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ARTIFICE AND THE NATURAL WORLD : 

MAT HEMATICS, LO GIC, TECH NOLOGY 

JAMES FRANKLI N 

If Tahiti suggested to theorists comfortably at home in Europe thoughts ofnoble 
savages without clothes, those \vho paid for and w ent on voyages there were in 
pursuit of a quite opposite human ideal. Cook's voyage to observe the transit 
of Venus in 1769 symbolises the eighteenth century's commitment to numbers 
and accuracy, and its \villingness to spend J lot of public money on acquiring 
them. The state supported the organisation of quantitative researches, employing 
surveyors and collecting statistics to compute its power, J People volunteered to 
become more l1umerate; .l even those who did no t had the numerical rationality 
of the metric system imposed on them, ) There was an increase of two orders 
of magni tude or so in the accuracy of measuring instruments and the known 
values of physical comtants. 4 The graphical display of quantitative information 
made it more readily available and comprehensible. j O n the research fiunt, 
mathematics continued its advance, even. if with notably less speed than in the 
two adjoining centuries. The methods ofehe calculus plUved successful in more 
and more problems in mechanics, both celestial and terrestriaL Elasticity and 
fluid dynamics became mathematically tractable for the first time. 6 The central 
Limit theorem brought many chance phenomena within the purview of reason. 

These successes proved of interest for ' low philosophy' , or philosophy- as­
propaganda, as practlsed by the natural theologians and the Encydopedistes. Both 
had their uses for scientific breakthroughs, though sometimes not much in­
terest in the de tails. For 'high philosophy'. as consti tuted by the great n~l.lnes, 
mathematics and science had a different importance. A feature common to the 
biographies of all the well-knm.,vl1 philosophers of [he eighteenth century is 
a mathematical youth. WolfF began as a professor of mathematics, and it \-vas 
in that subject that he first made the contributions to the intellectual vocabu­
lary and style of German for which he is so universally loathed. Kant taught 
mathematics, and his Prize Essay begins with an analysis of the mathematical 
method. D ' Alembert , Condorcet. Lambert, even Diderot in a smaller way (and 
of course Leibniz earlier) made serious mathematical contributions. R eid also 
taught mathematics , and his first published vmrk was on quantity. Paley was 
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Senior Wrangler in the Cambridge Mathematical Tripos. Berkeley's Analyst is 
one of the most successful interventions ever by a philosopher in to mathem~ti cs . 

Hume and Vico, though no mathematicians, used mathematical examples as the 
fi rs t illus trations of their theories. Adam Smith's 'invisible hand' and Malthus's 
model of population growth both belong to \",'hat is nm'\! called dynamical sys­
ten15 theory. 

N aturally, these philosophers did not all draw the same lessons fr0111 their 
mathematical experience. But philosophers have one ching in common in their 
attitude toward mathematics, in this last century before the surprise of non­
Euclidean geometry undermined the pretcl15io ns of mathematics to infallibility. 
It is envy. What is envied, in parti cular, is the 'mathematical method' , whi ch 
apparently produced what philosophy \vished it could but had been unable to: 
certain trUtllS, agreed to by all , delivered by pure thought. 

I. T HE ' MATHEM ATICAL METH OD ' PRAI SED 

The eighteenth cenrury was the last to accept, fundam.entaily with out question, 
certain approved opinions of the ancients concerning the method and content 
of mathematics. The ideas were largely Aristotelian in origin but had survived 
the demise of scholasticism by being accepted almost in full by the Cartesians 

and N ewton. The much admired 'mathematical method' is the deriving of 
truths by syJ10gisms from self-evident first principles; the method was believed 
to be instantiated by Euclid 's Elements. As to the content, mathematics is the 
science of 'quantity' , which is 'whatever is capable of increase, or diminution'. 7 

N umbers arise fro m co nsidering the ratio of quantities to an arbitrar ily chosen 
unit. Quantity is of two kinds: discrete (studl ed by ar ithmetic) and continuous 
(studied by geom etry). However, geo metry is also the study of 'extension' , 
or real space. Q uantity in the abstract is studied by pure mathematics, w hile 
'magnitude as subsisting in material bodies'S is the object of mixed or applied 
mathematics, which includes opti cs, astronomy, mechanics, naviga tion, and the 
like. Tendencies to regard mathematics as about some abstraction of reality did 
exist but were generally resisted. Euler, for example. says that in geometry one 
does not deal with an ideal or abstract tr iangle but with triangles in general , 
and that generality in mathematics is no different from generality elsew here;9 to 
the same purpose, d' Alembert defends an approximation theory, whereby the 
petfect circles of geometry allow us to 'approach' the truth, 'if not rigorously, 
at least to a degree sufficient for our use'. \0 

There are several philosophical problems v.lith this complex of opinions, 
which are sufficiently obvious to keep surfacing in one form or another again 
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and again: 

Why is the mathematical method found in nlm/tematics? 
• Why are the fIrSt principles in mathematics necessary, and ho\v are they knO\vn? 
• Is the reasoning in Euclid in fact all syllogisms? (in the strict sense, that is, of the form: 

All A are B, All Bare C , so AJI A are C). If not, what kind of reasoning is it? 

1. Wolff 

Wolff at least had answers to these questions. The mathematical method, he 
thinb, is applicable everyvvhere; and there is no problem about the self-evidence 
of the first principles because there is only one of theIn, and it is the principle of 
non-contradiction . Geometrical demonstrations can aU be resolved into formal 
~yllogisms, and discoveries in mathematics are made exclusively by syllogistic 
means. II His central place In eighteenth- century philosophy results iiom his at­
tempt to derive all philosophical truths from th e principle of non-contradiction, 
by the 'mathematical method' .1 2 A look a t how he actually proposes to prove that 
everything has a sufficient reason, using only the principle of non- contradiction, 
reveals \vhy Wolff's 'method' achieved less than universal agreement: 

Let us supposc A to b(! v ... ithou t a sufficient rcason why it is rather than is not. T herefore 
nothing is supposed by \vhich it can be under;tood why A is. Thus A is admitted to 
be, on the basis of an assum ed nothing; but since this is absurd, nothing is \-vithout a 
sufficient reason. 'J 

Wolff's idea l differs from those of ochers essentially in lacking anything like 
Plato's djalectic, or Aristotle's inducti on, or Kant's analysis: the roundabout dis­
cllssion and soning of experience which allows the intellect to come to an 
insight into first principles. It is unnecessary in Wolff's system because the prin­
ciple of non- contradiction is the sole starting point. Any tendency to regard 
brute fact" as contingent and oucside the scope of explanation by necessary rea­
sons is suppressed, in Wolff, by his acceptance of Leibniz's Best of All Possible 
Worlds theory. According to that theory, everything, however particular, has an 
explanation in principle. 

2. iWathematics as philosophical propa .. ,!(fNda 

Mathematics, because of its immense prestige, is always destined to be used 
in support of various philosophical positions. It was a natural as a prop for 
the Enlightenm ent motif that there should be more R eason all round. The 
Eucyclopedie says: 'M. Wolff ... made it clear in theory, and especiaUy in practice, 
and in the composition of all his works, that the mathematical method belongs 
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to all the sciences, is natural to the human spirit , and leads to discoveries of 
truths of all kinds. 1I4 Nor that the French needed Wolff to tell th em this, given 
the Cartesian ideals expressed by, for example, Fontenelle: 

The geometrical spi rit is not so attached to geometry that it cannot be carried over 
to other know ledge as weU. A work of ethics, of policics, o f cr iticism, perhaps even 
of eloquence will be better, aU th ings else being equal, if it is made by the hand of a 
mathematician. The o rder, clarity, precision and exactitude which have re igned in the 
bener works recently, can well have had their first source i ll this geometrica l spirit which 
extends itself more than ever and "\vhich in some fashion cOllnl1unicltes i t~e1f even to 
those "vho have no knowledge of geometry. IS 

Of course, there were counter-currents. There were the complaints common 
in all centuries from self-proclaimed 'practical men' like Frederick the Great 
and Jefferson, 16 w ho regarded the higher abstractio n .. of mathematics as use1ess, 
and from humanists like VieD and Gibbon, w ho abhorred the 'habit of rigid 
demonstration, so destructive of the fin er feeli ngs of moral evidence'. 17 

Mathematics was also called to the aid of more particular philosophical theses. 
On the one side, there was the support allegedly given to natural theology by 
the various 'principles of least action'. On the other. the success of prediction 
in astronomy could be a support to determinism . [t was fowld th;,n many phe­
no mena in p hysics could be derived from 'methods of maxima and minima' , or 
'principles oflcast action', sllch as the one sta ting that the path ofl ight fi:om one 
point to another is the one which minimises the time of travel (even if the path 
is not straight, because of reflection or refrac tion). Maupertuis and Euler take 
this to be evidence of final causes, and for che existence of God. IR Their idea 
O\~tes something to the more general claim of Leibniz's T7Ieodicee that everything 
lS th e necessary resul t of a maximum principle, nanlely, chat th e goodness of 
this world is the best possible. D 'Alemben , to the contrary, warns of the danger 
of ' regarding as a primitive law of nature ",vhat is only a purdy mathematical 
consequence of some formulae ' . 19 H e believes the best hope for the countries 

of Europe oppressed by superstition is to begin studying geometry, \vhich will 
lead to sound philosophy.20 Laplace also, in an image that haunts philosophy 
still, invites mathematics to assist an anti-religious 'Yvorldvlew: 

Given for one instant lHl intelligence w h ich could comprehend all tht: fo rces by which 
n.Uure is animated and the respective situation of the beings who compose it ... it would 
embrace in the same formula the movements of the greatest bodies of the universe and 
those of the lightest atom. 21 

History would thus be a subfield of the theory of differential equati ons . 
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3. D'Alcmbert versus Diderot 

WoHrs ant-like progress through a farrago of equivocations and circularities is 
merely dispiriting and only brings rationalism into disrepute. D' Alembert is not 
so easily dismissed when he argues for essentially the same conclusions. His 
inunedia te claim, is not, indeed, that all subjects are entirely amenab1e to the 
geometric method, o nly that mechanics is. But mechanics is very inclusive, on a 
typical eighteenth-century view. If La Mettr ie and d ' Holbach were right about 
the nature of m an, fo r example, psychology would be a sub-branch of mechan­
ics. D'Alembert argues, more convincingly than Descartes, that mechanics is a 
branch of mathematics , based like arithmetic on absolutely necessary first prin­
ciples . In a kind of mathematical version of H"llme's scepticism about causes, 
he regards forces as 'b eings obscure and metaphysical': ' All we see distinctly in 
the movement of a body is that it crosses a certain space and that it employs 
a certain time co cross it. '22 Hence collisions are to be explained in terms of 
impenetrability, and the density of a body is merely 'the ratio of its mass (that 
is, the space it would occupy if it were absolu tely without pores) to its volume, 
that is, to the space it actually occupies'. 23 Tt might seem that there is no hope 

of demonstrating the conservation of momentum purely geometrically: 

However, if ·we consider the matter carefully, we shall see that there is one case in which 
equilibrium manifests i(self clearly and disti nctly; (hat is where (he masses of the tvvo 
bodi e.~ are equal, and the ir velocities equal and opposite.2.t 

T he EI1C}'clopedie article 'Exphimentalc ', which one expects to be along 
Baconian lines, is in fa ct used by d'Alembert to propagate his extreme anti­
experimental vie"\vs. H e regards collecting facts as a rather m edieval exercise, 
superseded by Newton's in troduction of geometry into physics. The laws of 
colliding bodies are demonstrable: nature could not be any other way. But there 
is an admission that how fast a body falls under gravity, and what the weight 
of a fluid is, must be measured; only after that do the relevant sciences become 
'entirely or almost entirely mathematical': 

No theory could have allowed us to find the law that heavy bodies follow in their vertical 
faU, but once this law is found through experience, all chat belongs to the movement of 
heavy bodies, whe{her rectilinear or curvilinear, whether inclined or vertical, i.~ found 
entirely by theory.1. j 

W hile these cases appear as unfortunate weakenings of his original wish for 
purely deductive science, d 'Alembert's comm.cnts here are perhaps his most solid 
achievement. In the more mathematical sciences, experience does appear only 
in support of a few easily checkable synullctry principles and simple laws, while 
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most of the weight of explanation rests on the difficult mathematical derivations 
of more subtle phenomena £i-om these. And, as Leibniz points out ,26 a symmetry 
principle has a special logical status, being an application of the principle of 
(in)sufficient reason: in d'Alembert's example, if two bodies h ave equal and 
opposite velocities, theif mo menta must balance, as there is no reason why o ne 
should overcome the other. D ' Alembert was widely thought to have succeeded 
in showing that the principles of mechan ics had 'a necessity as rigorous as the 
first elementary truths ofgeometry' .27 Kant concurred in d'Alenlbert's unlikely 
conclusion . .28 Lagrange's MCcanique analytique of 1788 confirmed furth er that 
mechanics could look like a deductive system, managing almost to conceal the 
existence of forc es. 29 

Of one mind on the iniquity of priestcraft, the inevitable progress of mankind, 
and o ther stich Enlightenmen t staples, the two priIne movers ofthe Encyclopedic 
feU OUt over mathematics. Diderot believed mathematics had reached its highest 
point and was now in decline. 30 He preferred sciences full of life and ferment, 
like chemistry and biology, criticising mathematics as abstract and ovt::r-simple. 31 

D'Alembert, on the other hand, held that an abundance of experiential 'princi­
p les' is 'an effect of our very poverty' Y Diderot's attack is not all invective; he 
has a philosophical argum ent to undermine rationalist pretensions about mathe­
matics which L'i the same as the contention of cvvenricth-cenrury empiricists and 
positivists that mathematics is essentially triviaL Geometrical truths are merely 

iden tities, saying the same thing in a tho usand diffe rent ways witho ut generat­
ing any new facts. B D' Alembert allowed this argument to appear in the Di.scoUH 
preliminairc to the Encyclopedie, but replied that it just showed how powerful 
math ematics was to be able to get so much fr0111 so little. 34 

II. THE 'MATH EMATICAL METH OD' DOUBTED 

As in the twen tieth century, the success of science and mathematics attracted 
from professional philosophers not praise. but complaints, to the effec t thac 
they, the philosophers, could not see hmv so much knowledge could possibly 
be achievable. While very few were prepared to go as far as Diderot, much 
argument was undertaken to show that the claims of mathematical proof were 
not all they seemed. T he argument mostly centred on geometry. The problem. 
at its simplest, as Gauss put it, i ~, 'if number is entirely a product of our OV.r1l 

minds, space has a reality outSide of our minds and we can not prescribe its 
laws a priori'.3) The century inherited what could be called the Euclid- Newton 
view of space and time. The essential features are these: Space and time are 
infinite in extent in all directions, homogeneous, fiat, and infinitely divisible. 
Truths about space and time may be proved with absolute certainty, in th e sryle 
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of Euclid. After t\VO thousand years of success. the fac ade seemed unbreakable. 
This prevented two developments which, at various times during the eighteenth 
century, seemed on the point of happening. The first is the discovery of non­
Euclidean geom etry. The second is the adoption of the philosophical opinion 
that knowledge of space, \vhich is something real outside the mind, must be 
empirical and fallible. The problem with the Euclidean claims is that it is difficult 
to see how they could be knm';n, if true. Without the scholastic magic of an 
intellect equipped with a natural aptitude for truth, and with epistemological 
worries becoming more central to philosophy, empiricism and rationalism were 
in equal but opposi te quandaries. For the empiricist, the inflllitely large and the 
infinitely small are not available for inspection, so where is knowledge of them 
to come from? H ume will pursue chis thought to its limit. For me rationalist, 
the certainty of the deliverances of reason on space and time wi ll suggest a 
dependence of those concepts on the lrUnd. Kant will pursue chis idea to, or 
beyond, its limits. 

1. Bayle mid Saccheri: doubts on tltefollndations of geometry 

The probJem as it appeared ac the beginning of the century can be seen in two 
widely known semi-philosophical works: Bayle's Dictionary (r697) and Saccheri's 
Euclid Cleansed from All Spo, ( ' 733). Baylc remarks tha, the certainty of the 
mathematical method is not all it is clajmed to be, since there are disputes even 
among mathematicians, for example, over infinitesimals. Y; He argues that space 
can consist neither of mathematical points nor of Epicurean excended atoffi'i, 
nor can it be infinitely divisible. H e takes this to exhaust all the possibilities, and 
concludes, in a remark that contains seeds of both Hume and Kant, that the 

attempted geometrical proofs that space is infinitely divisible 'serve no other use 
but to shO\v that extension exists only in our understanding' Y 

An essen tial claim of admirers of the 'mathemarical method ' vvas that Euclid's 
axioms were self-evident. But how true is this? Somewhere, Euclidean geometry 
must claIm that space is infinite, wh ich SeelTL'i a claim beyond the capacity of 
experience to know. Euclid's Fifth Postulate, in particular, asserts something that 
seems to require an intuition about arbitrarily distant space: 

That if a straight line falling on two straight lines makes the interior angles on the same 
side less than rwo right angles, the t\VO scraight li nes, if produced indefinitely, meet on 
that side on which are rhe angles less tha n (he two right angles. 

Saccheri undertook to derive the fifth postulate from the others by shO\ving 
that the first four postulaces, p lus [he neg.ulon of the fifth, led to a contradiction. 
This is in fact impossible to sho\\-: If true, it \yould have removed all doubts 
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about the self-evidence of E uclid 's axioms. H e proceeds well for some time, 
demonstrating what would later be called theorems in hyperbolic geometry, the 
non-Euclidean geometry in which the sum of the angles in any triangle is less 
than 180 degrees. Then he derives a 'contradiction' , but it is unconvincing, as 
it involves COJlUll0 11 perpendiculars to two straight lines 'a t infinity' . He makes 
another attempt and again claims success, but there is a mistake. He hin ts that 
the result is not as clear as it might be, and publication of his book was withheld 
in his lifetime (possibly entitling him to a footnote in the history of ethics).38 

The problem became weU-known: d'Alenlbert caned it the 'scandal of the 
elements of geometry'. G. S. Khigel's dissertation of 1763 reviewed t\venty-eight 
attempts to prove the fifth postulate, concluding that they were all deficient. He 
gave his opinion [hat the postulate was nO[ provable, its truth thus resting on dle 
judgment of the senses. W Kant's only serious attempt to do work of his own in 
mathematics was an attempt to prove the fifth postulate. 

Lambert came closest to thinking in terms of an actual alternative geometry, 
writing, '{ should almost conclude that the third hypothesis {of angle sum less 
than 180 degrees] holds on an imaginary sphere'.40 N evertheless, like Sac cheri, 
he incorrectly claims to derive a contradiction, and the genuine possibility of a 
non-Euclidean geolll.etTy ,,",'as not recognised unti l well after 1800. The philo­
sophicaJ commitment to [he self-evidence of Euclid certainly stimulated im­
portant mathematical work but at the same time delayed the discovery of the 
correct answer, which was not that desi red by philosophy. 

2 . Berkeley's Analyst: calcu lus mid ilifmitesillIals 

Berkeley's general philosophy of math ematics shows intellectual independence, 
to say the least. R ejecting completely views that mathematics is about either 
quantity or abstractions, he is the first formalist philosopher of arithmetic, main­
taining that there is only the manipulat ion of symbols according to rules:u Ge­
ometry, he believes, can only be about perceived extension. He is thus led to 
reject the infinite divisibili ty of space; like Hume after him (and this is where 
Hume's and Berkeley's philosophies come closest) he denies the meaningfulness 
of any talk about lengths less than the minimum visibile or l1Iinif1'111111 tangibileY· 

Prepared by thc:=se non-standard speculations, Berkeley, in his AI/alys! of 1734, 

attacked the mathematiciam' understanding ofehe fou ndations ofche calculus as 
hopelessly confused and contradictory. T he episode has a special place in the his­
tory of philosophy, as one of the very few cases where a technical field eventually 
admitted that philosophy strictly so-called had won a victory over the technical 
practitioners. Berkeley intended the argument to serve a purpose in the philos­
ophy of religion, by showing that there were mysteries as incomprehensible as 
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those of religion even in the paradigm of reason, mathematics.43 The argument 
itself, however, is quite independent of its purpose. 

At issue is the meaning of a derivative, or rate of change of a variable quantity­
the 'fluxion' of a 'fluent', in Newton's terminology. If we w ish to measurc the 

speed of a moving object, that is, the rate of change of distance, we use a unit like 

miles per hour. To fi nd the numerical value of an object's speed, therefore, we 

d ivide the disrance it travd s in any rime interval by the length of the interval If 
the speed is constant, no problems arise: the an:iwer is the same w hatever interval 

is taken: 12 miles divided by 3 honrs gives the same answer as 8 mi les divided by 
2 honrs, namely 4 nules per hour. But if th e speed is itself variab le, conceptual 

problems arise in trying to explain what the instantaneous speed is, at any given 

instant. For the speed calculated from dividing any finite distance traversed by 

the finite time taken to do so is no t an instantaneous speed but the average 

speed over [he in terval. It is na tural ro approximate the speed at an instan t more 
closely by taking smaller and smaller intervals including that instant, but the 
problem remains that an instantaneous speed and an average speed are different, 

both conceptually and numerically. N ewton used such doubtfully intelligible 

language as 

Fluxions are very nearly as the augments of the fll1cnt~ generated in equal, but very 
smail , particles of time; ,md, co speak accurately, they are in the first ratio of the nascen t 
augments ... -t4 

I n calculating th e speed if the distance travelled in time x is x", he first finds the 

distance travelled in the time between x and x + 0, divides it by the 'augment' 
of time 0, and finall y claims that vvhen the augm ent 0 vanishes, their 'ultimate 
ratio' is as I1X

II
- r to !. Berkeley's criticism is perfectly correct: 

Fo r when it is said, Jet the increments vani-,h, o r let there be no increments, the fo r­
mer supposition that the increments were something, or that there were increments, is 
destroyed , and yet a consequence of that supposition, i.e., an expression got by virtue 
[hereof, is retained:H 

Indeed, the division by 0 to find the average speed requires that 0 not be zero, 
while later 0 is taken to be zero. It is no use maintaining that 0 is small , since as 

Berkeley again says, 'th e mi nutest errors are not to be neglected in mathemat­

ics' . Newton's arrempcs to speak of the augmen ts as ' nascent' and 'evanescent', 
and the ratios as 'first' Cl nd ' ultimate' attracts Berkeley's m ost famous piece of 

ridicule : 'And w hat are these same evanescent increme nts? They are neither fi­
ni te quantit.ies, nor quantities infinitely small , nor yet nothing. M ay we not call 

them thc ghosts of departed quantities? '(§35 , 4: 89) . Berkeley also attacks with 
justice other parts of N ewton's calculus, notably the higher derivatives. A speed 
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is itself a variable quan tity, so it has a fluxion, or rate at which it is changing, 
the acceleration. [ f it is hard to explain a fi rst derivative ill terlTIS of the ratios of 
'evanescent' quantities, it is doubly so to explain in such terms what a second 
or third derivative is: 

The incip ient celerity of an incip ient celerity·, rhe nascent auglnent of a nascent augment, 
i.e., of a thing which hath no magnitude. - take it in what light you please, the dear 
concepcion ofic will , if l m istake not, be fou nd impossible. (§4, 4: 67) 

Bad answers to Berkeley began with his own,46 and a flood of them appeared 
from as far away as America. 47 

There are other possible ways of expressing what it is of which ratios are being 
taken . On the continent, it was common to speak in terms of ' infinitesimal';'. 
These were conceived of as quantities smaller than any fi nite quantities, yet 
not zero. An instantaneous speed nught then be regarded as exactly the ratio 
of infinitesimal augments, though only approximately the ratio of any fini te 
augmencs.4~ 'The clear conception of them' proved no easier to achi eve than 
that of flu xions. 

O ne of the more serious attempts to resolve the problems V-ias Maclaurin's 
Treatise ~f Ffuxio l1S of I742. It attempts to show that fluxions are a generalisation 
of the 'geometry of the Jntients ', by using Archimedes' method of exhaustion 
to replace infinltesimals, of which he complains, 'From geometry the infinities 
and in fini tesimals passed inca philosophy, carrying w ith them the obscurity and 
perplexity which carmot (.1il to accompany them '.49 H is idea is in pr inciple 
the same as the modern treatment using limits, but Maclaurin retains kinematic 
notions which would later be regarded as inadequate. In particular, he defmes 
a fluxion obscurely in term ... of a counterfac tual: 'the illcrel11_cnt or decrement 
that would be genera ted in a given time by this notion , if it was continued 
unifonnly. ' .5

0 D ' Alembert and L'Huilier tried to base calculus on lim its, in a 

way that was essentially correct, but still lacked the precision achieved in the 
next century by the use of multiple quantifiers. 51 Lazare Carnot's Rij1exiol1s sur 
fa 1I11itaphysiql,le du (alcul il'ifjllitesil11al, of I797, achieved much greater popular 
Sllccess, by repeating all the. worst excesses of infi nitesimals. p The debates over 
\-vhether infinlcesimals are zero or not, whether they can be conceived, and 
\-vhether a liInit is or is not actually attained often read more like a Kantian 
antinomy than the real thing. 

3. H ume 011 mathematics 

Hume's philosophy of mathematics is a natural outgrowth of his combining 
the usual 'science of quan tity and extension' view \~.'ith his requirement that all 
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concepts be explained in terms of impressions and ideas. Tn the division of truths 
between relations of ideas and matters of fact, mathematics falls entirely on the 
side of ideas. But whereas relations of ideas like resemblance and contrariety are 

'discoverable at first sight', this is not so with 'proportions ~f quantity or number'. 
Though not different in kind from resemblance, because of their complexity 

'their relations become intricate and involved', so that coming to know them 

may need some 'abstract reasoning and reflexion', or demonstration (unless 'the 
difference is very great and remarkable'). The relations treated in arithruetic and 
algebra arc the best known, because of theif 'perfect precision and exactness'. 

For example, tvvo numbers may be infallibly pronounced equal when 'the one 

always has an unite answering to every unite of the other', since this is something 

directly checkable. 5.1 Such complicated mathematical facts as that a number is 

divisible by nine if the sum of its digits is also divisible by nine may at first appear 

due to chance or design, but reasoning shovvs they result from 'the nature of 
these numbers'. 54 Hume thus does not agree that mathematics is syllogistic, or 

in any other way 'analytic' in any trivial or vacuous sense. But he does hold that 
mathematical truths are known by subjecting ideas (of quantity) to some kind 

of purely conceptual 'analysis' (not Hume's word).5) 

Even demonstrated mathematical knowledge is in practice fallible, however. 

For the certainty that results fiom discovering the relations is only an 'in princi­
ple' one, since an actual reasoner can make mistakes. 'The rules are certain and 

infallible; but "vhen we apply them, our fallible and uncertain faculties are very 
apt to depart from them.' 56 

Geometry has less certainty than algebra and arithmetic, because it deals with 
continuous quantities, \\'hich cannot be measured exactly. The result is that 

Hume becomes, with Berkeley, one of the few philosophers in history to reject 

the infinite divisibility of space. The topic belongs more properly to his philos­

ophy of space than to his philosophy of mathematics - even granted that the 

distinction is anachronistic. But his replies to the alleged mathematical detnon­
strations of the infinite divisibility of space, approved by such good authorities as 

the Port-Royal Logic and Isaac Barrow,57 are of some worth. The mathematical 
arguments simply consist in extracting the assumption of infinite divisibility that 

is contained implicitly in Euclid, and cannot determine whether actual space is 

infinitely divisible. Hume goes some way toward exposing this fla\v when he 
doubts the exact correspondence between the axioms of geometry and our ideas 

of space: 'none of these demonstrations can have sufficient weight to establish 
such a principle, as this of infmite divisibility; and that because with regard to 

such minute objects, they arc not properly demonstrations, being built on ideas, 

which are not exact. '58 There is no way to be sure, for example, that two straight 
lines with a small angle between them meet in only one point (1.3.1.4, SBN 71). 
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Hut the errors of geometry 'are never considerable' , It would seem that Hume 
has been substantially vindicated by subsequent developments, which have re­
vealed that deciding whether space is exactly Euclidean is an empirical question, 
altho ugh it is obvio usly approximately Euclidean in our region. 

An aspect of Hume and Berkeley's wri ting on geometry that is central but 
that some commentators have found odd is their talk of 'part" of ideas'. T hey 
discuss, for example, into how m any indivisible parts an idea of extension 'as 
conceived by the imagination' can be divided. 59 If one takes this seriously, it 

would appear that ideas or imaginatio n themselves have a quasi-spatial quali ty. 
Hume does no t develop this notion furth er, but R eid does, and goes so far as 
to say what exactly is the spatial structu re of the 'geometry of visiblcs' . Tt is the 
geometry of the surface of J sphere. (,0 

4. Kant 

The key to Kant's views on mathematics, and much else, is the notion of ( 011-

struct iOll in geometry. In Euclid, there are postulates, such as 'To draw a straight 
line from any point to any point ', w hich assert that certain things exist , or may 
be constructed . The fi rst thing Euclid proves is that an equilateral triangle may 
be col1structed on any line. In learning how to prove in geometry, as of course all 

educated eighteenth-century persons did, one must spend a good deal of rime 
deciding which lines to prolong, when to draw a ne\v circle, and so on. From 
the point of view of modern formal logic, this can be regarded as a defect in 

Euclid's treatment of geometry, bue from an earlier point of view it reillforces 
two convictions : that Euclidean geometry is not purely syllogistic, and that it is 
about real space. 

A fascination with construction had already been evident in Vico. T he firs t 
statement of his l)crulll laclufII theory lS in the context of geometry: 'We demon­
strate geometrical ehings because we make them.'GI Even when his 'New Sci­
ence' of human things is fully developed and its contrast \vith the natural sciences 
empha..;ised, its links w ith geometry are retained . BOtll construct the world they 
study.6,2 Ie was realised that constructions did not fit well into the Wolffian 
vie\.v of sciences as demonstrating truths about universals from their definitions. 
Wolff was prepared CO assert that the dra\ving of a straight line betw"een two 
points flowed from the definition of a line, but this is not plausible. Andreas 
Rlidiger alleges that the Wolffian 'mathematical method ' is a travesty of rea] 
mathematics, by recalling the inspection of particulars in geometrical construc­
tions and in counting.63 Johann Heinrich Lambert describes the experience of 
reading Euclid after Wolff and recognising that Euclid is nothing like Wolff says 
he should be. He notes that Euclid does not derive things fro m the definition 
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of space, but starts with lines as simples, and exhibits first the possibility of an 
equilateral triangle. 64 

So, when the Berlin Academy posed the question, whether metaphysical truth 
could be equated with mathematical truth, Kant in his 'Prize Essay' replied: 

mathematics has construction, or synthesis, while metaphysics does Dot. 65 In 

Kant, construction in geometry is used to fill out the vaguer notions of the 
previous one hundred and fifty years along the lines that the possible is what can 
be clearly and distinctly conceived (in the 'imagination', conceived as a mental 
visualisation facility} Kantian 'intuition' is, like the scholastics' 'intelligible mat­

ter', a medium in vvhich can be dra\~Tn not just a few simple ideas to be compared 

with one another, in the style of Locke, but whole geometrical diagrams. What 

can be so drawn is more restricted than what merely does not contain a logi­

cal contradiction. For example, there is no contradiction in the concept of two 

straight lines meeting in two points and enclosing a fIgure; nevertheless, no such 
figure is possible, since it cannot be constructed: 'That between two points there 
is only one straight line ... can [not] be derived fi~0111 some universal concept of 

space; [it] can only be apprehended concretely, so to speak, in space itself'66 

Similarl}~ that there is a plane passing through any three given points is evident 
because the intuition constructs the figure 'immediately'.67 These necessities 

and possibilities are 'synthetic', in the sense that they do not follovv simply from 

formal logical principles, and also in the sense that they involve 'synthesis', or 
construction. These truths are also a priori, since Kant is not prepared to com­

promise the absolute certainty of mathematics. So Leibniz, he thinks, cannot 

be right about space arising out of relations between real objects because that 
would make geometry empirical, and there might be a non-Euclidean space, 

which Kant takes to be impossible. 68 It is his own theory, that space is imposed 

by the mind, that is needed to ensure the certainty of geometry: 'Assuredly, had 
not the concept of space been given originally by the nature of the mind ... then 

the use of geometry in natural philosophy would be far from safe' (§ISE, Ak 2: 

40 4-5). 
It is clear then how Kant's synthetic a priori, on which so much in his phi­

losophy depends, is the result of combining three pre-existing ideas: Euclidean 
construction, the reduction of concepts to ideas in 'imagination' or 'intuition', 

and the certainty of geometry 
Kant finds construction also in arithmetic, in the thinking of how many 

times a unit is contained in a quantity: 'this how-many-times is grounded on 

successive repetition, thus on time and the synthesis (of the homogeneous) in it' 
(Kritik B 300). The concept of number is one which 'in itself, indeed, belongs 

to the understanding but of which the actualisation in the concrete requires the 

auxiliary notions of time and space (by successively adding a number of things 
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and se tting them simultaneously side by side)' (De mundi, § I2 , Ak 2: 397). In the 
famous passage of the Kririk der rcinen VemU/!fi explaining why the proposition 

'7 + 5 = 12' is synthetic, Kant writes: 

The concept of twelve is by no means already thoughr merely by my thinking of that 
unification of seven and five, and no ma tter how long r analyze my concept of such a 
possible sum I will still not find twelve in it . ... For I take first the Humber 7, and , as I 
take the fingers of my hand 3S an intuition for assistance with the concept of 5, to that 
image of mine f now add the units tha t I have previously taken together in order w 
constitu te the number 5 one after another to the num ber 7, and thu.s see the number 12 

arise. (B I5-16, sec also B 205 and B 299) 

The construction here is with real fmgers, not 'in the imagination' , but Kant 

m eans exactly to assimilate the mind's strucmring of experience while perceiving 

fin gers to construction in the imagination: 'this very same formative synthesis, 
by means of which we construct a figure in imagination is e ntirely identical 

w ith that which we exercise in the apprehension of an appearance, in order to 

nuke a concept of experience of it' (B 271). Kant emphasises that he does not 
just mean reading off results from a picture; there is an intellectual operation 

involved, which is responsible for the nece&..<;ity of the truth . Large numbers, 
for example, obviously cannot be counted by an immediate glance; what is 

important is the 'schema' of successive addition of units that allows the aggregate 

to be synthesised, that is, counted (13 16, B 179- 81). The essentials of this 
discovery, that the necessity in mathematica1 knowledge comes from assimilating 
an image or experience to construction or synthesis according to some rule, Kam 
attributes to the earliest Greek geometers (B xii). 

Kant brings the same ideas to the problems of the infinite. H ow those problems 
appeared to mathematicians in Kant's time js apparent from the [enllS of the prize 

set by the Berlin Academy of Sciences (Mathematical Section) for J786: 

Jhere is needed a clear and precise theory '?/ what is called I'1fillite in lyfathcmarics . 
certain em.inent modern analyses admit that (he phrase infinite maR-HilI/de i ~ a COnlT3 -

dicciol1 in terms. T he Academy, therefore, desires an explanation of how it is that so 
m any correct theorems have been deduced from a contradictory supposition, cogether 
with enunciation of a sure, a clear, in short a truly mathematical principle that may be 
sllbsrituted for that of the illfinite.nry 

Kant sees this problem too in terms of construction or synthesis: 'Since UlI­

representable and impossible are commonly treated as having the same m eaning, 

the concepts both of the continuolis and of the !1!finite are frequently rej ected' 

(De IlUl1Idi §r, Ak 2 : 388) . So the notion of a completed infmi ty contains no 
contradiction, but since it 'can never be completed through a successive syn~ 

thes is' (Kritik , B 454), it is not the obj ect of any possible experience, intuition, 
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or construction. But, o n the o ther hand, there seems no limit to space o r time 
either; for example, 'the beginning always presupposes a preceding time' (B SIS) . 
So to the question, 'But whae is the magnitude of the world we live in, finite 
or infmite?', Kant replies: n either; to demand an ansvver is to assume 'that the 
world (the whole series of appeara.nces) is a thing in itself. For (he world remains, 
even though I may rule out the infmite or the finite regress in the series of its 

appearances' .70 

Many of the same considerations apply to the infinitely small. To see the 
problems about the continuity of space in terms of 'infinite divisibility' already 
plays into Kant 's hands. Division is a human act, suggesting to Kant that the act 
of constructing a line by a continuous flow ing motion comes firs t, followed by 
the construction of its parts by a further act of division (rather than the part') 

coming first and together forming space).7! 

The demand for constructibility is, it appears , at the bottom of slich central 
Kamian themes as the ideality of the world. Also of the noumC110n, unreachable 
by e>"""perience, of which the infinite is, so to speak, the first example. Lest it 
seem that the problem of construction is an artifact of the eighteenth century's 

primitive view of geometry, it may be noted chat the problem reCLIrs in the 

modern foundations of mathematics. Th ere, on.e normally proves the consis­
tency of a concept by constructing it Out of sets, but to do so requires an 'axiom 
of infinity'. which ensures that sufficiently many sets 'exist', in particular, that a 
completed infini ty of them exists. 

Ill. NEW OBJE CTS OF MATHEMATICS 

J. Algebra 

Algebra tended to take over more and more of mathematics in the eighteenth 

century. Where Newton had recast his reasoning in geometrical form for public 
consumption, Joseph-Louis de Lagrange's J\1ewflique al1alytiqtle of 1788 says: 

No drawings are to be fou nd in this work. The methods which I present require neither 
constructions nor geometrical or mechanical arguments, bur only algebraic operations, 
subject to a regular ;md uniform progression. 7", 

C ondorcet says chat Euler 

sensed that algebraic analysis ,vas the most extensive and certain instrument one can em­
ploy in all sciences, and he sought to render its usage universal. This revolution .. . 
earned him the honour, Lllli que so far, of having as many disc1ples as Europe has 
mathematicians.73 
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And in a rare moment ofagreemene w ith Euler, d 'Alembert says algebra 

is the foundation of all possible discoveries concerning quantity ... . T his science is the 
farthest outpost to which the contemplation of the properties of matter can lead us, and 
we \,vo uld not be abJe to go further without leaving the material universe altogether. 
(Oeuvres I: 26, sec also 30-31; tra nsI. 20 and 26) 

But, having established that algebra is a good thing, what exactly is it? Origi­
nally, it was a method of solving problems by making letters stand for unknow n 
quantities, and manipulating the 1eners as if they were numbers. Even on this 
narrow view, algebra had philosophical significance, as it was a method for 
discovering answers , and tbus seemed on the side of 'analysis ' , as opposed to 
the 'synthetic' deriving of known truchs from axio ms in the style of Euclid.74 

But by noo it seemed more than that. N oting that the letters could stand 
for geometrica l quantities as easily as for num erical ones, various thinkers 
proclaimed algebra to br;: the science of quantity in general, that lS, virtually 
the w hole of mathematics.75 Even if that were agreed, many things remained 
unclear. For example. what could the letters represent - complex numbers? 
Infinities? Infinitesimals? And if algebra was a general mathematics. where were 
its a. .... jonts?76 Another view of algebra was that of Wolff, who Sl 'W it as part 
of Leibniz's universal characteristic, that is, as a general method of reasoning 
symbolically.77 In the same vein, Condillac's idea of the mathematical method 
that ought to be imposed on philosophy was not so much Euclid as the solving 
of equations. manipulating known and unknown quantities until the knowns 
appeared by themselves. 

EqlUltiollS, praposirio11S and jllrlgelUmts are basically the same thing, and . . . consequently 
ont! reasons in the same manner in all the sciences ... we have seen that, just as the 
equations x - I = Y + I , and x + I = 2 Y - 2, pass through different transformations 
to become y = 5 and x = 7, sensation passes equally through differe nt transformations 
to become the understanding. 78 

R egarding French as a language lacking taste and precisio n, CondiUac pro­
posed to reform it on the basis of the granunar of algebra.?9 Kant says that alge­
bra p roceeds by manipulating uninterpreted symbols 'until eventually, w hen the 
conclusion is drawn, the m.eaning of the symbolic conclusio n is deciphered' . 
The simple pushing around of symbols is what gives ' the degree of assurance 
characteristic of seeing something with one's ow n eyes' (whereas with philos­
ophy o ne must keep the meanings in mind all the time). Ro These are the same 
claims made around 1900 for fonnallogic. The possibiliry of manipulating sym­
bols without attending to their meaning is not wi tho ut problems. One may end 
up with conclusions that do not m ean anything either. Euler is famou s for his 
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lack of rigour in calcula ting \-vith in fini te seri es without worrying about their 
convergence; it is typicaJ not only of him but of the century to conduct long 
'philosophical' debates about the true sum of the ser ies: 

1 - I + I - r + T _ .•. 81 

The case is even vmrse when manipulating symbols that :Ire explicitly stated to 

have no meaning, such as those denoting the square roots of negative numbers. 
Though necessary for calculations, they do not satisfy the definition of quantities 
as being' capable of increase and decrease'. as they cannot be less than or greater 
than one anoth er. Euler describes them as ' impossible', but proceeds to calculate 
extensively with them. R2 

Euler played a crucial role in emphasising the centrali ty of the notio n of 
junction in mathematics (its significance is indicated by the fact that about half of 
modern pure mathematics is 'functional analysis'). His aim was to replace vague 
geometrical notions and dynam.ical metaphors of'11uents' with something more 
precise and amenable co calculation. He initially defmed a fUIlction in algebraic 
terms as an expression involving variables: 'A fun ction of a variable quantity is 
an analytic expression composed in any way whatsoever of the variable quantity 
and numbers or constant quantities.' For example, a z + .J /1 2 - ;i1- is a fun ction 
of z (where IT is a constam).sJ But later, his debate "vith d'Alember t over the 
vibrating string convinced him this 11otion \vas too narrow, because of the need 
to consider more irregu lar functions, which might not be expressible by an 
algebraic formula. He had li ttle success in explaining what this notion should 
be.84 Lagrange also attempted a purely algebraic notion of function and tried 
to use it as a foundation for the calculus 'independent of all metaphysics'. He 
claimed to prove that every differentiable function could be expressed as a power 
series, that is, repn:scJ)[cd algebraically (except perhaps at isolated points). $j This 
is false, as Cauchy soon showed. When the best mathematicians in the \"lod d 
begin claiming to have proved what is fa lse - a rare event, much to the credit of 
mathematics - it is time to conclude thar rigour is not a luxury. The nineteenth 
century drew the corree[ conclusion, leading to the correct foundations of 
calculus, and to set theory. 

Just visible in the work of Lagrange are the beginnings of modern abstract 
algebra. This is the subject that perhaps most obviously deals no t with quantity 
but with certain kinds o f abstract structure. Lagrange, inquiring why it had 
not been possible to find formulas for solving equations of degree 5 or higher, 
considers functions of the roots of the equation which do not change if the roots 
are permuted, or interchanged. He understands that some permutations may be 
'independent' of others, th Lls thinking of the permutations as themselves entities 
w ith interrelationships. These perm.utations form the ftrst of a new kind of 
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subject matter of mathematics, later [he object of modern group theory. 86 Paolo 
Ruffini's work of 1799 goes further, considering the totality of permutations (a 
group, in modern terms) and their composition. 1I7 

Any or all of these developments in mathematics might have provided the 
philosophers of the eigh teenth century with perfect examples of the advance­
ment a fknowledge through the analysis of ideas, had they informed themselves 
about them. 

2. E xperimental ft'idellcf ill marhelnatics 

While the eighteenth century admired the rigour ofElIclid. its own mathematics 
is famous for a lack of rigour. It may be that the philosophical emphasis 011 ideas 
as against fo rmal logic contributed to a disregard of formal rigour. 88 In any case, 
if m athematical conclusions are to be supported by anything less than complete 

formal demonstration , there is a need to cnnsider how there can be a less than 
deductive logical support. Euler was the first, among either philosophers or 
mathematicians, to argue explicitly for the use of experimental, or probable, 
reasoning in mathematics. 

It will seem not a little paradoxical [Q ascr ibe a great importance to obse rv:ttions in cllat 
part of the mathematical sciences vvhich is usually called Pure Mathemati cs, since the 
current opin ion is that obsenrations are restricted to physical object .. that make impression 
on the senses . As we mllst refer the numbers to the pure imellect alone, we can hardly 
undel·~tand how observations and quasi-experimen ts can bt~ of LIse in inve.~tigating the 
natu re of the numbers. Yet, in fac t, as I shall shm.v here ,.\,1th very good reasons, the 
propnties of the numbers known today have been m ostly discovered by observation, 
and discovered long before their truth has been confi rmed by rigid demoll5tracions. 
There are even many properties of the numbers with which we arc well acquainted, but 
which 'we are not yet able to prove; only observations have led us to their knovvledge. ~9 

Euler's works contain a number of examples of how to reason probabilistically 

in mathematics. He used, fo r example, some daring and obviously £1[ from 

rigorous methods to conclude thar the infinite sum 1 + ~ + ~ + -16 + ~ + ... 
(" .. rhere the num bers o n the b o ttom of the £i-ac tions are the su ccessive squares of 
whole numbers) is equal to the prima facie unlikely value J[J. / 6. Finding that th e 

two expressions agreed to seven decimal places, and that a similar argwnent led to 

the already proved result I - ~ + i - ~ + ~ - ~ + .. . = ~, Euler concluded, 
'For o ur method, w hich may appear to some as nor rdiable eno ugh , a great 
confirmation comes here to light. Therefore we shall not doubt at all of the 
other things which are reveaJed by the same m ethod. '90 

Laplace and Gauss, who were in a position to know, ag reed casually that 
such reasoning was central to mathematicsY I Even WolfF \:\.,Tites that 'examples 
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of hypoth eses arc also found in arithmetic, which first influenced me to look 
upon philosophical hypotheses more favourably'. What he has in m ind is the 
calculation of answers by successive approximation, the ini tial guess being the 
hypQ(h ~l) is.92 Yet p hilosophers pronouncing on mathematics since have ra rely 

given it a place. 
A different connection betvveen probability and pure mathematics was dis­

covered by Lambert. He understands that a series of digits produced by a random 
process, like thro"\ving a die, will be disordered or patternless, but that the same 
can be said of the digits of !f or of ../2, "vhich are completely determined. He 
is prepared to say that the probabili ty of the hundredth digit of ..[2 being five is 
I fraY3 Whether a notion of probability can be applied in such a deterministic 
case is stiU a cr ucial issue in the philosophy of probabili ty. 

3 . 7i.1polo,gy 

Topology provided the clearest example of an object of mathematics rhat would 
not fit under the old rubric, ' the science of qtlantity ' . The citizens of Konigsberg 
noticed that it seemed to be impossible to walk over all seven of the bridges 
connecting the two banks of the River Pregel and its islands, withou t walk ing 
over at least one of them twice. Euler proved they wefe right. This is a problem 
in [he area now called the ropology of netv.'orks . There is no quanti ty involved 
in the problem, only the arran,Rf11Jenr of the system of bridges and land areas. 
Euler writes: 

T he branch of gconletry that deals \'lith magnitudes has been zealously studied through­
out rhe past , but there i'i anorher branch that has been al most un known up to now; 
Lcibniz spoke of it £int, calling it the 'geometry of position'. This branch of geome­
try dea ls \vith relations dependent on position alone, and investigate~ the properties of 
position; it does not take magnirudes into consideration, nor does it involve calcula tion 
with quantities. But as yet no satisfactory definition has been given of the problem~ that 
belong to this geometry of position Y.J-

What Leibniz said about the 'geometry of position' was both short and ex­
tremely vague,9S but Euler \vas not the only one to fin d it suggestive. Buffon 
relates it br iefly [0 the folding of seeds and to symmetry in plai ting, and re­
marks that 'the art of knO\ving the relations that result from the position of 
things would be as useful as and perhaps more necessary than that which has the 
magnitude of things on ly for its object' .90 Kant sees a connection betvveen it 
and his ideas on incongruent coun terparts. 97 The subject \:vas given some mOre 
definite con tent by Vandermo nde, who fi rst drew a graph, in the modern sense 
of a system of nodes connected by lin es . H e llsed it to solve the problem of the 



James Franklin 

knight's tour in chess, 'using numbers which do not represent quantities at all, 

but regions in space'Ys 

4. Social mathematics and /I1oral a{?ebra 

Ifideas have parts, perhaps one should count them, or maybe \veigh them, if they 
ditTer in their force. There would result a 'moral arithmetic', or 'moral physics'. 

Naturally, there are measurement problems: how are psychological units to be 

measured and compared, or even identified? Hume suggests that the size of the 
smallest impression can be found from measuring the least visible dot en-ea­
fise, 1.2.1-4, SBN 27-8); such measurements of the threshold of visibility were 

carried out in Hume's lifetimeY9 Buffon suggests regarding the probability of 
sudden death in the next t\venty-four hours, for one in the prime of life, as 
a standard unit of 'moral impossibility', to which the reasonable man gives no 

serious thought. roo Maupertuis reduces morality to prudence, and prudence to 

a hedonistic calculus: 'The estimation of happy and unhappy moments is the 

product of the intensity of the pleasure or pain by the duration.' Measurement 
of intensities may be difficult, but Maupertuis invites introspection on the in­

evitability of comparing, for example, the pain of an operation for the stone \vith 
the longer but lesser pain offorgoing the operation. W I The problem is urgent for 

economics, which can hardly avoid being quantitative, when explaining prices, 
but seems to rely on a subjective 'utility' whose measurement is as dubious as that 

of pleasure and pain. Adam Smith achieves the trick, so useful in these matters, 

of claiming the right to speak quantitatively, \vhile avoiding the responsibility of 
commitment to any actual quantities or formulas. He \:>O'fites that the value of 

any wealth to its owners 'is precisely equal to the quantity oflabour which it can 

enable them to purchase or command .... Equal quantities oflabour, at all times 
and places, may be said to be of equal value to the labourer', but he undercuts 

the apparent accuracy of his measure by adding: 

It is often difftcult to ascertain the proportion between two different quantities oflabour. 
The time spent in two different sorts of \vork will not ahvays alone determine this 
proportion. The different degrees of hardship endured, and of ingenuity exercised, must 
likewise be taken into account. There Inay be more labour in an hour's hard \vork than 
in two hours easy business.102 

He appeals to the market to coordinate different people's measures, but 'not by 

any accurate measure'. 

Benjamin Franklin advises, in cases of perplexity about a decision, the listing 

of the reasons for and against in two columns: 

When I have thus got thenl all together in one View, I endeavour to estimate their 
respective Weights; and where I find two, one on each side, that seem equal, I strike 
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them both out: If I find a Reason pro equal to some two Reasons con, I strike out the 
three ... and thus proceeding I find at length where the Ballance lies .... And tho' the 
Weight of Reasons cannot be taken \-'lith the Precision of Algebraic Quantities ... in fact 
I have found great Advantage from this kind of Equation, in what may be called jl;[orcll 

or Prudential Algebra. 103 

The special difficulties of measurement in the social and mental realm sug­

gested to Condorcet that social mathematics should rely chiefly on the theory 
of probability. 104 There, the equality of the beliefs one should have that a die 
will fall on any side is inferred from symmetry, or 'insufficient reason': there 

is no reason to prefer any side to any other. He believed he had proved, using 

probability, that decisions taken by majority vote were perfect for achieving 
the truth. 105 Before being hounded to death by a regime that exalted Equality 

over Liberty and Fraternity, Condorcet had the opportunity to reconsider the 

assumptions of his proof, and wonder if perhaps he did not mean that those 
voting had to reach some standard of Reason. 106 

As long as there has been 'social mathematics', there have been explanations 

of why it fails to work, or at least lacks anything like the success of mathematics 

as applied to physics. The suggestion that lack of exact measurement is the 
problem was anticipated, and argued against, as the quotations above indicate. 

Another idea was that of Reid, who thought the problem lay in the definition 
of quantity as 'whatever has increase or diminution'. This is too wide, he says, as 

it allows in pleasure and pain, vvhich admit of degrees but cannot be measured 
in units. 107 

Mathematical modelIing of social, as opposed to introspective, phenomena 

was attempted qualitatively in Hume's and Adam Slnith's conception of the 
economy as a self-regulating system,108 but the most successful quantitative 

project was that of Mal thus, whose conclusions abollt the poor laws are intended 

to follow from a purely mathematical fact: 

Population, when unchecked, increases in a geometrical ratio. Subsistence increases only 
in arithmetical ratio. A slight acquaintance \-'lith numbers will shew the immensity of 
the first power in comparison _'lith the second. 109 

He takes these ratios to be evident and feels no need to support them with em­
pirical evidence. This kind of a priori fitting of formulas has particularly afflicted 
economics, so it is interesting to see Condorcet criticising Verri's mathematical 

economics on just this ground. It is true, Condorcet says, that more buyers mean 
a higher price, but what justification is there for Verri's assumption of a direct 
proportion bet\-veen the t\Vo, if no empirical data are considered?IIO A remedy 

is to fit formulas to actual social statistical data. This is not a strong point of 
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eighteenth-century mathematics, but Lambert had some understanding of how 
to do it. III 

IV. LOGIC 

1. Textbook logic 

Eighteenth-century writing on 'logic' is extensive, II:/. but neither the school of 
traditional Aristo telian logic nor theif opponents, the 'men of ideas' , produced 
much chat has commanded respect since. 

As systems of thought go, Aristotelian logic was one of the great survivors. For 
severa] cencuries, ie was attacked vigorously, in almost identical terms, by almost 
all the thinkers remembered by history. It ""vas defended by nonentities. In each 
generation, when the dust settled, it was found to be still in control of the field 
(that is, of the undergraduate syllabus). T his was true in 1700, just after Locke 
had renewed the attacks of Bacon and Descartes . It was equally true in 18 0 0 , 

"""hen Aristotel ian logic was about to undergo a revival in Britain. Its contents 
are the traditional logic of terms, judgments, and inference by syllogism, largely 
unchanged since the logic textbooks of the thirteenth century. 

The English representative of the old school was H enry Aldrich's Artis Logicae 
CompendiulII, the standard Oxford textbook for the whole century. First pub­
lished in 1691, it appeared in many editions, epitomes, and expansions until the 
mid-nineteenth century, including an English translation by John Wesley. II3 On 
the continent, Wolff found traditional logic satisfactOry - so much so that he 
in effect tri ed, as we saw, to incorporate the rest of philosophy into it. It is a 
litde more surprising to find Kant largely on [he side of the syllogism. He has 
some minor criticisms of traditional arrangements of the four figures , which he 
thinks over-elaborate, )!4 but he accepts that the syllogism is not intended to be a 
method of discovery, and on the whole his logic teaching agrees with tradition. 
He is cJear about, and opposed to, psychologism in logic. II) 

The opposing school produced voluminous works of 'logic', but they are fun 
of what would now be called cognitive psychology, epistemology, semiotics, 
philosophy of logic, and introspection. They are full also of invective, against 
'scholastic headpieces', full indeed of everything except logic, in the mod­
ern sense of formal logic. It is not that logic was confused with (not yet ex­
istent) disciplines like psychology. On the contrary, the scholastics had been 
dear about formal logic, and it was in delib ~rate opposi tion to them that the 
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followers of the '''VAY of ideas' identified logic with 'psychologistic' notions 
instead. 

Bacon, Descartes, and Locke, between them, had convinced most tha t the 
syllogism , and formal logic generally, "vas of no llse or interest.1I6 The essence 
of Locke's attack was that the syllogism \\.'<1$ not useful for the discovery of tru ths, 
and that it concealed the fact that inference consisted in the 'agreement or 
disagreement' or 'connexion' of ideas. 1I7 Traditional logic had certainly opened 
the way to such criticisms by holding that logic is abom 'thought' or 'judgment', 
and by concentrating on a single argument form, the syllogism, which has an 
air of being analytic and triviaL W hatever the justice of the Lockean cr iticisms, 
they failed to issue in anything better, either in new logical ideas or in textbooks. 
If adherence to the syllogism restricts logic, the 'agreement and disagreement of 
ideas ' is if anything an even worse straitjacket. It does nothing to encourage the 
discovery oflogical structure, and instead diverts logic in to vapidity. rt is all very 
well to offer advice like, 'Enlarge your general Acquaintance wi th Things daily, 
in order to attain a rich Fu rniture of Topies or middle Tenns' Hs, but how do 
you examine that? The logics ofCrousaz, Duncan, and W:ltts followed the Port­
R oyal Logic in including enough of the traditional classifications, distin ctions, 
and so on to provide some content, and in simply adding cri tical observations 
in the style of Bacon and Descanes. 119 At the end of the century, however, 
R eid and C ampbell revert to a purely negative approach, speaking as if they 
have just discovered that the syllogism is not a logic of discovery. 120 But neither 
they nor any of their school have a replacement to offer. Campbell ventures 
the opinion that mathematical demons trations arc not syllogisms but does not 
suggest what their fonn is, if not syllogistic. R eid is closer to the trnth in holding 
that mathematical reasoning cannot usually be syllogistic, as it deals with relat ions 
of quantities, and the syllogism is not applicable to relations. 

H ume takes to irs extreme the 'psychologising' oflogic, and so exhibits most 
dramatically the problems in doing $0. Plainly, there are tensions in 'natural­
ising' logic by reducing it to manipulations the mind happens to perform on 
ideas, while relying on logic as normative for argument. Hume applies general 
principles, such as, 'like objects, placid ill like circumstances, will always produ.ce the 
same tjJects' , to particular cases, without apparently noticing that he is using a 
formal logical principle of instantiation. Much the same could be said of his use 
of 'not'.1.!r Hume exacerbates these difficulties by adding a sceptical project to 
his naturalising one. What he is sceptical about is the logical force of common 
inferences: causal inferences, inferences from ' is ' to 'ought', and so on. IU It is 
odd, certainly, to say that causal inference is not logically cogent but only an 
unavoidable habit, at the same time maintaining that all logical inference is only 
an unavoidable habit. 
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Hume's views on ir!ferellce are seen (Q better advantage if they are thought of 
not in terms of formal logic, or even introspection, but as a research proposal to 
be implemented in, say, sili con chips. M odern Artificial Intelligence, like most 
eighteenth-centlllY writing, is concerned with the implementation of a system 
of inference, not j ust the fonnal structure of the system itself. From that point 
of view, it is necessary to J. l1swer questions that do not ar ise in formal logic, 
such as how the symbols become attached to the things they mean. O ne must 
consider, in shon, [he 'na tural history of the understanding'. It is then a matter 
for debate whether the syllogism needs to be explicitly represented internally, 
and whether one can replace an explicit generality with exemplars linked by 
'custom', so that when one individual is activated, the bnked ones 'immediately 
crO\vd in upon us' (Treatise, I.1.7.7~8, SBN 20~1 ) . The links betvleen the 
exemplars are to be induced by the resemblance, constant conjunction, and like 
relations rhat hold between them. Hume's claim for his rules about causes that 
'Here is all the LOGIC I think proper to employ in my reasoning' (1. 3.Is. H , 

SBN 175) is then a claim chac can be invesrigated empirically: will a mechanism 
equipped with only the principles of association H ume names be able to reason 
adequately' 

Logic's place at the centre of the curriculum makes certain wider effects of 
eighteenth-century logic more interesring rhan the subject itsdf. O ne student 
of logic who took the natural undergraduate reaction again<;t the subject to 
an extreme was Swift, whose inversion of the stock logical examples, 'Man 
is a rat.ional animal; a horse is a v.,rhinnying animal' led co the satire of the 
Yahoos and Houyhnhnms. 12 3 Another who used its rhetoric to good effect was 
Thomas Jefferson .. r.24 The claim of the DeclarJtion of Independence, 'We hold 
these truths to be self- evident, that all men are created equal' , combines the 
logical theme of self-evidence with the mathematical one of deriving such sdf­
evidence from a symmetry principle. A true logician wiU ask why, if a principle 
is indeed self-evident, it is necessary to 'hold' it to be so. The French were 
clearer that Equality is not a given but a goaL 

The discrediting of logic in England had consequences in education that are 
still felt. While tradition- bound, High Church Oxford took no notice of the 
problem and continu ed to teach logic, in Latin from Aldrich's text, and examined 
by disputation, lZs Whig Cambridge did the opposite. It replaced logic by the 
only credible alrernative, mathematics, and produced the ancestor ofrhe modern 
written examinarion system , the Mathematical Tripos. By a happy feedback 
effect, mathematics permitted an ever fi ner objective grading of candidates, 
leading to ever m ore concentration on mathematics. Since mathematics was a 
substitute logic, however, the matter exanuned was confined largely to geometry, 
continental innovJtions like algebra being considered unpatriotic. 126 Geometry 
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is also m ore amenable to being considered in terms of 'ideas' than the formal 
manipubrio ns of algebra. I l 7 

3- Symbolic lo ... ~i[ and logic diagrams 

Leibniz's vision of a universal characteristic, allowing logical inference by cal­
cuhtion, inspired some, but resulted in little of significance. The logical sym­
bolism of Segner, Ploucquet, Holland, M aimon, and Castillon does not need 
much rc:: interpn:tation to yield vario us theorems in propositional and predicate 
calculus, but only the simplest ones. 12 8 

Euler developed the traditional theory of the syllogism in a popular work, 
illustrating it with diagrams simih r to the lacer Venn diagrams. Particular (ex­
istential) propositions have always posed problems for su ch diagrams, as there 
needs [0 be some way of indicating which of the regio ns are non-empty. E uler 
distinguishcs betv .. -ecl1 'Some A is B ' and 'Some A is not D' as follows: 

Some A is B Some A is not B I29 

If one believes that it is ;'i good thing for logic to become extensionalist, 
then logic diagrams \\'ill apPl;:ar one of the century's few advances in logic. 
Euler himself docs not mean to be taken this vIray. H e Ll ses o nly intentional 
vocabulary, su ch as 'If the notion C is entirely com ained in the notion A ... ' 
H e takes no no tice whatsoever of t\~lO centuries of criticism of the syllogism, 
and goes so fu r as to maintain that all truth arises from it. 

A similar idea, but using lin es instead of circles. appears in Lambert. ]30 But 
this is only a small parr of a larger project for the mathemarising of logic. He 
proposes to give some precision to the analysis of concepts into simple ideas , 
thus doing for quali ty w hat geometers had done for quantity, and deducing 
everything from a flrm basis. 131 An aspect of the project was a symbolic logic 
of concepts; one analyses a concept ay into its genus. a and differentia as; the 
equation 

ay = a - ao 

then means that the genus of a is the result of abstracting the differentia from o. 

Lambert is someti mes misled by f.:1.lse analogies to ordinary algebra, to the extent 
of considering the square root ofa relation. 13 .. In another attempt to bring logic 
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and mathematics tOgether, he considers the valid argument: J3J 

!.. of A are B, !... 4 A are C, $0 some Bare C. 
4 3 

Few logicians since have cared to follow him into such numerical territory. 

v. TEC HNOLOGY 

The subtitle of the Ellc}'cI(~pt:dje is Diaiollllaire Taisol1t1e des sciences, des arts, 
et des metiers. Th e prominence given to the 'arts and trades' is due to Diderot, 
\vho writes: 

Let some man go O llt from the academje~ and down into the \vorkshops, and gather 
material on the arts to explain them in a work which will persuade artisans to read, 
philosophers to tJlink usefully, and the great to nu ke :'It last some .. vo rthwhile use of their 
luthori ty and wealrh.134 

'Useful science' , as an idea, is Baconian, but science as an accepted route to 
profit, mili tary superiority, and progress is really an eighceemh- cemury devel­
opment. While the French government and the Royal Navy were among the 
largest investors in research, the practical orientation of research was especially 
evident in peripheral regions, where abstract thought, including philosophy, 
survived at all only on the promise of its practicality. Boundless confldence in 
the usefulness of science was as characteristic of the America of Franklin and 
Jefferson l

)5 as it was of R ussia, where Euler and Lomonosov worked assiduously 
on 'improvements '. In England, the Tndustrial Revolution was associated less 
with London than with the provincial cities that wefe the homes of 'Philosoph­
ical Societies' devoted to practical science. 1J6 

Diderot found a significant fact about practical knO\:vledge: it could not be 
\.vritten down adequately in text. Asking the practition ers to clarify it produced 
simply a garbled mass of lloimelligibilitics and inconsistencies. It proved essen­
tial to ask the tradesmen to shaUl what they were doing and present the result 
in pictures. Hence the EncydopCdie has eleven volmn es of plates (compared to 
seventeen oftext). 1J7 Though there were no large-scale encyclopedic projects in 
England, their place \vas to some extent taken by public lectures on science, es­
pecially useful science. T he famous London lectures of John DesaguJiers taught 
by sbowing working machines. Science thus became accessible to those lack­
ing mathematics; the Ne\vtonian philosophy, Desaguliers says, 'tho' its truth is 
supporred hy Mathematicks. yet its Physical Discourses may be communicated 
without. The great Mr Locke was the fi rst who became a Newtonian Philoso­
pher without the help of Geometry' .138 Inventions like the steam engine, the 
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ligh tning rod and balloons were certainly spectacular and capable of conveying 
a message wi thout the need for supporting captions. 

But what message? The relation of machines to abstract thought was a vexed 
o ne. The formula for gravity is not much usc, while the textile and steam engines 
\vere moscly invenced by practical engineers, not sc ientists. Still, inventions are 
'efforts of the mind and understanding which are calculated to produce new 
effects from [he varied applications of the same cause, and the endless changes 
producible by different combinations and proportions' / 39 that is, intellectual 
products. Adam Smith, who recognises the importance of mach ine inventions 
in improving productivity (though he tends to subordinate it to his idee fixe 
of division of labour), speaks of 'philosophers or men of speculation, whose 
trade it is, not to do anything, but [0 observe every thing; and who, upon 
that account, are often capable of combining together the powers of the most 
distant and dissimilar objects ' . LIO The description is exactly true of James Watt, 
mathematical instrument maker to the University of Ghsgow, who analysed the 
heat losses in N ewcomen 's steam engine and realised that the condensation was 
a separable process that could be better situated somewhere else. I,p The skills 
involved are cognitive, but th ey are not so much the formal geometry of Euclid 
as the draughtsmanship or design of the engineer - Diderot's 'experien tial and 
manipulative mathematics', or the 'practical geometry' "\vhich Swift's Laputans 
'despise as vulgar and mechanic'. And it was the eighteenrh century's advances 
in cast iron and sted making that meant any shape could be made cheaply 
and durably. The availability of arbitrary rigid shapes, cheap, long-lasting, and 
rehably resistant to high pressures, stimulated imaginations to fashion in tricate 
geometries of interacting pares. The iron machines are concrete realisations, so 
to speak, of several philosophical proj ect.;; at once: Bacon's useful science, Kant's 
constructions, Vico's ' maker's knowledge', and D escartes's dream of explaining 
the ""orId as the effect of interactions of rigid bodies. 

There was some opposi tion to the idea of the beneficence of'lIseful' science. 
Swift 's satire attacked scientifiC research as either divorced from reality or pro­
dllcdve of inventions chat did not actually work. 14·2 But in genera l, technology 
had a positive glow, like mathematics, sufficient to tempt philosophers of most 
persuasions to claim it as 011 their side. D erham's Physico-theology, (01' example, 
saw che advances in mechanical inventions as evidence for God 's providence.1+3 

L'homme l1lachine may have seemed an idea of obviously atheist consequence in 
Paris, but Paley knt!w a good deal more about machines than La Mettrie, and 
convinced most, at least in the shor t term, that the teleological as pect of ma­
chin es supported a theist interpretation of the man-machine analogy. 'Watches, 
relescopes, stocking-mills, steam-engines, &c.' are not the kind of things that 
can arise by chance - not even chance followed by selection. )44 
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The consequences fo r poJjtical philosophy of Diderot's pra ise of artisans are 

generally left implic it in the Eucyclopedie, but Hume's essay OJ R~fil1elJ1elll ill the 
Arcs supplies the gap: 

Wt: cannot reasonably expea, rhat a piece of woo llen doth will be wrought to perfection 
in a nation, wh ich is ignorant of astronomy, or where e th ics are negleaed .... Can we 
expect, that a government will be well Inodelled by a people, , .... ·ho know not hmv to 
m:lke a spinning-wheel, or to employ a loom to adv:lnuge? .. :l progress in the arts is 
rather f,woll rab.le to liberty, and has a natural tendency to preserve, if not produce a fi'ee 

government. 14 j 

The idea that machines create progress autonoruo usly has remained an attrac­

tive one for the .Enlightened. Citizen Gateau, administrator of ll1ilitary provi­

SiOllS, writes of the machine that has come to be most associated '\vith Liberty: 

Saint Guillotine is most \vonderfully active, and the beneficent terror accomplishes in 
our midst, :IS though by a miracle, what a century or more or philosophy and reason 

could no t hope to produce. q6 
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