧
(
ĝZFCNst

(
Ψ̂2 (X)

)
= y2

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
∧[

∀X
(
X ∈ MZFC

Nst

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ MZFC

Nst

)
Ψ2 (X)

]}
.

(2.3.23)

or in the following equivalent form

∀Ψ̂1∀Ψ̂2

(
Ψ̂1 ∼X̂ Ψ̂2

)
⇐⇒ ∀Ψ̂1 (X)∀Ψ̂2 (X)

[
Ψ̂1 (X) ∼X̂ Ψ̂2 (X)

]
⇐⇒

∀Ψ̂1 (X)∀Ψ̂2 (X)
{[

Ψ̂1 (X) ∼X̂ Ψ̂2 (X)
]

⇐⇒

∃y1 ̂FrZFCNst(y1, v)∃y2 ̂FrZFCNst(y2, v) ↘[(
ĝZFCNst

(
Ψ̂1 (X)

)
= y1

)
∧
(
ĝZFCNst

(
Ψ̂2 (X)

)
= y2

)
∧
(
ĝZFCNst

(
X̂
)
= ν

)]
∧[

∀X
(
X ∈ MZFC

Nst

)
Ψ1 (X) ⇐⇒ ∀X

(
X ∈ MZFC

Nst

)
Ψ2 (X)

]}
.

(2.3.24)

(ii) A subset Λ̂Nst
X of Γ̂Nst

X such that Ψ̂1 (X) ∼X̂ Ψ̂2 (X) holds for all Ψ̂1 (X) and Ψ̂2 (X) in Λ̂Nst
X ,
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and never for Ψ̂1 (X) in Λ̂Nst
X and Ψ̂2 (X) outside Λ̂Nst

X , is an equivalence class of Γ̂Nst
X .

(iii) For any Ψ̂ (X) ∈ Γ̂Nst
X let

[
Ψ̂ (X)

]
Nst

,
{
Φ̂ (X) ∈ Γ̂Nst

X

∣∣∣Ψ̂ (X) ∼X̂ Φ̂ (X)
}
denote the equivalence

class to which Ψ̂ (X) belongs. All elements of Γ̂Nst
X equivalent to each other are also elements of

the same equivalence class.

(iv) The set of all possible equivalence classes of Γ̂Nst
X by ˜X̂ , denoted by Γ̂Nst

X / ∼X̂ :

Γ̂Nst
X / ∼X̂,

{[
Ψ̂ (X)

]
Nst

∣∣∣Ψ̂ (X) ∈ Γ̂Nst
X

}
. (2.3.25)

Definition 2.3.7.(i)We define now the equivalence relation (· ∼ν ·) ⊂ Γ̂Nst
ν × Γ̂Nst

ν in the sense of
the set theory ZFCNst by

y1 ∼ν y2 ⇐⇒
[

̂Ψy1,ν (X) ∼X̂
̂Ψy2,ν (X)

]
(2.3.26)

Note that from the axiom of separation it follows directly that the equivalence relation (· ∼ν ·)
is a relation in the sense of the set theory ZFCNst.

(ii) A subset Λ̂Nst
ν of Γ̂Nst

ν such that y1 ∼ν y2 holds for all y1 and y1 in Λ̂Nst
ν , and never for y1 in

Λ̂Nst
ν and y2 outside Λ̂Nst

ν , is an equivalence class of Γ̂Nst
ν .

(iii) For any y ∈ Γ̂Nst
ν let [y]Nst ,

{
z ∈ Γ̂Nst

ν |y ∼ν z
}

denote the equivalence class to which y

belongs. All elements of Γ̂Nst
ν equivalent to each other are also elements of the same equivalence

class.

(iv)The set of all possible equivalence classes of Γ̂Nst
ν by ˜ν , denoted by Γ̂Nst

ν / ∼ν :

Γ̂Nst
ν / ∼ν,

{
[y]Nst |y ∈ Γ̂Nst

ν

}
. (2.3.27)

Remark 2.3.7. Note that from the axiom of separation it follows directly that Γ̂Nst
ν / ∼ν is a set

in the sense of the set theory ZFCNst.

Definition 2.3.8.Let ℑNst be a countable set of the all sets definable by 1-place open wff of the
set theory ZFCNst, i.e. by using second order lenguage correspondng definition reads

∀Y {Y ∈ ℑNst ⇐⇒
∃Ψ(X)

[(
[Ψ (X)]Nst ∈ Γst

X/ ∼X

)
∧
[
∃!X

(
X ∈ MZFC

Nst

)
[Ψ (X) ∧ Y = X]

]]}
.

(2.3.28)

We rewrite now (2.3.28) by using first order lenguage of the set theory ZFCNst in the following
equvalent form

∀ {Y ∈ ℑNst ⇐⇒
∃Ψ̂ (X)

[([
Ψ̂ (X)

]
Nst

∈ Γ̂Nst
X / ∼X̂

)
∧
[
∃!X

(
X ∈ MZFC

Nst

)
[Ψ (X) ∧ Y = X]

]]}
.

(2.3.29)

Remark 2.3.8. Note that from the axiom of replacement it follows directly that Γst
ν / ∼ν is a set

in the sense of the set theory ZFCNst.

Definition 2.3.9.We rewrite now (2.3.29) in the following equivalent form

∀Y
{
Y ∈ ℑst ⇐⇒ ∃Ψ̂ (X)

[([
Ψ̂ (X)

]
Nst

∈ Γ̂∗Nst
X / ∼X̂

)
∧ (Y = X)

]}
, (2.3.30)

where the countable set Γ∗Nst
X / ∼X̂ is defined by
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∀Ψ̂ (X)
{[

Ψ̂ (X)
]
Nst

∈ Γ̂∗Nst
X / ∼X̂ ⇐⇒[([

Ψ̂ (X)
]
Nst

∈ Γ̂st
X

/
∼X

)
∧ ∃!X

(
X ∈ MZFC

Nst

)
Ψ(X)

]}
.

(2.3.31)

Definition 2.3.10. Let ℜNst be the countable set of the all sets such that

∀X (X ∈ ℑNst) [X ∈ ℜNst ⇐⇒ X /∈ X] . (2.3.32)

Remark 2.3.9. Note that ℜst ∈ ℑNst since ℜNst is a set definable by 1-place open wff

Ψ (Z,ℑNst) , ∀X (X ∈ ℑNst) [X ∈ Z ⇐⇒ X /∈ X] . (2.3.33)

From (2.3.32) and Remark 2.3.9 one obtains directly

ℜNst ∈ ℜNst ⇐⇒ ℜNst /∈ ℜNst. (2.3.34)

But (2.3.34) immediately gives a contradiction

(ℜNst ∈ ℜNst) ∧ (ℜNst /∈ ℜNst) . (2.3.35)

The contradiction (2.3.35) it is a true contradiction inside ZFCNst for the reason that the countable
set ℑNst is a set in the sense of the set theory ZFCNst.

Definition 2.3.11. Let Ξ1,X be a ZFC-set of the all first order 1-open wiff’s of the set theory
ZFCNst,then we abbreviate Ξ1,X , Wff1,X [ZFCNst] .

Theorem 2.3.1. Let ZFC∗
Nst be a theory ZFC∗

Nst , ZFC + ∃MZFC
Nst and Wff1,X [ZFCNst] ∈

MZFC
Nst .

Then set theory ZFC∗
Nst is inconsistent.

Proof. Immediately from (2.3.33).

Remark 2.3.10. In order to obtain a contradiction inside ZFCNst in more general case,i.e.,
without any refference to Assumption 2.3.1 we introduce the following definitions.

Definition 2.3.12. We define now countable set Γ̂∗Nst
ν / ∼νby the following formula

∀y
{
[y]st ∈ Γ̂∗Nst

ν / ∼ν ⇐⇒(
[y]Nst ∈ Γ̂Nst

ν / ∼ν

)
∧ ̂FrZFCNst(y, v) ∧

[
∃!X

(
X ∈ MZFC

Nst

)
Ψy,ν (X)

]}
.

(2.3.36)

Remark 2.3.11. Note that from the axiom of separation it follows directly that Γ̂∗st
ν / ∼ν is a set

in the sense of the set theory ZFCNst.

Definition 2.3.13. We define now the countable set ℑ∗
st by the following formula

∀Y
{
Y ∈ ℑ∗

Nst ⇐⇒ ∃y
[(

[y]Nst ∈ Γ̂∗Nst
ν / ∼ν

)
∧ (ĝZFCNst (X) = ν) ∧ Y = X

]}
. (2.3.37)

Note that from the axiom schema of replacement it follows directly that ℑ∗
Nst is a set in the sense

of the set theory ZFCNst.

Definition 2.3.14. We define now the countable set ℜ∗
Nst by the following formula

∀X (X ∈ ℑ∗
Nst) [X ∈ ℜ∗

Nst ⇐⇒ X /∈ X] . (2.3.38)

Note that from the axiom schema of separation it follows directly that ℜ∗
Nst is a set in the sense of

the set theory ZFCNst.

Remark 2.3.12. Note that ℜ∗
Nst ∈ ℑ∗

Nst since ℜ∗
Nst is a definable by the following formula
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Ψ∗ (Z) , ∀X (X ∈ ℑ∗
Nst) [X ∈ Z ⇐⇒ X /∈ X] . (2.3.39)

Theorem 2.3.2.Set theory ZFCNst is inconsistent.

Proof. From (2.3.39) and Remark 2.3.12 we obtain

ℜ∗
Nst ∈ ℜ∗

Nst ⇐⇒ ℜ∗
Nst /∈ ℜ∗

Nst . (2.3.40)

From (2.3.40) immediately one obtains a contradiction (ℜ∗
Nst ∈ ℜ∗

Nst) ∧ (ℜ∗
Nst /∈ ℜ∗

Nst) .

3 AVOIDING THE CONTRADICTIONS FROM SET THEORY

ZFCHS
2 AND SET THEORY ZFCST USING QUINEAN

APPROACH

In order to avoid difficulties mentioned above we use well known Quinean approach [19].

3.1 Quinean Set Theory NF

Remind that the primitive predicates of Russellian unramified typed set theory (TST), a streamlined
version of the theory of types, are equality = and membership ∈ . TST has a linear hierarchy of
types: type 0 consists of individuals otherwise undescribed. For each (meta-) natural number n,
type n + 1 objects are sets of type n objects; sets of type n have members of type n − 1. Objects
connected by identity must have the same type. The following two atomic formulas succinctly
describe the typing rules: xn = yn and xn ∈ yn+1.

The axioms of TST are:

Extensionality: sets of the same (positive) type with the same members are equal.

Axiom schema of comprehension:

If Φ(xn) is a formula, then the set {xn | Φ(xn)}n+1 exists i.e., given any formula Φ(xn), the formula

∃An+1∀xn[xn ∈ An+1 ↔ Φ(xn)] (3.1.1)

is an axiom where An+1 represents the set {xn | Φ(xn)}n+1 and is not free in Φ(xn).

Quinean set theory [19] (New Foundations) seeks to eliminate the need for such superscripts.

New Foundations has a universal set, so it is a non-well founded set theory. That is to say,
it is a logical theory that allows infinite descending chains of membership such as . . . ∈ xn ∈
xn−1 ∈ . . . ∈ x3 ∈ x2 ∈ x1. It avoids Russell’s paradox by only allowing stratifiable formulae in the
axiom of comprehension. For instance x ∈ y is a stratifiable formula, but x ∈ x is not (for details
of how this works see below).

Definition 3.1.1. In New Foundations (NF ) and related set theories, a formula Φ in the language
of first-order logic with equality and membership is said to be stratified if and only if there is a
function f which sends each variable appearing in Φ [considered as an item of syntax] to a natural
number (this works equally well if all integers are used) in such a way that any atomic formula x ∈ y
appearing in Φ satisfies f (y) = f (x) + 1 and any atomic formula x = y appearing in Φ satisfies
f (x) = f (y)

Quinean set theory.
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Axioms and stratification are:

the well-formed formulas of New Foundations (NF ) are the same as the well-formed formulas of
TST, but with the type annotations erased. The axioms of NF are.

Extensionality: two objects with the same elements are the same object.

A comprehension schema: all instances of TST Comprehension but with type indices dropped (and
without introducing new identifications between variables).

By convention, NF’s Comprehension schema is stated using the concept of stratified formula and
making no direct reference to types. Comprehension then becomes.

Axiom schema of comprehension:

{x | Φs} exists for each stratified formula Φs.

Even the indirect reference to types implicit in the notion of stratification can be eliminated.
Theodore Hailperin showed in 1944 that Comprehension is equivalent to a finite conjunction of
its instances, [20] so that NF can be finitely axiomatized without any reference to the notion of
type. Comprehension may seem to run afoul of problems similar to those in naive set theory, but
this is not the case. For example, the existence of the impossible Russell class {x | x /∈ x} is not an
axiom of NF, because x /∈ x cannot be stratified.

3.2 Set Theory ZFC
Hs
2 , ZFCst and Set Theory ZFCNst with

Stratified Axiom Schema of Replacement

The stratified axiom schema of replacement asserts that the image of a set under any function
definable by stratified formula of the theory ZFCst will also fall inside a set.

Stratified Axiom schema of replacement.

Let Φs (x, y, w1, w2, . . . , wn) be any stratified formula in the language of ZFCst whose free variables
are among x, y,A,w1, w2, . . . , wn, so that in particular B is not free in Φs. Then

∀A∀w1∀w2...∀wn [∀x (x ∈ A =⇒ ∃!yΦs (x, y, w1, w2, . . . , wn)) =⇒
=⇒ ∃B∀x (x ∈ A =⇒ ∃y (y ∈ B ∧ Φs (x, y, w1, w2, . . . , wn)))] ,

(3.2.1)

i.e., iftherelationΦs (x, y, ...) represents a definable function f,A represents its domain, and f(x)
is a set for every x ∈ A, then the range of f is a subset of some set B.

Stratified Axiom schema of separation.

Let Φs (x,w1, w2, . . . , wn) be any stratified formula in the language of ZFCst whose free variables
are among x,A,w1, w2, . . . , wn, so that in particular B is not free in Φs. Then

∀w1∀w2...∀wn∀A∃B∀x [x ∈ B ⇐⇒ (x ∈ A ∧ Φs (x,w1, w2, . . . , wn))] , (3.2.2)

Remark 3.2.1. Notice that the stratified axiom schema of separation follows from the stratified
axiom schema of replacement together with the axiom of empty set.

Remark 3.2.2. Notice that the stratified axiom schema of replacement (separation) obviously
violeted any contradictions (2.1.20), (2.2.18) and (2.3.18) mentioned above. The existence of the
countable Russell sets ℜ∗Hs

2 ,ℜ∗
st and ℜ∗

Nst impossible, because x /∈ x cannot be stratified.
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4 SECOND-ORDER SET THEORY ZFC2 WITH THE FULL

SECOND-ORDER SEMANTICS

4.1 Second-order Set Theory ZFC2 with Urlogic

Remind that urlogic has the following characteristics [13].

1. Sentences of urlogic are finite strings of symbols. That a string of symbols is a sentence of
urlogic, is a non-mathematical judgement.

2. Some sentences are accepted as axioms. That a sentence is an axiom, is a non-mathematical
judgement.

3. Derivations are made from axioms. The derivations obey certain rules of proof. That a derivation
obeys the rules of proof, is a non-mathematical judgement.

4. Derived sentences can be asserted as facts.

Remark 4.1.1. Let ZFCUl
2 be second order set theory ZFC2 with Ur logic. Note that in ZFCUl

2

by using the rules of DED2 we dealing without any reference to semantics, i.e. satisfiability in
some standard model, validity etc.

Definition 4.1.1. Let ΓUl
X be the countable set of the all first order 1-place open wff’s of the set

theory ZFCUl
2 that contains free occurrences of the variable X.

Let Ψ1 (X) ,Ψ2 (X) be a first order 1-place open wff’s of the set theory ZFCUl
2 . We define now the

equivalence relation (· ∼X ·) ⊂ ΓUl
X × ΓUl

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] (4.1.1)

For any Ψ (X) ∈ ΓUl
X let [Ψ (X)]Ul ,

{
Φ(X) ∈ ΓUl

X |Ψ(X) ∼ Φ(X)
}

denote the equivalence class

to which Ψ (X) belongs. All elements of ΓUl
X equivalent to each other are also elements of the same

equivalence class. The set of the all possible equivalence classes of ΓUl
X by ˜X , denoted by ΓUl

X / ∼X

ΓUl
X / ∼X,

{
[Ψ (X)]Ul |Ψ(X) ∈ ΓUl

X

}
. (4.1.2)

Let FrUl
1 (y, v) be the relation : y is the Gödel number of a first order 1-open wff of the set

theoryZFCUl
2 that contains free occurrences of the variable X with Gödel number v [15].

Note that the relation FrUl
1 (y, v) is expressible in ZFCUl

2 by a wff F̂r
Ul

1 (y, v).

Note that for any y, v ∈ N by definition of the relation FrUl
1 (y, v) follows that

F̂r
Ul

1 (y, v) ⇐⇒ ∃!Ψ (X)
[(

gZFCUl
2

(Ψ (X)) = y
)
∧
(
gZFCUl

2
(X) = ν

)]
, (4.1.3)

where Ψ (X) is a unique wff of ZFCUl
2 which contains free occurrences of the first order variable X

with Gödel number v. We denote a unique wff Ψ (X) defined by using equivalence (4.1.3) by symbol
ΨUl

y,ν (X) , i.e.

F̂r
Ul

1 (y, v) ⇐⇒ ∃!ΨUl
y,ν (X)

[(
gZFCUl

2

(
ΨUl

y,ν (X)
)
= y

)
∧
(
gZFCUl

2
(X) = ν

)]
. (4.1.4)

Definition 4.1.2. Let gZFCUl
2

(X) = ν. Let ΓUl
ν be a set of the all Gödel numbers of the first order

1-place open wff’s of the set theory ZFCUl
2 that contains free occurrences of the variable X with

Gödel number v, i.e.

ΓUl
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ FrUl

1 (y, v)
}
, (4.1.5)
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or in the following equivalent form:

∀y (y ∈ N)
[
y ∈ ΓUl

ν ⇐⇒ (y ∈ N) ∧ F̂r
Ul

1 (y, v)
]
. (4.1.6)

Remark 4.1.2. Note that from the axiom of separation it follows directly that ΓUl
ν is a set in the

sense of the set theory ZFCUl
2 .

Definition 4.1.3. (i) We define now the equivalence relation

(· ∼ν ·) ⊂ ΓUl
ν × ΓUl

ν (4.1.7)

inthesenseofthesettheoryZFCUl
2 by

y1 ∼ν y2 ⇐⇒
(
∀X

[
ΨUl

y1,ν (X) ⇐⇒ ΨUl
y2,ν (X)

])
. (4.1.8)

For any y1 ∈ ΓUl
v let [y1]Ul ,

{
y ∈ ΓUl

X |y1 ∼ν y2
}
denote the equivalence class to which y1 belongs.

The set of the all possible equivalence classes of ΓUl
ν by ˜ν , denoted ΓUl

ν / ∼ν

ΓUl
ν / ∼ν,

{
[y]Ul |y ∈ ΓUl

ν

}
. (4.1.9)

Remark 4.1.3. Note that from the axiom of separation it follows directly that ΓHs
ν / ∼ν is a set

in the sense of the set theory ZFCUl
2 .

Definition 4.1.4. Let ℑUl
2 be the countable set of the all sets definable by a first order 1-place

open wff of the set theory ZFCUl
2 , i.e.

∀Y
{
Y ∈ ℑUl

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Ul ∈ ΓUl

X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (4.1.10)

Definition 4.1.5. We rewrite now (4.1.10) in the following equivalent form

∀Y
{
Y ∈ ℑUl

2 ⇐⇒ ∃Ψ(X)
[(
[Ψ (X)]Ul ∈ Γ∗Ul

X / ∼X

)
∧ (Y = X)

]}
, (4.1.11)

where the countable set Γ∗Ul
X / ∼X is defined by the following formula

∀Ψ(X)
{
[Ψ (X)]Ul ∈ Γ∗Ul

X / ∼X ⇐⇒
[(
[Ψ (X)]Ul ∈ ΓUl

X / ∼X

)
∧ ∃!XΨ(X)

]}
. (4.1.12)

Definition 4.1.6. Let ℜUl
2 be the countable set of all sets such that

∀X
(
X ∈ ℑUl

2

) [
X ∈ ℜUl

2 ⇐⇒ X /∈ X
]
. (4.1.13)

Remark 4.1.4. Note that ℜUl
2 ∈ ℑUl

2 since ℜUl
2 is a set definable by first order 1-place open wff

Ψ
(
Z,ℑUl

2

)
, ∀X

(
X ∈ ℑUl

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.1.14)

From (4.1.13) one obtains

ℜUl
2 ∈ ℜUl

2 ⇐⇒ ℜUl
2 /∈ ℜUl

2 . (4.1.15)
But (4.1.15) gives a contradiction(

ℜUl
2 ∈ ℜUl

2

)
∧
(
ℜUl

2 /∈ ℜUl
2

)
. (4.1.16)

421ontradiction (4.1.16) is a contradiction inside ZFCUl
2 for the reason that the countable set ℑUl

2

is a set in the sense of the set theory ZFCUl
2 .

In order to obtain a contradiction inside ZFCUl
2 in more general case we introduce the following

definitions.

Definition 4.1.7. We define now the countable set Γ∗Ul
ν / ∼ν by the following formula

∀y
{
[y]Ul ∈ Γ∗Ul

ν / ∼ν ⇐⇒
(
[y]Ul ∈ ΓUl

ν / ∼ν

)
∧ F̂r

Ul

1 (y, v) ∧
[
∃!XΨUl

y,ν (X)
]}

. (4.1.17)

Remark 4.1.5. Note that from the axiom of separation it follows directly that Γ∗Ul
ν / ∼ν is a set
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in the sense of the set theory ZFCUl
2 .

Definition 4.1.8.We define now the countable set ℑ∗Ul
2 by the following formula

∀Y
{
Y ∈ ℑ∗Ul

2 ⇐⇒ ∃y
[(
[y]Ul ∈ Γ∗Ul

ν / ∼ν

)
∧
(
gZFCUl

2
(X) = ν

)
∧ Y = X

]}
. (4.1.18)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗Hs
2 is a set in the

sense of the set theory ZFCUl
2 .

Definition 4.1.9. We define now the countable set ℜ∗Ul
2 by formula

∀X
(
X ∈ ℑ∗Ul

2

) [
X ∈ ℜ∗Ul

2 ⇐⇒ X /∈ X
]
. (4.1.19)

Note that from the axiom schema of separation it follows directly that ℜ∗Ul
2 is a set in the sense of

the set theory ZFCUl
2 .

Remark 4.1.6. Note that ℜ∗Ul
2 ∈ ℑ∗Ul

2 since ℜ∗Ul
2 is definable by the following formula

Ψ∗ (Z) , ∀X
(
X ∈ ℑ∗Ul

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.1.20)

Theorem 4.1.1. Set theory ZFCUl
2 is inconsistent.

Proof. From (4.1.19) and Remark 4.1.6 we obtain ℜ∗Ul
2 ∈ ℜ∗Ul

2 ⇐⇒ ℜ∗Ul
2 /∈ ℜ∗Ul

2 from

which immediately one obtains a contradiction(
ℜ∗Ul

2 ∈ ℜ∗Ul
2

)
∧
(
ℜ∗Ul

2 /∈ ℜ∗Ul
2

)
. (4.1.21)

4.2 Second-order Set Theory ZFC2 with the Full
Se-condorder Semantics

Remind that the canonical approach of second order logic with full second-order semantics to the
foundations of mathematics is that mathematical propositions have the form

U |= Φ (4.2.1)

where U is a mathematical structure, such as integers, reals etc., and is a mathematical statement
written in second order logic. If A is one of the structures, such as (N,+,×, <) or (R,+,×, <), for
which there is a second order sentence ΞU such that

∀W (W |= ΞU ⇐⇒ W ∼= U) , (4.2.2)

then (4.2.2) can be expressed as a second order semantic logical truth

|= ΞU =⇒ Φ. (4.2.3)

Remark 4.2.1. Let ZFCfss
2 be second order set theory ZFC2 with the full second-order semantics.

(1) There is no completeness theorem for second-order logic.

(2) Nor do the axioms of second-order ZFCfss
2 imply a reflection principle which ensures that if a

sentence of second-order set theory is true, then it is true in some standard model.

Remark 4.2.2. Thus there may be sentences of the language of second-order set theory ZFCfss
2 :

(i) that are true but unsatisfiable, or

(ii) sentences that are valid, but false.

Remark 4.2.3. For example let Z be the conjunction of all the axioms of second-order ZFCfss
2 .

Z is surely true. But the existence of a model for Z requires the existence of strongly inaccessible
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cardinals. The axioms of ZFCfss
2 don’t entail the existence of strongly inaccessible cardinals, and

hence the satisfiability of Z is independent of ZFCfss
2 . Thus, Z is true but its unsatisfiability is

consistent with ZFCfss
2 .

Definition 4.2.1. We will say that Ψ is a well formed first order formula Ψ of ZFCfss
2 (wff1) if Ψ

contain only first-order variables and first-order quantifiers.

Let Γ♯fss
X be the countable set of the all first order 1-place open wff1’s of the set theory ZFCfss

2

that contains free occurrences of the first-order variable X.

Let Ψ1 (X) ,Ψ2 (X) be 1-place open wff1’s of the set theory ZFCfss
2 .We define now the equivalence

relation (· ∼X ·) ⊂ Γ♯fss
X × Γ♯fss

X by

Ψ1 (X) ∼X Ψ2 (X) ⇐⇒ ∀X [Ψ1 (X) ⇐⇒ Ψ2 (X)] (4.2.4)

For any Ψ (X) ∈ Γ♯fss
X let [Ψ (X)]♯fss ,

{
Φ(X) ∈ Γ♯fss

X |Ψ(X) ∼ Φ(X)
}

be the equivalence class

to which Ψ (X) belongs. All elements of Γ♯fss
X equivalent to each other are also elements of the

same equivalence class. The collection of all possible equivalence classes of Γ♯fss
X by ˜X , denoted

Γ♯fss
X / ∼X

Γ♯fss
X / ∼X,

{
[Ψ (X)]♯fss |Ψ(X) ∈ Γ♯fss

X

}
. (4.2.5)

Let Fr♯fss2 (y, v) be the relation : y is the Gödel number of a wff of the set theory ZFC♯fss
2 that

contains free occurrences of the first-order variable X with Gödel number v [17].

Note that the relation Fr♯fss1 (y, v) is expressible in ZFCfss
2 by a wff F̂r

♯fss

1 (y, v).

Note that for any y, v ∈ N by definition of the relation Fr♯fss1 (y, v) follows that

F̂r
♯fss

1 (y, v) ⇐⇒ ∃!Ψ (X)
[(

g
ZFC

fss
2

(Ψ (X)) = y
)
∧
(
g
ZFC

fss
2

(X) = ν
)]

, (4.2.6)

where Ψ (X) is a unique wff1 of ZFCfss
2 which contains free occurrences of the variable X with

Gödel number v. We denote a unique wff1 Ψ(X) defined by using equivalence (4.2.6) by symbol
Ψ♯fss

y,ν (X) , i.e.

F̂r
♯fss

1 (y, v) ⇐⇒ ∃!Ψ♯fss
y,ν (X)

[(
g
ZFC

fss
2

(
Ψ♯

y,ν (X)
)
= y

)
∧
(
g
ZFC

fss
2

(X) = ν
)]

. (4.2.7)

Remark 4.2.4. In order to avoid difficulties mentioned above,see Remark 4.2.1-Remark 4.2.3
we dealing with the countable set Γ♯fss

X of the all first order 1-place open wff1’s of the set theory
ZFCfss

2 .

Definition 4.2.2. Let g
ZFC

fss
2

(X) = ν.Let Γ♯fss
ν be a set of all Gödel numbers of the all first

order 1-place open wff1’s of the set theory ZFCfss
2 that contains free occurrences of the first-order

variable X with Gödel number v, i.e.

Γ♯fss
ν =

{
y ∈ N| ⟨y, ν⟩ ∈ Fr♯fss1 (y, v)

}
, (4.2.8)

or in the following equivalent form

∀y (y ∈ N)
[
y ∈ Γ♯fss

ν ⇐⇒ (y ∈ N) ∧ F̂r
♯fss

1 (y, v)
]
. (4.2.9)

Remark 4.2.5. Note that from the axiom of separation it follows directly that Γ♯fss
ν is a set in

the sense of the set theory ZFCfss
2 .

Definition 4.2.3. (i) We define now the equivalence relation
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(· ∼ν ·) ⊂ Γ♯fss
ν × Γ♯fss

ν (4.2.10)

in the sense of the set theory ZFCfss
2 by

y1 ∼ν y2 ⇐⇒
(
∀X

[
Ψ♯fss

y1,ν (X) ⇐⇒ Ψ♯fss
y2,ν (X)

])
. (4.2.11)

The collection of all possible equivalence classes of Γ♯fss
ν by ˜ν , denoted Γ♯fss

ν / ∼ν

Γ♯fss
v / ∼ν,

{
[y]♯fss |y ∈ Γ♯fss

ν

}
. (4.2.12)

Remark 4.2.6. Note that from the axiom of separation it follows directly that Γ♯fss
ν / ∼ν is a set

in the sense of the set theory ZFCfss
2 .

Definition 4.2.4. Let ℑ♯fss
2 be the countable collection of the all sets definable by a first order

1-place open wff1 of the set theory ZFCfss
2 , i.e.

∀Y
{
Y ∈ ℑ♯fss

2 ⇐⇒ ∃Ψ(X)
[(

[Ψ (X)]♯fss ∈ Γ♯fss
X / ∼X

)
∧ [∃!X [Ψ (X) ∧ Y = X]]

]}
. (4.2.13)

Definition 4.2.5. We rewrite now (4.2.13) in the following equivalent form

∀Y
{
Y ∈ ℑ∗♯fss

2 ⇐⇒ ∃Ψ(X)
[(

[Ψ (X)]♯fss ∈ Γ∗♯fss
X / ∼X

)
∧ (Y = X)

]}
, (4.2.14) where the

countable collection Γ∗♯fss
X / ∼X is defined by the following formula

∀Ψ(X)
{
[Ψ (X)]♯fss ∈ Γ∗♯fss

X / ∼X ⇐⇒
[(

[Ψ (X)]♯fss ∈ Γ♯fss
X / ∼X

)
∧ ∃!XΨ(X)

]}
. (4.2.15)

Definition 4.2.6. Let ℜ∗♯fss
2 be the countable collection of all sets such that

∀X
(
X ∈ ℑ♯fss

2

) [
X ∈ ℜ∗♯fss

2 ⇐⇒ X /∈ X
]
. (4.2.16)

Remark 4.2.7. Note that ℜ∗♯fss
2 ∈ ℑ∗♯fss

2 since ℜ∗♯fss
2 is a collection definable by 1-place open

wff1

Ψ
(
Z,ℑ∗♯fss

2

)
, ∀X

(
X ∈ ℑ∗♯fss

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.2.17)

From (4.2.16) and Remark 4.2.7 one obtains

ℜ∗♯fss
2 ∈ ℜ∗♯fss

2 ⇐⇒ ℜ∗♯fss
2 /∈ ℜ∗♯fss

2 . (4.2.18)

But (4.2.18) gives a contradiction(
ℜ∗♯fss

2 ∈ ℜ∗♯fss
2

)
∧
(
ℜ∗♯fss

2 /∈ ℜ∗♯fss
2

)
. (4.2.19)

The contradiction (4.2.19) it a contradiction inside ZFCfss
2 for the reason that the countable

collection ℑ∗♯fss
2 is a set in the sense of the set theory ZFCfss

2 .

In order to obtain a contradiction inside ZFCfss
2 in more general case we introduce the following

definitions.

Definition 4.2.7. We define now the countable set Γ∗♯fss
ν / ∼ν by the following formula

∀y
{
[y]Ul ∈ Γ∗♯fss

ν / ∼ν ⇐⇒
(
[y]♯fss ∈ Γ∗♯fss

ν / ∼ν

)
∧ F̂r

∗♯fss
2 (y, v) ∧

[
∃!XΨ♯fss

y,ν (X)
]}

. (4.2.20)

Remark 4.2.8. Note that from the axiom of separation it follows directly that Γ∗Ul
ν / ∼ν is a set

in the sense of the set theory ZFCfss
2 .
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Definition 4.2.8. We define now the countable set ℑ∗♯fss
2 by formula

∀Y
{
Y ∈ ℑ∗♯fss

2 ⇐⇒ ∃y
[(

[y]♯fss ∈ Γ∗♯fss
ν / ∼ν

)
∧
(
g
ZFC

fss
2

(X) = ν
)
∧ Y = X

]}
. (4.2.21)

Note that from the axiom schema of replacement (1.1.1) it follows directly that ℑ∗♯fss
2 is a set in

the sense of the set theory ZFCfss
2 .

Definition 4.2.9. We define now the countable set ℜ∗♯fss
2 by the following formula

∀X
(
X ∈ ℑ∗♯fss

2

) [
X ∈ ℜ∗♯fss

2 ⇐⇒ X /∈ X
]
. (4.2.22)

Note that from the axiom schema of separation it follows directly that ℜ∗♯fss
2 is a set in the sense

of the set theory ZFCfss
2 .

Remark 4.2.9. Note that ℜ∗♯fss
2 ∈ ℑ∗Ul

2 since ℜ∗Ul
2 is definable by the following formula

Ψ∗ (Z) , ∀X
(
X ∈ ℑ∗♯fss

2

)
[X ∈ Z ⇐⇒ X /∈ X] . (4.2.23)

Theorem 4.2.1. Set theory ZFCfss
2 is inconsistent.

Proof. From (4.2.22) and Remark 4.1.6 we obtain ℜ∗♯fss
2 ∈ ℜ∗♯fss

2 ⇐⇒ ℜ∗♯fss
2 /∈ ℜ∗Ul

2 from which
immediately one obtains a contradiction(

ℜ∗♯fss
2 ∈ ℜ∗♯fss

2

)
∧
(
ℜ∗♯fss

2 /∈ ℜ∗♯fss
2

)
. (4.2.24)

5 CONCLUSIONS

a In this Chapter we have proved that set theory ZFC + ∃MZFC
st is inconsistent in particular

¬Con(ZF + V = L)..

b This result originally was obtained in [2], [4]. [5] by using essentially another approach.
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