The Cambridge History of
Eighteenth-Century Philosophy

Volume 11

EDITED BY
KNUD HAAKONSSEN

University of Sussex

Y UNIVERSITY PRESS




28

ARTIFICE AND THE NATURAL WORLD:
MATHEMATICS, LOGIC, TECHNOLOGY

JAMES FRANKLIN

if Tahiti suggested to theorists comfortably at home in Europe thoughts of noble
savages without clothes, those who paid for and went on voyages there were in
pursuit of a quite opposite human ideal. Cook’s voyage to observe the transit
of Venus in 1769 symbolises the cighteenth century’s commitment to numbers
and accuracy, and its willingness to spend a lot of public money on acquiring
them. The state supported the organisation of quantitative researches, employing
surveyors and collecting statistics to compute its power.' People volunteered to
become more numerate;” even those who did not had the numerical rationality
of the metric system imposed on them.? There was an increase of two orders
of magnitude or so in the accuracy of measuring instruments and the known
values of physical constants.* The graphical display of quantitative information
made 1t more readily available and comprehensible.® On the research front,
mathematics continued its advance, even if with notably less speed than in the
two adjoining centuries. The methods of the caleulus proved successful in more
and more problems in mechanics, both celestial and terrestrial. Elasticity and
fluid dynamics became mathematically tractable for the first time.® The central
limit theorem brought many chance phenomena within the purview of reason.

These successes proved of interest for ‘low philosophy’, or philosophy-as-
propaganda, as practised by the natural theologians and the Encycopédistes. Both
had their uses for scientific breakthroughs, though sometimes ot much n-
terest in the details. For ‘high philosophy’, as constituted by the great names,
mathematics and science had a different importance. A feature common to the
biographies of all the well-known philosophers of the eighteenth century is
a mathcmatical youth. Wolft began as a professor of mathematics, and it was
in that subject that he first made the contributions to the intellectual vocabu-
lary and style of German for which he is so universally loathed. Kant taught
mathematics, and his Prize Essay begins with an analysis of the mathematical
method. D’Alembert, Condorcet, Lambert, even Diderot in a smaller way (and
of course Leibniz earlier) made serious mathematical contributions. Reid also
taught mathematics, and his first published work was on quantity. Paley was
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Senior Wrangler in the Cambridge Mathematical Tripos. Berkeley’s Anafyst is
one of the most successful interventions ever by a philosopher into mathematics.
Hume and Vico, though no mathematicians, used mathematical examples as the
firse illustrations of their theories. Adam Smith’s ‘invisible hand’ and Malthus’s
model of population growth both belong to what is now called dynamical sys-
tems theory.

Naturally, these philosophers did not all draw the same lessons from their
mathematical experience. But philosophers have one thing in common in their
attitude toward mathematics, in this Jast century before the surprise of non-
Euclidean geometry undermined the pretensions of mathematics to infallibility.
[t is envy. What is envied, in particular, is the ‘mathematical method’, which
apparently produced what philosophy wished it could but had been unable to:
certain truths, agreed to by all, delivered by pure thought.

I. THE ‘"MATHEMATICAL METHOD’ PRAISED

The eighteenth century was the last to accept, fundamentally without question,
certain approved opinions of the ancients concerning the method and content
of mathematics. The ideas were largely Aristotelian in origin but had survived
the demise of scholasticism by being accepted almost in full by the Cartesians
and Newton. The much admired ‘mathematical method’ is the deriving of
truths by syllogisms from self-evident first principles; the method was believed
to be instantiated by Euclid’s Elemenss. As to the content, mathermatics is the
science of ‘quantity’, which is ‘whatever is capable of increase, or diminution’.”
Numbers arise from considering the ratio of quantities to an arbitrarily chosen
unit. Quantity is of two kinds: discrete (studied by arithmetic) and continuous
(studied by geometry). However, geometry 15 also the study of ‘extension’,
or real space. Quanaty in the abstract s studied by pure mathematics, while
‘magnitude as subsisting in material bodies™ is the object of mixed or applied
mathematics, which includes optics, astronomy, mechanics, navigation, and the
like. Tendencies to regard mathematics as about some abstraction of reality did
exist but were generally resisted. Euler, for example, says that in geometry one
does not deal with an ideal or abstract triangle but with triangles in general,
and that generality in mathematics is no different from generality elsewhere;” to
the same purpose, d’Alembert defends an approxamation theory, whereby the
pertect circles of geometry allow us to ‘approach’ the truth, ‘if not rigorously,
at least to a degree sufficient for our use’.'®

There are several philosophical problems with this complex of opinions,
which are sufficiently obvious to keep surfacing in one form or another again
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and again:

* Why is the mathematical method found in mathematics®

* Why are the first principles in mathematics necessary, and how are they known?

* s the reasoning in Euclid in fact all syllogisms? (in the strict sense, that is, of the form:
All A are B, All B are C, so All A are C). If not, what kind of reasoning 1s it?

1. Wolff

Wolft at least had answers to these questions. The mathematical method, he
thinks, s applicable everywhere; and there is no problem about the self-evidence
of the first principles because there is only one of them, and it is the principle of
non-contradiction. Geometrical demonstrations can all be resolved into formal
syllogisms, and discoveries in mathematics are made exclusively by syllogistic
means.” His central place in eighteenth-century philosophy results from his at-
tempt to derive all philosophical truths from the principle of non-contradiction,
by the ‘mathematical method’."* A look at how he actually proposes to prove that
everything has a sufficient reason, using only the principle of non-contradiction,
reveals why Wolfls ‘method’ achieved less than universal agreement:

Let us suppose A to be without a sufficient rcason why it is rather than is not. Therefore
nothing is supposed by which it can be understood why A is. Thus A is admitted to
be, on the basis of an assumed nothing; but since this is absurd, nothing is without a
sufficient reason.”

Wolft’s ideal differs from those of others essentially in lacking anything like
Plato’s dialectic, or Aristotle’s induction, or Kant’s apalysis: the roundabout dis-
cussion and sorting of experience which allows the intellect to come to an
insight into first principles. It is unnecessary in Wolff's system because the prin-
ciple of non-contradiction is the sole starting point. Any tendency to regard
brute facts as contingent and outside the scope of explanation by necessary rea-
sons 1s suppressed, in Wolff, by his acceptance of Leibniz’s Best of All Possible
Worlds theory. According to that theory, everything, however particular, has an
explanation in principle.

2. Mathematics as philosophical propaganda

Mathematics, because of its immense prestige, is always destined to be used
in support of various philosophical positions. It was a natural as a prop for
the Enlightenment motif that there should be more Reason all round. The
Encyclopédie says: “M. Woltf'. . . made it clear in theory, and especially in practice,
and in the composition of all his works, that the mathematical method belongs
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to all the sciences, is natural to the human spirit, and leads to discoveries of
truths of all kinds.”™ Not that the French needed Wolff to tell them this, given
the Cartesian ideals expressed by, for example, Fontenelle:

The geometrical spirit is not so attached to geometry that it cannot be carried over
to other knowledge as well. A work of ethics, of politics, of criticism, perhaps even
of eloquence will be better, all things else being equal, if it is made by the hand of a
mathematician. The order, clarity, precision and exactitude which have reigned in the
better works recently, can well have had their first source in this geometrical spirit which
extends itself more than ever and which in some fashion communicates itself even to
those who have no knowledge of geometry.

Of course, there were counter-currents, There were the complaints common
in all centuries from self-proclaimed ‘practical men’ like Frederick the Great
and Jefferson,™ who regarded the higher abstractions of mathematics as useless,
and from humanists like Vico and Gibbon, who abhorred the “habit of rigid
demonstration, so destructive of the finer feelings of moral evaidence’.”?

Mathematics was also called to the aid of more particular philosophical theses.
On the one side, there was the support allegedly given to natural theclogy by
the various ‘principles of least action’. On the other, the success of prediction
in astronomy could be a support to determinism. It was found that many phe-
nomena in physics could be derived from ‘methods of maxima and minima’, or
‘principles of least action’, such as the one stating that the path of light from one
point to another is the one which minimises the time of wavel (even if the path
is not straight, because of reflection or refraction), Maupertuis and Euler take
this to be evidence of final causes, and for the existence of God."™ Their idea
owes something to the more general claim of Leibniz’s Theodicée that everything
is the necessary result of a maximum principle, namely. that the goodness of
this world is the best possible. D*Alembert, to the contrary, warns of the danger
of ‘regarding as a primitive law of pature what is only a purely mathematical
consequence of some formulae’. " He believes the best hope for the countries
of Europe oppressed by superstition is to begin studying geometry, which will
lead to sound philosophy.®® Laplace also, in an image that haunts philosophy
still, invites mathematics to assist an anti-religious wotldview:

Given for one instant an mtelligence which could comprehend all the forces by which
nature 1s animated and the respective situation of the beings who compose it. . . it would
embrace in the same formula the movements of the greatest bodies of the universe and
those of the lightest atom.*'

History would thus be a subfield of the theory of differential equations.
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3. D’Alembert versus Diderot

Wolffs ant-like progress through a farrago of equivocations and circularities is
merely dispiriting and only brings ratienalism into disrepute. I’ Alembert is not
so easily dismissed when he argues for essentially the same conclusions. His
immediate claim, is not, indeed, that all subjects are entirely amenable to the
geometric method, only that mechanics 1s. But mechanics is very inclusive, on a
typical eighteenth-century view. If La Mettrie and d’Holbach were right about
the nature of man, for example, psychology would be a sub-branch of mechan-
ics. IY Alembert argues, more convincingly than Descartes, that mechanics is a
branch of mathematics, based like arithmetic on absolutely necessary first prin-
ciples. In a kind of mathematical version of Hume’s scepticism about causes,
he regards forces as ‘beings obscure and metaphysical’: ‘All we see distinctly in
the movement of a body is that it crosses a certain space and that it employs
a certain time to cross it.”** Hence collisions are to be explained in terms of
impenetrability, and the density of a body is merely ‘the ratio of its mass (that
is, the space it would occupy if it were absolutely without pores) to its volume,
that is, to the space it actually occupies’.?? It might seem that there is no hope
of demonstrating the conservation of momentum purely geometrically:

However, if we consider the matter carefully, we shall see that there is one case in which
equilibrium manifests itself clearly and dustinctly; that is where the masses of the two
bodies are equal, and their velocities equal and opposite.™

The Encycopédie article ‘Expérimentale’, which one expects to be along
Baconian lines, is in fact used by d’Alembert to propagate his extreme anti-
experimental views. He regards collecting facts as a rather medieval exercise,
superseded by INewton’s introduction of geometry into physics. The laws of
colliding bodies are demonstrable: nature could not be any other way. But there
is an admission that how fast a body falls under gravity, and what the weight
of a fluid is, must be measured; only after that do the relevant sciences become
‘entirely or almost entirely mathematical:

No theory could have allowed us to find the law that heavy bodies follow in their vertical
fall, but once this law is found through experience, all that belongs to the movement of
heavy bodies, whether rectilinear or curvilinear, whether inclined or vertical, is found

entirely by theory®

While these cases appear as unfortunate weakenings of his original wish for
purely deductive science, d’Alembert’s comments here are perhaps his most solid
achievement. In the more mathematical sciences, experience does appear only
in support of a few easily checkable symmetry principles and simple laws, while
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most of the weight of explanation rests on the difficult mathematical derivations
of more subtle phenomena from these. And, as Leibniz points out,*® a sylumetry
principle has a special logical status, being an application of the principle of
(in)sufficient reason: in d’Alemberts example, if two bodies have equal and
opposite velocities, their momenta must balance, as there is no reason why one
should overcome the other, 1)’ Alembert was widely thought to have succeeded
in showing that the principles of mechanics had ‘a necessity as rigorous as the
first elementary truths of geometry’.*” Kant concurred in d’Alembert’s unlikely
conclusion.”® Lagrange’s Mécanique analytique of 1788 confirmed furcher that
mechanics could locok like a deductive system, managing almost to conceal the
existence of forces.*”

Of one mind on the iniquity of priesteraft, the inevitable progress of mankind,
and other such Enlightenment staples, the two prime movers of the Encyclopédic
fell out over mathematics. Diderot believed mathematics had reached its highest
point and was now in decline.3® He preferred sciences full of life and ferment,
like chemistry and biology, criticising mathematics as abstract and over-simple.®
D’Alembert, on the other hand, held that an abundance of experiential ‘princi-
ples’ is ‘an effect of our very poverty’.?* Diderot’s attack is not all invective; he
has a philosophical argument to undermine rationalist pretensions about mathe-
matics which is the same as the contention of twentieth-century empiricists and
positivists that mathematics is essentially trivial. Geometrical truths are merely
identities, saying the same thing in a thousand different ways without generat-
ing any new facts.’ D’Alembert allowed this argument to appear in the Discours
préliminaire to the Encyclopédie, but replied that it just showed how powerful
mathematics was to be able to get so much from so little.*

1I. THE ‘MATHEMATICAL METHOD’ DOUBTED

As in the twentieth century, the success of science and mathematics attracted
from professional philosophers not praise, but complaints, to the effect that
they, the philosophers, could not see how so much knowledge could possibly
be achievable. While very few were prepared to go as far as Diderot, much
argument was undertaken to show that the claims of mathematical proof were
not all they seemed. The argument mostly centred on geometry. The problem
at its simplest, as Gauss put it, is, ‘if number is entirely a product of our own
minds, space has a reality outside of our minds and we cannot prescribe its
laws a priori’.3 The century inherited what could be called the Euclid-Newton
view of space and time. The essential features are these: Space and time are
infinite in extent in all directions, homogeneous, flat, and infinitely divisible.
Truths about space and time may be proved with absolute certainty, in the style
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of Euclid. After two thousand vears of success, the facade seemed unbreakable.
This prevented two developments which, at various times during the eighteenth
century, seemed on the point of happening. The first is the discovery of non-
Euclidean geometry. The second is the adoption of the philosophical opinion
that knowledge of space, which is something real outside the mind, must be
empirical and fallible. The problem with the Euclidean claims is that it is difficult
to see how they could be known, if true. Without the scholastic magic of an
intellect equipped with a natural aptitude for truth, and with epistemological
worries becoming more central to philosophy, empiricism and rationalism were
in equal but opposite quandaries. For the empiricist, the infinitely large and the
infinitely small are not available for inspection, so where is knowledge of them
to come from? Hume will pursue this thought to its limit. For the rationalist,
the certainty of the deliverances of reason on space and time will suggest a
dependence of those concepts on the mind. Kant will pursue this idea to, or
beyond, its limits.

1. Bayle and Saccheri: donbts on the foundations of geometry

The problem as it appeared at the beginning of the century can be seen in two
widely known semi-philosophical works: Bayle’s Dictionary (1697} and Saccheri’s
Euclid Cleansed from All Spot {1733). Bayle remarks that the certainty of the
mathematical method is not all it 1s claimed to be, since there are disputes even
among mathematicians, for example, over infinitesimals.*® He argues that space
can consist neither of mathematical points nor of Epicurean extended atoms,
nor can it be infinitely divisible. He takes this to exhaust all the possibilities, and
concludes, in a remark that contains seeds of both Hume and Kant, that the
attempted geometrical proofs that space is infinitely divisible ‘serve no other use
but to show that extension exists only in our understanding’.%

An essential claim of admirers of the ‘mathematical method’ was that Euclid’s
axioms were self~evident. But how true is this? Somewhere, Euclidean geometry
must claim that space is infinite, which seems a claim beyond the capacity of
experience to know. Euclid’s Fifth Postulate, inn particular, asserts something that
seems to require an intuition about arbitrarily distant space:

That if a straight line falling on two straight lines makes the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet on
that side on which are the angles less than the two right angles.

Saccheri undertook to derive the fifth postulate from the others by showing
that the first four postulates, plus the negation of the fifth, led to a contradiction.
This is in fact impossible to show: If true, it would have removed all doubts
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about the self-evidence of Euclid’s axioms. He proceeds well for some time,
demonstrating what would later be called theorems in hyperbolic geometry, the
non-Euclidean geometry in which the sum of the angles in any triangle is less
than 180 degrees. Then he derives a ‘contradicuon’, but it 1s unconvincing, as
it involves common perpendiculars to two straight lines ‘at infinity’. He makes
another attempt and again claims success, but there is a mistake. He hints that
the result is not as clear as it might be, and publication of his book was withheld
in his lifetime (possibly entitling him to a footnote in the history of ethics).?®

The problem became well-known: d’Alembert called it the ‘scandal of the
elements of geometry’. G. S. Kligel’s dissertation of 1763 reviewed twenty-eight
attempts to prove the fifth postulate, concluding that they were all deficient. He
gave his opinion that the postulate was not provable, its truth thus resting on the
judgment of the senses.’?” Kant’s only serious attempt to do work of his own in
mathematics was an attempt to prove the fifth postulate.

Lambert came closest to thinking in terms of an actual alternative geometry,
writing, ‘I should almost conclude that the third hypothesis [of angie sum less
than 180 degrees] holds on an 1maginary sphere’.#® Nevertheless, like Sacchers,
he incorrectly claims to derive a contradiction, and the genuine possibility of a
non-Euclidean geometry was not recognised until well after 1800. The philo-
sophical commitment to the self-evidence of Euclid certainly stimulated im-
portant mathematical work but at the same time delayed the discovery of the
correct answer, which was not that desired by philosophy.

2. Berkeley’s Analyst: caleudus and infinitesimals

Berkeley’s general philosophy of mathematics shows intellectual independence,
to say the least. Rejecting completely views that mathematics is about either
quantity or abstractions, he is the first formalist philosopher of arithmetic, main-
taining that there is only the manipulation of symbols according to rules.* Ge-
ometry, he believes, can only be about perceived extension. He is thus led to
reject the infinite divisibility of space; like Hume after him (and this is where
Hume'’s and Berkeley’s philosophies come closest) he denies the meaningfulness
of any talk about lengths less than the mininuim visibile or minimum tangibile 4
Prepared by these non-standard speculations, Berkeley, in his Analyst of 1734,
attacked the mathemadcians’ understanding of the foundations of the calculus as
hopelessly confused and contradictory. The episode has a special place in the hus-
tory of philosophy, as one of the very few cases where a technical field eventually
admitted that philosophy strictly so-called had won a victory over the technical
practitioners. Berkeley intended the argument to serve a purpose in the philos-
ophy of religion, by showing that there were mysteries as incomprehensible as
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those of religion even in the paradigm of reason, mathematics.¥ The argument
itself, however, is quite independent of its purpose.

Atissue is the meaning of a derivative, or rate of change of a variable quantity —
the ‘Buxion’ of a ‘“fluent’, in Newtons terminology. If we wish to measurc the
speed of a moving object, thatis, the rate of change of distance, we use a unit like
miles per hour. To find the numerical value of an object’s speed, therefore, we
divide the distance it travels in any time interval by the length of the interval. If
the speed is constant, no problems arise: the answer is the same whatever interval
is taken: 12 miles divided by 3 hours gives the same answer as 8 miles divided by
2 hours, namely 4 miles per hour. But if the speed is itself variable, conceptual
problems arise In trying to explain what the instantaneous speed is, at any given
instant. For the speed calculated from dividing any finite distance traversed by
the finite time taken to do so is not an instantaneous speed but the average
speed over the interval. It is natural to approximate the speed at an instant more
closely by taking smaller and smaller intervals including that instant, but the
problem remains that an instantaneous speed and an average speed are different,
both conceptually and numerically. Newton used such doubtfully intelligible
language as

Fluxicns are very nearly as the angments of the fluents gencrated in equal, but very
small, particles of ume: and, to speak accurately, they are in the first ratio of the nascent
augments. .. ¥

In caleulating the speed if the distance travelled in time x is x”, he first finds the
distance travelled in the time between x and x + o, divides it by the ‘augment’
of time o, and finally claims that when the augment o vanishes, their ‘ultimate
ratio” is as nx" ' to 1. Berkeley’s criticism is perfectly correct:

For when it is said, Jet the increments vanish, or let there be no increments, the for-
mer supposition that the increments were something, or that there were increments, is
destroyed, and vet a consequence of that supposition, i.e., an expression got by virtue
thereof, is retained.*?

Indeed, the division by e to find the average speed requires that o not be zero,
while later o is taken to be zero. It is no use maintaining that o is small, since as
Berkeley again says, ‘the minutest errors are not to be neglected in mathemat-
ics’. Newton’s actempts to speak of the augments as ‘nascent’ and ‘evanescent’,
and the ratios as ‘first’ and ‘uldmate’ attracts Berkeley’s most famous piece of
ridicule: *‘And what are these same evanescent increments? They are neither f1-
nite quantities, nor quantities infinitely small, nor yet nothing. May we not call
them the ghosts of departed quantities?’(§35, 4: 89). Berkeley also attacks with
justice other parts of Newton’s calculus, notably the higher derivatives. A speed
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is wtself a variable quantity, so it has a fluxion, or rate at which it 1s changing,
the acceleration. If it is hard to explain a first derivative in terms of the ratios of
‘evanescent’ quantities, it is doubly so to explain in such terms what a second
or third derivative is:

The incipient celerity of an incipient celerity, the nascent augiment of a nascent augment,
i.e., of a thing which hath no magnitude, — take it in what light yon please, the clear
concepuon of it will, if T mistake not, be found impossible. (§4, 4: 67}

Bad answers to Berkeley began with his own,*® and a flood of them appeared
from as far away as America. ¥V’

There are other possible ways of expressing what it is of which ratios are being
taken. On the continent, it was common to speak in terms of ‘infinitesimals’.
These were conceived of as quantities smaller than any finite quantities, yet
not zero. An instantaneous speed nught then be regarded as exactly the rato
of infinitesimal augments, though only approximately the ratio of any finite
augments.*® “The clear conception of them’ proved no easier to achieve than
that of fluxions.

One of the more serious attempts to resolve the problems was Maclaurin’s
Treatise of Fluxions of 1742. It attempts to show that fluxions are a generalisation
of the ‘geometry of the antients’, by wing Archimedes’ method of exhaustion
to replace infinitesimals, of which he complains, ‘From geometry the infinities
and infinitesimals passed into philesophy, carrying with them the obscurity and
perplexity which cannot fail to accompany them’.* His idea is in principle
the same as the modern treatment using limits, but Maclaurin retains kinematic
notions which would later be regarded as inadequate. In particular, he defines
a fluxion obscurely in terms of a counterfactual: ‘the increment or decrement
that would be generated in a given time by this notion, if it was continued
uniformly.’>® D’Alembert and L'Huilier tried to base calculus on limits, in a
way that was essentially correct, but still lacked the precision achieved in the
next century by the use of multiple quantifiers.” Lazare Carnot’s Réflexions suy
la métaphysique du calcul infinitésimal, of 1707, achieved much greater popular
success, by repeating all the worst excesses of infinitesimals.>* The debates over
whether infinitesimals are zero or not, whether they can be conceived, and
whether a limit is or is not actually attained often read more like 2 Kantian
antinomy than the real thing,

3. Husne on mathematics

Hume’s philosophy of mathematics is a natural outgrowth of his combining
the usual ‘science of quantity and extension’ view with his requirement that all
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concepts be explained in terms of impressions and ideas. In the division of truths
berween relations of ideas and matters of fact, mathematics falls entirely on the
side of ideas. But whereas relations of ideas like resemblance and contraricty are
‘discoverable at first sight’, this is not so with “proportions of quantity or number’.
Though not different in kind from resemblance, because of their complexity
‘their relations become intricate and involved’, so that coming to know them
may need some ‘abstract reasoning and reflexion’, or demonstration (unless ‘the
difference is very great and remarkable’). The relations treated 1n arithmetic and
algebra are the best known, because of their ‘perfect precision and exactness’.
For example, two numbers may be infallibly pronounced equal when ‘the one
always has an unite answering to every unite of the other’, since this is something
directly checkable.® Such complicated mathematical facts as that a number is
divisibie by nine if the sum of its digits is also divisible by nine may at first appear
due to chance or design, but reasoning shows they result from ‘the nature of
these numbers”. ¥ Hume thus does not agree that mathematics is syllogisac, or
in any other way ‘analytic’ in any trivial or vacuous sense. But he does hold that
mathematical truths are known by subjecting 1deas {of quantity) to some kind
of purely conceptual ‘analysis” (not Hume's word).®

Even demonstrated mathematical knowledge is in practice fallible, however.
For the certainty that results from discovering the relations is only an ‘in princi-
ple’ one, since an actual reasoner can make mistakes. ‘The rules are certain and
infallible; but when we apply them, our fallible and uncertain faculties are very
apt to depart from them.’*

Geometry has less certainty than algebra and arithmetic, because it deals with
continuous quantities, which cannot be measured exactly. The result is that
Hume becomes, with Berkeiey, one of the few philosophers in history to reject
the infinite divisibility of space. The topic belongs more properly to his philos-
oply of space than to his philosophy of mathematics — even granted that the
distinction is anachronistic. But his replies to the alleged mathematical demon-
strations of the infinite divisibility of space, approved by such good authorities as
the Port-Roval Logic and Isaac Barrow,’” are of some worth. The mathematical
arguments simply consist in extracting the assumption of infinite divisibility that
is contained implicitly in Euclid, and cannot determine whether actual space 1s
infinitely divisible, Hume goes some way toward exposing this flaw when he
doubts the exact correspondence between the axioms of geometry and our ideas
of space: ‘none of these demonstrations can have sufficient weight to establish
such a principle, as this of infinite divisibility; and that because with regard to
such minute objects, they are not properly demonstrations, being built on ideas,
which are not exact.’’® There is no way to be sure, for example, that two straight
lines with a small angle between them meet in only one point (1.3.1.4, SBIN 71).
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But the errors of geometry ‘are never considerable’. It would seem that Hume
has been substantially vindicated by subsequent developments, which have re-
vealed that deciding whether space is exactly Euclidean is an empitical question,
although it 1s obviously approximately Euclidean 1n our region.

An aspect of Hume and Berkeley’s writing on geometry that is central but
that some commentators have found odd is their talk of ‘parts of 1deas’. They
discuss, for example, into how many indivisible parts an idea of extension ‘as
conceived by the imagination’ can be divided.”® If one takes this seriously, it
would appear that ideas or imagination themselves have a quasi-spatial quality.
Hume does not develop this notion further, but Reid does, and goes so far as
to say what exactly is the spatial structure of the ‘geomenry of visibles’. It is the
geometry of the surface of a sphere.®

4. Kant

The key to Kant’s views on mathematics, and much else, is the notion of con-
struction in geometry. In Euclid, there are postulates, such as “To draw a straight
line from any point to any point’, which assert that certain things exist, or may
be constructed. The first thing Euclid proves is that an equilateral triangle may
be constrrcted on any line. In learning how to prove in geometry, as of course all
educated eighteenth-century persons did, one must spend a good deal of time
deciding which lines to prolong, when to draw a new circle, and so on. From
the point of view of modern formal logic, this can be regarded as a defect
Euclid’s treatment of geometry, but from an earlier point of view it reinforces
two convictions: that Euclidean geometry is not purely syllogistic, and that it is
about real space.

A fascination with construction had already been evident in Vico. The first
statement of his verum-facium theory is in the context of geometry: “We demon-
strate geometrical things because we make them.”® Even when his ‘New Sci-
ence’ of human things is fully developed and its contrast with the natural sciences
emphasised, its links with geometry are retained. Both construct the world they
study.®* It was realised that constructions did not fit well into the Wolffian
view of sciences as demonstrating truths about universals from their definitions.
Wolff was prepared to assert that the drawing of a straight line between two
peints flowed from the definition of a hine, but this is not plausible. Andreas
Ruidiger alleges that the Wolffian ‘mathematical method’ is a travesty of real
mathematics, by recalling the inspection of particulars in geometrical construc-
tions and in counting.” Johann Heinrich Lambert describes the experience of
reading Euclid after Wolff and recognising that Euclid is nothing like Wolff says
he should be. He notes that Euclid does not derive things from the definition
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of space, but starts with lines as simples, and exhbits first the possibility of an
equilateral triangle.®

So, when the Berlin Academy posed the question, whether metaphysical truth
could be equated with mathematical truth, Kant in his ‘Prize Essay’ replied:
mathematics has construction, or synthesis, while metaphysics does not.” In
Kant, construction in geometry is used to fill out the vaguer notions of the
previous one hundred and fifty years along the lines that the possible is what can
be clearly and distinctly conceived (in the ‘imagination’, conceived as a mental
visualisation facility}. Kantian *intuition’ is, like the scholastics’ ‘intelligible mat-
ter’, a medium in which can be drawn not just a few simple ideas to be compared
with one another, in the style of Locke, but whole geometrical diagrams, What
can be so drawn is more restricted than what merely does not contain a logi-
cal contradiction. For example, there is no contradiction in the concept of twa
straight lines meeting in two points and enclosing a figure; nevertheless, no such
figure is possible, since it cannot be constructed: “That between two points there
15 only one straight line . . . can[not] be derived from some universal concept of
space; [it] can only be apprehended concretely, so to speak, in space itself.’®
Similarly, that there is a plane passing through any three given points is evident
because the intuition constructs the figure ‘immediately”.®” These necessities
and possibilities are ‘synthetic’, in the sense that they do not follow simply from
formal logical principles, and also in the sense that they involve ‘synthesis’, or
construction. These truths are also a priori, since Kant is not prepared to com-
promise the absolute certainty of mathematics. So Leibniz, he thinks, cannot
be right about space arising out of relations between real objects because that
would make geometry empirical, and there might be a non-Euclidean space,
which Kant takes to be impossible.®® It is his own theory, that space is imposed
by the mind, that is needed to ensuvre the certainty of geometry: “‘Assuredly, had
not the concept of space been given originally by the nature of the mind. . . then
the use of geometry in natural philosophy would be far from safe’ (§15E, Ak 2:
404-35).

It is clear then how Kant’s synthetic a priori, on which so much in his phi-
losophy depends, is the resuit of combining three pre-existing ideas: Euclidean
construction, the reduction of concepts to ideas in ‘imagination’ or ‘intuition’,
and the certainty of geometry.

Kant finds construction also in arithmetic, in the thinking of how many
times a unit is contained in a quantity: ‘this how-many-times is grounded on
successive repetition, thus on time and the synthesis (of the homogeneous) in ¢’
{Kritik B 300). The concept of number is one which ‘in itself, indeed, belongs
to the understanding but of which the actualisation in the concrete requires the
auxiliary notions of time and space (by successively adding a number of dhings
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and setting them simultaneously side by side)” (De mundi, §12, Ak 2: 397). In the
famous passage of the Kritik der reinen Vernunft explaining why the proposition
‘7 4 5 = 127 is synthetic, Kant writes:

The concept of twelve 1s by no means already thought merely by my thinking of that
unification of seven and five, and no matter how long [ analyze my concept of such a
possible sum I will still not find twelve in it. ... For I take first the number 7, and, as I
take the fingers of my hand as an intuition for assistance with the concept of s, to that
image of mine I now add the units that | have previously taken together in order to
constitute the number $ one after another to the number 7, and thus see the number 12
arise. (B 15—16, see also B 205 and B 209}

The construction here is with real fingers, not ‘in the imagination’, but Kant
means exactly to assimilate the mind’s structuring of experience while perceiving
fingers to construction in the imagination: ‘this very same formative synthesis,
by means of which we construct a figure in 1magination is endrely identical
with that which we exercise in the apprehension of an appearance, in order to
make a concept of experience of it” (B 271). Kant emphasises that he does not
just mean reading off results from a picture; there is an intellectual operation
involved, which is responsible for the necessity of the truth. Large numbers,
for example, obviously cannot be counted by an immediate glance; what is
important is the ‘schema’ of successive addition of unics that allows the aggregate
to be synthesised, that is, counted (B 16, B 179-81). The essentials of this
discovery, that the necessity in mathematical knowledge comes from assimilating
an image or experience to construction or synthesis according to some rule, Kant
attributes to the earliest Greek geometers (B xi).

Kant brings the same ideas to the problems of the infinite. How those problems
appeared to mathematicians in Kant’s time is apparent from the terms of the prize
set by the Berlin Academy of Sciences (Mathematical Section) for 1786:

There fs needed a clear and precise theory of what is called Infinite in Mathematics . . .
certain eminent modern analysts admit that the phrase infinite magnitude is a contra-
diction in terms. The Academy, therefore, desires an explanation of how it is that so
many correct theorems have been deduced from a contradictory supposition, together
with enunciation of a sure, a clear, in short a truly mathematical principle that may be
substituted for that of the fufinite.%

Kant sees this problem too in terms of construction or synthesis: ‘Since un-
representable and impossible are commonly treated as having the same meaning,
the concepts both of the contintons and of the infinite are frequently rejected’
{De mundi §1, Ak 2: 388). So the notion of a completed infinity contains no
contradiction, but since it ‘can never be complcted through a successive syn-
thesis’ (Kritik, B 454), it is not the object of any possible experience, intuition,
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or construction. But, on the other hand, there seems no lirmit to space or time
either; for example, ‘the beginning always presupposes a preceding time’ (B s15).
So to the question, ‘But what is the magnitude of the world we live in, finite
or infinite?’, Kant replies: neither; to demand an answer is to assume ‘that the
world (the whole series of appearances) is a thing in itself. For the world remains,
even though I may rule out the infinite or the finite regress in the series of 1ts
appearances’.””

Many of the same considerations apply to the infinitely small. To see the
problems about the continuity of space in terms of ‘infinite divisibility’ already
plays into Kant’s hands. Division is a human act, suggesting to Kant that the act
of constructing a line by a continuous flowing motion comes first, followed by
the construction of its parts by a further act of division (rather than the parts
coming first and together forming space).”’

The demand for constructibility is, it appears, at the bottom of such central
Kantian themes as the ideality of the world. Also of the noumenon, unreachable
by experience, of which the infinite is, so to speak, the first example. Lest it
seem that the problem of construction is an artifact of the eighteenth century’s
primitive view of geometry, it may be noted that the problem recurs in the
modern foundations of mathematics. There, one normally proves the consis-
tency of a concept by constructing it out of sets, but to do so requires an ‘axiom
of infinity’, which ensures that sufficiently many sets “exist’, in particular, that a
completed infinity of them exists.

IIl. NEW OBJECTS OF MATHEMATICS

1. Algebra

Algebra tended to take over more and more of mathematics in the eighteenth
century. Where Newton had recast his reasoning in geometrical form for public
consumption, Joseph-Louis de Lagrange’s Mécanique analytique of 1788 says:

No drawings are to be found in this work. The methods which I present require neither
constructions nor geometrical or mechanical arguments, but only algebraic operations,
subject to a regular and uniform progression.™

Condorcet says that Euler

sensed that algebraic analysis was the most extensive and certain instrument one can em-
ploy in all sciences, and he sought to render its usage universal. This revolution.. .
earned him the honour, unique so far, of having as many disciples as Europe has
mathematicians.”
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And 1n 2 rare moment of agreement with Euler, d’Alembert says algebra

is the foundation of all possible discoveries concerning quantity. . .. This science is the
farthest outpost to which the contemplation of the properties of matter can lead us, and
we would not be able to go further without leaving the material universe altogether.
(Oeuvres 1: 26, see also 30—31; transl. 20 and 26)

But, having established that algebra is a good thing, what exactly is it? Origi-
nally, it was a method of solving problems by making Ietters stand for unknown
quantities, and manipulating the letters as if they were numbers. Even on this
narrow view, algebra had philosophical significance, as it was a method for
discovering answers, and thus seemed on the side of “analysis’, as opposed to
the ‘synthetic’ deriving of known truths from axioms in the style of Euclid.”
But by 1700 it seemed more than that. Noting that the letters could stand
for geometrical quantities as easily as for numerical ones, various thinkers
proclaimed algebra to be the science of quantity in general, that is, virtually
the whole of mathematics.” Even if that were agreed, many things remained
unclear. For example, what could the letters represent — complex numbers?
Infinities? Infinitesimals? And if algebra was a general mathematics, where were
its axioms?”® Another view of algebra was that of Wolff, who saw it as part
of Leibniz’s universal characteristic, that is, as a general method of reasoning
symbolically.”? In the same vein, Condillac’s idea of the mathematical method
that ought to be imposed on philosophy was not so much Eunclid as the solving
of equations, manipulating known and unknown quantities until the knowns
appeared by themselves.

Equations, prepositions and judgements are basically the same thing, and. .. consequently
one reasons in the same manner in all the sciences. .. we have seen that. just as the
equations x — I =y + 1, and x + I = 2y — 2, pass through different transformations
to become y = 5 and x = 7, sensation passes equally through different transformations
to become the undesstanding. ™

Regarding French as a language lacking taste and precision, Condillac pro-
posed to reform it on the basis of the grammar of algebra.™ Kant says that alge-
bra proceeds by manipulating uninterpreted symbols ‘until eventually, when the
conclusion is drawn, the meaning of the symbolic conclusion is deciphered’.
The simple pushing around of symbols is what gives ‘the degree of assurance
characteristic of seeing something with one’s own eyes’ (whereas with philos-
ophy one must keep the meanings in mind zll the time).% These are the same
claims made around 1900 for formal logic. The possibility of manipulating sym-
bols without attending to their meaning is not without problems. One may end
up with conclusions that do not mean anything either. Euler is famous for his
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lack of rigour in calculating with infinite series without worrying about their
convergence; it 1s typical not only of him but of the century to conduct long
‘philosophical’ debates about the true sum of the series:

I—141—141-—..."

The case 1s even worse when manipulating symbals that are explicitly stated to
have no meaning, such as those denoting the square roots of negative numbers.
Though necessary for calculations, they do not satisfy the definition of quantities
as being ‘capable of increase and decrease’, as they cannot be less than or greater
than one another. Euler describes them as ‘impossible’, but proceeds to calculate
extensively with them.®

Euler played a crucial role in emphasising the centrality of the notion of
Sfunction in mathematics (its significance is indicated by the fact that about half of
modern pure mathematics is ‘functional analysis’). His aim was to replace vague
geometrical notions and dynamical metaphors of ‘fluents’ with something more
precisc and amenable to calculation. He initally defined a function in algebraic
terms as an expression involving variables: ‘A function of a variable quantity is
an analytic expression composed in any way whatscever of the variable quantity
and numbers or constant quantities.” For example, a2+ +/a* — 2% is a function
of z (where a is a constant).” But later, his debate with d’Alembert over the
vibrating string convinced him this notion was too narrow, because of the nced
to consider more irregular functions, which might not be expressible by an
algebraic formula. He had litte success in explaining what this noton should
be.® Lagrange also attempted a purely algebraic notion of function and tried
to use it as a foundaticn for the calculus ‘independent of all inetaphysics’. He
claimed to prove that every differentiable function could be expressed as a power
series, that is, represented algebraically (except perhaps at isolated points).® This
is false, as Cauchy soon showed. When the best mathematicians in the world
begin claiming to have proved what is false — a rare event, much to the credit of
mathematics — it is time to conclude that rigour 1s not a luxury. The nineteenth
century drew the cerrect conclusion, leading to the correct foundations of
calculus, and to set theory.

Just visible in the work of Lagrange are the beginnings of modern abstract
algebra. This is the subject that perhaps most obviously deals not with gquantity
but with certain kinds of abstract structure. Lagrange, inquiring why it had
not been possible to find formulas for solving equations of degree s or higher,
considers functions of the roots of the equation which do not change if the roots
are permuted, or interchanged. He understands that some permutations may be
‘independent’ of others, thus thinking of the permutations as themselves entities
with interrelationships. These permutations form the first of a new kind of
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subject matter of mathematics, later the object of modern group theory.
Ruffini’s work of 1799 goes further, considering the totality of permutations (a
group, in modern terms) and their composition.*”

Any or all of these developments in mathematics might have provided the
philosophers of the eighteenth century with perfect examples of the advance-
ment of knowledge through the analysis of ideas, had they informed themselves

about them.

2. Experimental evidence in mathematics

While the eighteenth century admired the rigour of Euclid, its own mathematics
is famous for a lack of rigour. It may be that the philosophical emphasis on ideas
as against formal logic contributed to a disregard of formal rigour.®® In any case,
if mathematical conclusions are to be supported by anything less than complete
formal demonstration, there is a need to consider how there can be a less than
deductive legical support. Enler was the first, among either philosophers or
mathematicians, to argue explicitly for the use of experimental, or probable,
reasoning in mathematics.

It will seem not a little paradoxical to ascribe a great importance to observations in that
part of the mathematical sciences which is usually called Pure Mathematics, since the
current opinion is that ebservations are restricted to physical objects that make impression
on the senses. As we must refer the numbers to the pure intellect alone, we can hardly
understand how observations and quasi-experiments can be of use in investigating the
nature of the numbers. Yer, in fact, as I shall show herc with very good reasons, the
properites of the numbers known today have been mostly discovered by observation,
and discovered long before their truth has been confirmed by rigid demonstrations.
There are even many properties of the numbers with which we are well acquainted, but
which we are not yet able to prove; only observations have led us to their knowledge.®

Euler’s works contain a number of examples of how to reason probabilistcally
in mathematics. He used, for example. some daring and obviously far from
rigorous methods to conclude that the infinite sum 1 + i + ; F5 + 5 F e
{where the numbers on the bottom of the fractions are the successive squares of
whole numbers) is equal to the prima facie unlikely value 7% /6 . Finding that the
two expressions agreed to seven decimal places, and that a similar argument led to
the already proved result 1 — -;- + é - f - é - TI; — % Euler concluded,
‘For our method, which may appear to some as not reliable enough, a great
confirmation comes here to light. Therefore we shall not doubt at all of the
other things which are revealed by the same method.”®®

Laplace and Gauss, who were in a position to know, agreed casually that
such reasoning was central to mathematcs.”’ Even Wolft writes that ‘examples
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of hypotheses are also found in arithmetic, which first influenced me to look
upon philosophical hypotheses more favourably’. What he has in mind is the
calculation of answers by successive approximation, the mitial guess being the
hypothesis.”* Yet philosophers pronouncing on mathematics since have rarely
given it a place.

A different connection between probability and pure mathematics was dis—
covered by Lambert. He understands that a series of digits produced by a random
process, like throwing a die, will be disordered or patternless, but that the same
can be said of the digits of w or of /2, which are completely determined. He
is prepared to say that the probability of the hundredth digit of /2 being five is
1/10.% Whether a notion of probability can be applied in such a deterministic
case 1s still a crucial issue in the philosophy of probability.

3. Topology

Topology provided the clearest example of an object of mathematics that would
not fit under the old rubric, ‘the science of quantity’. The citizens of Kénigsberg
noticed that it seemed to be impossible to walk over all seven of the bridges
connecting the two banks of the River Pregel and its 1slands, without walking
over at least one of them twice. Euler proved they were right. This is a problem
in the area now called the topology of networks. There s no quantity involved
in the problem, only the arrangement of the system of bridges and land areas.
Euler writes:

The branch ot geometry thar deals with magnirudes has been zealously studied through-
out the past, but there is another branch that has been almost unknown up to now;
Leibniz spoke of it first, calling it the ‘geometry of position’. This branch of geome-
try deals with relations dependent on position alone, and investigates the properties of
position; it does not take magnitudes into consideration, nox does it involve calculation
with quantities. But as yet no satistactory definition has been given of the problems that
belong to this geometry of position.?*

What Leibniz szid about the ‘geometry of position” was both short and ex-
tremely vague,”® but Euler was not the only one to find it suggestive. Buffon
relates it briefly to the folding of seeds and to symmetry in plaiting, and re-
marks that ‘the art of knowing the relations that result from the position of
things would be as useful as and perhaps more necessary than that which has the
magnitude of things only for its object’.?® Kant sees a connection between it
and his ideas on incongruent counterparts.”” The subject was given some more
definite content by Vandermonde, who first drew a graph, in the modern sense
of a system of nodes connected by lines. He used it to solve the problem of the
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knight’s tour in chess, ‘using numbers which do not represent quantities at all,

but regions in space’.?*

4. Social inathematics and woral algebra

[fideas have parts, perhaps one should count them, or maybe weigh them, ifthey
differ in their force. There would result a ‘moral arithmetic’, ot ‘moral physics’.
Naturally, there are measurement problems: how are psychological units to be
measured and compared, or even identified? Hume suggests that the size of the
smallest impression can be found from measuring the least visible dot (Tiea-
tise, 1.2.1.4, SBN 27-8); such measurements of the threshold of visibility were
carried out in Hume' lifetime.”¥ Buffon suggests regarding the probability of
sudden death in the next twenty-four hours, for one in the prime of life, as
a standard unit of ‘moral impossibility’, to which the reasonable man gives no
serious thought *° Maupertwis reduces morality to prudence, and prudence to
a hedonistic calculus: “The estimation of happy and unhappy moments is the
product of the intensity of the pleasure or pain by the duration.” Measurement
of intensities may be difficult, but Maupertuis invites introspection on the in-
evitability of comparing, for example, the pain of an operation for the stone with
the longer but lesser pain of forgoing the operation.™ The problem is urgent for
economics, which can hardly avoid being quantitative, when explaining prices,
but seems to rely on a subjective ‘utility’ whose measurement is as dubious as that
of pleasure and pain. Adam Smith achieves the trick, so useful in these matters,
of claiming the right to speak quantitatively, while avoiding the respensibilicy of
commitment to any actual quantities or formulas. He writes that the value of
any wealth to its owners ‘s precisely equal to the quantity of labour which it can
enable them to purchase or command. . . . Equal quantities of Iabour, at all tmes
and places, may be said to be of equal value to the labourer’, but he undercurs
the apparent accuracy of his measure by adding:

It is often difficult to ascertain the proportion between two different quantities of labour.
The ume spent in two different sorts of work will not always alone determine this
propoertion. The different degrees of hardship endured, and of ingenuity exercised, must
likewise be taken into account. There may be more labour it an hour’s hard work than
in two hours easy business. '

He appeals to the market to coordinate different people’s measures, but ‘not by
any accurate measure’,

Benjamin Franklin advises, in cases of perplexity about a decision, the listing
of the reasons for and against in two columns:

When I have thus got them all together in one View, I endeavour to estimate their
respective Weights; and where I find two, one on each side, that seem equal, T strike
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them both out: If T find a Reason pro equal to some two Reasons con, I strike out the
three...and thus proceeding I find at length where the Ballance lies. . .. And tho’ the
Weight of Reasons cannot be taken with the Precision of Algebraic Quantities. . . in fact
I have found great Advantage from this kind of Equation, in what may be called AMoral
or Prudential Algebra,'™

The special difficulties of measurement in the social and mental realm sug-
gested to Condorcet that social mathematics should rely chiefly on the theory
of probability.’® There, the equality of the beliefs one should have that a die
will fall on any side is inferred from symumetry, or ‘insufficient reason’: there
is ne reason to prefer any side to any other. He believed he had proved, using
probability, that decisions taken by majority vote were perfect for achieving
the truth.™ Before being hounded to death by a regime that exalted Equality
over Liberty and Fraternity, Condorcet had the opportunity to reconsider the
assumptions of his proof, and wonder it perhaps he did not mean that those
voting had to reach some standard of Reason. '

As long as there has been “social mathematics’, there have been explanations
of why 1t fails to work, or at least lacks anything like the success of mathematics
as applied to physics. The suggestion that lack of exact measurement is the
problem was anticipated, and argued against, as the quotations above indicate.
Another idea was that of Reid, who thought the problem lay in the definition
of quantity as ‘whatever has increase or diminution’. This is too wide, he says, as
it allows in pleasure and pain, which admit of degrees but cannot be measured
in units.”®?

Mathematical modelling of social, as opposed to introspective, phenomena
was attemnpted qualitatively in Hume’s and Adam Smith’s conception of the
economy as a self-regulating system,™* but the most successful quantitative
project was that of Malthus, whose conclusions abeut the poor laws are intended
to follow from a purely mathematical fact:

Population, when unchecked, increases in a geometrical ratio. Subsistence increases only

in arithmetical ratio. A slight acquaintance with numbers will shew the immensity of

the first power in comparison with the second.™

He takes these ratios to be evident and feels no need to support them with em-
pirical evidence. This kind of a priori fitting of formulas has particulazly afflicted
economics, so it is interesting to see Condorcet criticising Verri’s mathematical
economics on just this ground. Itis true, Condorcet says, that more buyers mean
a higher price, but what justification 1s there for Verri’s assumption of a direct
proportion between the two, if no empirical data are considered?*® A remedy
is to fit formulas to actual social statistical data. This is not a strong point of
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eighteenth-century mathematics, but Lambert had some understanding of how
to do it.™

IV. LOGIC

1. Texthook logic

Eighteenth-century writing on ‘logic’ 1s extensive,™™ but neither the school of
traditional Aristotelian logic nor their opponents, the ‘men of ideas’, produced
much that has comunanded respect since.

As systems of thought go, Aristotelian logic was one of the great survivors. For
several centuries, it was attacked vigorously, in almost identical terms, by almost
all the thinkers remembered by history. It was defended by nonentities. In each
generation, when the dust settled, it was found to be sull in control of the field
(that is, of the undergraduate syllabus). This was true in 1700, just after Locke
had renewed the attacks of Bacon and Descartes. It was equally true in 18oco0,
when Aristotelian logic was about to undergo a revival in Britain, Its contents
are the traditional logic of terms, judgments, and inference by syllogism, largely
unchanged since the logic textbooks of the thirteenth century.

The English representative of the old school was Henry Aldrich’s Artis Logicae
Compendinm, the standard Oxiord textbook for the whole century. First pub-
lished in 1691, it appeared in many editions, epitomes, and expansions until the
mid-nineteenth century, including an English translation by John Wesley.'™ On
the continent, Wolff found traditional logic satisfactory — so much so that he
in effect tried, as we saw, to incorporate the rest of philosophy into it. It 15 a
little more surprising to find Kant largely on the side of the syllogism. He has
some minor criticisms of traditional arrangements of the four figures, which he
thinks over-elaborate,'™ but he accepts that the syllogism is not intended to be a
method of discovery, and on the whole his logic teaching agrees with traditon.
He is clear about, and opposed to, psychologism in logic.'

2. ‘Facultative’ logic and Hume’s ‘psychologism’
g psychoiog

The opposing school produced voluminous works of ‘logic’, but they are full
of what would now be called cognitive psychology, epistemology, semiotics,
philosophy of logic, and introspection. They are full also of mvective, against
‘scholastic headpieces’, full indeed of everything except logic, in the mod-
ern sense of formal logic. It is not that logic was confused with (not yet ex-
istent) disciplines like psychology. On the contrary, the scholastics had been
clear about formal logic, and it was in deliberate opposition to them that the
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followers of the ‘way of ideas’ identified logic with ‘psvchologistic” notions
instead.

Bacon, Descartes, and Locke, between them, had convinced most that the
syllogism, and formal logic generally, was of no use or interest.’™® The essence
of Locke’s attack was that the syllogism was not useful for the discovery of truths,
and that it concealed the fact that inference consisted in the ‘agreement or
disagreement’ or ‘connexion’ of ideas."” Traditional logic had certainly opened
the way to such criticisms by holding that logic is about ‘thought’ or ‘judgment’,
and by concentrating on a single argument form, the syllogism, which has an
air of being analytic and trivial. Whatever the justice of the Lockean criticisms,
they failed to issue in anything better, either in new logical ideas or in textbooks.
If adherence to the syllogism restricts logic, the ‘agreement and disagreement of
ideas’ 1s if anything an even worse straijacket. It does nothing to encourage the
discovery of logical structure, and instead diverts logic into vapidity. It is all very
well to offer advice like, ‘Enlarge your general Acquaintance with Things daily,
in order to attain a rich Furniture of Topics or middle Terms'™*®, but how do
you examine that? The logics of Crousaz, Duncan, and Watts followed the Pori-
Royal Logic in including enough of the traditional classifications, distinctions,
and so on to provide some content, and in simply adding critical observations
in the style of Bacon and Descartes.™ At the end of the century, however,
Reid and Campbell revert to a purely negauve approach, speaking as if they
have just discovered that the syllogism is not a logic of discovery.'*® But neither
they nor any of their school have a replacement to ofter. Campbell ventures
the opinion that mathematical demonstrations are not syllogisms but does not
suggest what their form is, if not syllogistic. Reid is closer to the truth in holding
that mathematical reasoning cannot usually be syllogistic, as it deals with relations
of quanaties, and the syllogism is not applicable to reladons.

Hume takes to its extreme the ‘psychologising’ of logic, and so exhibits most
dramatically the problems in doing so. Plainly, there are tensions in ‘natural-
ising’ Jogic by reducing it to manipulations the mind happens to perform on
ideas, while relying on logic as normative for argument. Hume applies general
principles, such as, ‘like objects, plac'd In like circumstances, will always produce the
same ¢ffects’, to particular cases, without apparently noticing that he is using a
formal logical principle of instantiation. Much the same could be said of his use
of ‘not’."" Hume exacerbates these difficulties by adding a sceptical project to
his naturalising one. What he is sceptical about is the logical force of common
inferences: causal inferences, inferences from ‘is’ to ‘ought’, and so on.”* It is
odd, certainly, to say that causal inference is not logically cogent but only an
unavoidable habit, at the same time maintaining that all logical inference 1s only
an unavoidable habit.
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Hume’s views on inference are seen to better advantage if chey are thought of
not in terms of formal logic, or even introspection, but as a research proposal to
be implemented in, say, silicon chips. Modern Artificial Intelligence, like most
eighteenth-century writing, is concerned with the implementation of a system
of inference, not just the formal structure of the systern itself. From that point
of view, it is necessary to answer questions that do not arise in formal logic,
such as how the symbols become attached to the things they mean. One must
consider, in short, the ‘natural history of the understanding’. It is then a matter
for debate whether the syllogism needs to be explicitly represented internally,
and whether one can replace an explicit generality with exemplars linked by
‘customn’, so that when onc individual is activated, the linked ones ‘immediately
crowd in upon us’ (Treatise, 1.1.7.7-8, SBN 20-1). The links between the
exemplars are to be induced by the resemblance, constant conjunction, and like
relations that hold between them. Hume’s claim for his rules about causes that
‘Here is all the rocic I think proper to employ in my reasoning’ (1.3.15.11,
SBN 175) is then a claim that can be investigated empirically: will a mechanism
equipped with only the principles of association Hume names be able to reason
adequately?

Logic’s place at the centre of the curriculum makes certain wider effects of
cighteenth-century logic more interesting than the subject itself. One student
of logic who took the natural undergraduate reaction against the subject to
an extreme was Swift, whose inversion of the stock logical examples, ‘Man
is a rational ammal; a horse 1s a whinnying animal’ led to the satire of the
Yahoos and Houyhnhnms."*? Another who used its rhetoric to good effect was
Thommas Jefterson.'* The claim of the Declaration of Independence, “We hold
these truths to be self-evident, that all men are created equal’, combines the
logical theme of self-evidence with the mathematcal one of deriving such self-
evidence from a symmetry principle. A true logician will ask why, if a principle
is indeed self-evident, it is necessary to ‘hold’ it to be so. The French were
clearer that Equality is not a given but a goal.

The discrediting of logic in England had consequences in education that are
still fele. While tradition-bound, High Church Oxford took no notice of the
problem and continued to teach logic, in Latin from Aldrich’s text, and examined
by disputation,'*® Whig Cambridge did the opposite. It replaced logic by the
only credible alternative, mathemancs, and produced the ancestor of the modern
written cxamination system, the Mathematical Tripos. By a happy feedback
effect, mathematics permitted an ever fincr objective grading of candidates,
leading to ever more concentration on mathematics. Since mathematics was a
substitute logic, however, the matter examined was confined largely to geometry,
continental innovations like algebra being considered unpatriotic.'** Geometry
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is also more amenable to being considered in terms of ‘ideas’ than the formal
manipulations of algebra.’*”

3. Symbolic logic and logic diggrams

Leibniz’s vision of a universal characteristic, allowing logical inference by cal-
culation, inspired some, but resulted in little of significance. The logical sym-
bolism of Segner, Ploucquet, Holland, Maimon, and Castillon does not need
much reinterpretation to yield various theorems in propositional and predicate
calculus, but only the simplest ones.'*

Euler developed the traditional theory of the syllogism in a popular work,
illustrating i¢ with diagrams similar to the later Venn diagrams. Particular (ex-
istential) propositions have always posed problems for such diagrams, as there
needs to be some way of indicating which of the regions are non-empty. Euler
distinguishes between ‘Some A is B’ and “‘Some A is not B’ as follows:

Some A is B Some A is not B

If one belicves that it 1s a good thing for Jogic to become extensionalist,
then logic diagrams will appear one of the century’s few advances in logic.
Euler himself does not mean to be taken this way. He uses only intentional
vocabulary, such as ‘If the notion C 1s entirely contained in the notion A...’
He takes no notice whatsoever of two centuries of criticism of the syllogism,
and goes so far as to maintain that all truth arises from it.

A simular idea, but using lines instead of circles, appears in Lambert."*® But
this js only a small part of a larger project for the mathematising of logic. He
proposes to give some precision to the analysis of concepts into simple ideas,
thus doing for quality what geometers had done for quantity, and deducing
everything from a firm basis."™ An aspect of the project was a symbolic logic
of concepts; one analyses a concept ay into its genus a and differentia a6; the
equation

ay =a— ab

then means that the genus of a is the result of abstracting the differentia from a.
Lambert 1s sometimes nusled by false analogies to ordinary algebra, to the extent
of considering the square root of a relation.** In another attempt to bring logic
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and mathemartics together, he considers the valid argument:'™

7 2
= of A are B, — of A are C, s0 some B are C.

Few logicians since have cared to follow him into such numerical territory.

V. TECHNOLOGY

The subtitle of the Encyclopédie is Dictionnaire raisonné des sciences, des arts,
et des métiers. The prominence given to the ‘arts and trades’ is due to Diderot,
who writes:

Let some man go out from the academies and down mto the workshops, and gather
material on the arts to explain them in a work which will persuade artisans to read,
philosophers to think usefully, and the great to make at last some worthwhile use of their
authority and wealth.'™

‘Useful science’, as an idea, is Baconian, but science as an accepted route to
profit, military superiority, and progress 1s really an eighteenth-century devel-
opment. While the French government and the Royal Navy were among the
largest investors in research, the practical orientation of research was especially
evident in peripheral regions, where abstract thought, including philosophy,
survived at all only on the promise of its practicality. Boundless confidence in
the usefulness of science was as characteristic of the America of Franklin and
Jefferson™ as it was of Russia, where Euler and Lomonosov worked assiduously
on ‘improvements’. In England, the Industrial Revolution was associated less
with London than with the provincial cities that were the homes of ‘Philosoph-
ical Societies” devoted to practical science.’

Diderot found a significant fact about practical knowledge: it could not be
written down adequately in text. Asking the practitioners to clarify it produced
simply a garbled mass of unintelligibilitics and inconsistencies. It proved essen-
tial to ask the tadesmen to show what they were doing and present the result
in pictures. Hence the Encyclopédie has eleven volumes of plates (compared to
seventeen of text).™” Though there were no large-scale encyclopedic projects in
England, their place was to some extent taken by public lectures on science, es-
pecially useful science. The famous London lectures of John Desaguliers taught
by showing working machines. Science thus became accessible to those lack-
ing mathematics; the Newtonian philosophy, Desagulicrs says, ‘tho” its truth is
supported by Mathematicks, yet its Physical Discourses may be communicated
without. The great Mr Locke was the first who became a Newtonian Philoso-
pher without the help of Geometry”.™ Inventions like the steam engine, the



Artifice and the natural world 843

lightning rod and balloons were certainly spectacular and capable of conveying
a message without the need for supporting captions.

But what message? The relation of machines to abstract thought was a vexed
one. The formula for gravity is not much use, while the textile and steam engines
were mostly invented by practical engineers, not scienasts. Still, inventions are
‘efforts of the mind and understanding which are caleulated to produce new
effects from the varied applicadons of the same cause, and the endless changes
producible by different combinations and proportions’,’¥ that is, intellectual
products. Adam Smith, who recognises the importance of machine inventions
in improving productivity (though he tends to subordinate it to his idée five
of division of labour), speaks of ‘philosophers or men of speculation, whose
trade it is, not to do anything, but to observe every thing: and who, upoen
that account, are often capable of combining together the powers of the most
distant and dissimilar objects”.™® The description 1s exactly true of James Watt,
mathematcal instrument maker to the University of Glasgow, who analysed the
heat Josses in Newcomen's steam engine and realised that the condensation was
a separablie process that could be better situated somewhere else.'*' The skills
involved are cognitive, but they are not so much the formal geometry of Euclid
as the draughtsmanship or design of the engineer — Diderot’s ‘experiential and
manipulative mathematics’, or the ‘practical geometry” which Swift’s Laputans
‘despise as vulgar and mechanic’. And it was the eighteenth century’s advances
in cast iron and stecl making that meant any shape could be made cheaply
and durzbly. The availability of arbitrary rigid shapes, cheap, long-lasting, and
reliably resistant to high pressures, stimulated imaginations to fashion intricate
geometries of interacting parts. The iron machines are concrete realisations, so
to speak, of several philosophical projects at once: Bacon’s useful science, Kant's
constructions, Vico’s ‘maker’s knowledge’, and Descartes’s dream of explaining
the world as the effect of interactions of rigid bodies.

There was some opposition to the idea of the beneficence of ‘useful” science.
Swift’s satire artacked scientific research as either divorced from reality or pro-
ductive of inventions that did not actually work.'** But in general, technology
had a positive glow, like mathematics, sufficient to tempt philosophers of most
persuasions to claim it as on their side. Derham’s Physico-theology, for example,
saw the advances in mechanical inventions as evidence for God’s providence.'#
L'honime niachine may have scemed an idea of obviously atheist consequence in
Paris, but Paley knew a good deal more about machines than La Mettrie, and
convinced most, at least in the short term, that the teleological aspect of ma-
chines supported a theist interpretation of the man-machine analogy. “Watches,
telescopes, stocking-mills, steam-engines, &c.” are not the kind of things that
cazn arise by chance — not even chance followed by selection.'#
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The consequences for political philosophy of Diderot’s praise of artisans are
generally left implicit in the Encyclopédie, but Hume’s essay Of Refinement in the
Arts supplies the gap:

We cannot reasonably expect, that a piece of woollen cloth will be wrought to perfection
in a nation, which is ignorant of aswonomy, or where ethics are neglected. . .. Can we
expect, that a government will be well modelled by a people, who know not how to
make 4 spinning-wheel, or to employ a loom to advantage?. .. a progress in the arts is
rather favourable to liberty, and has a natural tendency to preserve, if not produce a free
government.'#

The idea that machines create progress autonomously has remained an attrac-
tive one for the Enlightened. Citizen Gateaw, administrator of military provi-
sions, writes of the machine that has come to be most associated with Liberty:

Saint Guillotine is most wonderfully active, and the beneficent terror accomplishes in
our midst, as though by a miracle, what a century or more of philosophy and reason
could not hope to produce. '+
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