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Abstract 
The vacuum energy density of free scalar quantum field Φ  in a Rindler 
distributional space-time with distributional Levi-Cività connection is 
considered. It has been widely believed that, except in very extreme situations, 
the influence of acceleration on quantum fields should amount to just small, 
sub-dominant contributions. Here we argue that this belief is wrong by 
showing that in a Rindler distributional background space-time with 
distributional Levi-Cività connection the vacuum energy of free quantum 
fields is forced, by the very same background distributional space-time such a 
Rindler distributional background space-time, to become dominant over any 
classical energy density component. This semiclassical gravity effect finds its 
roots in the singular behavior of quantum fields on a Rindler distributional 
space-times with distributional Levi-Cività connection. In particular we obtain 
that the vacuum fluctuations 2Φ  have a singular behavior at a Rindler 

horizon ( )2 4 20 : , ,R c a aδ δ δ δ−= Φ →∞  . Therefore sufficiently 

strongly accelerated observer burns up near the Rindler horizon. Thus 
Polchinski’s account doesn’t violate the Einstein equivalence principle. 
 

Keywords 
Vacuum Energy Density, Rindler Distributional Space-Time, Levi-Cività  
Connection, Semiclassical Gravity Effect, Einstein Equivalence Principle  

How to cite this paper: Foukzon, J., Pota-
pov, A. and E. Men’kova (2018) Was Pol-
chinski Wrong? Colombeau Distributional 
Rindler Space-Time with Distributional 
Levi-Cività Connection Induced Vacuum 
Dominance. Unruh Effect Revisited. Jour-
nal of High Energy Physics, Gravitation 
and Cosmology, 4, 361-440. 
https://doi.org/10.4236/jhepgc.2018.42023 
 
Received: January 18, 2018 
Accepted: April 27, 2018 
Published: April 30, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jhepgc
https://doi.org/10.4236/jhepgc.2018.42023
http://www.scirp.org
https://doi.org/10.4236/jhepgc.2018.42023
http://creativecommons.org/licenses/by/4.0/


J. Foukzon et al. 
 

 

DOI: 10.4236/jhepgc.2018.42023 362 Journal of High Energy Physics, Gravitation and Cosmology 
 

Space-Time, Levi-Cività Connection, Semiclassical Gravity Effect, Einstein 
Equivalence Principle 

1. Introduction 

In March 2012, Joseph Polchinski claimed that the following three statements 
cannot all be true [1]: 1) Hawking radiation is in a pure state, 2) the information 
carried by the radiation is emitted from the region near the horizon, with low 
energy effective field theory valid beyond some microscopic distance from the 
horizon, 3) the infalling observer encounters nothing unusual at the horizon. 
Joseph Polchinski argues that the most conservative resolution is: the infalling 
observer burns up at the horizon. In Polchinski’s account, quantum effects 
would turn the event horizon into a seething maelstrom of particles. Anyone 
who fell into it would hit a wall of fire and be burned to a crisp in an instant. As 
pointed out by physics community such firewalls would violate a foundational 
tenet of contemporary physics known as the equivalence principle, it states in 
part that an observer falling in a gravitational field—even the powerful one in-
side a black hole—will see exactly the same phenomena as an accelerated ob-
server floating in empty space. 

In this paper we argue that Polchinski was not wrong, but Unruh effect revi-
sion is needed. 

1.1. What Is Colombeau Distributional Semi-Riemannian  
Geometry?  

Recall that the classical Cartan’s structural equations show in a compact way the 
relation between a connection and its curvature, and reveal their geometric in-
terpretation in terms of moving frames. In order to study the mathematical 
properties of singularities, we need to study the geometry of manifolds endowed 
on the tangent bundle with a symmetric bilinear form it is allowed to become 
degenerate (singular). 

Remark 1.1.1. But if the fundamental tensor is allowed to be degenerate 
(singular), there are some obstructions in constructing the geometric objects 
normally associated to the fundamental tensor. Also, local orthonormal frames 
and coframes no longer exist, as well as the metric connection and its curvature 
operator [2]. 

Remark 1.1.2. “Singular Semi-Riemannian Geometry”—the main brunch of 
contemporary semi-Riemannian geometry in which have been studied a smooth 
manifolds M furnished with a degenerate (singular) on a smooth submanifold 
M M′  metric tensor of arbitrary signature have been studied [2]. 

Remark 1.1.3. In order to solve problems of the gravitational singularity in 
classical general relativity the singular semi-Riemannian geometry based on 
Colombeau calculas and Colombeau generalized functions was much developed, 
see [3]-[22]. 
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Remark 1.1.4. Let ( )M ′G  be algebra of Colombeau generalized functions 
on M M′ ⊂ , let   be the ring of Colombeau generalized numbers [3] [4] [5]. 
Let ( )gε ε  be Colombeau generalized metric tensor on M and let ( )M p′Ric  
be generalized Ricci tensor of the metric ( )( )

M
g pε ε ′

 [20] [21]. The main 
properties of such nonclassical manifolds with a degenerate (singular) metric 
tensor that is ( ) ( ) ( )\M p M C M∞

′ ′ ′∈Ric G , i.e. for all  
( ): \Mp M p′′∈ ∈  Ric . 

Definition 1.1.1. Let ( )M ′G  be algebra of Colombeau generalized functions 
on M M′ ⊂ , and let ( )( )g pε ε

 be Colombeau generalized metric tensor on M 
such that ( )( )g pε ε

 is the Colombeau solution of the Einstein field Equation 
(1.3.19), (see Remark 1.3.7). We define now the Colombeau distributional scalar 
curvature ( ) ( )( ),M Mp pε ε

 =  R R  (or distributional Ricci [20] [21] scalar) as 
the trace of ( ) ( )( ),M Mp pε ε

 =  Ric Ric , i.e. ( ) ( )( ),M Mp pε ε
 =  R tr Ric . 

Assume that ( ) ( ) ( )\M p M C M∞
′ ′ ′∈R G . 

Then we say that: (i) gravitational field ( )( )g pε ε
 (or corresponding 

distributional spacetime) has a gravitational singularity on a smooth compact 
submanifold cM M⊂  iff ( ) ( ) ( )\

cM c cp M C M∞∈R G ; (ii) gravitational field 
( )( )g pε ε

 has a gravitational singularity with compact support iff 
( ) ( )3

cM p D′∈ R .  
Remark 1.1.5. It turns out that the distributional Schwarzschild spacetime has 

a gravitational singularity with compact support at origin { }0r =  [6]-[11] and 
at Schwarzschild horizon { }2 2r m× =S  [18] [19]. 

Definition 1.1.2. (i) Let ( )MG  be algebra of Colombeau generalized 
functions on M, and let ( )( )g pε ε

 be Colombeau generalized metric tensor on 
M such that ( )( )g pε ε

 is the Colombeau solution of the generalized Einstein 
field Equation (1.3.19). The generalized point value of ( )( )g pε ε

 at generalized 
point ( )( )pε ε

 is ( )( )g pε ε ε
. (ii) We define now the generalized point value of 

the distributional scalar curvature ( )M pR  at generalized point ( )( )pε ε
 =  p  

by formula ( ) ( )( ),M M pε ε ε
 =  R p R . 

1.2. Distributional Møller’s Geometry as Colombeau Extension of  
the Classical Moller’s Spacetime  

As important example of Colombeau extension of the singular semi-Riemannian 
geometry mentioned above, we consider now Moller’s uniformly accelerated 
frame given by Moller’s line element [23]: 

( )22 2 2 2 2d d d d d .s a gx t x y z= − + + + +                (1.2.1) 

Of couse Moller’s metric (1.2.1) degenerate at Moller horizon ( ) 1Mol
horx a g −= − . 

Note that formally corresponding to the metric (1.2.1) classical Levi-Civitá 
connection is [23]  

( ) ( ) ( ) ( )1 4 4
44 14 41

1,x a gx x x
a gx

Γ = + Γ = Γ =
+

            (1.2.2) 

and therefore classical Levi-Civit’a connection (1.2.2) of couse is not available at 
Moller horizon 1Mol

horx a g −= − ⋅ . Recall that fundamental tensor corresponding to 
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the metric (1.2.1) was obtained in Moller’s paper [23] as a vacuum solution of 
the classical Einstein’s field equations 

1 0,
2

k k k
i i iG R Rδ= − =                      (1.2.3) 

where k
iR  is the contracted Riemann-Christoffel tensor formally calculated by 

canonical way by using classical Levi-Civitá connection (1.2.2) and i
iR R= . 

Using Dingle’s formula [23] in case of the metric (1.2.1) we get 

( ) ( ) ( ) ( )
( )
( )

( ) ( )

2

2 3
2 3

2

1 ,
2 2

,

x
G x G x x

x x

x a gx

 ′∆   ′′= = − ∆ − 
∆ ∆  

∆ = +

          (1.2.4) 

where ( ) ( )x x x′∆ = ∂∆ ∂  and all other components of k
iG  vanishes identically. 

Note that  

( ) ( ) ( ) 22 , 2 .x g a gx x g′ ′′∆ = + ∆ =                  (1.2.5) 

Thus for any 1x a g−≠ − ⋅  we get a classical result  

( ) ( ) ( )
( )
( )

22
2 3 2
2 3

41 2 0.
2 2

g a gx
G x G x g

x x

 + = = − − ≡ 
∆ ∆  

        (1.2.6) 

Let { }n nx
∈  be a sequence such that 1 1lim , ,n n nx a g x a g n− −

→∞ = − ⋅ ≠ − ⋅ ∈ . 
Then for any n∈  we get  

( ) ( ) ( ) ( )
( )
( )

22
2 3 2
2 3

41 2 0,
2 2

n
n n n

n n

g a gx
x G x G x g

x x

 + ℑ = = = − − ≡ 
∆ ∆  

  (1.2.7) 

and therefore ( )lim 0n nx→∞ ℑ ≡ . However  

( ) ( )4 4
14 41

1lim lim lim ,n nn n n
n

x x
a gx→∞ →∞ →∞

Γ = Γ = = ∞
+

           (1.2.8) 

i.e. classical Levi-Civit’a connection given by (1.2.2) unavailable at Moller 
horizon. 

Remark 1.2.1. In order to avoid difficultness mentioned above, we consider 
now the regularized Moller’s metric  

( )
( ) ( ) ( ]

2 2 2 2 2

2 2

d d d d d ,

, 0,1 .

s x t x y z

x a gx

ε ε

ε ε ε

= −∆ + + +

 ∆ = + + ∈ 
               (1.2.9) 

Using now Dingle’s formula [23] for the case of (1.2.9) we get  

( ) ( ) ( ) ( ) ( )
( )
( )

( ) ( )

2

2 3
2 3

2 2

1; ; ; ,
2 2

.

x
x G x G x x

x x

x a gx

ε
ε

ε ε

ε

ε ε ε

ε

 ′∆   ′′ℑ = = = − ∆ − 
∆ ∆  

 ∆ = + + 

   (1.2.10) 

Note that 

( ) 22 1 , 2g gx gε ε′ ′′∆ = + ∆ =                   (1.2.11) 

and therefore 
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( ) ( )
( )
( )

( )
( )

( )

( )

22
2

22 2 2 2

2

2 2

2

21; 2
2

2 21 2
2

.

g a gx
x g

x x

g a gx g
g

x x

g
x

ε ε

ε ε

ε

ε

ε ε

ε

 + ℑ = − − 
∆ ∆  

  + + −  = − − 
∆ ∆  

= −
∆

     (1.2.12) 

Remark 1.2.2. (i) Note that ( )( ) ( ]; , 0,1x
ε

ε εℑ ∈  is Colombeau generalized 
function such that 

( )( ) ( );x
ε

ε ℑ ∈  cl G  and ( )( )( ) ( )1 2; .a g
εε

ε ε− −   ℑ − = ∈    
cl cl  

Remark 1.2.3. Note that: (i) at any point x∈    such that x∈  and 
1x a g−≠ − ⋅  one obtains ( )( ); 0x

ε
εℑ ≈





   (see Definition 1.5.0 (i)) and 
therefore the Ricci tensor as well as the Ricci scalar are infinite small beyond 
Moller horizon 1M

horx a g−= − ⋅ . Thus at any point x  such that x∈  and 
1x a g−≠ − ⋅  we obtain the disered result in a good agriment with formall 

canonical calculation (see for example [24], subsect. 2.1.6), (ii) obviously at any 
finite point finx ∈   (see Definition 1.5.0 (iii)) one obtains again 

( )( ); 0.x
ε

εℑ ≈




   
Remark 1.2.4. (I) Thus Colombeau generalized fundamental tensor 
( )( )ikg

ε
ε  corresponding to Colombeau metric 

( ) ( )( )
( )( ) ( )( ) ( ]

2 2 2 2 2

2 2

d d d d d ,

, 0,1

s x t x y z

x a gx

ε ε ε

ε ε ε
ε ε

= − ∆ + + +

 ∆ = + + ∈ 
             (1.2.13) 

that is non vacuum Colombeau solution (see [18] section 6 and [19] subsection 
2.3 Distributional general relativity) of the Einstein’s field equations 

( )( ) ( )( ) ( )( ) ( )
2

2
2

1 .
2

k k k
i i iG R R g

xεε ε
ε ε

ε
ε ε δ ε

 
= − = −   ∆ 

        (1.2.14) 

For Rindler metric 0, 1a g= =  and we get 

( )( ) ( )( ) ( )( )
( )

( )
2

22 2

1 .
2

k k k
i i iG R R

xεε ε

ε

ε
ε ε δ ε

ε

 
 = − = − ∈  + 

G    (1.2.15) 

Definition 1.2.1. Distributional Moller’s geometry that is Colombeau 
extension of the classical Moller’s spacetime given by Colombeau generalized 
fundamental tensor (1.2.13).  

1.3. Distributional Schwarzschild Geometry as Colombeau  
Extension of the Classical Singular Schwarzschild Spacetime  

1.3.1. Colombeau Extension of the Classical Singular Schwarzschild  
Spacetime Furnished with a Degenerate and Singular  
Schwarzschild Metric  

As another important example of Colombeau extension of the singular 
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semi-Riemannian geometry we consider now classical singular Schwarzschild 
spacetime furnished with a degenerate and singular Schwarzschild metric  

1
2 2 2 2 22 2d 1 d 1 d dm ms t r r

r r

−
   = − − + − + Ω   
   

             (1.3.1) 

Remark 1.3.1. Note that formally corresponding to the metric (1.3.1) classical 
Levi-Civitá connection given by canonical Christoffel symbols are [24]:  

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )

1 1
00 1132 22 2

0
01 2 2

2 1 1 1
12 222 22 2

3 1 1 1 2
13 332 22 2

2
lim 0, lim ,

2

lim ,
2

1lim 2 , lim 2 0,

1lim 2 , lim 2 sin 0,

r m r mr m r m

r m r m

r m r mr m r m

r m r mr m r m

m r m mr r
r r mr

mr
r r m

r m r m
r

m r m
r

θ

= =→ →

= →

− −

= =→ →

− −

= =→ →

− −
Γ = = Γ = = ∞

−

Γ = = ∞
−

Γ = = Γ = − − =

Γ = = Γ = − − =
  (1.3.2)

 

( ) ( ) ( ) ( )
1 1
00 1130 00 0

2 3
33 23

2
lim , lim ,

2

cossin cos , .
sin

r rr r

m r m mr r
r r mr

θθ θ
θ

= =→ →

− −
Γ = = ∞ Γ = = ∞

−

Γ = − Γ =


 

i.e. classical Levi-Civita connection given by Equation (1.3.2) unavailable at 
Schwarzschild horizon. 

Remark 1.3.2. Nevertheless in classical handbooks [24]-[37] were mistakenly 
assumed that classical semi-Riemannian geometry holds on whole Schwarzschild 
manifold and therefore canonical formal calculation gives  

( ) ( )
2

6

16 .abcd
abcd

mR r R r
r

=                     (1.3.3) 

By Equation (1.3.2) it is mistakenly pointed out that the Schwarzschild metric 
has only a coordinate singularity at 2r m=  and there is no gravitational 
singularity at Schwarzschild horizon. 

Remark 1.3.3. Note that canonical formal calculation gives  

( ) ( )
2

6 5

2
5 2

2
7 2

5

2

5

16 24 1
21

24 sin 1
2 sin1

4 2 21 8 sin
2 sin1

4 21 sin
sin

abcd
abcd

m m m mR r R r
m rr rr
r

m m m
m rrr
r

m m m mmr
mr r rr
r

m m m
r r r

θ
θ

θ
θ

θ

 
     = + − − −       −    

 
     + − − −       −    
 + − +     − 

 
 + − 
  2 21 m

r
θ  − 
 

 (1.3.4) 
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Assume that 0r ≠  and 2r m≠ , i.e. 221 0,sin 0m
r

θ− ≠ ≠ , then from  

Equation (1.3.4) one obtains directly 

( ) ( )
2

6 5 5

22 2 2 2

6 6 6 6 6

16 4 4

124 16 4 48 .

abcd
abcd

s

m m m m mR r R r
r rr r r

rm m m m
r r r r r

       = + − − + − −              

+ + + = =

      (1.3.5) 

Remark 1.3.4. Notice that: if 2r m=  then RHS of the Equation (1.3.4) 
become uncertainty  

( ) ( )
2

2
6 5 5 2

2 2
5 7 2 5 2

2

6

16 4 4 sin
sin

4 2 48 sin sin
sin sin

16 0 .
0

abcd
abcd

m m m m mR r R r
r rr r r

m m m m mmr
r rr r r

m
r

θ
θ

θ θ
θ θ

       = + − − + − −              

+ + +

= +

 (1.3.6) 

A. Einstein emphasized that uncertainty of the form 0/0 mentioned above that is 
a fundamental mathematical problem, see [38], p. 74. However in order to avoid 
this difficulty mentioned above in physical literature [24]-[37] one mistakenly 
defines 

( ) ( )
2

2

6 52

2
5 2

2
7 2

5

lim

16 2lim 4 1
21

24 sin 1
2 sin1

4 2 21 8 sin
2 sin1

4 1

abcd
abcdr m

r m

R r R r

m m m m
m rr rr
r

m m m
m rrr
r

m m m mmr
mr r rr
r

m
r

θ
θ

θ
θ

→

→

  
       = + − − −         −     

 
     + − − −       −    
 + − +     − 

 

+
2

2
6

5 2

2 48sin
2sin 1

m m m
mr rr
r

θ
θ


 − =     −  

         (1.3.7)

 
However Equation (1.3.7) doesn’t holds at 2r m=  because classical 

Levi-Civitá connection (1.3.2) of course is not available at Schwarzschild 
horizon, see Remark 1.3.1. 

Remark 1.3.5. Thus from Equation (1.3.4) for 0r ≠  and 2r m≠  we get  

( ) ( ) ( ) ( )
2

6
16 0 2 ,abcd

abcd
mR r R r r r m

r
= ⇔ ≠ ∧ ≠           (1.3.8) 

and we get nothing at Schwarzschild horizon. Therefore semi-Riemannian 
geometry break down at Schwarzschild horizon [18] [19]. 
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Remark 1.3.6. Recall that canonical derivation of the canonical singular 
Schwarzschild metric in classical handbooks is always based on assumption that: 

Assumption 1.3.1. Classical semi-Riemannian geometry holds on the whole 
semi-Riemannian manifold, see for example [26]. 

Let 2ds  be the metric 

( ) ( )2 2 2 2 2d d d d ,s A r t B r r r= − + + Ω                (1.3.9) 

where , 1A B →  as r →∞ . Then under Assumption 1.3.1 one obtains [26]: 
(i) all 1

vµΓ  are zero except 

( )1 1 1 1 2
00 11 22 332 , 2 , , sin ,A B B B r B r B θ′ ′Γ = Γ = Γ = − Γ = −  (1.3.10) 

The equations 0, , 0,1, 2,3vR vµ µ= =  are 

( )1 1 0 1
00 00,1 00 01 00 ,1

2

2

2 log

2
2 2 2 2 2

1 2 0,
2 2 2

R g

A A A A B
B AB B A B r

A B A AA
B B A r

= Γ − Γ Γ + Γ −

′′ ′ ′ ′ ′   = − + + +   
   

 ′ ′ ′ ′
′′= − − + = 

 

           (1.3.11) 

and  

( ) ( ) ( )
( ) ( ) ( )

2 21 0 1
11 11,1 10 11,1,1

2 22 3 1
21 31 11 ,1

2

log

log

1 2 0,
2 2 2

R g

g

A B A ABA
A B A rB

= − − + Γ − Γ − Γ

− Γ − Γ + Γ −

 ′ ′ ′ ′
′′= − + + + = 

 

            (1.3.12) 

and  

( ) ( ) ( )
( )

21 1 2 3 1
22 22,1 22 21 23 22,2,2 ,1

2

log 2 log

d cot 2 2cot 0.
d 2

R g g

ABr r
B B B r AB

θ
θ

θ

= − − + Γ − Γ Γ − Γ + Γ −

 ′′   = − − + − − + =      

    (1.3.13) 

From Equation (1.3.11)-Equation (1.3.12) one obtains  

( )2
0.

AB
rB

′
=                         (1.3.14) 

Therefore AB = constant. Since at r →∞  we have A  and 1B →  one 
obtains 1B A−= . From Equation (1.3.13)-Equation (1.3.14) one obtains 

1,r
B

′  = 
 

                         (1.3.15) 

and by integration Equation (1.3.15) one obtains 2r B r m= − , where 2m  is 
an integration constant. Finally one obtains well known classical result 

( ) ( )
12 21 , 1 .m mA r B r

r r

−
 = − = − 
 

               (1.3.16) 
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From Equation (1.3.16) and consideration above (see Remark 1.3.4) 
Assumption 1.3.1 wrong, otherwise one obtains the contradiction. 

Remark 1.3.7. In order to avoid this difficulty: 
(i) we have introduced instead a classical Einstein field equations  

1 8π ,
2v v vR Rg GTµ µ µ− = −                   (1.3.17) 

[where the sign of the energy-momentum tensor is defined by ( ρ  is the energy 
density)]  

0
44 00 0 ,T T T ρ= − = =                     (1.3.18) 

apropriate Colombeau generalization of the Equation (1.3.17)-Equation (1.3.18) 
such that  

( )( ) ( ) ( )( ) ( )( )1 8π ,
2v v vR R g G Tµ µ µε ε ε

ε ε ε ε− = −         (1.3.19) 

where the sign of the distributional energy-momentum tensor is defined by  

( ) ( ) ( ) ( ) ( )0
44 00 0 ,T T T Mε ε ε ρ ε= − = = ∈G            (1.3.20) 

see [18] [19]. 
(ii) we have introduced instead of Assumption 1.3.1 the following assumption.  
Assumption 1.3.2. Distributional semi-Riemannian geometry holds on the 

whole distributional semi-Riemannian manifold. 
Definition 1.3.1. Let ( ) [ ], 0,1A rε ε± ∈  and ( ) [ ], 0,1B rε ε± ∈  the  

regularization of the functions ( )A r±  and ( )B r±  [defined above by Equation 
(1.3.16)] such that the following conditions are satisfied: 

(i) ( )( ) ( )A rε ε

±
+∈ G  and ( )( ) ( ) ( ], 0,1B rε ε

ε±
+∈ ∈G  are Colombeau 

generalized functions; 

(ii) ( ) ( )
1

0 0
2 21 , 1 ;m mA r B r
r r

−
± ±  = − = − 

 
                        (1.3.21) 

(iii) ( )( ) ( ) ( )( ) ( )12 , 2 ;A m B mε εεε ε ε
ε ε± ± −= ∈ = ± ∈ 

    

(iv) ( )( ) ( ) ( )( ) ( )

1
2 20 1 , 0 1 .m mA Bε εε ε

ε εε ε

−

± ±
 

= − ∈ = − ∈  
 

    

Let 2dsε  be the Colombeau metric 

( ) ( )( ) ( )( )2 2 2 2 2d d d d ,s A r t B r r rε ε εε ε ε

± ±= − + + Ω           (1.3.22) 

and let ( )( )v
η
µ ε

εΓ  be the distributional Levi-Civita connection [18] [19] 
corresponding to Colombeau metric (1.3.22). Then under Assumption 1.3.2 one 
obtains: 

(i) all ( )( )1
3bdµ ε

εΓ  are zero except  

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

1
00

1
11

1
22

1 2
33

2 ,

2 ,

,

sin ,

A B

B B

r B

r B

ε εε εε

ε εε εε

εε

ε εε

ε

ε

ε

ε θ

′Γ =

′Γ =

Γ = −

Γ = −

                   (1.3.23) 
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( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

( )

1 1 0
00 00,1 00 01

1
00

,1

2

2

2

log

2
2 2 2 2 2

21 ,
2 2 2

R

g

AA A A B
B A B B A B r

A AA B
A

B B A r

ε ε ε ε

ε ε

εε ε ε εε ε ε ε ε

ε ε ε ε ε εε ε ε ε ε ε

ε εε ε ε ε

ε ε εε ε ε

ε ε ε ε

ε ε±

= Γ − Γ Γ

+ Γ −

′ ′ ′  ′  ′ ′ 
= − + + +      
   

 ′ ′′ ′
 ′′= − − +
 
 

 (1.3.24) 

and  

( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( ) ( )( )( )

( ) ( )
( ) ( )

( )
( )
( )

( ) ( )
( )

2 21 0 1
11 11,1 10 11

,1,1
2 22 3 1

21 31 11
,1

2

log

log

21 ,
2 2 2

R g

g

AA B A B
A

A B A r B

ε ε ε ε

ε εε ε

εε ε ε εε ε ε ε ε
ε

ε ε ε εε ε ε ε

ε ε ε ε ε

ε ε ε ε

±

±

= − − + Γ − Γ − Γ

− Γ − Γ + Γ −

 ′′ ′ ′
 ′′= − + + +
 
 

 (1.3.25) 

and  

( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( ) ( )( )( )

( ) ( ) ( )
( ) ( )( )
( ) ( )

1 1 2
22 22,1 22 21

,2,2
23 1

23 22
,1

2

log 2

log

d cot 2 2cot .
d 2

R g

g

A Br r
B B B r A B

ε ε ε ε ε

εε

ε εε ε

ε ε ε ε εε ε ε ε ε

ε ε ε ε ε

ε ε ε

θ θ
θ

±

±

= − − + Γ − Γ Γ

− Γ + Γ −

 ′′   = − − + − − +    
  
 

 

(1.3.26) 

Weak distributional limit in ( )3D′   of the RHS of the Equation (1.3.18), i.e. 
( )0lim vw Tε µ ε→−  is calculated in our papers [18] [19], see also Appendix B. 

Remark 1.3.8. It turns out that the distributional Schwarzschild metric 
(1.3.22) has a gravitational singularity with compact support at origin { }0r =  
[6]-[11] and at Schwarzschild horizon { }2 2r m× =S  [18] [19].  

1.3.2. Colombeau Extension of the Schwarzschild Spacetime in  
Isotropic Coordinates  

Let us consider now nonclassical spacetime furnished with a degenerate at 
horizon 4srρ =  but nonsingular (at horizon) metric and known in physical 
literature as Schwarzschild spacetime in isotropic coordinates [24]:  

( )
2 4

2 2 2 2 2 2 21 4
d d 1 d d sin d .

1 4 4
s s

s

r rs c t
r

ρ
ρ ρ θ θ ϕ

ρ ρ
 −    = − + + + +     +   

  (1.3.27) 

Nonsingular metric (1.3.27) is obtained by the coordinate transformation: 
( )21 4sr rρ ρ= + , between the Schwarzschild radial coordinate r and the 

isotropic radial coordinate ρ . Under formal calculation one obtains [24]: 

2

8
,

16
t s
t

s

r
rρ ρ

Γ =
−

                      (1.3.28) 
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i.e. classical Levi-Civitá connection given by (1.3.28) of course unavaluble at 
horizon 4srρ = . However in physical literature under ubnormal calculation it 
was mistakenly pointed out that the Ricci tensor and the Ricci scalar vanish 
identically and Kretschman scalar is  

( ) ( ) ( )
( )

13 6 2

12

3 4
.

4
abcd s

abcd
s

r
K R R

r
ρ

ρ ρ ρ
ρ

×
= =

+
              (1.3.29) 

Remark 1.3.9. In order to avoid difficulty with the degeneracy of the metric 
(1.3.27) mentioned above, we consider now the corresponding distributional 
Colombeau metric which reads  

( )
( )( )

( )
( )

2 2 4
2 2 2 2 2 2 2

2d d 1 d d sin d ,s c tε
ε ε

ρ ρ ε ρ
ρ ρ θ θ ϕ

ρρ ρ

− +    = − + + + +   +  
 (1.3.30) 

where ( ]0,1ε ∈ . 
Definition 1.3.2. Distributional Schwarzschild geometry in isotropic 

coordinates which is Colombeau extension of the classical spacetime (1.3.27), 
given by Colombeau generalized fundamental tensor (1.3.30).  

Colombeau generalized metric (1.3.30) nondegenerate at horizon in Colombeau 
sence and distributional Levi-Civitá connection now available on the whole 
distributional Schwarzschild spacetime in isotropic coordinates. Notice that 
generalized metric (1.3.30) has the form given by Equation (A.1) (see Appendix 
A) with  

( ) ( )( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )( )

2 22

4

2 22 1

,

1 , 0, 0

Thus .

A

B D C

A B

ε

ε ε ε

ε ε ε

ρ ρ ρ ε ρ ρ

ρρ ρ ρ
ρ

ρ ρ ρ ρ ρ ε ρ ρ ρ

−

−

= − + +

 
= + = = 
 

∆ = = − + +

       (1.3.31) 

From Equation (A.2) (see Apendix A2) and Equation (1.3.31) in the limit 
( ) 0ε ε
ρ ρ− ≈

 , we get  

( )( ) ( )
( )

( ) ( )( ) ( )
( )

( )

( ) ( )( ) ( )
( )

( )

2

22 2

4

42 2

4

42 2

, ,

, , ,

, , .

O

O
O

O
O

ε ε

ε
ε

µν
ε µν ε

ε
ε

ρσµν
ε ρσµν ε ε

ε
ε

ρ ε
ρ ε

ρ ρ ε

ρ ε
ρ ε ρ ε ρ

ρ ρ ε

ρ ε
ρ ε ρ ε ρ

ρ ρ ε

 
 

≈ − 
 − +   

 
 

≈ + 
 − +   

 
 

≈ + 
 − +   













R

R R

R R

   (1.3.32) 

Compare the equation ( )( ) ( ) ( )
222 2, O

ε
ρ ε ρ ε ρ ρ ε

−
 − − + R  with  

Equation (1.2.12). 
Remark 1.3.10. Notice that in contrast with result of naive formal calculation 

mentioned above (see Equation (1.3.29)) we get:  
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(i) ( ) ( )( ) ( )3, ,ρσµν
ρσµν ε

ρ ε ρ ε ∈ R R G  
(ii) ( ) ( )( ) ( ) ( )3 3, , \ ,Cµν

ε ρν ε
ρ ε ρ ε ∞∈  R R G  

(iii) ( ) ( )( ) ( ) ( )3 3, , \ .Cρσµν
ε ρσµν ε ε

ρ ε ρ ε ∞∈  R R G  

1.4. On the Near Horizon Colombeau Approximation for the  
Classical Singular Schwarzschild Black Hole Geometry  

Let us perform the following coordinate transformation  

( ) ( ]2,    8 2 , 0,1
4
tt r m r m
m ε ε ε= = − + ∈              (1.4.1) 

to the classical singular Schwarzschild metric  
1

2 2 2 2 22 2d 1 d 1 d dm ms t r r
r r

−
   = − − + − + Ω   
   

            (1.4.2) 

we get  
1 22 2 2

2 2 2 2 2 2
2 2 2d 1 d 1 d 4 1 d .

16 16 16
r r rs r t r m
m m m
ε ε ε

ε ε

−
     

= − + + + + + Ω     
     

  (1.4.3) 

In Equation (1.4.2), m is the central mass, 2 2 2 2d d sin dθ θ φΩ = +  and 
1G c= = . Taking the limit m →∞ , the spherical horizon becomes planar and 

Equation (1.4.3) leads to the Colombeau type metric  

( ) ( ){ } ( )2 2 2 2 2 2d d d 4 ds r t r mε ε εε ε ε
= − + + Ω               (1.4.4) 

which is distributional Rindler’s spacetime if we neglect the angular contribution. 
The condition m →∞  is equivalent to the “near horizon approximation” for 
the exterior geometry of a black hole: for ( )2  2r m r m≈ >  the line element 
(1.4.2) appears, indeed, as 

2 2 2 2 22 2d d d 4 d .
2 2

r m ms t r m
m r m

−
= − + + Ω

−
               (1.4.5) 

By using simple coordinate transformations it could be shown that (1.4.5) 
again becomes the distributional Rindler metric when we take , constθ φ =  or 
θ∆  and φ∆  are negligible. We stress that the condition 2r m≈  only is not 

enough to obtain Rindler’s spacetime which has no spherical symmetry as 
Schwarzschild.  

Remark 1.4.1. At this stage of consideration, it is already clear that near 
horizon Schwarzschild black hole geometry has a gravitational singularity at 
horizon. Notice that in classical literature (see, for example, [24]-[36]) near 
horizon Schwarzschild black hole geometry were mistakenly accepted as regular 
with the Ricci tensor and the Ricci scalar vanish identically. 

1.5. Colombeau Distributional Semi-Riemannian Geometry.  
Preliminaries  

1.5.1. The Ring of Colombeau Generalized Numbers    
Designation 1.5.1. We denote by   the ring of real, Colombeau generalized 
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numbers. Recall that [2] [3] by definition 
( ) ( )/=   E N  where  

( ) ( ) ( ) ( ) ( )( )( ){ }
( ) ( ) ( ) ( ) ( )( )( ){ }

0,1
0 0

0,1
0 0

0,1 ,

= 0,1 .

a

a

x a x

x a x

ε εε

ε εε

ε ε ε ε

ε ε ε ε

−
+

+

 = ∈ ∃ ∈ ∃ ∈ ∀ ≤ ≤ 

 ∈ ∀ ∈ ∃ ∈ ∀ ≤ ≤ 

   

  

E

N
 (1.5.0) 

Designation 1.5.2. In the sequel we denote by: 
[ ]ΩE , where Ω  an open subset of n , the algebra of all the sequences 

( )( ) ( ]0,1
u xε ε∈

 (for short, ( )( )u xε ε
) of smooth functions ( ) ( )u x Cε

∞∈ Ω . 
[ ]M ΩE  is the differential subalgebra of the elements ( )( ) [ ]u xε ε

∈ ΩE  such 
that for all K Ω , for all nα ∈  there exists N ∈  with the following 
property: ( ) ( )sup N

x K u x Oα
ε ε −

∈ ∂ =  as 0ε → . 
( )ΩN  the differential subalgebra of the elements ( )( ) [ ]u xε ε

∈ ΩE  such that 
for all K Ω , for all nα ∈  and q∈  the following property holds: 

( ) ( )sup q
x K u x Oα

ε ε∈ ∂ =  as 0ε → . 
Definition 1.5.1. The elements of [ ]M ΩE  and ( )ΩN  are called moderate 

and negligible, respectively.The factor algebra  

( ) [ ] ( )/MΩ = Ω ΩG E N               (1.5.1) 

is the algebra of Colombeau generalized functions on Ω . 
Remark 1.5.0. Note that: (i) there exists natural embedding :r → 

    such 
that for all r∈ , ( ):r r rε ε

→ , r rε = , for all [ )1,0ε ∈ , (ii) the ring   can 
be endowed with the structure of a partially ordered ring: for , ∈ r s , ≤

r  s  
if and only if there are representatives ( )rε ε

 and ( )sε ε
 with r sε ε≤  for all 

[ )1,0ε ∈ . 
Definition 1.5.2. (i) Let δ ∈  . We say that δ  is infinite small Colombeau 

generalized number and abbraviate  

0δ ≈




  

or 0δ ≈
 , if there exists representative ( ) ( ], 0,1ε ε

δ ε ∈  and some q∈  such 
that ( )qOεδ ε= , as 0ε → . We abbraviate α β≈

  iff 0α β− ≈
 . 

(ii) We say that ∆∈   is infinite large Colombeau generalized number and 
abbraviate  

∆ ≈ ∞
  

if 1 0−∆ ≈
 . 

(iii) We say that ∈ r  is finite Colombeau generalized number and 
abbraviate finr  if there are 1 2,r r ∈  such that 1 2r r≤ ≤ r . 

Definition 1.5.3. Let 1,MΩ  and 2,MΩ  be a set  

( ) ( ] ( ){ }
( ) ( ] ( ){ }

0,1
1,

0,1
2,

, , as 0 ,

, , as 0 .

N
M

N
M

x N x O

x N x O

ε εε

ε εε

ε ε

ε ε

−Ω = ∈Ω ∃ ∈ = →

Ω = ∈Ω ∃ ∈ = →




 

correspondingly. We introduce equivalence relation given by  

( ) ( ) ( )~ , , as 0,qx y q x y Oε ε ε εε ε
ε ε⇔ ∀ ∈ − = →  
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and denote by ( )1, 2, ~M MΩ− Ω Ω


 the set of generalized points. Moreover, if 

( )xε ε
    is the class of ( )xε ε

 in Ω  then the set of compactly generalized 
points is  

( ) ( ) ( ) ( ]( )[ ]{ }0 0, .c x x K K x Kε εε
η η ε ε η Ω = = ∈Ω ∃ Ω ∃ > ∀ ∈ ∈ 

    

Note that if the cΩ -property holds for one representative of cx∈Ω  then it 
holds for every representative. Also, for Ω =   we have that the factor ~M  
is the usual algebra of real generalized numbers. 

Definition 1.5.4. We denote by 1, ~IL MΩ Ω

  and 2, ~ISM MΩ Ω

  the set 
of inite large and infite small generalized points correspondingly. It is clear that 
the generalized point value of ( )u x  at ISMx∈Ω  is  

( ) ( )( ) ( )u x u xε ε ε
= + ΩN . 

Definition 1.5.5. Let δ ∈   be infinite small Colombeau generalized 
number with representative ( ) ( ], 0,1ε ε

δ δ ε′ = ∈ . We introduce a norm δ ′  of 
such representative by formula ( ]0,1sup εεδ δ∈

′ = . 

1.5.2. A Real Colombeau Vector Bundle  
Definition 1.5.6. A real vector bundle consists of: 

1) Topological spaces X (base space) and E (total space) 
2) A continuous surjection : E Xπ →  (bundle projection) 
3) For every x in X, the structure of a finite-dimensional vector space over 

Colombeau ring   on the fiber { }( )1 xπ −  where the following compatibility 
condition is satisfied: for every point in X, there is an open neighborhood U, a 
natural number k, and a homeomorphism 

( )1: kU Uϕ π −× →  such that for all x U∈ , ( )( ),x v xπ ϕ =  for all 
vectors v in k

 , and the map ( ),v x vϕ  is a linear isomorphism between 
the vector spaces k

  and { }( )1 xπ − . 
The open neighborhood U together with the homeomorphism ϕ  is called a 

local trivialization of the Colombeau vector bundle. The local trivialization 
shows that locally the map π  “looks like” the projection of kU ×   on U. 

The Cartesian product kX ×  , equipped with the projection kX X× → , 
is called the trivial bundle of rank k over X. 

1.5.3. The Algebra of Colombeau Generalized Functions  
The basic idea of Colombeau’s theory of generalized functions is a regularization 
by sequences (nets) of smooth functions and the use of asymptotic estimates in 
terms of a regularization parameter ( ]0,1ε ∈ . Let ( ) (0,1]

uε ε∈
 with ( )u C Mε

∞∈  
for all ( ]0,1ε ∈  (M a separable, smooth orientable Hausdorff manifold of 
dimension n).The algebra of Colombeau generalized functions on M is defined 
as the quotient 

( ) ( ) ( )/MM M M=G E N                     (1.5.2) 

of the space ( )M ME  of sequences of moderate growth modulo the space 
( )MN  of negligible sequences. More precisely the notions of moderateness 
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resp. negligibility are defined by the following asymptotic estimates ( ( )M




X  
or ( )MX  denoting the space of smooth vector fields on M). 

( ) ( ) ( )( ] ( )( )( ){
( ) ( )( ) ( ) ( )

( ) ( ) ( ] ( )( ){
( ) ( )( ) ( ) ( )

1

1

0,1
0

1

0,1
0

1

, , sup

, ,

, , sup .

n

n

M

n
k

p K

q l
k

p K

M u C M K M k n

M M L L u p O

M u M K M k q l

M M L L u p O

ε ε

ξ ξ ε

ε ε

ξ ξ ε

ξ ξ ε

ξ ξ ε δ

∞

−

∈

∈

= ∈ ∀ ⊂⊂ ∀ ∈ ∃ ∈

 ∀ ∈ ∀ ∈ ≤  

= ∈ ∀ ⊂⊂ ∀ ∈

 ∀ ∈ ∀ ∈ ≤   

 

 

 

 

E

X X

N

X X

 


  (1.5.3) 

Elements of ( )G M  are denoted by 

( ) ( ) ( ) ( ).u u u u Mε ε εε ε ε
   = = = +   cl N              (1.5.4) 

With componentwise operations ( )G M  is a fine sheaf of differential 
algebras with respect to the Lie derivative defined by 

( ) ( ): .L u L u L uξ ξ ε ξ εε ε
   = =   cl                  (1.5.5) 

The spaces of moderate resp. negligible sequences and hence the algebra itself 
may be characterized locally, i.e., u ∈ ( )G M  iff ( )( )u G Vα α αψ ψ∈

 for all 
charts ( ),Vα αψ , where on the open set ( ) nVα αψ ⊂   in the respective 
estimates Lie derivatives are replaced by partial derivatives. Smooth functions 
are embedded into ( )G M  simply by the “constant” embedding σ , i.e., 
( ) ( ):f cl f εσ  =   , hence ( )C M∞  is a faithful subalgebra of ( )G M . On open 

sets of n  compactly supported distributions are embedded into G via 
convolution with a mollifier ( )nSρ ∈   with unit integral satisfying 

( ) d 0x x xαρ =∫  for all 1α ≥ ; more precisely setting ( ) ( ) ( )1 nx xερ ε ρ ε=  
we have ( ) ( ):w cl w ε ε

ι ρ = ∗  . In case ( )supp w  is not compact one uses a 
sheaf-theoretical construction. 

1.5.4. Colombeau Tangent Vector  
Let ( )( ) ( )( ) ( )nf cl f f Gε εε ε

   = = ∈    x x , where ( ) ( ): , 0,1nfε ε→ ∈ x  
is a differentiable function and let v be a vector in n . We define the 
Colombeau directional derivative in the v direction at a point nx∈  by 

( )( )( ) ( )( )

( ) ( )
10

d .
d

Col

n

i
it i

D f D f D f

f
f t

t x

ε εε ε

ε
ε

ε ε==

     = =     

   ∂  
= + =       ∂         

∑

v v vx x

x
x v v

        (1.5.6) 

The Colombeau tangent vector at the point x may then be defined as  

( ) ( )( )( ) ( )( ) .Col f f D fε εε ε
   = =   vv v x x              (1.5.7) 

Let ( )( ) ( ) ( )( ) ( ),n nf f G g g Gε εε ε
   = ∈ = ∈    x x , where  

( ), : , 0,1nf gε ε ε→ ∈   be differentiable functions, let ,v w  be tangent 
vectors in n  at nx∈  and let ,a b∈  . Then 
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1) 

( ) ( ) ( ) ( )( )
( )( ) ( )( )
( ) ( );

Col

Col Col

a b f a b f

a f b f

a f b f

ε ε

ε εε ε

 ⋅ + ⋅ = ⋅ + ⋅  

   = +   

= +

v w v w

v w

v w

 

2) 

( ) ( ) ( )( )
( )( ) ( )( )
( ) ( );

Col

Col Col

a f b g a f b g

a f b g

a f b g

ε εε ε

ε εε ε

   ⋅ + ⋅ = ⋅ + ⋅   

   = ⋅ + ⋅   

= ⋅ + ⋅

v v

v v

v v

 

3) 

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )

( )

.

Col

Col Col

f g f g

f g g f

f g g f

ε ε ε

ε ε ε εε ε εε

 ⋅ = ⋅ 

      = ⋅ + ⋅      

= ⋅ + ⋅

v v

x v x v

v v

 

1.5.5. Colombeau Tangent Vector to Differentiable Manifold M  
Let M be a differentiable manifold and let ( )MG  be the algebra of real-valued 
Colombeau generalized functions on M. Then the tangent vector to M at a point 
x in the manifold is given by the derivation ( ):D M → v G  which shall be 
linear—i.e., for any ( ) ( ) ( ),f f g g Mε εε ε

   = = ∈    G  and ,a b∈   we have 

1) 

( ) ( ) ( )( )
( )( ) ( )( )
( ) ( ).

Col

Col Col

D a f b g D a f b g

a D f b D g

a D f b D g

ε εε ε

ε εε ε

   ⋅ + ⋅ = ⋅ + ⋅   

   = ⋅ + ⋅   

= ⋅ + ⋅

v v

v v

v v

 

Note that the derivation will by definition have the Leibniz property 

2) 

( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( ) ( ).

Col

Col Col

D f g D f g

D f g x f x D g

D f g f D g

ε ε ε

ε ε ε εε εε ε

 ⋅ = ⋅ 

      = ⋅ + ⋅      

= ⋅ + ⋅

v v

v v

v v

 

1.5.6. Colombeau Vector Fields on Distributional Manifolds  
Colombeau vector field 





X  (denoted often by X ) on a manifold M is a linear 
map 





X : 
( ) ( )M M→G G  such that for all ( ),f g M∈G :  

( ) ( ) ( ) .f g f f g f g⋅ = ⋅ ⋅ + ⋅
  

  

  X X X              (1.5.8) 

1.5.7. Colombeau Tangent Space  
Suppose now that M is a C∞  manifold. A real-valued Colombeau generalized 
function ( ) ( ]: , 0,1f Mε ε

ε→ ∈  is said to belong to ( )MG  if and only if 
for every coordinate chart : nUϕ →  , the map [ ]1 : nf Uε ϕ ϕ− ⊆ →    is 
infinitely differentiable. Note that ( )MG  is a real associative algebra with 
respect to the pointwise product and sum of Colombeau generalized functions. 
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Pick a point x M∈ . A derivation at x is defined as a linear map ( ):D M → G  
that satisfies the Leibniz identity: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), : ,f f g g M D f g D f g x f x D gε εε ε
   = = ∈ ⋅ = ⋅ + ⋅    G   

which is modeled on the product rule of calculus. 
If we define addition and scalar multiplication on the set of derivations at x by 

( )( ) ( ) ( )1 2 1 2D D f f D f D f+ = ⋅ +  and 

( )( ) ( ) ,D f f D fλ λ⋅ = ⋅ ⋅  

where λ∈  , then we obtain a real vector space over  , which we define as 
the Colombeau tangent space Col

xT M  of M at x.  

1.5.8. Colombeau Dual Space  
Given any vector space V

  over Colombeau algebra  , the (algebraic) 
Colombeau dual space V ∗

  (also denoted for a short by V ∗ ) is defined as the 
set of all linear maps :Vϕ →





  . Since linear maps are vector space 
homomorphisms, the Colombeau dual space is also sometimes denoted by 

( ),Hom V  . The Colombeau dual space V ∗
  itself becomes a vector space over 

  when equipped with an addition and scalar multiplication satisfying: (i) 
( )( ) ( ) ( )x x xϕ ψ ϕ ψ+ = +  and (ii) ( ) ( )x xαϕ ϕ α= , where  
( ) ( ), ,x x Vϕ ψ α∗∈ ∈





  . 

1.5.9. Colombeau Cotangent Space  
Let M be a smooth manifold and let x be a point in M. Let xT M  be Colombeau 
tangent space at x. Then Colombeau cotangent space at x is defined as the 
Colombeau dual space of ( ):x x xT M T M T M ∗∗ =


. 

Suppose now that M is a C∞  manifold and let ( )f M∈G . The differential 
of f  at a point x is the map: ( ) ( )x x xdf X X f=  where xX  is a tangent vector 
at x, thought of as a derivation. In either case, xdf  is a linear map on xT M  
and hence it is a tangent covector at x. 

We can then define the differential map ( ): xd M T M∗→G  at a point x as the 
map which sends f  to xdf . Properties of the differential map include: 

(i) ( )d af bg adf bdg+ = +  for ,a b∈  , (ii) ( ) ( ) ( )x xd fg f x dg g x df= + . 
Let : M Nεϕ →  for any ( ]0,1ε ∈  be a smooth map of smooth manifolds. 

Given some x M∈ , the Colombeau differential of ( )ε ε
ϕ  at x is a linear map 

( ) ( )( ), :x x xd T M T N
ε ε

ε ϕε
ϕ →  from Colombeau tangent space of M at x to 

Colombeau tangent space of N at ( )( )xε ε
ϕ . The application of ( ),xd ε ε

ϕ  to a 
tangent vector X is called the pushforward of X by ( )ε ε

ϕ . 

1.5.10. ( )MG -Module of Generalized Sections ( )M EG ,  of a Vector  
Bundle E M→   

The ( )MG -module of generalized sections ( ),M EG  of a vector bundle 
E M→  and in particular the space of generalized tensor fields ( )r

s MG  is 
defined along the same lines using analogous asymptotic estimates with respect 
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to the norm induced by any Riemannian metric on the respective fibers. We 
denote generalized sections by ( ) ( ) ( ),S s s N M Eε εε ε

 = = + cl . Alternatively 
we may describe a section ( ),S M E∈G  by a family ( ) ( )( )

1

Ni

i
S Sα αα =

= , where 
Sα  is called the local expression of S with its components 

( )( )1i iS S Vα α α α αψ ψ−Ψ ∈   G  ( ( ),Vα α α
Ψ  a vector bundle atlas and  

1, ,i N= 
, with N denoting the dimension of the fibers) satisfying  

( ) ( ) ( )( ) ( )( )1 1ii j
j

S x x S xα αβ β α β β αψ ψ ψ ψ ψ− −=    for all ( )x V V∈  , where αβψ  
denotes the transition functions of the bundle. 

Remark 1.5.1. Smooth sections of E M→  again may be embedded as 
constant nets, i.e., 

( ) ( ): .s s s ε
 Θ →  cl  

Since ( )C M∞  is a subring of ( ) ( ), ,M M EG G  also may be viewed as 
( )C M∞ -module and the two respective module structures are compatible with 

respect to the embeddings. 
Moreover we have the following algebraic characterization of the space of 

generalized sections 

( ) ( ) ( ), , ,M E M M E= ⊗ΓG G                 (1.5.9) 

where ( ),M EΓ  denotes the space of smooth sections and the tensor product is 
taken over the module ( )C M∞ . Generalized tensor fields may be viewed likewise 
as C∞ -resp. G -multilinear mappings, i.e., as ( )C M∞ -resp. ( )MG -modules 
we have 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )0 1

1 0

, ; ,

, ; .

r sr
s C M

r sr
s M

M L X M X M M

M L M M M

∞
∗≅

≅

 

G

G G

G G G G
         (1.5.10) 

Here ( )X M  resp. ( )X M∗
  denotes the space of smooth vector resp. 

covector fields on M.  

1.5.11. Generalized Pseudo-Riemannian Manifold  
A generalized ( )0,2  tensor field ( )0

2g M∈G  is called a generalized 
Pseudo-Riemannian metric if it has a representative ( )gε ε

 satisfying 
(i) gε  is a smooth Pseudo-Riemannian metric for all ( ]0,1ε ∈ , and 
(ii) ( )( )det g pε ε

 is strictly nonzero on compact sets, i.e.,  

( ) ( ) ( )inf det .m
p KK K X m m N g pε ε∈ ∀ ⊂⊂ ∃ ∈ ≥   

We call a separable, smooth Hausdorff manifold M furnished with a generalized 
pseudo-Riemannian metric ( )g gε ε

   cl  generalized pseudo-Riemannian 
manifold or generalized spacetime and denote it by ( ),M g . The action of the 
metric on a pair { }1 2,H H  of generalized vector fields will be denoted by 
( )1 2,g H H  or 1 2,H H  [20] [21]. 
A generalized metric g  is non-degenerate in the following sense: 

( ) ( )( ) ( )1 1
1 0 2 2 0 1 2 1, 0 0.H M H H M g H H H ∈ ∧∀ ∈ = =   G G     (1.5.11) 

Note that condition (ii) above is precisely equivalent to invertibility of 
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( )det g  in the generalized sense. 
The inverse metric ( )1 1g gε ε

− − 
  cl  is a well defined element of ( )2

0 MG , 
depending exclusively on g  (i.e., independent of the particular representative 
( )gε ε

). 
Moreover if kg g≈ , where g is a classical kC -pseudo-Riemannian metric 

then 1 1
kg g− −≈ .  

From now on we denote the inverse metric by abg , its components by ijg  
and the components of a representative by ( )ijgε ε

. Also we shall denote the 
generalized metric abg  by ( )2 2ds dsε ε

 =  cl  and its representative by 

( ) ( )( )2 i j
ijds g dx dxε ε ε
ε=  and use summation convention. 

Notice that g  induces a ( )MG -linear isomorphism ( ) ( )1 0
0 1M M→G G  

by ( ),gΦ Φ ⋅ , which as in the classical context extends naturally to 
generalized tensor fields of all types.  

1.5.12. Colombeau Isometric Embedding  
Let ( ),M g  and ( ),N h  be generalized pseudo-Riemannian manifolds. An 
isometric Colombeau embedding is a Colombeau generalized function ( )fε ε

: 
M N→  which preserves the metric in the sense that ( )gε ε

 is equal to the 
pullback of ( )hε ε

 by ( )fε ε
, i.e. ( ) ( )g f hε ε εε ε

∗= . Explicitly, for any two 
tangent vectors ( ), xT M∈v w  we have ( )( ) ( ) ( )( )( ), ,g h df dfε ε ε εε ε

=v w v w . 

1.5.13. Generalized Connection on a Generalized Pseudo-Riemannian  
Manifold  

Generalized connection 
1 2HD H  on a manifold M is a map  

( ) ( ) ( )1 1 1
0 0 0M M M× →G G G  satisfying: 
(D1) ( )

1 2HD H  is  -linear in 2H . 
(D2) ( )

1 2HD H  is ( )MG -linear in 1H . 
(D3) ( ) ( ) ( )1 12 2 1 2H HD H D H H H⋅ = ⋅ +f f f  for all ( )M∈f G . 
Let ( ),Vα αψ  be a chart on M with coordinates xi. The generalized Christoffel 

symbols for this chart are given by the ( ) 3
dim M    generalized functions 

( )k
ij VαΓ ∈G  defined by 

( ) .
i

k
j ij k

k
D∂ ∂ = Γ ∂∑                      (1.5.12) 

Theorem. [21]. (I) Let ( ),M g  be a generalized pseudo-Riemannian 
manifold. Then there exists a unique generalized connection ( )

1 2HD H  such 
that 

(D4) [ ] ( ) ( )
1 21 2 2 1, H HH H D H D H= −  and 

(D5) ( ) ( )
1 11 2 3 2 3 2 3, , ,H HH H H D H H H D H= +  

hold for all 1 2 3, ,H H H  in ( )1
0 MG . 

( )
1 2HD H  is called generalized Levi-Civita connection of M and characterized 

by the so-called Koszul formula 

( )
[ ] [ ] [ ]

1 2 3 1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

2 , , , ,

, , , , , , .

HD H H H H H H H H H H H

H H H H H H H H H

= + −

− + +
 (1.5.13) 
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(II) On every chart ( ),Vα αψ  we have for the generalized Levi-Civita 
connection ( )

1 2HD H  of ( ),M g  and any vector field ( )1
0H M∈G   

( ) .
i

k
j k j

j ij ki

HD H H
x∂

 ∂
∂ = + Γ ∂ ∂ 

               (1.5.14) 

The generalized Christoffel symbols are given by  

1 ,
2

jm ijk km im
ij i j m

g ggg
x x x

∂ ∂ ∂
Γ = + + ∂ ∂ ∂ 

              (1.5.15) 

or by using representative  

( )( ) ( )( ) ( ) ( ) ( )1 .
2

jm ijimk km
ij i j m

g gg
g

x x xε ε
εε ε

ε εε
ε ε

 ∂ ∂   ∂  Γ = + +          ∂ ∂ ∂      
  (1.5.16) 

We define now the action of a classical (smooth) connection D on generalized 
vector fields ( )1H ε ε

ξ =  cl  and ( )2H ε ε
η =  cl  by  

( ) ( )( )1 2HD H D
εξ ε ε
η =  cl  

(III) Let ( ),M g  be a generalized pseudo-Riemannian manifold. 
(i) If ( )ab abg g= Θ  where abg  is a classical smooth metric then we have,in 

any chart, ( )i i
jk jkΓ = Θ Γ  (with i

jkΓ  denoting the Christoffel Symbols of abg ). 
Hence for all ( )1

0H M∈G : 

( ) ( )
1 12 2 .H HD H D H=  

(ii) If ab abg g∞≈ , where abg  a classical smooth metric, ( )1
1 2 0,H H M∈G  

and ( )1H X Mξ∞≈ ∈  , ( )1
2 0H D Mη ′≈ ∈  or ( )1

1 0H D Mξ ′≈ ∈ ,  
( )2H X Mη∞≈ ∈  , then ( ) ( )

1 2HD H Dξ η≈ .  
(iii) Let ab k abg g≈ , where abg  a classical kC -metric, then, in any chart, 

1
i i
jk k jk−Γ ≈ Γ . If in addition, ( )1

1 2 0,H H M∈G , ( )1
1 1 ,k

kH M TMξ −
−≈ ∈Γ  and 

( )2 ,k
kH M TMη≈ ∈Γ  then 

( ) ( )
1 2 .H kD H Dξ η≈  

1.5.14. The Generalized Riemannian Curvature Tensor  
Let ( ),M g  be a generalized pseudo-Riemannian manifold with a generalized 
Levi-Civita connection D . 

(i) The generalized Riemannian curvature tensor ( )1
3

d
abcR M∈G  is defined 

by 

[ ]1 2 1 21 2, 3 3 3, , .H H H HH HR H D H D D H −               (1.5.17) 

(ii) The generalized Ricci curvature tensor is defined by 

.c
ab cabR R                          (1.5.18) 

(iii) The generalized Ricci scalar is defined by 

.a
aR R                           (1.5.19) 

(iv) Finally we define the generalized Einstein tensor by 
1 .
2ab ab abG R R g−                      (1.5.20) 
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1.6. Super Generalized Functions 
1.6.1. The Nonsmooth Regularization via Horizon  
Examining now the Schwarzschild metric (1.3.1) (note that the origin is now 
excluded from our considerations, the space we are working on is { }3 3 \ 0+   ) 
in a neighborhood of the horizon, we see that, whereas ( )h r  is smooth, 

( )1h r−  is not even 1
locL . Thus, regularizing the Schwarzschild metric amounts 

to embedding 1h−  into ( )3
+G , for example as that given in paper [17], one 

obtains Colombeau generalized metric 

( ) ( ) ( )( )
( ) ( )

2 2 1 2 2 2

1 1

d d , d d ,

1, 1 2
2

11 2 .
2

s h r t h r r r

h r h m r
r m

m
r m

ε ε ε

ε ε

ε

ε

ε ρ

ι

−

− −

= − + Ω

  = = − − ∗  −  
  = − − ⋅   −  

vp

vp

           (1.6.1) 

Here ( ) ( )3 3r rερ ε ρ ε− −=  and ( )rρ  is a mollifier. 
Obviously, (1.6.1) is degenerate at 2r m= , because ( )h r  is zero at the 

horizon. Due to the degeneracy of (33), the Levi-Civitá connection is not 
available. In order avoid this difficultness in literature the following generalized 
pseudo-connection i

kjΓ  was considered ( )( ) ( )3i i
kj kj ε

ε +
 Γ = Γ ∈  cl G  [17]: 

( )( ) ( ) ( ) ( ) ( )( ), , ,

1 .
2

i im
kj mk j mj k kj mg g g gε ε ε εε ε
ε ι ι ι ι Γ = + −         (1.6.2) 

Obviously the generalized pseudo-connection i
kjΓ  coincides with the classical 

Levi-Civitá connection i
kjΓ  on { }3 \ 2r m+ =  since ( )( )im img gε ε

ι = , 

( )( )im img gε ε
ι =  there. However the generalized pseudo-connection i

kjΓ  is not 
a true generalized Levi-Civitá connection on 3

+  since i
kjΓ  does not respect 

the Colombeau generalized metric (1.6.1), i.e., ( )( ), 0ij kgε
ε

ι ≠ , e.g.,  
( )( ) ( )( )1

00,1 1g h h hε ε εε
ι − ′= − . Compatibility with the metric ( )( )gε ε

ι  is a priori 
ruled out by the following statement: there exists no connection whatsoever 
under which ( )( )gε ε

ι  would be a parallel tensor. However in a weak sense, the 
connection (1.6.2) is metric compatible: ( )( ), 0ij kgε

ε
ι ≈ . In additional [17]: 

( )( ) 0,ijR
ε

ε ≈                          (1.6.3) 

where ( )( )ijR
ε

ε  is a Ricci tensor corresponding to generalized  
pseudo-connection (1.6.2), and therefore Colombeau object ( )( )ijR

ε
ε  viewed 

as a classical distribution on { }3 \ 0  gives 

{ }30 on \ 0 .ijR =                         (1.6.4) 

Remark 1.6.1. In paper [17] the equality (1.6.4) mistakenly considered as a 
proof that the metric singularity at the Schwarzschild horizon is only a 
coordinate singularity.  

Remark 1.6.2. Due to the degeneracy of any smooth regularization of the 
metric (1.3.1) no canonical Levi-Civitá connection could be defined. In order to 
avoid such difficultnes in our papers [18] [19] the nonsmooth regularization via 
horizon is considered, see Section 2 below. However such regularization 
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demands appropriate extension of the Colombeau algebra ( )MG . 

1.6.2. The Super Generalized Functions  
The basic idea of the theory of super generalized functions is regularization by 
sequences (nets) of appropriate classes of non smooth and discontinuous 
functions or classical distributions and the use of asymptotic estimates in terms 
of a regularization parameter ( ]0,1ε ∈ . Let ( ) ( ]0,1

uε ε∈
 with ( )u D Mε ′∈  for 

all ( ]0,1ε ∈  (M a separable, smooth orientable Hausdorff manifold of 
dimension n). Such sequences are called super generalized functions. The 
algebra of super generalized functions on M is defined as the quotient 

( ) ( ) ( )/MM M M′ ′=SG SE SN                 (1.6.5) 

of the space ( )M M′SE  of sequences of moderate growth modulo the space 
( )MN  of negligible sequences. More precisely the notions of moderateness 

resp. negligibility are defined by the following asymptotic estimates ( ( )M




X  
or ( )MX  denoting the space of smooth vector fields on M) [18] [19]: 

( ) ( ) ( )( )( ] ( ) ( )( ){
( ) ( )( ) ( )( ) ( ) ( ) }

( ) ( ) ( )( )( ] ( ) ( )( ){
( ) ( )( ) ( )( ) ( ) ( ) }

1

1

0,1
0

1 0

0,1
0

1 0

=

, , ,

= ,

, , .

n

n

M

n
k f

q
k f

M u D M K M k n

M M f C K L L u f O

M u D M K M k q n

M M f C K L L u f O

ε ε

ξ ξ ε

ε ε

ξ ξ ε

ξ ξ ε

ξ ξ ε

∞ −

∞

′ ′∈ ∀ ⊂⊂ ∀ ∈ ∃ ∈

 ∀ ∈ ∀ ∈ ∀ ∈ ≤ 

′ ′∈ ∀ ⊂⊂ ∀ ∈ ∃ ∈

 ∀ ∈ ∀ ∈ ∀ ∈ ≤ 

 

 

 

 

 

 

SE

X X

SN

X X

 

(1.6.6) 

Here , 1, 2, ,
k

wL k nξ = 
 denoting the weak Lie derivative in L.Schwartz sense 

and where Landau symbol ( )( )fa Oε ϕ ε=  appears, having the following 
meaning: 

( ) ( ]( ) ( ) ( )0 0 00 0,1 .f f ff C C a Cεε ε ε ε ε ϕ ε ∀ ∃ > ∃ ∈ ∀ < ≤   

We denote by S  the ring of real, Colombeau super generalized numbers. 
( ) ( )/=   S SE SN , where 

( ) ( ) ( ] ( ] ( ) ( ]( ){
( )( ) }

( ) ( ) ( ] ( ] ( ) ( )( ){
( )( ) }

0,1 0,1
, 0 0,

0 0 ,

0,1 0,1
, 0 0,

0 0

, , 0,1

,

, , 0,1

.

a b

a b

x a b

x

x a b

x

ε δ ε δ

ε δ

ε δ ε δ

ε

ε δ

ε ε δ δ ε δ

ε δ

ε ε δ δ ε δ

×
+

− −

×
+

= ∈ ∃ ∈ ∃ ∈

 ∀ ≤ ∀ ≤ ≤ 

= ∈ ∀ ∈ ∃ ∈

 ∀ ≤ ∀ ≤ ≤ 

   

  

SE

SN
    (1.6.7) 

Let ( ) ( ], , 0,1
uε δ ε δ∈

 with ( ),u C Mε δ
∞∈  for all ( ], 0,1ε δ ∈  (M a separable, 

smooth orientable Hausdorff manifold of dimension n). By using canonical 
imbeding ( ) ( )D M M′ → G  the algebra ( )MSG  of Colombeau super 
generalized functions on M is defined also in the equivalent form as the quotient 

( ) ( ) ( )/MM M M=SG SE SN                   (1.6.8) 

of the space ( )M MSE  of sequences of moderate growth modulo the space 
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( )MSN  of negligible sequences. More precisely the notions of moderateness 
resp. negligibility are defined by the following asymptotic estimates ( ( )MX





  
or ( )MX  denoting the space of smooth vector fields on M). 

( ) ( )( ] ( ] ( ) ( )( ){
( ) ( )( ) ( ) ( )

( ) ( ) ( ] ( ] ( ) ( ){
( ) ( )( ) ( ) ( )

1

1

0,1 0,1
, , 0

1 ,

0,1 0,1
, 0,

1 3 5

( ) ,

, , sup ,

, ,

, , sup .

n

n

M

n m
k

p K

q l
k b

p K

M u C M K M k n m

M M L L u p O

M u M K M k q l

M M L L u p O

ε δ ε δ

ξ ξ ε δ

ε δ ε δ

ξ ξ

ξ ξ ε δ

ξ ξ ε δ

×∞

− −

∈

×

∈

= ∈ ∀ ⊂⊂ ∀ ∈ ∃ ∈

 ∀ ∈ ∀ ∈ ≤   

= ∈ ∀ ⊂⊂ ∀ ∈

 ∀ ∈ ∀ ∈ ≤   

 

 

 

 

 



SE

X X

SN

X X

 (1.6.9) 

The ( )MSG -module of super generalized sections ( ),M ESG  of a vector 
bundle E M→  and in particular the space of super generalized tensor fields 

( )r
s MSG  is defined along the same lines using analogous asymptotic estimates 

with respect to the norm induced by any Riemannian metric on the respective 
fibers. We denote super generalized sections by  

( ) ( ) ( ), ,, ,
,S s s M Eε δ ε δε δ ε δ

 = = + cl SN . Alternatively we may describe a section  

( ),S M E∈SG  by a family ( ) ( )( )
1

Ni

i
S Sα αα =

= , where Sα  is called the local 

expression of S with its components ( )( )1i iS S Vα α α α αψ ψ−Ψ ∈   SG   

( ( ),Vα α α
Ψ  a vector bundle atlas and 1, ,i N= 

, with N denoting the  
dimension of the fibers) satisfying ( ) ( ) ( )( ) ( )( )1 1ii j

j
S x x S xα αβ β α β β αψ ψ ψ ψ ψ− −=    

for all ( )x V V∈   where αβψ  denotes the transition functions of the bundle. 
Remark 1.6.3. Smooth sections of E M→  again may be embedded as 

constant nets, i.e., 

( ) ( ) ,: .s s s ε δ
 Θ →  cl  

Since ( )C M∞  is a subring of ( ) ( ), ,M M ESG SG  also may be viewed as 
( )C M∞ -module and the two respective module structures are compatible with 

respect to the embeddings. 
Moreover we have the following algebraic characterization of the space of 

super generalized sections 

( ) ( ) ( ), , ,M E M M E= ⊗ΓSG SG              (1.6.10) 

where ( ),M EΓ  denotes the space of smooth sections and the tensor product is 
taken over the module ( )C M∞ . Generalized tensor fields may be viewed 
likewise as C∞ -resp. SG -multilinear mappings, i.e., as ( )C M∞ -resp. 

( )MSG -modules we have 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )0 1

1 0

, ; ,

, ; .

r sr
s C M

r sr
s M

M L X M X M M

M L M M M

∞
∗≅

≅

 

SG

SG SG

SG SG SG SG
       (1.6.11) 

Here ( )X M  resp. ( )X M∗
  denotes the space of smooth vector resp. 
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covector fields on M.  

1.6.3. Super Generalized Pseudo-Riemannian Manifold  
A super generalized ( )0,2  tensor field ( )0

2g M∈SG  is called a super 
generalized Pseudo-Riemannian metric if it has a representative ( ), ,

gε δ ε δ
 

satisfying: 
(i) ,gε δ  is a smooth Pseudo-Riemannian metric for all ( ], 0,1ε δ ∈ , and 
(ii) ( )( ), ,

det g pε δ ε δ
 is strictly nonzero on compact sets, i.e.,  

( ) ( ) ( ) ( ),inf det .m l
p KK K X m m N l l N g pε δ ε δ∈ ∀ ⊂⊂ ∃ ∈ ∃ ∈ ≥   

We call a separable, smooth Hausdorff manifold M furnished with a super 
generalized pseudo-Riemannian metric ( ), ,

g gε δ ε δ
 
  cl  super generalized 

pseudo-Riemannian manifold or super generalized spacetime and denote it by 
( ),M g . The action of the metric on a pair { }1 2,H H  of super generalized 
vector fields will be denoted by ( )1 2,g H H  or 1 2,H H . 

A super generalized metric g  is non-degenerate in the following sense: 

( ) ( )( ) ( )1 1
1 0 2 2 0 1 2 1, 0 0.H M H H M g H H H ∈ ∧∀ ∈ = ⇒ =   SG SG  (1.6.12) 

Note that condition (ii) above is precisely equivalent to invertibility of 
( )det g  in the super generalized sense. The inverse metric ( )1 1

, ,
g gε δ ε δ

− − 
  

 cl  
is a well defined element of ( )2

0 MSG , depending exclusively on g  (i.e., 
independent of the particular representative ( ), ,

gε δ ε δ
). Moreover if kg g≈ , 

where g  is a classical kC -pseudo-Riemannian metric then 1 1
kg g− −≈ . From 

now on we denote the inverse metric by abg , its components by ijg  and the 
components of a representative by ( )

,

ijgε ε δ
. Also we shall denote the super 

generalized metric abg  by ( )2 2
, ,

ds dsε δ ε δ
 =   

cl  and its representative by 

( ) ( )( )2
, , ,

, i j
ijds g dx dxε δ ε δ ε δ
ε δ=  and use summation convention.Notice that g  

induces a ( )MSG -linear isomorphism ( ) ( )1 0
0 1M M→SG SG  by  

( ),gΦ Φ ⋅ , which as in the classical context extends naturally to generalized 
tensor fields of all types.  

Let ( ),M g  and ( ),N h  be super generalized pseudo-Riemannian manifolds. 
An isometric Colombeau embedding is a Colombeau super generalized function 

( ), ,
:f M Nε δ ε δ

→  which preserves the metric in the sense that ( ), ,
gε δ ε δ

 is 
equal to the pullback of ( ), ,

hε δ ε δ
 by ( ), ,

fε δ ε δ
, i.e. ( ) ( ), , ,, ,

g f hε δ ε δ ε δε δ ε δ

∗= .  
Explicitly, for any two tangent vectors ( ), xT M∈v w  we have  

( )( ) ( ) ( )( )( ), , , ,, ,
, ,g h df dfε δ ε δ ε δ ε δε δ ε δ

=v w v w . 

1.6.4. Super Generalized Connection on a Super Generalized  
Pseudo-Riemannian Manifold  

Super generalized connection 
1 2HD H  on a manifold M is a map 

( ) ( ) ( )1 1 1
0 0 0M M M× →SG SG SG  satisfying: 

(D1) ( )
1 2HD H  is S -linear in 2H . 

(D2) ( )
1 2HD H  is ( )MSG -linear in 1H . 

(D3) ( ) ( ) ( )1 12 2 1 2H HD H D H H H⋅ = ⋅ +f f f  for all ( )M∈f SG . 
Let ( ),Vα αψ  be a chart on M with coordinates ix . The super generalized 
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Christoffel symbols for this chart are given by the ( ) 3
dim M    super 

generalized functions ( )k
ij VαΓ ∈SG  defined by 

( ) .
i

k
j ij k

k
D∂ ∂ = Γ ∂∑                        (1.6.13) 

Theorem. (I) Let ( ),M g  be a super generalized pseudo-Riemannian 
manifold. Then there exists a unique super generalized connection ( )

1 2HD H  
such that 

(D4) [ ] ( ) ( )
1 21 2 2 1, H HH H D H D H= −  and 

(D5) ( ) ( )
1 11 2 3 2 3 2 3, , ,H HH H H D H H H D H= +  

hold for all 1 2 3, ,H H H  in ( )1
0 MSG . 

( )
1 2HD H  is called super generalized Levi-Civita connection of M and 

characterized by the so-called Koszul formula 

( )
[ ] [ ] [ ]

1 2 3 1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

2 , , , ,

, , , , , , .

HD H H H H H H H H H H H

H H H H H H H H H

= + −

− + +
 (1.6.14) 

(II) On every chart ( ),Vα αψ  we have for the super generalized Levi-Civita 
connection ( )

1 2HD H  of ( ),M g  and any vector field ( )1
0H M∈SG  

( ) .
i

k
j k j

j ij ki

HD H H
x∂

 ∂
∂ = + Γ ∂ ∂ 

                  (1.6.15) 

The super generalized Christoffel symbols are given by 

1 ,
2

jm ijk km im
ij i j m

g ggg
x x x

∂ ∂ ∂
Γ = + + ∂ ∂ ∂ 

                 (1.6.16) 

or by using representative 

( )( ) ( )( ) ( )

( ) ( )

, ,
,

, ,

,1, ,
2

,,
.

jmk km
ij i

ijim
j m

g
g

x

gg
x x

ε δ ε δ
ε δ

ε δ ε δ

ε δ
ε δ ε δ

ε δε δ

 ∂   Γ =       ∂ 
∂ ∂ 
+ +     ∂ ∂     

         (1.6.17) 

We define now the action of a classical (smooth) connection D on super 
generalized vector fields ( )1 , ,

H ε δ ε δ
ξ =  cl  and ( )2 , ,

H ε δ ε δ
η =  cl  by  

( ) ( )( )1 ,2 , ,HD H D
ε δξ ε δ ε δ

η =   
cl  

(III) Let ( ),M g  be a super generalized pseudo-Riemannian manifold. 
(i) If ( )ab abg g= Θ  where abg  is a classical smooth metric then we have,in 

any chart, ( )i i
jk jkΓ = Θ Γ  (with i

jkΓ  denoting the Christoffel Symbols of abg ). 
Hence for all ( ) ( ) ( )

1 1

1
0 2 2: H HH M D H D H∈ =SG . 

(ii) If ab abg g∞≈ , where abg  a classical smooth metric, ( )1
1 2 0,H H M∈SG  

and ( )1H X Mξ∞≈ ∈  , ( )1
2 0H D Mη ′≈ ∈  or ( )1

1 0H D Mξ ′≈ ∈ ,  
( )2H X Mη∞≈ ∈  , then ( ) ( )

1 2HD H Dξ η≈ .  
(iii) Let ab k abg g≈ , where abg  a classical kC -metric, then, in any chart, 

1
i i
jk k jk−Γ ≈ Γ . If in addition , ( )1

1 2 0,H H M∈SG , ( )1
1 1 ,k

kH M TMξ −
−≈ ∈Γ  and 

( )2 ,k
kH M TMη≈ ∈Γ  then ( ) ( )

1 2H kD H Dξ η≈ . 
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1.6.5. The Super Generalized Riemannian Curvature Tensor  
Let ( ),M g  be a super generalized pseudo-Riemannian manifold with a super 
generalized Levi-Civita connection D . 

(i) The super generalized Riemannian curvature tensor ( )1
3

d
abcR M∈SG  is 

defined by 

[ ]1 2 1 21 2, 3 3 3, , .H H H HH HR H D H D D H −  
              (1.6.18) 

(i) The super generalized Ricci curvature tensor is defined by 

.c
ab cabR R                            (1.6.19) 

(iii) The super generalized Ricci scalar is defined by 

.a
aR R                             (1.6.20) 

4) Finally we define the super generalized Einstein tensor by 

1 .
2ab ab abG R R g−                        (1.6.21) 

2. Distributional Schwarzschild Geometry by Using  
Nonsmooth Regularization via Horizon 

2.1. Distributional Schwarzschild Spacetime as Colombeau  
Extension of the Lorentzian Manifold with  
Nonregularity Conditions on Schwarzschild Horizon  

Singular space-times present one of the major challenges in general relativity. 
Originally it was believed that their singular nature is due to the high degree of 
symmetry of the well-known examples ranging from the Schwarzschild 
geometry to the Friedmann-Robertson-Walker cosmological models. However, 
Penrose and Hawking [36] have shown in their classical singularity theorems 
that singularities are a phenomenon which is inherent to general relativity. Since 
the standard approach allows only smooth space-time metrics, one has to 
exclude the so called singular regions from the space-time manifold. In a recent 
work many authors advocated the use Colombeau distributional techniques 
[5]-[22] to calculate the energy-momentum tensor of the Schwarzschild geometry. 
It turns out that it is possible to include the singular region (i.e. the space-like 
line 0r =  with respect to Schwarzschild coordinates) in the space-time which 
now no longer is a vacuum geometry, and to identify it with the support of the 
energy-momentum tensor [5] [9] [11] [12] [13]. The same “physically expected” 
result for the distributional energy momentum tensor of the Schwarzschild 
geometry was obtained in papers [12]-[22], i.e., 

( )0
0 8π ,T m xδ=

                          (2.1.1) 

in a conceptually satisfactory way. 
Remark 2.1.1. The result (2.1.1) can be easily obtained by using apropriate 

nonsmooth regularization of the Schwarzschild singularity at the origin 0r = . 
The nonsmooth regularization of the Schwarzschild singularity at the origin 

0r =  was originally considered by N. R. Pantoja and H. Rago in paper [12]. 
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Such non smooth regularization of the Schwarzschild singularity is 

( )( ) ( ) ( ]1 , 0,1 , .s
s

rh r r r r
rε εε

ε

ε ε = − + Θ − ∈ < 
 

           (2.1.2) 

Here ( )( )uε ε
Θ  is the generalized Heaviside function,where 

( ) ( ) , 0

1, 0

u
u

u
ε

ε

ε <Θ = 
≥

                      (2.1.3) 

and the limit 0ε →  is understood in a weak distributional sense. The equation 

( ) ( )( )( ) ( )( )( ) ( ) ( )

( )

2 2 2 22 1 2 2

0

d d d d sin d ,

1 ,s

s h r t h r r r

rh r
r

ε ε εε ε ε
θ θ φ−  = − + + 

= − +
   (2.1.4) 

with ( ], 0,1hε ε ∈ , as given in (2.1.4) can be considered as Colombeau version of 
the Schwarzschild line element in curvature coordinates. From Equation (2.1.2), 
the calculation of the distributional Einstein tensor ( )( ),t

tG r
ε

ε , ( )( ),r
rG r

ε
ε , 

( )( ),G rθ
θ ε

ε , ( )( ),G rϕ
ϕ ε

ε  proceeds in a straighforward manner. By simple 
calculation one obtains [12]: 

( )( ) ( )( ) ( ) ( )

( ) ( )

2

2 2

1
, ,t r

t r

s s

h r h r
G r G r

r r

r r
r r

r r

ε ε

ε ε
ε ε

ε

ε ε

δ ε δ

′ +   
= = − −   

   

− 
= − = − 

 

         (2.1.5) 

and 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( )

''

2

2 2 2

, ,
2

d .
ds s s

h r h r
G r G r

r

r r
r r r r

rr r r

ε εθ ϕ
θ ϕε ε

εε

εε

ε ε

δ ε δε
δ ε

   
= = − −       

−   = − − ≈ −   
  

     (2.1.6) 

In papers [10] [27] Colombeau distributional techniques were extended to the 
general axisymmetric, stationary Kerr and Newman space-time family. This 
family also contains the Schwarzschild geometry and its charged extension the 
Reissner-Nordstrø m solution as special cases of spherical symmetry. In the 
paper [22] it was shown that the solutions will satisfy the Einstein equations 
everywhere if the energy-momentum tensor has an appropriate singular 
addition of nonelectromagnetic origin. When this addition term is included, the 
total energy turns out to be finite and equal to 2mc , while the angular 
momentum for the Kerr and Kerr-Newman solutions is mca . 

Remark 2.1.2. The nonsmooth regularization of the Schwarzschild singularity 
above the horizon sr r=  is 

( )( ) ( )( ) ( ]1 , 0,1 , .s
s s

rh r r r r r
rε εε

ε

ε ε+  = − + Θ − − ∈ ≥ 
 

         (2.1.7) 

Here ( )( )uε ε
Θ  is the generalized Heaviside function and the limit 0ε →  is 

understood in a weak distributional sense. The equation 
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( ) ( )( )( ) ( ) ( )( ) ( ) ( )

( )

12 2 2 22 2 2

0

d d d d sin d ,

1 ,s

s h r t h r r r

rh r
r

ε ε εε ε ε
θ θ φ

−+ + +   = − + +   

= − +
 (2.1.8) 

( ], 0,1hε ε ∈ , as given in (2.1.8) can be considered as Colombeau version of the 
Schwarzschild line element in curvature coordinates above horizon. From 
Equation (2.1.7), the calculation of the distributional Einstein tensor above 
horizon ( )( ),t

tG r
ε

ε+ , ( )( ),r
rG r

ε
ε+ , ( )( ),G rθ

θ ε
ε+ , ( )( ),G rϕ

ϕ ε
ε+  proceeds in 

a straighforward manner. By simple calculation one obtains 

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )

2

2 2

, ,

1

.

t r
t r

s s

s s
s s

G r G r

h r r h r r
r r

r r r r
r r

r r

ε ε

ε ε

ε ε

ε

ε ε

ε ε

δ ε δ

+ +=

   ′ − − + − −
   = − −
   
   

 − − −
 = − ≈ −
 
 

      (2.1.9) 

The truncated distributional Schwarzschild geometry. 
There exist two different types of distributional Schwarzschild blackhole 

geometry corresponding to classical Schwarzschild solution. That is: (i) full 
distributional Schwarzschild blackhole geometry, given by Colombeau generalized 
object, for example by Equation (1.3.30), see Figure 1(a) and (ii) the truncated 
distributional Schwarzschild space-time given by Colombeau generalized object 
(2.1.7)-(2.1.8), i.e. in this case distributional spacetime ends just on the 
Schwarzschild horizon, see Figure 1(b). 

Remark 2.1.3. In a nutshell, there is a widespread but mistaken belief that 
there exist true gravitational singularities, for example at origin 0r =  of the  
 

 
Figure 1. (a) The picture of a distributional Schwarzschild blackhole, given by Colombeau 
generalized object (1.3.30). Distributional spacetime ends just on the Schwarzschild 
singularity. (b) The truncated Schwarzschild distributional geometry, given by Colombeau 
generalized object (2.1.7)-(2.1.8). Distributional spacetime ends just on the Schwarzschild 
horizon. 
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Schwarzschild spacetime, and non principal and non gravitational, i.e. purely 
coordinate singularities, for example at horizon gr r=  of the Schwarzschild 
spacetime. A coordinate singularity or coordinate degeneracy occurs when an 
apparent singularity or degeneracy occurs in one coordinate frame, which can be 
removed by choosing a different frame. Classical example of such mistake is 
ubnormal deletion of the gravitational singularity, for example from 
Schwarzschild spacetime 

{ }( ) ( )2 2 , , , ,ijS r m g r θ φ= × ≥ ×Sch              (2.1.10) 

originally defined by singular and degenerate Schwarzschild metric [30], 

( )( ) ( )( ) ( ) ( ) ( )
2 2 2 22 0 1 2 2d d d d sin d , 1 .grs h r x h r r r h r

r
θ θ φ−  = − + + + = −    

(2.1.11) 

by using apropriate singular coordinate change [27]-[35]. 
Remark 2.1.4. Note that: (i) metric (2.1.11) is singular and degenerate at 

Schwarzschild horizon gr r= , and thus metric (2.1.11) beiond canonical 
rigorous semi-Riemannian geometry. 

(ii) however in physical literature (see for example [28] [29] [30]) singularity 
and degeneracy at Schwarzschild horizon gr r=  are accepted as coordinate 
singularity and coordinate degeneracy. 

Remark 2.1.5. (see [30] section 100, p. 296). “In the Schwarzschild metric 
(97.14), 00g  goes to zero and 11g  to infinity at gr r=  (on the ‘Schwarzschild 
sphere’). This could give the basis for concluding that there must be a singularity 
of the space-time metric and that it is therefore impossible for bodies to exist 
that have a ‘radius’ (for a given mass) that is less than the gravitational radius. 
Actually, however, this conclusion would be wrong. This is already evident from 
the fact that the determinant ( ) 4 2sing r r θ= −  has no singularity at gr r= , so 
that the condition 0g <  (82.3) is not violated. We shall see that in fact we are 
dealing simply with the impossibility of establishing a suitable reference system 
for gr r< .” 

Remark 2.1.6. Notice that consideration above meant the following definition 
of the gravitational singularity. 

Definition 2.1.1. There is no gravitational singularity at r r=  iff the 
determinant ( ) ( )( ), det ,ijg r g rθ θ=  has no singularity at r r= . 

Remark 2.1.7. Notice that at singular point gr r=  the determinant ( )gg r  
is well defined only by the limit 

( ) ( )( ) 4 2lim det , sin .
g

g ij gr r
g r g r rθ θ

→
= = −               (2.1.12) 

however in the limit = 2gr r m→  the classical Levi-Civitá connection l
kjΓ  

becomes infinite 

( ) ( ) ( ) ( )
1 0
11 012 22 2

lim , lim ,
2 2r m r mr m r m

m mr r
r r m r r m= =→ →

−
Γ = = ∞ Γ = = ∞

− −
  (2.1.13) 

and therefore the Definition 2.1.1 is not sound and even does not any sense 
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under canonical semi-Riemannian geometry.  
Remark 2.1.8. Notice that: 
(i) in order to fix the problem with singularity and degeneracy of the 

Schwarzschild metric (2.1.11) at Schwarzschild horizon gr r= , in physical 
literature [27]-[35], many years oneconsiders the abnormal formal change of 
coordinates obtained by replacing the canonical Schwarzschild time by “retarded 
time” ( ),t rν , i.e., Eddington-Finkelstein coordinates, given by 

( ) ( )

( )

1
d , d d ,

1 ;g

t r t h r r

r
h r

r

ν
−

= +   

= −
                   (2.1.14) 

(ii) the change (2.1.14) of Schwarzschild coordinates is singular at 
Schwarzschild horizon gr r= , as at Schwarzschild horizon ( )gh r = ∞  and 
therefore the change (2.1.14) does not holds on Schwarzschild horizon [36]; 

(iii) under the singular change (2.1.14) Schwarzschild metric (2.1.11) becomes 
to well known regular and nondegenerate Eddington-Finkelstein metric [27]-[35]: 

( ) ( )2 22 2 2 22d 1 d 2d d d sin d ;ms v r v r
r

θ θ φ   = − − + + +    
EF        (2.1.15) 

(iv) in physical literature many years exist abnormal belief that by formal 
singular change (2.1.15) the singular and degenerate Schwarzschild spacetime 

{ }( )2 2r m× > ×S  was immersed in a larger Eddington-Finkelstein spacetime 

{ } { }( ) ( )2 2 0 2 , , ,r m r m g r θ≥ ≥
= × ≥ < ≤ ×  EFEF S          (2.1.16) 

with regular and non degenerate metric tensor ( ),g r θ
≥EF , and whose manifold 

is not covered by the canonical Schwarzschild coordinate with 2r m≤ , and 
therefore singularity and degeneracy on Schwarzschild horizon gr r=  are only 
coordinate singularity and coordinate degeneracy; 

(v) from statement (iii) it was mistakenly assumed that there is no 
gravitational singularity at BH horizon. 

We remind now canonical definitions. 
Definition 2.1.2. Let ( ),M g  and ( ),N h  be semi-Riemannian manifolds. 

An isometric embedding is a smooth embedding :f M N→  which preserves 
the metric in the sense that g is equal to the pullback of h by f, i.e. g f h∗= . 
Explicitly, for any two tangent vectors ( ), xT M∈v w  we have  

( ) ( ) ( )( ), , .g h df df=v w v w                     (2.1.17) 

Remark 2.1.9. Notice that such isometric embedding is a mathematical 
definition only and does not mean the equivalence ( ) ( )( ), ,M g f M h≡  in 
absolute sense. Thus, it is not always appropriate as equivalence of the 
Lorentzian manifolds ( ),M g  and ( ),N h  corresponding to the physical 
frames ( ),M gph ph  and ( ),N hph ph . 

Definition 2.1.3. [31]. In general, a Lorentzian manifold ( ),M h′  is said to 
be an extension of a Lorentzian manifold ( ),M g  if there exists an isometric 
embedding :i M M ′→ . 
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Remark 2.1.10. Notice that such extension is a mathematical definition only 
and therefore it is not always apropriate as extension of the Lorentzian 
manifolds ( ),M g  and ( ),M h′  corresponding to the physical frames 

( ),M gph ph  and ( ),M h′ph ph . 
Remark 2.1.11. In order to obtain example for the statement mentioned and 

Remark 2.1.8 and Remark 2.1.9 we are going to prove below that the geometry of 
Schwarzschild spacetime { }( ){ }2 2 ,r m g

>> × > ×  SchSch S  above  
Schwarzschild horizon is essentially cardinally different in comparison with the 
geometry of Eddington-Finkelstein spacetime { }( ){ }2 2 ,r m g

>> × > ×  EFEF S  
above Eddington-Finkelstein horizon. 

We remind now canonical definitions. 
Definition 2.1.4. Let kAΓ∆  be the change in a vector ( )ˆiA x  after parallel 

displacement (as ploted in Figure 2) around closed contour Γ  located in BH 
spacetime as ploted in Figure 3. This change kAΓ∆  can clearly be written in the 
form kAδ

Γ
∫ . Substituting in place of kAδ  the canonical expression 
( )ˆi l

k kl kA x A dxδ = Γ  (see [31], Equation (85.5)) one obtains 
 

 
Figure 2. Paralel displacement along a 
closed contour Γ  in a curved space. 

 

 
Figure 3. Paralel displacement along a closed contour Γ  in BH spacetime. 
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( )ˆ d .i l
k k kl kA A x A xδΓ

Γ Γ

∆ = = Γ∫ ∫ 

                 (2.1.18) 

Definition 2.1.5. (I) Let g
ShΣ  be Schwarzschild horizon, let x̂Γ  be a contour 

located in Schwarzschild spacetime as plotted in Figure 4 and such that (i) 

ˆˆ xx∈Γ , (ii) ˆ ˆg
x xΣ Γ =Sch , and let x̂Γ  be a curve ˆ

ˆ ˆ\x
x xΓ = Γ . Let x̂ kA

Γ
∆  be 

the integral 

( )ˆ

ˆ ˆˆ ˆ\ \

ˆ d .x

x x

i l
k k kl k

x x

A A x A xδ
Γ

Γ Γ

∆ = = Γ∫ ∫ 

                (2.1.19) 

(II) Let gΣEF  be Eddington-Finkelstein horizon, let x̂Γ  be a contour located 
in Eddington-Finkelstein spacetime as plotted in Figure 5 and such that (i) 

ˆˆ xx∈Γ , (ii) ˆ ˆg
x xΣ Γ =EF , and let x̂Γ  be a curve ˆ

ˆ ˆ\x
x xΓ = Γ . Let x̂ kA

Γ
∆  be the 

integral  

( )ˆ

ˆ ˆˆ ˆ\ \

ˆ d .x

x x

i l
k k kl k

x x

A A x A xδ
Γ

Γ Γ

∆ = = Γ∫ ∫ 

                (2.1.20) 

 

 
Figure 4. Parallel displacement x̂ kA

Γ
∆  along 

a curve x̂Γ  in Schwarzschild spacetime such 
that ˆ ˆg

x xΣ Γ =Sch , then always x̂ kA
Γ

∆ = ∞ . 

 

 
Figure 5. Parallel displacement along a curve 

x̂Γ  in Eddington-Finkelstein spacetime  

ˆ ˆg
x xΣ Γ =EF , then always x̂ kA

Γ
∆ < ∞ . 
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Remark 2.1.12. (I) Note that the geometry of Schwarzschild spacetime >Sch  

{ }( ){ }2 2 ,r m g
>> × > ×  SchSch S                 (2.1.21) 

above Schwarzschild horizon gΣSch , essantially cardinally different in comparizon 
with the geometry of Eddington-Finkelstein spacetime >EF  

{ }( ){ }2 2 ,r m g
>> × > ×  EFEF S                 (2.1.22) 

above Eddington-Finkelstein horizon gΣEF . 
(II) Note that Schwarzschild spacetime >Sch  obviously satisfies a very 

strong nonregularity condition 

ˆˆ ˆif , then .x
g

x kx A
Γ

Σ Γ = ∆ = ∞Sch                (2.1.23) 

Thus the geometry of spacetime >Sch  that is nonclassical geometry beyond 
apparatus of the classical semi-Riemannian geometry. Of course, the geometry 
any part of spacetime >Sch  located above some neighborhood of Schwarzschild 
horizon as plotted in Figure 6 that is a classical semi-Riemannian geometry. 

Remark 2.1.13. Note that from Remark 2.1.11 it follows that  
Eddington-Finkelstein spacetime does not hold in rigorous mathematical sense 
as extension of the Schwarzschild spacetime { }( ){ }2 2 ,r m g

>> × > ×  SchSch S  
above Schwarzschild horizon. 

Remark 2.1.14. It is clear that nonregularity condition (2.1.23) arises not only 
from singularity of the function ( )1h r−  at point gr r=  but from degeneracy 
of the function ( )h r  at point gr r= . 

Remark 2.1.15. We remind now that the relations (see [30] p. 234, Equation 
(84.7)) 

0 0

00

g g
g

g
α β

αβ αβγ = − +                       (2.1.24) 

 

 
Figure 6. Parallel displacement along a closed contour Γ  located in region of 
the classical semi-Riemannian geometry of the Schwarzschild spacetime such 
that gΣ = ∅Sh , then always kAΓ∆ < ∞ . 
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give the connection between the metric of real space 
2d d dl x xα β

αβγ=                        (2.1.25) 

and the metric of the four-dimensional space-time 

( )22 0 0
0 00d d d 2 d d d .s g x x g x x g xα β α

αβ α= + +            (2.1.26) 

For Eddington-Finkelstein metric (2.1.15) metric of the corresponding real 
space is 

( ) ( )
2

2 22 2 2dd d sin d .21

rl rm
r

θ θ φ = + + 
−

EF             (2.1.27) 

Remark 2.1.16. Notice that the Eddington-Finkelstein metric (2.1.15) is 
regular at the horizon and therefore the infalling observer encounters nothing 
unusual at the horizon. However from Equation (2.1.17) it follows that the 
infalling observer encounters singularity on horizon. But this is a contradiction. 

Remark 2.1.17. Note that in order to deal with singular Schwarzschild metric 
(2.1.11) using mathematically and logically soundness approach, one applies 
contemporary distributional geometry based on Colombeau generalized 
functions [2] [3] [4]. Distributional Schwarzschild geometry and distributional 
BHs geometry by using Colombeau generalized functions [2] [3] [4] was 
developed by many papers [4]-[22]. By aproporiate regularization 

( ) ( ], , , , 0,1ijg rε θ φ ε ∈  of the singular Schwarzschild metric ( ), ,ijg r θ φ  such 
that: 

(i) ( ) ( ),0 , , , ,ij ijg r g rθ φ θ φ=  and 
(ii) for any ( ]0,1ε ∈  metric tensor ( ), , ,ijg rε θ φ  is regular and 

nondegenerate, one obtains Colombeau generalized object 
( )( ) ( )3

, , ,ijg rε ε
θ φ ∈  G  with an representative ( )( ), , ,ijg rε ε

θ φ , for a more 
detailed explanation see [11] [18] [19]. Using rigorous Colombeau approach one 
obtains mathematically and logically soundness notion of singularity in 

Distributional Schwarzschild spacetime. 
Remark 2.1.18. Note that in the case of Schwarzschild spacetime the 

conditions (i) and (ii) mentioned above (see Remark 2.1.13) are satisfied only by 
using non smooth regularization of the singular and degenerate Schwarzschild 
metric ( ), ,ijg r θ φ  via Schwarzschild horizon [18] [19]. 

By apriporiate nonsmooth regularization one obtain Colombeau generalized 
object modeling the singular Schwarzschild metric above and below horizon [18] 
[19]: 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )
( )( ) ( )

( ]

12 2 2 2 2

12 2 2 2 2

2 2

d d d d ,

d d d d ,

, ,

0,1 .

s g
g

s h r t h r r r

s h r t h r r r

r r r r
h r r r

r

ε ε εε ε ε

ε ε εε ε ε

ε
ε

ε ε

ε

−+ + +

−− − −

+

 = − + + Ω 

 = − + Ω 

Θ − − − +
= ≥

∈

         (2.1.28) 
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Remark 2.1.19. Let us rewrite now the metric (2.1.24) (above horizon) in the 
form 

( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )

( )

12 2 2 2 2 2 2

1 1

2 2 2 2

d d d d sin d

d d d d

d sin d ,

s h r t h r r r

h r t h r r t h r r

r

ε ε εε ε ε

ε ε εε ε

θ θ ϕ

θ θ ϕ

−+ + +

− −+ + +

 = − + + + 

       = − − +           

+ +

  (2.1.29) 

and define a new generalized Colombeau coordinates ( )( ), , ,rε ε
τ θ ϕ , where 

( )( ) ( )2,t rε ε
τ ∈ G , by formula 

( )( ) ( )( )1
d , d d ,

.

t r t h r r

r r

ε εε ε
τ

−+ = +  

=
              (2.1.30) 

Remark 2.1.20. Notice that: 
(i) Colombeau generalized coordinates (2.1.26) are the Colombeau extension 

of the canonical Eddington-Finkelstein coordinates (2.1.14) by Colombeau 
generalized function. 

(ii) In contrast with canonical Eddington-Finkelstein coordinates (2.1.14) (see 
Remark 2.1.7), Colombeau generalized coordinates (2.1.26) holds at  
Schwarzschild horizon gr r=  as at Schwarzschild horizon Colombeau 
generalized function ( )( )1

h rε
ε

−+    become well defined Colombeau generalized 
number ( ) 1

gh rε

−+  ∈ 
 . 

Rewriting now the metric (2.1.25) in terms of the Colombeau generalized 
coordinates ( )( ), , ,rε ε

τ θ ϕ , it then above horizon takes the form 

( ) ( )( )( ) ( ) ( )
( )( )( )( ) ( ) ( )

12 2 2 2 2

2 2 2 2 2

d d 2 d d d sin d

d 2d d d sin d .

s h r h r r r

h r r r

ε ε ε ε εε ε ε

ε ε ε εε ε

τ τ θ θ ϕ

τ τ θ θ ϕ

−+ + +

+

   = − − + +     

= − + + +
  

(2.1.31) 

We rewrite now Colombeau metric (2.1.27) in the equivalent form 

( ) ( )( ) ( )2 2 2 2 2 2d d 2d d d sin d .s h r r rε εε ε
τ τ θ θ ϕ+ += − + + +        (2.1.32) 

Colombeau metric (2.1.28) define the distributional Eddington-Finkelstein 
space-time 

{ }( ){ }2 2 ,r m g
≥

+ +
≥ × ≥ × 

  EFEF S                 (2.1.33) 

above the Eddington-Finkelstein horizon 2r m= . 
Remark 2.1.21. Notice that 

( )( ) ( ) ( )( ) ( )

( ) ( )( )
( ) ( )( ) ( )( )

( ]

11 1

1

2 2 1 2 2 2

, ,

d d d ,

d d 2 d d d ,

0,1 .

g g

g

g

g g
r r r r

gr r

g g
r r

h r r h r r

t r r

t r t r r r

ε εεε εε

ε ε ε

ε ε ε ε

ε ε

τ ε

τ ε ε

ε

−+ − + −

= =

−

=

− −

=

 = = ⋅ ∈ 

= + ⋅

= + ⋅ +

∈





       (2.1.34) 
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Of course at horizon ( )( ), 0gh t rε ε

+ ≈ , because at horizon ( )0 , 0gh t r+ = , 
however it follows from (2.1.24) at horizon the quantities  

( )( )( ) ( )( ) ( )( )2 1 2d , dg g gh r t r r rε ε εε ε
τ ε+ −≈  and ( ) ( )( )1d dgr rε ε ε

τ ε −≈  are infinite 
large Colombeau quantities, i.e., the differential ( )d ε ε

τ  is not classical but it is 
Colombeau differential. 

Remark 2.1.22. Note that: 
(i) under coordinate change (2.1.26) the distributional curvature scalars of the 

distributional Schwarzschild space-time given by metric (2.1.24), does not 
changes because these scalars depend only on variable r r= , 

(ii) in contrast with classical Eddington-Finkelstein space-time 

{ } { }( ) ( )2 2 0 2 , , ,r m r m g r θ
≥≥ = × ≥ < ≤ ×  EFEF S  

distributional Eddington-Finkelstein space-time has a gravitational singularity at 
horizon. 

Remark 2.1.23. Note that for the case of the distributional space-time the 
relations (2.1.24) obviously takes the form 

( )( ) ( ) ( ) ( )
( )

0 0

00

g g
g

g
α β

αβ αβε
ε

ε ε
γ ε ε

ε
 

= − +  
 

           (2.1.35) 

where (2.1.30) give the connection between the Colombeau metric of the 
distributional real space  

( ) ( )( )( )2d d dl x xα β
ε αβε ε

γ ε=                   (2.1.36) 

and the Colombeau metric of the four-dimensional distributional space-time 

( ) ( )( ) ( )( )
( )( )( )

2 0
0

20
00

d d d 2 d d

d .

s g x x g x x

g x

α β α
ε αβ αε ε ε

ε

ε ε

ε

= +

+
         (2.1.37) 

For distributional Eddington-Finkelstein metric (2.1.29) above horizon of the 
corresponding Colombeau metric of the distributional real space is 

( ) ( )( )( )
( ) ( )

12 2
,

2 22 2

d d

d sin d .

l h r r

r

εε ε ε

θ θ φ

+
≥

−+ +=

 + + 

EF
             (2.1.38) 

Remark 2.1.24. Notice since the distributional Eddington-Finkelstein 
space-time (2.1.29) has a gravitational singularity (see Definition 1.1.1) at 
horizon, there is no contradiction mentioned above for the case of the regular 
classical Eddington-Finkelstein metric (2.1.15) and the corresponding singular 
metric (2.1.17), see Remark 2.1.15.  

2.1.2 Distributional Kruskal-Szekeres Spacetime  
Recall that the classical Kruskal-Szekeres coordinates are defined, from the 
classical Schwarzschild coordinates ( ), , ,t r θ φ , by replacing t and r by a new 
time coordinate T and a new spatial coordinate X:  
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1 2

1 2

1 2

1 2

: 1 exp sinh ,
2

1 exp cosh ,
2

0 : 1 exp sinh ,
2

1 exp cosh
2

g
g g g

g g g

g
g g g

g g g

r r tr r T
r r r

r r tX
r r r

r r tr r T
r r r

r r tX
r r r

     
> = −          

     
     

= −          
     

     
< < = −          

     
     

= −        
    

.


           (2.1.39) 

It follows that the Schwarzschild radius r, in terms of Kruskal-Szekeres 
coordinates, is implicitly given by 

1 2

2 2 1 exp
g g

r rT X
r r

   
− = −      

   
                  (2.1.40) 

for both interior and exterior regions, i.e. { }\ 0r +∈ . In these new coordinates 
the metric of the Schwarzschild black hole manifold is given by 

3
2 2 2 2 24

d exp d d d .g

g

r rs T X r
r r

 
 = − − + + Ω    

 
           (2.1.41) 

The location of the event horizon ( 2gr GM= ) in these coordinates obviously 
is given by 

2 2 0 .T X T X− = ⇒ = ±                      (2.1.42) 

Remark 2.1.25. Note that the metric (2.1.37) ofcourse is perfectly well defined 
and non-singular at the event horizon. The curvature singularity is located at 

2 2 1T X− = . Under this property Kruskal-Szekeres spacetime in physical 
literature mistakenly considered as regular Lorentzian spacetime, except singular 
submanifold ( ){ }2 2, | 1T X T X− = . 

Remark 2.1.26. In contrast with Eddington-Finkelstein coordinates the 
classical Kruskal-Szekeres coordinates holds at Schwarzschild horizon, but 
however the differentials d ,dT X  of the functions ( ) ( ), , ,T r t X r t  are singular 
at Schwarzschild horizon gr r=  and therfore Kruskal-Szegeres spacetime 
cannot be considered as Schwarzschild spacetime in Kruskal-Szekeres coordinates 
(2.1.35)-(2.1.36). 

Remark 2.1.27. In order to avoid these difficulties one can apply instead of 
the Kruskal-Szekeres coordinates (2.1.35)-(2.1.36) the following distributional 
Kruskal-Szekeres coordinates to Colombeau generalized metric (2.1.8) 

( ]

( ) ( )( )( )

( ) ( )( )( )

1 2

1 2

, 0,1 :

1 exp sinh ,
2

1 exp cosh ,
2

g

g
g g g

g
g g g

r r

r r tT r r
r r r

r r tX r r
r r r

ε εε ε
ε

ε εε ε
ε

ε

ε ε

ε ε

≥ ∈

           = Θ − − − +                        
           = Θ − − − +                        
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( ) ( )( )( )

( ) ( )( )( )

1 2

1 2

0 :

1 exp sinh ,
2

1 exp cosh .
2

g

g
g g g

g
g g g

r r

r r tT r r
r r r

r r tX r r
r r r

ε εε ε
ε

ε εε ε
ε

ε ε

ε ε

< <

           = Θ − − − +                        

           = Θ − − − +                        

 

(2.1.43) 

Therefore for both interior and exterior regions we get 

( ) ( )
1 2

2 2 1 exp .
g g

r rT X
r rε εε ε

ε

ε
       − = − +              

            (2.1.44) 

Remark 2.1.28. Note that in contrast with (2.1.37) at horizon gr r= : 

( ) ( ) ( )2 2 1 2 0 .T X eε εε ε ε
ε − = ≠  



                 (2.1.45) 

In these new distributional coordinates the Colombeau metric (2.1.8) of the 
distributional Schwarzschild black hole manifold above horizon is given by 
formula 

( )
( )( )( )3

2 2 2 2 2
4

d exp d d d .
g g

g

r r r rs T X r
r r

ε
ε

ε ε εε

ε

ε Θ − −    = − − + + Ω        

 (2.1.46) 

Here ( )( )uε ε
Θ  is the generalized Heaviside function given by Equation 

(2.1.3).  
Remark 2.1.29. Note that in contrast with (2.1.36) Colombeau generalized 

metric (2.1.39) is non degenerate at horizon gr r=  in Colombeau sense.  

2.2. Distributional Schwarzschild Spacetime and Distributional  
Rindler Spacetime with Distributional Levi-Cività  
Connection. Generalized Einstein Equivalence Principle  

2.2.1. Distributional Schwarzschild Spacetime with Distributional  
Levi-Cività Connection  

Remark 2.2.1. Note that due to the degeneracy of the metric (2.1.11) at 
Schwarzschild horizon, the classical Levi-Civit’a connection on whole 
Schwarzschild spacetime is not available [18] [19] as classical Levi-Civit`a 
connection on Schwarzschild horizon becomes infinity 

( ) ( ) ( ) ( )
1 0
11 012 22 2

lim , lim ,
2 2r m r mr m r m

m mr r
r r m r r m= =→ →

−
Γ = = −∞ Γ = = ∞

− −
  (2.2.1) 

Remark 2.2.2. In order to avoid difficulties with classical Levi-Civit’a 
connection mentioned above in Remark 2.2.1, in papers [18] [19] we have 
applied the non smooth regularization via Schwarzschild horizon, see Remark 
2.1.5 and Equation (2.1.6). Corresponding Colombeau distributional connections 

( )( )l
kj ε

ε+Γ  and ( )( )l
kj ε−Γ  above and below Schwarzschild horizon are [18] [19]: 
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( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )

, , ,

, , ,

1 ,
2
1 .
2

l lm
kj mk j mj k kj m

l lm
kj mk j mj k kj m

g g g g

g g g g

ε ε ε εε ε

ε ε ε εε ε

ε

ε

+ + + + +

− − − − −

 Γ = + −  

 Γ = + −  

       (2.2.2) 

Obviously distributional connections ( ) ( ),l l
kj kjh hε εε ε

+ + − +   Γ Γ     coincides, in 
distributional sense, with the corresponding classical Levi-Cività connections on 

{ }3 \ 2r m= , since ( ) 0h hε ε

+ += , ( ) 0h hε ε

− −=  and ( ) 0
lm lmg gε ε

+ += ,  

( ) 0
lm lmg gε ε

− −=  there. Clearly, connections ( ) ( ) ( ], , 0,1l l
kj kj
+ −Γ Γ ∈    in respect 

the regularized metric ( ], 0,1g± ∈  , i.e., ( )
;

0
ij k

g± = . Proceeding in this 
manner, we obtain the nonstandard result [22] [23] see also Appendix B:  

( ) ( ) ( )

( ) ( ) ( )

1 0

21 0

1 0

21 0

2
4π ,

2
4π .

r m
R R m

r
r m

R R m
r

ε ε

ε ε

δ

δ

+ +

− −

−      = = −         
−      = =         

 

 

            (2.2.3) 

Remark 2.2.3. As expected, the distributional Ricci tensor as well as the 
distributional Ricci scalar vanish identically on { }3 \ 2r m= , since 

( )( ) { }supp 2 2r m r mδ − = = . This result is in a good agreement with canonical 
result [24]-[30] on { }3 \ 2r m=  since distributional connections (2.2.2) 
coincide with the corresponding classical Levi-Cività connections on 

{ }3 \ 2r m=  at least in distributional sense. For ( )2 0r mε ε
− ≈

  we obtain 
the nonstandard result: 

( ) ( )( )
( )( )

( ) ( )( )
( )( )

4

324 2

4

324 2

, , ,
4 2

, , ,
4 2

r r
m r m

r r
m r m

µν
ε µν ε ε

ε
ε

ρσµν
ε ρσµν ε ε

ε
ε

εε ε
ε

εε ε
ε

± ±

± ±

 
 

≈ + 
 + −
 

 
 

≈ + 
 + −
 









R R

R R





  (2.2.3) 

where ( )2 0r mε ε
− ≈

 , see Appendix C. For ( ) ( )2r mε εε
ε− ≈

 , see Appen-
dix C, Remark C.10, Equation (C22), we obtain [18] [19]: 

( ) ( )( ) ( )
( )

( ]

( ) ( )( ) ( )
( )

( ]

4

24 2

0,

4

24 2

0,

, , 1 ,
4 2

, , 1 ,
4 2

r r O
m r m

r r O
m r m

µν
ε µν ε ε

ε
ε η

ρσµν
ε ρσµν ε ε

ε
ε η

εε ε
ε

εε ε
ε

± ±

∈

± ±

∈

 
 ≈ +  − +   

 
 ≈ +  − +   









R R

R R





 (2.2.4) 

For ( ]2 0, , 1r m η η− ∈  , see Appendix C, Remark C.10, Equation (C22), 
we obtain 

( ) ( )( ) ( )
( ) ( ]

( ) ( )( ) ( )
( ) ( ]

24
2 0,

24
2 0,

1, , 1 ,
4 2

1, , 1 .
4 2

r m

r m

r r O
m r m

r r O
m r m

µν
ε µν ε ε

η

ρσµν
ε ρσµν ε ε

η

ε ε

ε ε

± ±

− ∈

± ±

− ∈

≈ +
−

≈ +
−













R R

R R
     (2.2.4) 
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2.2.2. Distributional Rindler Space-Time with Distributional  
Levi-CivitàConnection. Non-Regularity Conditions and  
Nonclassical Nature of the Rindler Space-Time  

We remind now that 2D Rindler spacetime is a patch of Minkowski spacetime, 
see Figure 7. In 2D, the Rindler metric is 

2 2 2 2d d d .s R R η= −                         (2.2.5) 

Remark 2.2.4. Due to the degeneracy of the metric (2.2.5) at Rindler gorizon 
0R = , the classical Levi-Cività connection is not available on whole 2 , e.g., 

1 4 4 1
44 14 41, ,R R−Γ = Γ = Γ =                      (2.2.6) 

and all other components being zero. 
Remark 2.2.5. We emphazize that Rindler space-time 1.1  is satisfied the 

same non-regularity conditions as Schwarzschild space-time Sch>, see Remark 
2.1.12. Let x̂Γ  be a contour located in Rindler space-time 1.1  and let x̂  be 
Rindler horizon as plotted in Figure 8 and let kAΓ∆  be the change in a vector 

( )kA x  after parallel displacement (as ploted in Figure 2) around closed contour  
Γ  (see Definition 2.1.4) located in Rindler space-time 1.1  as ploted in Figure 
8. 

Remark 2.2.6. We emphazize that in physical literature the Rindler metric 
(2.2.5) mistakenly were considered as is just a part of the Minkowski space-time 

1.1 . Obviously by non-regularity conditions kAΓ∆ = ∞  the geometry of 
Rindler space-time essantially ardinally different in comparizon with the 
geometry of Minkowski space-time 1.1  even if the Rindler horizon is excluded  

 

 

Figure 7. Hyperbolic motion in the right rindler wedge. ( )22 2 2 2x c t c a− = . 
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Figure 8. This is the right wedge, which covers one 
quarter of the Penrose diagram. Parallel displacement 
along a curve x̂Γ  in Rindler spacetime ℝ1.1 such that 

{ }ˆ
ˆ ˆ\x
x xΓ = Γ , then always kAΓ∆ = ∞ . 

 
from the space 1.1 . 

Remark 2.2.7. Note that in order to avoid this difficultnes mentioned above 
(see Remark 2.2.4-2.2.5), the origin in classical consideration the Rindler 
horizon is always excluded from the space 3.1  and we are working on 

{ }3.1 3.1 \ 0=  , and therefore for Einstein’s tensor 

                   (2.2.7) 

following Moller [24] we get 

     (2.2.8) 

where the accents indicate differentiation with respect variable R, and all other 
components of  vanish identically. Thus Rindler metrical tensor satisfy on 

 the Einstein field equations 

1 0.
2

k k k
i i iδ− =G R R                      (2.2.9) 

Remark 2.2.8. By calculations mentioned above, from Mo̸ ller’s times until 
nowdays, Rindler metrical tensor was mistakenly considered in physical literature 
as an vacuum solution of the Einstein’s field equations,e.g.,solution for empty 
space,see Møller [23]. 

1 ,
2

k k k i
i i i iδ− G R R R R

( ) ( )2 2
442 3

2 3 44 2 2
44 44

21 1= 2 0,
2 2 2 2

g R
g

g g R R

   ′
′′= = − − − − ≡   

      
G G

k
iG

{ }3.1 \ 0
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Remark 2.2.9. Note that Levi-Cività connection on the whole space ℝ3.1 is 
available only in Colombeau sense under smooth regularization  

( ]2 2 2 , 0,1R R ε ε→ + ∈  and therefore we forced to change metric (2.5) by 
Colombeau object 

( ) ( ) ( )
( ) ( ) ( ]

2 2 2 2 2 2 2
44,

2 2
44,

d d d d d

, 0,1 .

s R R R g

g R

ε ε εε ε

ε ε ε

ε η η

ε ε

     = − + = −     
   = + ∈   

      (2.2.10) 

Then for Einstein distributional tensor [18] [19] [20]: 

( ) ( ) ( ) ( ), , ,
1 ,
2

k k k i
i i i iε ε ε ε εε εε ε

δ− G R R R R             (2.2.11) 

we get 

( )( ) ( )( ) ( )
( )

2
2

44,2 3
2, 3, 44, 22 2

44, 44,

1 .
2 2

g
R R g

g g R

ε
ε ε εε ε

ε ε
ε ε

ε

ε

   ′    ′′= = − − −      +    

G G  (2.2.12) 

Thus, 

( )( ) ( )( ) ( )2 3 2
2, 3,0 0 ,ε εε ε ε

ε −     = =     G G              (2.2.13) 

where ( )2

ε
ε − ∈ 

  is infinite Colombeau generalized numbers, and therefore 
( )( )2

2, Rε ε
G  and ( )( )3

3, Rε ε
G  is nontrivial Colombeau generalized functions 

and distributional Rindler metric tensor given by (2.2.12) that is non vacuum 
Colombeau solution of the Einstein field equations.  

2.2.3. Generalized Einstein Equivalence Principle  
We remind that originally Einstein’s gravity was formulated by using classical 
pseudo Riemannian geometry with classical Levi-Civit’a connection. In classical 
pseudo Riemannian geometry, the Levi-Civita connection is a specific connection 
on the tangent bundle of a manifold. More specifically, it is the torsion-free 
metric connection, i.e., the torsion-free connection on the tangent bundle (an 
affine connection) preserving a given (pseudo-Riemannian) Riemannian metric. 
The fundamental theorem of classical Riemannian geometry states that there is a 
unique connection which satisfies these properties. 

Remark 2.3.1. Note that classical Einstein “Equivalence Principle” asserts the 
equivalence between inertial and gravitational forces of acceleration. The 
classical Einstein equivalence principle is the heart and soul of gravitational 
theory, for it is possible to argue convincingly that if EEP is valid, then 
gravitation must be a “curved spacetime” phenomenon, in other words, gravity 
must be governed by a “metric theory of gravity”, whose postulates are: 

1) Spacetime is endowed with a symmetric Lorentzian metric. 
2) The trajectories of freely falling test bodies are geodesics of that metric. 
3) In local freely falling reference frames, the non-gravitational laws of physics 

are those written in the language of special relativity. 
In order to obtain appropriate generalization of EEP based on distributional 

Colombeau geometry [4] [5] [6] [7] we claim the following generalized 
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equivalence principle (GEEP): 
1) Spacetime in general case is endowed with a symmetric distributional 

Lorentzian metric. 
2) The trajectories of freely falling test bodies are geodesics of that 

distributional metric. 
3) In local freely falling distributional reference frames, the non-gravitational 

laws of physics are those written in the language of special relativity.  

3. Quantum Scalar Field in Curved Distributional Spacetime.  
Unruh Effect Revisited  

3.1. Canonical Quantization in Curved Distributional Spacetime  

In a recent work [19] the authors advocated the use De Witt-Schwinger 
approach [37] [38] [39] [40] in order to establish QFT in general ditributional 
curved spacetime. The vacuum energy density of free scalar quantum field Φ  
with a distributional background spacetime is considered successfully. It has 
been widely believed that, except in very extreme situations, the influence of 
gravity on quantum fields should amount to just small, sub-dominant 
contributions. Here we argue that this belief is false by showing that there exist 
well-behaved spacetime evolutions where the vacuum energy density of free 
quantum fields is forced, by the very same background distributional spacetime 
such as in BHs, to become dominant over any classical energy density 
component. This semiclassical gravity effect finds its roots in the singular 
behavior of quantum fields on curved distributional spacetimes. In particular we 
obtain that the vacuum fluctuations 2Φ  have a singular behavior on BHs 
horizon ( ) 22: ~r r r r −

+ +Φ − . 
Much of formalism can be explained with Colombeau generalized scalar field 

[19]. The basic concepts and methods extend straightforwardly to distributional 
tensor and distributional spinor fields. To begin with let us take a spacetime of 
arbitrary dimension D, with a metric vgµ  of signature ( )+ − − . The action 
for the Colombeau generalized scalar field ( ) ( )Mε ε

ϕ ∈G  is 

( ) ( ) ( )2 21d .
2

D

M

S x g g m Rµν
ε ε ε µ ε ν ε ε εε

ε

ϕ ϕ ξ ϕ
 

= ∂ ∂ − + 
 
∫        (3.1.1) 

Here ξ  is a coupling constant (see [40] chapter 3). The corresponding 
equation of motion is 

( ) ( ]2
, , 0,1 .x m Rε ε ε ε

ξ ϕ ε + + ∈                   (3.1.2) 

Here 

( ) ( )1 2 1 2
, .x g g g µν

ε ε ε µ ε ε µ εε ε
ϕ ϕ−= ∂ ∂               (3.1.3) 

With   explicit, the mass m  should be replaced by m  . Separating out a 
time coordinate 0x , ( )0 , , 1, 2,3ix x x iµ = =  we can write the action as 

( ) ( ) ( ) ( )0 1d , d .DS x L L xε ε ε εε εε ε

−= =∫ ∫               (3.1.4) 
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The canonical momentum at a time 0x  is given by 

( )( ) ( )( )( ) ( )( )1 2
0 = ,x L x h n xµ

ε ε ε ε µ εε ε ε
π δ δ ϕ ϕ= ∂ ∂          (3.1.5) 

where x  labels a point on a surface of constant 0x , the 0x  argument of 
( )ε ε
ϕ  is suppressed, nµ  is the unit normal to the surface, and ( )hε ε

 is the 
determinant of the induced spatial metric ( )( )ijh

ε
ε . In order to quantize, the 

Colombeau generalized field ( )ε ε
ϕ  and its conjugate momentum ( )( )xε ε

π  
are now promoted to hermitian operators and required to satisfy the canonical 
commutation relation, 

( ) ( )( ) ( ) ( ]1, , , 0,1 .Dx y i x yε ε
ε

ϕ π δ ε−  = ∈               (3.1.6) 

Here ( ) ( ) ( )1 1d ,D Dy x y f y f xδ− − =∫  for any scalar function ( )3f D∈  , 
without the use of a metric volume element. We form now a conserved bracket 
from two complex Colombeau solutions to the scalar wave Equation (3.1.2) by [19]: 

( ) ( ], d , 0,1 ,jµε ε µ εε
ε

ϕ φ ε
Σ

 
= Σ ∈ 
 
∫                 (3.1.7) 

where 

( )( ) ( ) ( )( )1 2, .j i g gµ µν
ε ε ε ε ε ε ν ε ε ν εε ε
ϕ φ ϕ φ ϕ φ= ∂ − ∂          (3.1.8) 

Using equation of motion Equation (3.1.2) one obtains corresponding 
Colombeau generalization of the canonical Green functions equations. In 
particular for the Colombeau distributional propagator 

( )( ) ( ) ( )( )( ) ( ], 0 0 , 0,1 ,i G x x T x xε ε εε ε
ϕ ϕ ε± ± ±′ ′= ∈          (3.1.9) 

one obtains directly  

( ) ( )( ) ( )( ) ( )
1 22

, , , , .n
x m x G x x g x x xε ε ε ε

ξ ε ε δ
−± ± ±   ′ ′+ + = − − −    R   (3.1.10) 

We obtan now an adiabatic expansion of ( )( ),G x xε ε

± ′  [19]. Introducing 
Riemann normal coordinates yµ  for the point x , with origin at the point x′  
one obtains 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

;

;

1 1,
3 6

1 2
20 45 v

g x y y y y y

y y y y

α β α β γ
µυ µυ µαυβ µαυβ γε ε ε

λ α β γ δ
µαυβ γδ αµβλ γ δε ε ε

ε η ε ε

ε ε ε

± ± ±

± ± ±

   = + −   

  + + +   


R R

R R R
 (3.1.11) 

where µυη  is the Minkowski metric tensor, and the coefficients are all evaluated 
at 0y = . Defining now 

( )( ) ( )( )( ) ( )( )1 4
, , ,x x g x G x xε µυ εε εε

ε± ± ± ′ ′= −  
            (3.1.12) 

and its Colombeau-Fourier transform ( )( )kε ε

±  by 

( )( ) ( ) ( )( ), 2π d en n ik yx x k kε εε ε

−± − ⋅ ±′ = ∫                (3.1.13) 

where k y k yαβ
α βη⋅ = , one can work in a sort of localized momentum space. 
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Expanding (3.1.10) in normal coordinates and converting to k-space, ( )( )kε ε

±  
can readily be solved by iteration to any adiabatic order. The result to adiabatic 
order four (i.e., four derivatives of the metric) is 

 

( )( ) ( ) ( ) ( )( )

( ) ( )( )

( )( ) ( )

( )( ) ( )( ) ( )

1 22 2 2 2

22 2
;

22 2

2
32 2 2

1
6

1
2 6
1
3

1 2 ,
6 3

k k m k m

i k m

a k m

a k m

ε ε ε

α
α ε

α β
αβ ε

λ
λε ε

ξ ε

ξ ε

ε

ξ ε ε

− −± ±

− ±

−±

−± ±

 = − − − − 
 

 + − ∂ − 
 

 − ∂ ∂ − 

  + − + −  
   

 R

R

R

    (3.1.14)  

where kα
α∂ = ∂ ∂ , 

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

; ; ;
1 1 1
2 120 140
1 1

30 60
1 ,
60

a λ
αβ αβ αβ αβ λε ε ε ε

λ κλ
α λβ α β κλε ε ε ε

λµκ
α λµκβε ε

ε ξ ε ε ε

ε ε ε ε

ε ε

± ± ± ±

± ± ± ±

± ±

 − + − 
 

   − +   

 +  

 R R R

R R R R

R R

 (3.1.15) 

and we are using the symbol   to indicate that this is an asymptotic 
expansion. One ensures that Equation (3.1.13) represents a time-ordered 
product by performing the 0k  integral along the appropriate contour in Figure 
9. This is equivalent to replacing  by . Similarly, the adiabatic 
expansions of other Green functions can be obtained by using the other contours 
in Figure 9. Substituting Equation (3.1.14) into Equation (3.1.13) gives [19] 

     (3.1.16) 

 

 
Figure 9. The contour in the complex 0k  plane   
to be used in the evaluation of the integral giving + . 

The cross indicates the pole at ( )1 220 2k m= +k . 

2m 2m i− 

( )( ) ( ) ( ) ( )(
( ) ( )

12 2
0

2

1 22 2

, 2π d e , ;

, ; , ; ,

n n ikyx x k k m a x x

a x x a x x
m m

ε ε

ε

ε

ε ε

−−± − ±

± ±

′ ′= × − 

∂ ∂   ′ ′ + − +     ∂ ∂     

∫
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where ( )( )0 , ; 1a x x
ε

ε± ′ =  and, to adiabatic order 4, 

( )( ) ( )( ) ( )( )

( )( )

( )( ) ( )( ) ( )( )

1 ;

2
2

1 1, ;
6 2 6
1
3

1 1 1, ;
2 6 3

ia x x y

a y y

a x x a

α
αε ε ε

α β
αβ ε

λ
λε ε ε

ε ξ ε ξ ε

ε

ε ξ ε ε

± ± ±

±

± ± ±

      ′ = − − −        
  −  
  ′ = − +  

 

R R

R

    (3.1.17) 

with all geometric quantities on the right-hand side of Equation (3.1.17) 
evaluated at x′ .  

In Equation (3.16), then the dnk  integration may be interchanged with the 
ds  integration, and performed explicitly to yield (dropping the i ). 

( )( ) ( ) ( ) ( ) ( )

( )

2 2 2

0

,
, 4π d exp , ;

2

1, .
2

n n x x
x x i i s is im s x x is

is

x x y y

ε ε
ε ε

α
α

σ

σ

±∞
− −±

 ′  ′ ′= − − +    

′ =

∫ 
  

(3.1.18) 

The function ( ),x xσ ′  which is one-half of the square of the proper distance 
between x  and x′ , while the function ( )( ), ;x x isε ε

′  has the following 
asymptotic adiabatic expansion 

( )( ) ( )( ) ( )( ) ( ) ( )( )2
0 1 2, ; , ; , ; , ;x x is a x x is a x x is a x xε ε ε ε ε

ε ε ε± ± ± ±′ ′ ′ ′+ + +    

(3.1.19) 

Using Equation (3.1.12), Equation (3.1.18) gives a representation of 
( )( ),G x xε ε

± ′ : 

( )( ) ( ) ( )( ) ( )

( ) ( )

2 21 2

0

2

, 4π , ; d

,
exp , ;

2

n nG x x i x x i s is

x x
im s x x is

is

ε εε ε

ε

ε

σ

∞
− −±

±

  ′ ′= − ∆  
′ 

′× − +     

∫
      (3.1.20) 

where ( )( ), ;x x
ε

ε± ′∆  is the distributional Van Vleck determinant 

( )( ) ( ) ( ) ( )( )1 2
, ; det , , , .x x x x g x g xµ νε ε

ε σ ε ε
−± ±

±  ′ ′ ′ ∆ = − ∂ ∂       (3.1.21) 

In the normal coordinates about x′  that we are currently using, 

( )( ), ;x x
ε

ε± ′∆  reduces to ( )( )1 2
,g x

ε
ε

−± −  . The full asymptotic expansion of 

( )( ), ;x x isε ε

± ′  to all adiabatic orders are 

( )( ) ( ) ( )( )2
0

, ; , ;j

j
x x is is a x xε ε ε

ε
∞

± ±

=

′ ′∑               (3.1.22) 

with ( )( )0 , ; 1a x x
ε

ε± ′ = , the other ( )( ), ;ja x x
ε

ε± ′  being given by canonical 
recursion relations which enable their adiabatic expansions to be obtained. 

Remark 3.1.1. Note that the Expansions (3.1.19) and (3.1.22) are, however, 
only asymptotic approximations in the limit of large adiabatic parameter T.  
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If (3.1.22) is substituted into (3.1.20) the integral can be performed to give the 
adiabatic expansion of the Feynman propagator in coordinate space: 

( )( ) ( ) ( ) ( )

( )
( ) ( )

2 1 2
20

2
12 4

2 2 2
2 2

, 4π , ; , ;

2 2

j
n

jj

n

n

G x x i x x a x x
m

m H m

ε ε

ε

ε ε

σ
σ

− ∞± ±
± =

−

−

 ∂ ′ ′ ′− ∆ −  ∂ 
 

    × −            



   (3.1.23) 

which, strictly, a small imaginary part i  should be subtracted from σ . 
Remark 3.1.2. Since we have not imposed global boundary conditions on the 

distributional Green function Colombeau solution of (3.1.10), the expansion 
(3.1.23) does not determine the particular vacuum state in (3.1.9). In particular, 
the “ i ” in the expansion of ( )( ),G x xε ε

± ′  only ensures that (3.1.23) represents 
the expectation value, in some set of states, of a time-ordered product of fields. 
Under some circumstances the use of “ i ” in the exact representation (3.1.20) 
may give additional information concerning the global nature of the states.  

3.2. Effective Action for the Quantum Matter Fields in Curved  
Distributional Space-Time  

As in classical case one can obtain Colombeau generalized quantity ( )Wε ε
, 

called the effective action for the quantum matter fields in curved distributional 
spcetime, which, when functionally differentiated, yields 

( )( ) ( ) ( )( )1
2

2 W
gg

ε
µνµν ε

ε

δ
ε

δ εε

 
  = 
 − 

T                 (3.2.1) 

Note that the generating functional 

[ ]( ) [ ] ( ) ( ) ( ){ }( )exp dnZ D iS i x x xε ε ε ε εε ε
ϕ ε ϕ= + ∫mJ J          (3.2.2) 

was interpreted physically as the vacuum persistence amplitude  

( ),0 0,ε ε ε
out in . The presence of the external distributional current density 

( )ε ε
J  can cause the initial vacuum state ( )0, ε ε

in  to be unstable, i.e., it can 
bring about the production of particles. 

Following canonical calculation one obtains [19] 

[ ]( ) ( )( )
1
20 det ,Z G x xε εε

ε

± ±
 
 ′∝ −   
 

                (3.2.3) 

where the proportionality constant is metric-independent and can be ignored. 
Thus we obtain 

( ) [ ]( ) ( )( )ˆln 0 ln .
2
iW i Z Gε ε εε ε ε

± ± ± = − = − − tr             (3.2.4) 

In (3.2.4) ( )Ĝε ε

±  is to be interpreted as an Colombeau generalized operator 
which acts on an linear space ℑ  of generalized vectors ( ], , 0,1x ε ε ∈  
normalized by 
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( ) ( ) ( )
1
2, , ,x x x x g x

ε
ε

ε ε δ ε
−± 

 ′ ′= − −  
 

            (3.2.5) 

in such a way that 

( )( ) ( )ˆ, , , .G x x x G xε εε ε
ε ε± ±′ ′=                 (3.2.6) 

Remark 3.2.1. Note that the trace [ ]( )ε⋅tr  of an Colombeau generalized 
operator ( )ε ε

ℜ  which acts on a linear space ℑ , is defined by 

[ ]( ) ( ) ( )
1 1
2 2

; ;d , d , .n n
xx xxx g x x g x x xε ε εε

ε ε

ε ε± ±   
    ′ℜ = − ℜ = − ℜ      

   
∫ ∫tr  (3.2.7) 

Writing now the Colombeau generalized operator ( )Ĝε ε

±  as 

( ) ( )1

0

ˆ d exp ,G i s sε ε εεε
ε

∞
± ±− ± 

 = − = − −  
 
∫              (3.2.8) 

by Equation (3.1.20) we obtain 

( ) ( ) ( )( )
( ) ( )( )

2 1 2

22

exp 4π , ;

,
exp , ; .

2

n

n

x s x i x x

x x
im s x x is is

is

ε ε

ε

ε

σ

−±
±

−±

   ′ ′− = ∆   
′ 

′× − + 
 




  (3.2.9) 

Proceeding in standard manner we get [19] 

( ) ( ) ( )
2

1
2 22d , lim , ; d .

2
n

x x
m

iW x g x G x x m mε εε
ε ε

ε
∞

± ± ±

′→

    
  ′= −            

∫ ∫     (3.2.10) 

Interchanging now the order of integration and taking the limit x x′→  one 
obtains 

( ) ( ) ( )
2

1
2 22d d , , ; .

2
n

m

iW m x g x G x x mε εε
ε

ε
∞

± ± ± 
 = −   

 
∫ ∫          (3.2.11) 

Colombeau generalized quantity ( )Wε ε

±  is colled as the one-loop effective 
action. In the case of fermion effective actions, there would be a remaining trace 
over spinorial indices. From Equation (3.2.11) we may define an effective 
Lagrangian density ( )( );L xε ε

±
eff  by 

( ) ( ) ( )
1
2

;d ,nW x g x L xε εε
ε

ε± ± ± 
 = −  

 
∫ eff               (3.2.12) 

whence one get 

( )( ) ( ) ( ) ( )
2

1
2 22

;, lim d , ; .
2 x x

m

iL x g x x m G x x mε ε εε
ε ε

ε
∞

± ± ± ±

′→

  
  ′= − =         

∫ eff   (3.2.13) 

3.3. Stress-Tensor Renormalization  

Note that ( )( )L xε ε

±  diverges at the lower end of the s integral because the 
2sσ  damping factor in the exponent vanishes in the limit x x′→ . 

(Convergence at the upper end is guaranteed by the i−   that is implicitly added 
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to 2m  in the De Witt-Schwinger representation of ( )( )L xε ε

± . In four 
dimensions, the potentially divergent terms in the DeWitt-Schwinger expansion 
of ( )( )L xε ε

±  are 

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) )

12 1 2 2
; 3

0

2
0 1 2

,d32π lim , ; exp
2

, ; , ; , ;

x x

x xsL x x x im s
iss

a x x isa x x is a x x

ε ε ε

ε

σ
ε

ε ε ε

∞−±
±′→

± ± ±

 ′  ′= − ∆ − +      

 ′ ′ ′× + + 

∫div
 (3.3.1) 

where the coefficients 0a± , 1a±  and 2a±  are given by Equation (3.1.17). The 
remaining terms in this asymptotic expansion, involving 3a±  and higher, are 
finite in the limit x x′→ . 

Let us determine now the precise form of the geometrical ( )( );L xε ε

±
div  terms, 

to compare them with the distributional generalization of the gravitational 
Lagrangian that appears in [19]. This is a delicate matter because (3.3.1) is, of 
course, infinite. What we require is to display the divergent terms in the form ∞ × 
geometrical object]. This can be done in a variety of ways. For example, in n 
dimensions, the asymptotic (adiabatic) expansion of ( )( );L xε ε

±
eff  is 

( )( ) ( ) ( )( ) ( )

( ) ( )

21 1 2
;

0

1 2 2

0

2 4π lim , ; , ;

,
d exp

2

n
jx x j

j n

L x x x a x x

x x
i s is im s

is

ε ε ε

ε

ε ε

σ

∞
−± −

±′→ =

∞
− −

  ′ ′∆  
′ 

× − +     

∑

∫

eff

     (3.3.2) 

of which the first 2 1n +  terms are divergent as 0σ → . If n is treated as a 
variable which can be analytically continued throughout the complex plane, then 
we may take the x x′→  limit 

( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2 1 21 2
;

0 0

221 2

0

2 4π ; d exp

2 4π ; , ; , ; .
2

n j n
j

j

n jn
j j j

j

L x a x i s is im s

na x m j a x a x x

ε ε
ε

ε

ε ε ε

∞∞
− − −± −

=

∞ −−−

=

 
 −  

 

 = Γ − = 
 

∑ ∫

∑

eff

   (3.3.3) 

From Equation (3.3.3) it follows we shall wish to retain the units of ( );L xε
±

eff  
as (length)−4, even when 4n ≠ . It is therefore necessary to introduce an 
arbitrary mass scale µ  and to rewrite Equation (3.3.3) as 

( )( ) ( ) ( )( )
4

4 221 2
;

0
2 4 ; .

2

n
jn

j
j

m nL x a x m jε ε
ε

π ε
µ

− ∞ −−± −

=

    Γ −    
    

∑eff   (3.3.4) 

If 4n → , the first three terms of Equation (3.3.4) diverge because of poles in 
the Γ-functions: 

( ) ( )

( ) ( )

( )

4 2 4 ,
4 2 4

4 21 4 ,
2 2 4

22 4 .
2 4

n O n
n n n

n O n
n n

n O n
n

γ

γ

γ

   Γ − = − + −   − −   

   Γ − = − + −   − −   

 Γ − = − + −  − 

              (3.3.5) 
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Denoting these first three terms by ( )( );L xε ε

±
div , we have 

( )( ) ( )

( )
( )

( ) ( )

2
2

; 2

4 2
0 1

2

1 14π ln
4 2

4 ; 2 ;
; .

2 2

n mL x
n

m a x m a x
a x

n n n

ε ε

ε

γ
µ

ε ε
ε

−±
    = + +   −      

  
× − +   − −   

div

     (3.3.6) 

The functions ( ) ( )0 1; , ;a x a xε ε  and ( )2 ;a x ε  are given by taking the 
coincidence limits of (3.1.17) 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( )

( ) ( )( )

( )( )

( )( )

0 1

2

,

2

1; 1, ; ,
6

1; , ,
180

1 , ,
180
1 1 ,
6 5

1 1 , .
2 6

x

a x a x

a x x x

x x

x

x

ε ε ε

αβγδ
αβγδε ε

αβ
αβ ε

ε ε

ε

ε ε ξ ε

ε ε ε

ε ε

ξ ε

ξ ε

± ± ±

± ± ±

± ±

±

±

 = = − 
 

=

−

 − − 
 

 + − 
 

R

R R

R R

R

R



          (3.3.7) 

Finally one obtains [19] 

( )( ) ( )
( )

( ) 2
3

; 2 3
0

1 d ln , ; e .
64π

ismL x i s is x x is
is

ε εε
ε

∞
± ± −

 ∂   −   ∂ 
∫ ren     (3.3.8) 

Remark 3.3.1. All the higher order ( )2j >  terms in the DeWitt-Schwinger 
expansion of the effective Lagrangian (3.3.4) are infrared divergent at 4n =  as 

0m → , we can still use this expansion to yield the ultraviolet divergent terms 
arising from 0,1j =  and 2 in the four-dimensional case. We may put 0m =  
immediately in the 0j =  and 1 terms in the expansion, because they are of 
positive power for ~ 4n . These terms therefore vanish. The only nonvanishing 
potentially ultraviolet divergent term is therefore 2j = : 

( ) ( )
4

21
22 4π , 2 ,

2

n
n m na x ε

µ

−
−−    Γ −   

  
                (3.3.9) 

which must be handled carefully. Substituting for ( )2a x  with ( )nξ ξ=  from 
(3.3.7), and rearranging terms, we may write the divergent term in the effective 
action arising from (3.3.9) as follows 

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

4 1
21 2

, 2

4
21

1
2

2 4π 2 d , ,
2

2 4π 2
2

d , 4 ,

n
n n

n
n

n

m nW x g x a x

m n

x g x x G x O n

ε ε
ε

ε ε
ε

ε ε
µ

µ

ε α β

−
−± − ±

−
−−

± ± ±

      = Γ − −          

   = Γ −   
  

 
  × − + + −    

 

∫

∫ 



div

  (3.3.10) 
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where 

( )( ) ( ) ( )( ) ( ) ( )( )
( )( )

( )( ) ( ) ( )( )

2

, , 2 , ,
1 , ,
3

, , ,
1 1, .

120 360

x x x x x

x

G x x x

αβγδ αβ
ε αβγδ αβε ε ε

ε

αβγδ
ε αβγδε ε

ε ε ε ε

ε

ε ε

α β

± ± ± ±

±

± ± ±

= −

+

=

= = −



R R R R

R

R R



   (3.3.11) 

Finally we obtain [19] 

( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )( ) ( )( )

2
,

2

,

,

2= 1 2880π ,
3

1 2880π , ,

, , , .

x

x

T x

x x G x

x x

x x x

µ
µ

ε

ε ε ε ε
ε

αβγδ
αβγδ ε

αβ
αβ εε ε

ε

α ε β

ε ε

ε ε ε

± ±

± ±

± ± ±

  − − +  
  
= − × 

− − 



  



ren

R

R R

R R R

      (3.3.12) 

Therefore for the case of the distributional Schwarzchild spesetime using 
Equation (2.2.4) and Equation (3.3.12) ( ) ( ) ( ]0,2 , 1r mε ε ηε

ε η
∈

− ≈


 , see Ap-
pendix C, Remark C.10, Equation (C22), we obtain 

( )( ) ( ) ( )

( )( ) ( )

11 22 1 2 2

1 22 2

, 2880 π 16 2

1 2880 16 π 2 .

T r m r m

O m r m

µ
µ ε

ε ε

ε

ε ε
−− −

− −−

   ≈ − ⋅ − + +     

≈ − ⋅ ⋅ −









ren  (3.3.13) 

Finally from Equation (3.3.13) for ( ]2 0, , 1r m η η− ∈  , see Appendix C, 
Remark C.10, Equation (C22), we obtain  

( )( )
( ]

( ) ( ) ( ) ( ]
1 22 2

2 0,2 0,
, 1 2880 16 π 2 .r mr m

T r O m r mµ
µ ηη

ε
− −−

− ∈− ∈
≈ − ⋅ ⋅ −
ren

 (3.3.14) 

Remark 3.3.2. Thus QFT in distributional curved spacetime predict that the 
infalling observer burns up at the BH horizon. 

Remark 3.3.3. In order to avoid singularity at horizon 2r m=  in Equation 
(3.3.13) one have to apply the Loop Quantum Gravity approach [41]-[46]. The 
first one concerns the requirement of selfadjointness to the metric components. 
For instance, the classical quantity  

( )
2

,
22 1

x

tx
x

x

E K
g

GmE K
E

ϕ

ϕ

′
= −

+ −

                  (3.3.14) 

defined as an evolving constant (i.e. a Dirac observable), must correspond to a 
selfadjoint operator at the quantum level. Classically, Kϕ  and xE  are pure 
gauge, and txg  is just a function of the observable m. In the interior of the 
horizon, if ˆtxg  is a selfadjoint operator, a necessary condition will be [41]-[46] 

2 21 0.
j

GmK
l kϕ+ − ≥
P

                       (3.3.15) 
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At the singularity, i.e. 1j = , and owing to the bounded nature of 2Kϕ < ∞ , 

( )1 2

2 0.
1
Gmk

l Kϕ

≥ >
+P

                      (3.3.16) 

Therefore, this argument strongly suggests that the classical singularity will be 
resolved at the quantum level since 1k  must be a non-vanishing integer.  

Remark 3.3.4. Let ( )
H

T rµ
ν ren

 be ( )0 0H HT rµ
ν ren

, where 0H  is the 
Hartle-Hawking vacuum state [37]. Notice that the main feature of the tensor 

( ) ( )ˆ H
T r T rµ µ
ν ν

ren
 formally calculated in classical literature (see, for example, 

[37] chapter 11.3) is that its components are finite on the event horizon r+ . An 
observer at rest at a point r close to the event horizon records the local energy 
density ( )ˆ t

tT r= − . This quantity remains finite as r r+→ . On the other hand, 
the temperature measured by the such observer is 

( )
1 2

1 ,
2π

rkr
r

−
+ Θ = + 

 
loc                     (3.3.17) 

grows infinitely near the horizon [37]. The local temperature can be measured 
by using a two-level system as a thermometer. Transitions between levels are 
caused by the absorption and emission of quanta of the fields (photons). After a 
sufficiently long exposure, the probability for a system to occupy the upper level 
will be less than that for the lower level by a factor ( )( )exp E r∆ Θloc , where 

E∆  is the energy difference between the levels. It is well known that the 
temperature in the vicinity of r+  is 2πa aθΘ ≈ =loc , where a is the observer’s 
acceleration [37]; as ( ), .r r r+→ Θ →∞loc  The radiation energy density ε  in 
the neighborhood of such a point is [37] 

( )4 42π .akσ σθ                       (3.3.18) 

Therefore Stefan-Boltzmann law under formal calculation by using classical 
Schwarzschild geometry is evidently violated. Let us remind that the acceleration 

i
ia a a=  of free fall of a body which is initially at rest in the Schwarzschild 

reference frame is [37] 

( ) 1 2
2

.
21

ma r
mr
r

=
 − 
 

                     (3.3.19) 

The acceleration points along the radius and is directed toward the center; as 
2r m→ : 

( )
( )1 2

2 .
4 2

ma r
m r m

=
−

                     (3.3.20) 

From Equation (3.3.20) and Equation (3.3.14) as ( ]2 0, , 1r m η η− ∈ 
, see 

Appendix C, Remark C.10, Equation (C22), we obtain: 

( ) ( ]

( )( )
( ]

4
22 2 0,

2 0,

, .
64 2

a
r m

r m

T r
m r m

µ
µ

η
η

σσθ ε
− ∈

− ∈

= −
− ren

      (3.3.21) 
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Therefore Stefan-Boltzmann law under rigorous calculation by using 
distributional Schwarzschild geometry evidently is not violated. 

3.4. Unruh Effect Revisited  

We remind now that a black holes have an approximate Rindler region near the 
Schwarzschild horizon. For the the distributional Schwarzschild solution (2.1.8) 
by coordinate transformation  

( )( ) ( ]2 22 1 , 0,1 ,r m
ε

δ ε ε= + + ∈                   (3.4.1) 

we obtain  

( ) ( )( )2 2 2 2 2 2 2 2
2d d 16 d 4 ds t m mε ε ε

δ ε δ= − + + + Ω +        (3.4.2) 

The ( ),t δ  piece of this metric (3.4.2) is Rindler space (we can rescale t , δ  
and ε  to make it look exactly like (2.2.10). Thus from (3.3.13) using (3.4.1) we 
obtain directly for 0δ   

( )( ) 4

0
, .T µ

µ
ε

δ ε δ −

ren


                      (3.4.3) 

Therefore, sufficiently strongly accelerated observer burns up near the Rindler 
horizon. Thus, Polchinski’s account is not a violation of the Einstein equivalence 
principle.  

Remark 3.4.1. Note that by using Equation (A.8) and Equation (A.9) (see 
Appendix A) one obtains Equation (3.4.3) directly from distributionel Möller 
metric (1.2.13) and distributionel Rindler metric (2.2.10). 

( )( ) ( )
( ) ( )

4

22 2

4 1
, .

g O
T x

a gx

µ
µ

ε

ε

ε
ε

−

 + + 
ren

                (3.4.4) 

The Unruh effect is the prediction that an accelerating observer will observe 
blackbody radiation where an inertial observer would observe none. The Unruh 
effect was first described by Stephen Fulling in 1973, Paul Davies in 1975 and W. 
G. Unruh in 1976 [47]. The Unruh temperature, derived by William Unruh in 
1976, is the effective temperature experienced by a uniformly accelerating 
detector in a vacuum field. It is given by [47]: 

,
2 B

gT
cπ κ

=
                          (3.4.5) 

where g is the local acceleration, Bκ  is the Boltzmann constant,   is the 
reduced Planck constant, and c is the speed of light. Thus, for example, a proper 
acceleration of 2.47 × 1020 m/sec2 corresponds approximately to a temperature of 
1 K. Notice that for a proper acceleration of 2.47 × 1020 m/sec2 the event horizon 
very close to observer by distance 1 2748horx ≅ . 2m−1 = 3. 6387 × 10−4 m. It is 
currently not clear whether the Unruh effect has actually been observed, since 
the claimed observations are disputed. There is also some doubt about whether 
the Unruh effect implies the existence of Unruh radiation. Although Unruh’s 
prediction that an accelerating detector would see a thermal bath is not 

https://doi.org/10.4236/jhepgc.2018.42023


J. Foukzon et al. 
 

 

DOI: 10.4236/jhepgc.2018.42023 414 Journal of High Energy Physics, Gravitation and Cosmology 
 

controversial, the interpretation of the transitions in the detector in the 
nonaccelerating frame is. It is widely, although not universally, believed that 
each transition in the detector is accompanied by the emission of a particle, and 
that this particle will propagate to infinity and be seen as Unruh radiation. The 
existence of Unruh radiation is not universally accepted. Some claim that it has 
already been observed [48], while others claim that it is not emitted at all [49]. 
While the skeptics accept that an accelerating object thermalizes at the Unruh 
temperature, they do not believe that this leads to the emission of photons, 
arguing that the emission and absorption rates of the accelerating particle are 
balanced. By the Einstein equivalence principle Stefan-Boltzmann law holds near 
the Mӧller horizon. Therefore by Equation (3.4.4) and Stefan-Boltzmann law the 
temperature measured by the observer located near the Mӧller horizon is 

( ) 11 .T g gx −+                        (3.4.6) 

Thus observer with a proper acceleration of 2.47 × 1020 m/sec2 burns up near the 
Mӧller horizon. 

4. Conclusion  

On a Riemannian or a semi-Riemannian manifold, the metric determines 
invariants like the Levi-Civita connection and the Riemann curvature. If the 
metric becomes degenerate (as in singular semi-Riemannian geometry), these 
constructions no longer work, because they are based on the inverse of the 
metric, and on the related operations like the contraction between covariant 
indices. In order to avoid these difficulties distributional geometry by using 
Colombeau generalized functions [3]-[10]. In authors papers [18] [19] appropriate 
generalization of classical GR based on Colombeau generalized functions is 
proposed. 

Such generalization of classical GR based on appropriate generalization of the 
Einstein equivalence principle (GEEP) is mentioned above in subsection 2.3. 
Using Rindler distributional geometry Unruh effect revisited. We pointed out 
that GEEP avoid the contradiction which was mentioned by Z. Merali in paper 
[47], and therefore Polchinski’s account [1] doesn’t violates the Einstein 
equivalence principle.  
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Appendix  
Appendix A1 

Let us introduce now Colombeau generalized metric which has the form 

( ) ( )( )( ) ( )( ) ( ) ( )( )( )( )
( ) ( ) ( )( )

2 22 0 0

2 22 2

d d 2 d d d

              d sin d , .

s A r x D r x r B r C r r

B r r r

ε ε ε ε εε ε εε

ε
ε

θ θ φ

= − − + +

 + + ∈  

  (A1.1) 

The Colombeau scalars ( )( ) ( ) ( )( ), , , ,r r rµν
µνε ε

ε ε εR R R  and  
( ) ( )( ), ,r rρσµν

ρσµν ε
ε εR R , in terms of Colombeau generalized functions  

( )( ) ( )( ) ( )( ) ( )( ), , ,A r B r C r D rε ε ε εε ε ε ε
 are expressed as 

( )( )
2

2

2

2 2, 2 3

1 12 2 ,
2 2

A A B A C D Ar
r A B A B Ar

B B A B A B
B B A B A B

ε ε ε ε ε ε ε ε
ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε
ε

ε
   ′ ′ ′  ′′∆ +

= − − + + −    ∆ ∆  
′′  ′  ′ ′  ′ ′  ′∆ − + − + +    ∆      
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1 1 1 1
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ε

ε ε

  ′′ ′ ′ ′ ′ ′ ∆ = − + +  ∆∆   

   ′ ′ ′ ∆ +
+ − − +    ∆∆   

′ ′ ′′ ′ ′  ′′ ′∆ − − + + − ∆ ∆ 

R R
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1 1 1 1 2 ,
2 2 2
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ε ε ε ε ε εε

ε ε

  ′′ ′ ′   ′ ′ ′ ∆= − + +    ∆∆ ∆   

 ′  ′ + + − +  
∆    

  ′ ′ ′  ′ ′ ′′∆
+ + − + + 

∆∆  

R R

( )

22

2

1 1 .
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B B
B B
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ε ε ε
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 ′  ′ ′∆ − −   ∆     
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(A1.2) 

Remark A1.1. Note that the Colombeau scalars  
( )( ) ( ) ( )( ), , , ,r r rµν

µνε ε
ε ε εR R R  and ( ) ( )( ), ,r rρσµν

ρσµν ε
ε εR R  can be  

extended on Colombeau generalized numbers ( )rε ε
 = ∈ 

r  as corresponding 
generalized point value (see Definition 1.5.4) by formulas:  
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( )( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

(i) , , ,

(ii) , , , ,

(iii) , , , , .

r

r r

r r

εε ε

µν µν
µν ε µν εε ε

ρσµν ρσµν
ρσµν ε ρσµν εε ε

ε ε

ε ε ε ε

ε ε ε ε

     
   
   
   
   







R r R

R r R r R R

R r R r R R

  (A1.3) 

The distributional Mӧller’s metric is 

 
( ) ( )( )

( ) ( ) ( ]

2 2 2 2 2

2 2

d d d d d ,

, 0,1 .

s A x t x y z

A x a gx

ε εε ε

ε ε ε

= − + + +

 = + + ∈ 

              (A1.4) 

In order to aply Equation (A1.2) directly we chose now ( ),g g θ ϕ= , where 
angles ,θ ϕ  correspond to spherical coordinates: sin cosx r θ ϕ=   

sin sin , cosy r z rθ ϕ θ= = . In spherical coordinates we get 

( ) ( )( )( )
( )

( ) ( ) ( ]
( ) ( ) ( )
( )

2 2 2 2 2

2 2 2

2 2

2 2

d , d d d ,

d d sin d , , sin cos ,

, 0,1 ,

2 , 2 ,

, .
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A r a g r
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ε εε ε
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η θ ϕ

θ θ ϕ η θ ϕ θ ϕ

η η ε ε

η η η η

η η θ ϕ

= − + + Ω

Ω = + =

 = + + ∈ 
′ ′′= + =

=

           (A1.5) 

We choose now in the Equation (A1.2): ( ) ( )1, 0B r C rε ε= = , and  
,g g constη = ∗ =  sin cos 0θ ϕ ≠  and rewrite Equation (A1.5) in the following 

equivalent form 

( ) ( )( )
( ) ( )

2 2 2 2 2

2 2

d d d d ,

.

s A r t r r

A r a gr

ε εε ε

ε ε

= − + + Ω

= + +
             (A1.6) 

Note that 

( ) .A B C Aε ε ε ε ε∆ = + =                      (A1.7) 

From Equations (A1.5)-(A1.7) by Equation (A1.2) we get 
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(A1.8) 

From Equation (A1.8) in the limit 0a g rε
∗+ →  we get  

( )( )
( )

( )
2 2

22 2

2, , 0.gr a g r
a g r

ε εε ε

ε
ε

ε
ε

ε

∗
∗

∗

 
 −  ≈ + ≈     + +    

  R         (A1.9) 

Remark A1.2. Note that: (1) Equation (1.2.14) in a nice agriment with 
Equation (A1.9), see Remark 1.2.2-Remark 1.2.4. (2) For ( )r rε ε

=  located 
beyond horizon, i.e. 0a g r∗+ ≈/

  one obtains classical result 

( )( ) ( )( )2 2, 0,r O g
ε ε

ε ε∗≈ ≈
  R                  (A.1.10) 

see Definition 1.5.2. (i). (3) At horizon : 0hor horr r a g rε
∗= + =  from Equation 

(A1.9) one obtains nonclassical result  

( )( ) ( )( )2 2, ,horr O g
ε ε

ε ε∗ −≈ ≈ ∞
 

R                 (A1.11) 

see Definition 1.5.2. (ii). 
Remark A1.3. Let ( ) 0a g rε ε

∗ + ≈   , then from Equation (A1.3) and 
Equation (A1.9) we obtain  
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( )

2 2

22 2

2, .gr
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ε ε

ε
ε

εε
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  −   ≈       + +      



R              (A1.12) 

From Equations (A1.5)-(A1.7) by formulae (A1.2) we get 
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(A1.13) 

From Equation (A1.13) in the limit 0a g rε
∗+ →  we get  

( ) ( )( ) ( )

( )
( )

4 4

42 2

4 1
, , , 0.

g O
r r a g r

a g r

µν
ε µν ε εε ε

ε
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≈ + ≈ 
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  R R  (A1.14) 

Remark A1.4. At horizon : 0hor horr r a g rε
∗= + =  from Equation (A1.14) one 

obtains nonclassical result 

( ) ( )( ) ( )( )2 4, , ,hor horr r O gµν
µν ε ε

ε ε ε∗ −≈ ≈ ∞
  R R         (A1.15) 

see Definition 1.5.2. (ii).  
Remark A1.5. Let ( ) 0a g rε ε

∗ + ≈   , then from Equation (A1.3) and 
Equation (A1.14) we obtain  

( ) ( )( ) ( )
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4 4
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, , .

g O
r r
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R R       (A1.16) 

From Equation (A1.4)-Equation (A1.6) by formulae (A1.2) we get  
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(A1.17) 

In the limit 0a g rε
∗+ →  from (A1.12) we get 
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R R 



       (A1.18) 

Remark A1.6. At horizon : 0hor horr r a grε = + =  from Equation (A1.18) one 
obtains nonclassical result  

( ) ( )( ) ( )( )2 4, , ,r r O gρσµν
ρσµν ε ε

ε ε ε∗ −≈ ≈ ∞
  R R         (A1.19) 

see Definition 1.5.2. (ii).  
Remark A1.7. Let ( ) 0a g rε ε

∗ + ≈   , then from Equation (A1.3) and 
Equation (A1.18) we obtain  
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Remark A1.8. We assume now there exist a fundamental generalized length 
( )lε ε
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, 1,l b
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ε ε ηε η
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= ×
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                 (A1.21) 

such that ( ) ( ) ( ) ,a g r l b bε ε εεε
ε∗+ ≥ = × ∈ . It mean there exist a thickness 

( )horth lε ε
=  of horizon. We introduce a norm horth  of a thickness horth  by 

formula 

( ]0,sup ,horth lεε η η∈= =                 (A1.22) 

where parameter η  is a classical thickness of horizon. 
By using (A1.21) we get the estimate 
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      (A1.23)

 

Appendix A2  

Let us consider now distributional Colombeau metric given by Equation (1.3.30) 
with 1c =  

( )
( )( )

( )
( )

2 2 4
2 2 2 2 2 2

2d d 1 d d sin d ,
r

s t r r
rr

ε
ε ε

ρ ε ρ θ θ ϕ
ρ

− +    = − + + + +    +
  (A2.1) 

where ( ]0,1ε ∈ , 4srρ = , sr  is a schwarzschild radius. 
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We choose now ( ) ( ) 0D r C rε ε= = , and rewrite Equation (A2.1) in the 
following equivalent form 
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22 22 2 4 2

2 22 2 2 22 2

22 2 24

2 22 2 2 22 2

4 2

2 2 2 22 2 2

2 2

22 2 2

22

4 2 2 4 16 16

164 16

4 16 16

16 ,

2 3 8 4

r r rA
A r r r r

rr

r r r r

r

r rr r

r r

rA
A

ε

ε

ε

ε

ε ρ ρ ε ρ ρ ρ ρ

ρ ρ ε ρ ρ ε

ρ ρ ε εε ρ ρ

ρ ρ ε ρ ρ ε

ε ρ ρ ρ

ρ ρ ερ ρ ε

ρ ε

ρ ρ ε

ε ρ

+ − + − + − ′
= = 

  + − + + − +

 − + −+ −  = +
+ − + + − +

+ −
= +

+ − ++ − +

−
+ − +

+ −′′
=

( )
( ) ( )2 2 2

.
r r

ρ

ρ ρ ε + − + 
 

 

(A2.2) 

We assume now that r ρ , then from Equation (A2.2) we obtain  

( )( )

( )( ) ( ) ( )( )
( )
( )( ) ( )

( ) ( ) ( )

( )

2

2 2

2 4 2

2 22 22 22 2 2

2 2

22 22 2

2 2

2 2 22 2 2 2

2

22 2

2

4 4 ,

3 4 2 ,
2

1 2 2 2
2

2 .

A
A r

A
A rr r

A
A rr

A A
A A r r r

r

ε

ε

ε

ε

ε

ε

ε ε

ε ε

ε

ρ ρ ε

ε ε

ρ ερ ρ ε ρ ε

ε ρ

ρ ερ ρ ε

ε
ρ ε ρ ε ρ ε

ε

ρ ε

′
−

− +

 ′
+ − 
 − +  − + − + 

+′′

− +− +

 ′′ ′
− + − + − 

− + − +    − + 

= −
 − + 





 



   (A2.3) 
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From Equation (A2.3) by formulae (A1.2) we get  

( )( )
2

2

2, 2 3 2

1 12
2 2

1 2 2 2

1 12
2 2

A A B A B
r

r A B A B

B A B A B
B A B A B

A B A B
B r A B A B

B A B
B A B

ε ε ε ε ε ε
ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε
ε

ε ε ε ε

ε ε ε ε ε

ε ε ε

ε ε ε

ε
  ′ ′ ′ ′′ ′′ ∆

= − − + − −    ∆ ∆  
′ ′ ′ ′ ′ ′    ∆ + − + +    ∆      

  ′ ′ ′′ ′′ 
= − − − −      

′ ′ ′ 
+ − + 

 

R

A B A B
A B A B
ε ε ε ε

ε ε ε ε
ε

′ ′ ′ ′   + +      

 

( ) ( )2 2

2 2

1 2 2 2

1 3 1 .
2 2 2

A B A B
B r A B A B

A B A B
A B A B

ε ε ε ε

ε ε ε ε ε

ε ε ε ε

ε ε ε ε
ε

   ′ ′ ′′ ′′
= − − − −      

′ ′ ′ ′ + + −
 

 

(A2.4) 

From Equation (A2.4) in the limit rε ρ→  by formulae (A2.3) we get  

( )( )
( )

2

22 2

2, .r
r

ε ε

ε
ε

εε
ρ ε

 
 

≈ − 
 − +   

R               (A2.5) 

Remark A2.1. Note that: (1) Equation (A2.5) in a nice agriment with 
Equation (A1.9). For ( )r rε ε

=  located beyond horizon, i.e. 0r ρ− ≈/
  one 

obtains classical result 

( )( ) ( )( )2, 1 0,r Oε ε ε
ε ε≈ ≈

  R                   (A2.6) 

see Definition 1.5.2. (i). (3) At horizon : 0hor horr r rε ρ= − =  from Equation 
(A2.5) one obtains nonclassical result  

( )( ) ( )( )2, 1 ,horr O
ε ε

ε ε −≈ ≈ ∞
  R                 (A2.7) 

see Definition 1.5.2. (ii). 
Remark A2.2. Let ( ) 0rε ε

ρ − ≈   , then from Equation (A1.3) and Equation 
(A2.5) we obtain  

( )( )
( )

2

22 2

2, .r
r

ε ε

ε
ε

ε
ε

ρ ε

  
    ≈ −      − +    

R             (A2.8) 

From Equation (A2.3) by formulae (A1.2) we get  

( ) ( )( )
22

2

22

2

, ,

1 1 1 1
2 4 2

1 1 1 1 12 2
2 2 2 4

'

r r

A A A A B A
A A A B r A

A A B A B B B
r A B A B B B

µν
µν ε

ε ε ε ε ε ε ε

ε ε ε ε ε εε
ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε εε
ε

ε ε

 ′′ ′ ′ ′ ′ ′ ∆ = − + +  ∆∆   

   ′ ′ ′ ′ ′′ ′ ′ ∆ ∆ + − − − − +     ∆ ∆∆    

R R
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22

2

2

1 1 1 1
2 4 2 2

1 1 2
2

A A A A B B B
A A A B B B

B A B
B r A B

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε εε

ε ε ε ε ε

ε ε ε ε ε
ε

  ′′ ′ ′ ′ ′ ′′ ′ ∆ + − + + −   ∆∆   
′ ′ ′ ′ ′ ∆ ∆ − + − +   ∆ ∆   

 

2

2

2

2

2

2

1 1 1 1 1
2 4 2

1 1 12 2
2

1 1 1
2 2 4

1
2

A A A B A B A
A A A B A B r AB

A B A B
r A B A BB

A B B B A B
A B B B A B

A

ε ε ε ε ε ε ε

ε ε ε ε ε ε εε
ε

ε ε ε ε

ε ε ε εε

ε ε ε ε ε ε

ε ε ε ε ε ε
ε

ε

ε

  ′′ ′ ′ ′ ′ ′ ′  = − + + +       
   ′ ′ ′ ′ 
+ + − −        

′ ′ ′′ ′ ′ ′  − − + +     
′

+
∆

22

1 1
4 2

1 1 1 .
2 2

A A A B A B
A A A B A B

B B B B
B B B r B

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε

ε ε ε ε ε
ε

  ′ ′ ′ ′ ′ ′ 
− + +      

′′ ′ ′ ′ ′  ∆ + − − +  ∆     

 

(A2.9) 

From Equation (A2.9) in the limit rε ρ→  by formulae (A2.3) we get 

( ) ( )( )
( )

4

42 2
, , .r r

r

µν
µν ε

ε
ε

εε ε
ρ ε

 
 

≈  
 − +   

R R            (A2.10) 

Remark A2.3. Note that: (1) For ( )r rε ε
=  located beyond horizon, i.e. 

0r ρ− ≈/   one obtains classical result 

( ) ( )( ) ( )( )4, , 1 0,r r Oµν
ε µν ε ε ε
ε ε ε≈ ≈

  R R             (A2.11) 

see Definition 1.5.2. (i). (2) At horizon : 0hor horr r rε ρ= − =  from Equation 
(A2.10) one obtains nonclassical result  

( ) ( )( ) ( )( )4, , 1 ,hor horr r Oµν
µν ε ε

ε ε ε −≈ ≈ ∞
  R R           (A2.12) 

see Definition 1.5.2. (ii). 
Remark A2.4. Let ( ) 0rε ε

ρ − ≈   , then from Equation (A1.3) and Equation 
(A2.10) we obtain  

( ) ( )( )
( )

4

42 2
, , .r r

r

µν
ε µν ε ε

ε
ε

εε ε
ρ ε

  
    ≈       − +    

R R         (A2.13) 

From Equation (A2.3) by formulae (A1.2) we get  

( ) ( )( )
2 22 2

2 2

, ,

1 1 12
2 2

r r

A A A A A A B
A A r A A B

ρσµν
ρσµν ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε εε ε

ε ε

 ′′ ′ ′ ′ ′ ′   ∆= − + +    ∆∆ ∆   

R R
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222 2

2 2

22

1 1 14 2 2
4

1 1 1
2 2 2

A B B A A B
r B B r A B

A B B B B
A B B B B

ε ε ε ε ε ε ε

ε ε ε ε εε ε

ε ε ε ε ε ε

ε ε ε ε ε ε
ε

  ′ ′ ′ ′ ′   ∆
 + + + + −   ∆∆ ∆      

′ ′ ′′ ′ ′ ′  ∆ + + − −  ∆     

 

2 2

2 2

22

2 2

1 1 1 1 12
2 2

1 1 1 1 14 2 2
4

1 1
2 2

A A A B A A B
B A A A B B r A A B

B B A B A B
B r B B B r A B A B

A B B
A B B

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε

ε ε ε

     ′′ ′ ′ ′ ′ ′ ′= − + + +          

        ′ ′ ′ ′ ′ ′
  + + + + − +               

′ ′ ′′
+ + −

22
1 .
2

'B B A B
B B A B
ε ε ε ε

ε ε ε ε
ε

    ′ ′ ′ − +            

 

(A2.14) 

From Equation (A2.14) in the limit ( ], 0,1rε ρ ε→ ∈  by formulae (A2.3) we 
get 

( ) ( )( ) ( )
( )

4

42 2
, , ,r r K

r

ρσµν
ε ρσµν ε ε

ε
ε

εε ε ρ
ρ ε

 
 

≈ +  
 − +   

R R     (A2.15) 

where ( )K r  is a Kretschman scalar: ( ) ( ) 1213 6 23 4 4s sK r r r r r −= ⋅ + . 
Remark A2.5. Note that: (1) For ( )r rε ε

=  located beyond horizon, i.e. 
0r ρ− ≈/

  one obtains classical result  

( ) ( )( ) ( )( ), , ,r r K rρσµν
ε ρσµν ε εε
ε ε ≈

R R              (A2.16) 

see Definition 1.5.2. (i). (2) At horizon : 0hor horr r rε ρ= − = , ( ]0,1ε ∈  from 
Equation (A2.15) one obtains nonclassical result  

( ) ( )( ) ( ) ( )( )4, , 1 ,r r K Oρσµν
ρσµν ε ε

ε ε ρ ε −≈ + ≈ ∞
  R R        (A2.17) 

see Definition 1.5.2. (ii).  
Remark A2.6. Let ( ) 0rε ε

ρ − ≈   , then from Equation (A1.3) and Equation 
(A2.15) we obtain  

( ) ( )( ) ( )
( )

4

42 2
, , .r r K

r

ρσµν
ε ρσµν ε ε

ε
ε

εε ε ρ
ρ ε

  
    ≈ +       − +    

R R     (A2.18) 

Remark A2.7. We assume now there exist a fundamental generalized length 
( )lε ε  

( ) ( ] ( ) ( ]

( ) ( ]

0,0,

,1

, 1,

,

l a

l a

ε ε ηε η

ε ε η

ε η
∈∈

∈

=

=



                  (A2.19) 

such that ( ) ( ) ( )r l aε ε εε ε
ρ ε− ≥ =  It meant there exist a thickness ( )horth lε ε

=  
of BH horizon. We introduce a norm horth  of a thickness horth  by formula  
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( ]0,sup ,horth lεε η η∈= =                     (A2.20) 

where parameter η is a classical thickness of BH horizon. 
By using (A2.19) we get the estimate  

( ) ( )( )

( )
( )

( ]

( )
( ]

( )
( ]

( )
( ]

4

42 2

0,

2

2 2 22 2

0,0,

2

2 2

0,

, ,

1

r r

K
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ρσµν
ε ρσµν ε ε

ε
ε η

εε ε ηε η

ε
ε η

ε ε

ερ
ρ ε

ε

ρ ερ ε

ε

ρ ε

∈

∈∈

∈

 
 

≈ +  
 − +   

   
   ≈ ×      − + − +      

 
 ×  − +   









R R

 

( )
( )

( ]
( ]

( )
( )

( ]

( )
( ) ( ]

2
2

2 2 2 22 2
0,

0,

2 22 2 2

0,

2 42
0,

1

1 1

1

1 1

1 r

K
ar

K
a r

K
ra

ε ηε
ε η

ε
ε η

ρ η

ερ
ε ερ ε

ρ
ρ ε

ρ
ρ

∈
∈

∈

− ∈

        ≤ +      +   − +       

 
 

= +  
   + − +     

 
 ≤ +
 − +   

 

 (A2.21) 

Appendix B 

We calculate now the distributional curvature at Schwarzschild horizon. In the 
usual Schwarzschild coordinates ( ), 0, , , 2t r r mθ φ> ≠  the metric is 

( ) ( )

( )

12 2 2 2 2d d d d ,
21 .

s h r t h r r r
mh r
r

− = − + Ω



= − +


                (B.1) 

Metric takes the form above horizon 2r m>  and below horizon 2r m<  
correspondingly  

( ) ( )

( )

( ) ( )

( )

12 2 2 2 2

12 2 2 2 2

above horizon  2 :

d d d d ,

2 21

below horizon  2 :

d d d d ,
2 21

r m

s h r t h r r r
m r mh r
r r
r m

s h r t h r r r
m m rh r
r r

−+ + +

+

−− − −

−

>


 = − + Ω  
 − = − + = −


<
 = − + Ω
 −

= − + =

             (B.2) 

https://doi.org/10.4236/jhepgc.2018.42023


J. Foukzon et al. 
 

 

DOI: 10.4236/jhepgc.2018.42023 429 Journal of High Energy Physics, Gravitation and Cosmology 
 

Remark B.1. Following the above discussion we consider the metric 
coefficients ( )h r+ , ( ) ( )

1
h r h r

−+ −   , and ( )
1

h r
−−    as an element of 

( )3D′   and embed it into ( )3
D  by replacement above horizon 2r m≥  

and below horizon 2r m≤  correspondingly 

( )

( )

2 2

2 2

2 : 2 2 ,

2 : 2 2 .

r m r m r m

r m m r m r

≥ − − +

≤ − − +








                (B.3) 

Note that, accordingly, we have fixed the differentiable structure of the 
manifold: the Cartesian coordinates associated with the spherical Schwarzschild 
coordinates in (B.1) are extended through the origin. We have above 2r m≥  
(below ( 2r m≤ )) horizon 

( ) ( )( ) ( )

( )( ) ( )( ) ( ) { }

( ) ( ) ( ) ( )

( )
( )

( )( )

2 2

3 3

11

2 2
3

2 2if 2 ,
0 if 2

where , 2 , , 2 , | 2 .

2, 2 if 2
2

0 if 2, 2

2
= , 0,2 ,

r m r mr mh r h rr rr m

h r B m R B m R x m x R

r r mr m r mh r h r h rr m r
r mr m

m r
h r B m

r

+

+ + +

−− + −

− −

 − − +− ≥  = = −    ≤  
∈ = ∈ ≤ ≤

− − > − ≤ = = = −
  ≥∞ = 
 − +  ∈  
 







 



 











 



G

G

 

( ) { }

( ) ( )
( )

( )( )

3

1 3

2 2

where 0,2 | 0 2

, 2
, 0,22

2, 2

B m x x m

r r m rh r B mr m
r mr m

−

−− −

= ∈ < ≤

  − <  = ∈−    − +∞ =  

 






G
 

(B.4) 

Inserting (B.4) into (B.2) we obtain a generalized object modeling the singular 
Schwarzschild metric above (below) gorizon, i.e.,  

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

12 2 2 2 2

12 2 2 2 2

d d d d ,

d d d d

s h r t h r r r

s h r t h r r r

−+ + +

−− − −

 = − + Ω 

 = − + Ω 

    

    

          (B.5) 

The generalized Ricci tensor above horizon 
β

α

+  R  may now be calculated 
componentwise using the classical formulae 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1

0 1

2 3

22 3

1 2
2

1
.

h h
r

h h

r r

ε

ε

+ + + +

+ +

+ +

 ′′ ′   = = +      

′ +
   = = +   

  
  

 
 

 

R R

R R

             (B.6) 

From (B.4) by differentiation we obtain 

( )
( )

( )
1 22 2

1 2 22 2

22 ,
2

r mr mh r
rr r m

+
 − +−  ′ = − +

 − + 
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( ) ( )

( )

( ) ( )

( )

( ) ( )
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1 22 2 2 2

1 2 22 2

1 22 2 2 2

1 22 2

1 22 2

1

2 22 1
2

2 22 1
2

2 1.
2

r h h

r m r mr mr
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= − + +

     − + − + − +     

 − +−  + −
 − + 

 − +−  − +
 − + 

−
= − +

   − + − +   

  







 

(B.7) 
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angular components of the Ricci tensor (using the abbreviation  

( ) ( )
π 2π

0 0

sin d dr xθ θ φΦ = Φ∫ ∫


                      (B.8) 

and let ( )xΦ


 be the function ( ) ( )( )3
2 0, 2 ,mx S B m R+Φ ∈

  , where by 
( )( )3

2 0, 2 ,mS B m R+  we denote the class of the functions ( )xΦ


 with 
compact support such that: 

(i) ( )( ) ( ) { }0 02 , | 2x B m R x R x m+Φ ⊂ ⊂ ≥ ≥
  supp  2) ( ) ( )r C∞Φ ∈  . 

Then for any function ( ) ( )( )3
2 0, 2 ,mx S B m R+Φ ∈

   we get: 

( ) ( )

( ) ( )
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3 3
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1 22 22 2
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x x
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+

+ +

  Φ 

 = Φ 

′= + + Φ

 
− = − Φ + Φ 

  − +  

∫

∫

∫
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R

R







  



           (B.9) 

By replacement 2r m u− = , from (B.9) we obtain 

( ) ( )

( ) ( )

( )
( )

( )

2 3

2

3 3

3

2 2

1 22 2
0 0

d

d
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u

+

+
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 = Φ 

Φ +
= − + Φ +

+

∫

∫
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R

R            (B.10) 

By replacement u η=  , from (B.10) we obtain the expression 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )

3 23 3
3 23 2

2 2

1 22
0 0

d d

2 d
2 d .
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   = Φ = = Φ   

 
Φ + = − × − Φ + 
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∫ ∫

∫ ∫







 
 

 

 


 

I R I R

   (B.11) 

From Equation (B.11) we get  

( ) ( ) ( )
( )

( )
( ) ( )
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( )
( ) ( )

2

3 2 1 220
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1
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 − −  = − Φ + − −    
 
 − − Φ
 +  

∫

∫
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        (B.12) 
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where we have expressed the function ( )2mηΦ +   as 

( )
( ) ( ) ( ) ( ) ( ) ( )1

0

2 12 ,
! !

2 , 1 0, 1

l
n l n n
l

m
m

l n
m n

η η η ξ

ξ θ η θ

−

=

Φ
Φ + = + Φ

+ > > =

∑



  



      (B.13) 

with ( ) ( ) d dl l lξ ξΦ Φ 


. 

Equations (B.12)-(3.13) give 

( ) ( ) ( )

( )
( ) ( )

2

3 20 0 0

2
2

1
1 20 2

0

2 2lim lim lim 2 1 1

lim 1 d 0.
1 1
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R m R mm

η
ξ η η

η

+ +

→ → →

−

→

  − −   = = − Φ + − −       
  
  + − − Φ =  +   

∫





  





  
 



I I

 (B.14) 

Since ( )( ) ( )3
2 2 ,mS B m R D+′ ′⊂  , where ( ) { }32 , | 2B m R x m x R+ = ∈ ≤ ≤  

from Equation (B.14) we get: 

( )

( )

3

330 0
2

220 0

lim lim 0,

lim lim 0.

w

w

ε

+ +

→ →

+ +

→ →

 − = = 

 − = = 



 





R I

R I
                (B.15) 

For ( ) ( )1 0

1 0
,+ +       
 

R R  we get: 

( ) ( )

( ) ( )

( ) ( )( ) ( )

( )
( )

( )
( )

1 3

1

0 3

0

2

2

2

1 2 3 22 22 22

2 d

2 d

2 d

2
d .
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K

R
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R

m

x x

x x

r h r h r r

r r mr r r
r m r m

+

+

+ +

  Φ 

 = Φ 

′′ ′= + Φ

 
− = − + Φ 

    − + − +    

∫

∫

∫

∫











 
 

 

R

R

       (B.16) 

where use is made of the relation 

( ) ( )
2

3 2 1 22 2
0 0

d dlim 1
1 1

s s

s u

η η η

η→∞

 
 − = −
 + + 
∫ ∫                 (B.17) 

Finally we obtain  

( )
1 0

1 00 0
lim lim 2 .w w m m+ +

→ →
   − = − = − Φ   



  
R R             (B.18) 

The Colombeau generalized Ricci tensor below horizon 
β β

α α

− −   =    R R  
may now be calculated componentwise using the classical formulae 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1

0 1

2 3

22 3

1 2 ,
2

1
.

h h
r

h h

r r

− − − −

− −

− −

  ′′ ′   = = +       
 ′ +
   = = +    

   
  

  
 

 

R R

R R

          (B.19) 
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From (B.4) we obtain 

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )
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 − +−  = − = − <
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−
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(B.20) 

Investigating the weak limit of the angular components of the Ricci tensor  

(using the abbreviation ( ) ( )
π 2π

0 0

sin d dr xθ θ φΦ = Φ∫ ∫


  and let ( )xΦ


 be the  

function ( ) ( )( )3
2 , 0, 2mx S B m− −Φ ∈

  , where by ( )( )3
2 , 0, 2mS B m− −  we 

denote the class of the functions ( )xΦ


 with compact support ( )0,2K B m−⊂ , 
( ) { }0,2 | 0 2B m x x m− = ≤ ≤

   such that: 
(i) ( )( ) { }| 0 2x x x mΦ ⊂ ≤ ≤

  supp  (ii) ( ) ( ).r C∞Φ ∈    
Then for any function ( ) ( )( )3

2 , 0, 2mx S B m− −Φ ∈
   we get 
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          (B.21) 

By replacement 2r m u− = , from Equation (B.21) we obtain  

( ) ( )

( ) ( )

( )
( )
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3 3
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0 0

1 22 22 2

d
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             (B.22) 
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By replacement u η=  , from (B.22) we obtain 

( ) ( ) ( ) ( ) ( ) ( )
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1 222 2
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     (B.23) 

which is calculated to give 
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           (B.24) 

where we have expressed the function ( )2mηΦ +   as 

( )
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       (B.25) 

with ( ) d dl l lrΦ Φ 

 . Equation (B.25) gives 
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∫
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     (B.26) 

Since ( )( ) ( )3
2 0, 2mS B m D−′ ′⊂  , where ( ) { }30, 2 | 0 2B m x x m− = ∈ ≤ ≤  

from Equation (B.26) we obtain  
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→ →
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                 (B.27) 

For ( ) ( )1 0

1 0
,− −       
 

R R  we get: 
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       (B.28) 

By replacement 2r m u− = , from (B.28) we obtain 

( ) ( ) ( ) ( ) ( ) ( )
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     (B.29) 

By replacement u η=  , from (B.29) we obtain 
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(B.30) 

which is calculated to give  
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where we have expressed the function ( )2mηΦ +   as 
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       (B.32) 

with ( ) ( ) d dl l lξ ξΦ Φ 


. Equation (B.32) gives 
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where use is made of the relation 

( ) ( )
0 0 2

1 2 3 22 2

d dlim 1.
1 1s
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η η η

η→∞
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 − =
 + + 
∫ ∫                 (B.34) 

Thus 

( )
1 0

1 00 0
lim lim 2 .w w m m− −

→ →
   − = − = Φ   



  
R R              (B.35) 

Appendix C 

We calculate now the distributional Colombeau scalars  

( )( ) ( ) ( )( ), , , ,r r rµν
µνε ε

ε ε εR R R  and ( ) ( )( ), ,r rρσµν
ρσµν ε

ε εR R , in terms of 
Colombeau generalized functions ( )( ) ( )( ) ( )( ) ( )( ), , ,A r B r C r D rε ε ε εε ε ε ε

 is 
given above in Appendix B at Schwarzschild horizon.We choose now  

( ) ( ) ( ) ( )11, 1 , 0,B r C r A r D rε ε ε ε
−= = − + =                (C.1) 

and rewrite Equation (A.1) in the following equivalent form  

( ) ( )( ) ( )( )2 2 1 2 2 2d d d d ,s A r t A r r rε ε εε ε ε

−= − + + Ω              (C.2) 

where ( )A rε  is given above by using Equations (B.2)-(B.4). Thus we obtain  
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    (C.3) 

From Equation (A.2) and Equation (C.3) we obtain 
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(C.4) 

Finally we obtain the following expression for the distributional Colombeau 
scalar ( )( ),r

ε
εR   
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    (C.5) 

Remark C.1. Note that from Equation (C.5) follows that: 2r m≠  
( )( ), 0r

ε
ε ≈

R , see 
Definition 1.5.2. (i).  
We assume now that ( ) 2r mε ε

≈
  and therefore from Equation (C.5) we 

obtain  
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( )
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3 223 2

4, .
8 2
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ε
ε
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≈  
 − +   

R              (C.6) 

Remark C.2. Note that from Equation (C.6) at horizon 2r m=  follows that:  

( )( ) ( ) ( )
2 2

1 1
3 23 2

4, 4 ,
8

mr m
mε ε

ε

εε ε
ε

− −
 
 = = ≈ ∞
     

R           (C.7) 

see Definition 1.5.2. (ii).  
Remark C.3. Note that from Equation (C.5) follows that:  

( ) ( )
0

-lim , ~ 2 .w r r m
ε

ε δ
→

−R                     (C.8) 
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Remark C.4. Let ( )2 0r mε ε
 − ≈   , then from Equation (A1.3) and Equation 

(C.6) we obtain 
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3 223 2
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From Equation (A.2) and Equation (C.3) we obtain  
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    (C.10) 

Remark C.5. Note that from Equation (C.10) follows that:  
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12 , 2s
s

r m r r K r

rK r r m
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= =

  R R
            (C.11) 

see Definition 1.5.2. (i). 
We assume now that ( ) 2r mε ε

≈
  and therefore from Equation (C.10) we 

obtain  
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R R     (C.12) 

Remark C.6. Note that from Equation (C.10) at horizon 2r m=  follows 
that:  

( ) ( )( ) 4 2
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ε

ε ε
ε
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R R               (C.13) 

see Definition 1.5.2. (ii).  
Remark C.7. Let ( )2 0r mε ε

 − ≈   , then from Equation (A1.3) and Equation 
(C.12) we obtain  
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From Equation (A.2) and Equation (C.3) we obtain  
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    (C.15) 

Remark C.8. Note that from Equation (C.15) follows that: 

( ) ( )( ) ( )2 , , ,r m r r K rρσµν
ρσµν ε

ε ε≈ ⇒ ≈/
  R R         (C.16) 

see Definition 1.5.2. (i). 
We assume now that ( ) 2r mε ε

≈
  and therefore from Equation (C.10) we 

obtain 
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R R   (C.17) 

Remark C.9. Let ( )2 0r mε ε
 − ≈    then from Equation (A1.3) and Equation 

(C.12) we obtain 
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Remark C.10. Note that from Equation (C.15) at horizon r = 2m follows that: 

( ) ( )( ), , ,r rρσµν
ε ρσµν ε ε
ε ε  ≈ ∞  R R                (C.19) 

see Definition 1.5.2. (ii). 
Remark C.11. We assume now there exist a fundamental generalized length 
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                  (C.20) 

such that ( ) ( ) ( )r l aε ε εε ε
ρ ε− ≥ =  It meant there exist a thickness  

( )horth lε ε
=  of BH horizon. We introduce a norm horth  of a thickness horth  

by formula 

( ]0,suphorth lεε η η∈= =                     (C.21) 

where parameter η is a classical thickness of BH horizon. 
By using (C.20) we get the estimate 
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