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The most widespread models of rational reasoners are 
Hintikka's model (Hintikka, 1962) and the Bayesian model (de 
Finetti, 1937; Ramsey, 1926). Hintikka's model is based on modal 
epistemic logic. In this model, a reasoner is a set of possible worlds 
and an accessibility relation. The reasoner believes the 
propositions that are true in all accessible possible worlds2. The 
Bayesian model is based on probability theory. In this model, a 
reasoner is a probability function ranging over a set of 
propositions. The reasoner has a degree of belief x in a proposition 
φ iff the probability function returns x for φ. 

Both Hintikka's and the Bayesian models exhibit the 
problem of logical omniscience. Reasoners are said to be logically 
omniscient when they believe all the logical consequences of their 
beliefs, believe all the logical tautologies3, etc (see Jago, 2006, p. 
327, for seven different characterizations of logical omniscience). 
The problem of logical omniscience is characterized as follows: 
 

 
1 UFSM. Email: dfdantas@ucdavis.edu 
2  Hintikka's model may be interpreted in terms of knowledge or belief (Hintikka, 1962, develops 
both options). I want to sidestep the discussion about how exactly knowledge differs from belief. I 
will usually talk about belief, but most of my considerations will also apply to knowledge because 
(presumably) knowledge implies belief. 
3  In this paper, I will use “tautology” in the wide sense of logical (usually, classical) truth. 
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Definition 1 (Problem of logical omniscience). A model of 
rational reasoners exhibits the problem of logical omniscience iff 
all reasoners described in the model are logically omniscient. 
 

All reasoners described in Hintikka's model are logically 
omniscient. These reasoners believe all propositions that are true 
in all accessible possible worlds. Possible worlds are usually 
construed as maximally specific and consistent truth assignments 
to all propositions (see Menzel, 2016). If all propositions in some 
set of propositions are true in all accessible possible worlds, then 
so are all their logical consequences. All reasoners described in the 
Bayesian model are also logically omniscient. These reasoners are 
described as probability functions. Probability theory requires 
probability functions to assign maximum probability to all 
tautologies (Kolmogorov, 1950). Then Bayesian reasoners have 
maximum degree of belief in all tautologies (see Garber, 1983, for a 
discussion on Bayesian logical omniscience). In the following, I will 
focus on Hintikka's model. 

What makes the problem of logical omniscience relevant to 
epistemology is the fact that, at first, real reasoners cannot be 
logically omniscient (see fn. 9). The most common strategy for 
avoiding this problem is to interpret the models as describing the 
explicit beliefs of ideal reasoners, but only the implicit beliefs of 
real reasoners, for some notion of implicit belief. For example, 
sometimes real reasoners are said to implicitly believe the logical 
consequences of their explicit beliefs (e.g. Hintikka, 1962, p. 38)4. 
Ideal reasoners are often construed as logically omnipotent 
reasoners5, i.e. as reasoners without cognitive limitations (e.g. 

 
4  “We study the logic of the closely related notions obtained by reading ‘Kap’ as follows: ‘It follows 
from what a knows that p’”. 
5  See (Kaneko and Suzuki, 2011, p. 14) for a similar use of ‘logical omnipotence’. 
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Pollock, 1987, p. 504)6. Real reasoners (e.g. humans) are finite 
reasoners, i.e. as reasoners with cognitive limitations7. 

But why model ideal instead of real reasoners? The answer 
to this question usually involves normative considerations. 
Hintikka, for example8, claims that the reasoners described in his 
model are ideal in the sense of being immune to the criticism of 
being irrational for not believing something that is a logical 
consequence of their beliefs9. But if not believing something that is 
a logical consequence of your beliefs may render criticisms of 
irrationality, then there must be some normative parameter of 
rationality requiring reasoners to believe the logical consequences 
of their beliefs. The (logically omniscient) reasoners described in 
the model would “instantiate” this parameter of rationality (they 
would be “maximally rational”), serving as a “model” of rationality 
for real reasoners. This move exploits an ambiguity in “model of 
reasoners”: “model” as a schematic representation of reasoners 
(Frigg, 2006, p. 49) and “model” as a parameter of rationality (in 
this case, logical omniscience would be a “normative idealization”, 
see Colyvan, 2013, p. 1339). In the following, I employ ‘model’ for 
the first use and “parameter of rationality” for the second. 
 

 
6  “An ideal reasoner is unconstrained by a finite memory or processing capacity”. Other examples 
are Chalmers (2010, p. 143) and Menzies (1998, p. 268-269). 
7  Informally, a finite reasoner has cognitive limitations such as finite perceptual input (perception 
transmits only a finite amount of information), finite memory (memory is able to store only a finite 
amount of information), and finite inferential power (reasoning is able to execute only finitely many 
inferential steps in a finite time interval), where an inferential step is the application of an inferential 
rule to a group of sentences (see Def. 4). 
8  The answer is also normative in the Bayesian case. Reasoners described in the Bayesian model 
would be ideal in the sense of not being vulnerable to Dutch books (see Ramsey, 1926, p. 182). 
9  This is the kind of criticism that Hintikka is talking about: “Suppose that someone says to you “I 
know that p but I don't know whether q” and suppose that p can be shown to entail logically q ... 
Then you can point out to him that what he says he does not know is already implicit in what he 
claims he knows. If your argument is valid, it is irrational for our man to persist in saying that he 
does not know whether q is the case” (Hintikka, 1962, p. 31). 
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It is not always reasonable to use reasoners without 
cognitive limitations as parameters of rationality for finite 
reasoners. Some patterns of inference that are optimal for 
reasoners without cognitive limitations are not minimally 
functional for finite reasoners. For example, if there is a procedure 
for checking guesses, a reasoner that is able to execute inferences 
instantaneously can solve any problem (instantaneously) simply by 
generating and checking successive random guesses. This pattern 
of inference is not remotely functional for finite reasoners because 
it trades (and depends) on the logical omnipotence of reasoners 
without cognitive limitations. This is the problem of logical 
omnipotence: 
 
Definition 2 (Problem of logical omnipotence). A parameter of 
rationality exhibits the problem of logical omnipotence iff it 
requires logical omnipotence. 
 

The notion of logical omniscience is relative to a logic and a 
notion of belief. Under some interpretations, logical omniscience 
entails logical omnipotence. If logical omniscience is interpreted in 
term of explicit beliefs, then all logically omniscient reasoners must 
be logically omnipotent10. Under other interpretations, however, 
logical omniscience does not entail logical omnipotence. For 
example, if logical omniscience is interpreted in terms of implicit 
beliefs and reasoners implicitly believe all the logical consequences 
of their explicit beliefs, then finite reasoners can be logically 
omniscient. Finally, logical omnipotence usually does not entail 
logical omniscience. If the set of explicit beliefs of a reasoner is 
closed under conjunction introduction (but not under other logical 

 
10  Supposing that the adoption of each explicit belief demands some amount of space in memory, 
finite reasoners cannot explicitly believe infinitely many tautologies because they have only a finite 
amount of space in memory (finite memory). Supposing that the adoption of each explicit belief 
demands the execution of some number of inferential steps, finite reasoners cannot explicitly believe 
infinitely many tautologies because they are able to execute only finitely many inferential steps in a 
finite time interval (finite inferential power). 
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rules), then the reasoner is logically omnipotent, but not 
omniscient (given some notions of logical omniscience). 

Where logical omniscience and logical omnipotence diverge, 
logical omnipotence is the relevant problem. (Human) 
epistemology is especially concerned with human rationality and it 
seems to be an essential feature of human rationality that humans 
have finite amounts of cognitive resources; that humans are finite 
reasoners. For this reason, epistemology is (should be!) specially 
concerned with parameters of rationality that do not exhibit the 
problem of logical omnipotence. The avoidance of the problem of 
logical omniscience is not as central. In fact, parameters of 
rationality that exhibit logical omniscience, but not omnipotence 
seem to be especially relevant to epistemology. For example, it is a 
common contention that a parameter of rationality should exhibit 
some sort of logical closure of beliefs, given some notion of closure 
and belief (see Hintikka, 1962, p. 31). Then it seems to be a goal of 
epistemology to investigate notions of belief that generate logically 
omniscient, but not omnipotent parameters of rationality11. 

In this paper, I survey two developments of the most 
common strategy applied to the problem of logical omnipotence. 
The first strategy is to interpret the parameter of rationality in 
terms of accessible beliefs (notion inspired by Konolige, 1986, p. 
19). The second strategy is to interpret the parameter of rationality 
in terms of stable beliefs (notion inspired by Pollock, 1995, p. 133). 
In section 1, I introduce a model of reasoners that is free from 
normative presuppositions. Then I define a finite reasoner and the 
general form of the parameter of rationality using this model. In 
section 2, I describe the two strategies using the model introduced 
in section 1 and show that both succeed in avoiding the problem of 
logical omnipotence in classical settings. 
 

 
11  The problem of logical omnipotence has interesting features of it own. For example, whereas 
there are several notions of logical omniscience (all of them relative to a logic and to a notion of 
belief), the notion of logical omnipotence is fixed, what suggests some sort of fundamentality. 
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1. The Model 
 

The evaluation of whether parameters of rationality based 
on models such as Hintikka's exhibit the problem of logical 
omnipotence is impaired due to the normative import of those 
models: all reasoners described in Hitinkka's model, for example, 
trivially meet the corresponding parameter of rationality. In 
investigating the problem of logical omnipotence, it is important to 
keep aside descriptive and normative considerations about 
reasoners (the model of reasoners and the parameter of 
rationality, respectively). Syntactic models of reasoners (e.g. 
Konolige, 1986) are often criticized for not providing insights about 
the normative structure of knowledge (see Fagin et al., 2003, p. 
339). For this reason, the model of reasoners presented in this 
paper is fully syntactic. The parameter of rationality, on the other 
hand, is described in semantic terms. 

The model of reasoners is the following: 
 
Definition 3 (Reasoner (R)). A reasoner R = <L; INPUT; KB; π> 
is a 4-tuple, where L is a formal language, INPUT and KB are sets 
of sentences in L, and π is a function π: 2L × 2L × Z+ → 2L. 
 

The first element (L) is a language that models the concepts 
available for the reasoner. The second element (INPUT) is a set of 
sentences in L that models the reasoner's perception. The third 
element (KB, from “knowledge base”) is another set of sentences in 
L that models the reasoner’s memory. The final element (π, from 
“pattern of inference”) is a function for updating KB from INPUT 
and KB that models the reasoner's ability for reasoning. A fact 
about patterns of inference is that reasoners can execute different 
inferences from the same premises12. This fact is expressed in the 

 
12  For example, given premises (p1) φ → ѱ and (p2) ¬ѱ, a reasoner can infer that φ from p1 and 
p2 (modus tollens), infer that ¬φ (although not an interesting conclusion) from p2 alone 
(disjunction introduction), etc. 
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model using a function π that has a numeric input (positive 
integer) in addition to INPUT and KB: π(INPUT; KB; 1) models 
inference 1 from INPUT and KB, π(INPUT; KB; 2) models inference 
2, etc. 

In the model, the notion of a finite reasoner is the following: 
 
Definition 4 (Finite reasoner). A reasoner R = <L; INPUT; KB; 
π> is finite iff L is recursively enumerable, INPUT and KB contain 
finitely many sentences, and π is a recursive function, where a 
function is recursive iff there exists an algorithm that can do the 
job of the function (Boolos et al., 2007, p. 63) and a set is 
recursively enumerable (r.e.) iff it is the range of a recursive 
function on the positive integers (Boolos et al., 2007, p. 96)13. 
 

That L is r.e. is a requirement for L being learnable by a 
finite reasoner14. If L is r.e., then L is finitary, i.e. all sentences in L 
have finite length. INPUT being finite models finite perceptual 
input. KB being finite models finite memory. Function π being 
recursive is related to finite inferential power. If π is recursive, 
then every belief of the reasoner is generated executing at most 
finitely many basic operations, what models the reasoner being 
able to execute only finitely many inferential steps in a finite time 
interval. In the following, I will usually investigate a priori 
reasoners, i.e. reasoners with R = <KB; π>, (initial) KB = ∅, and π: 
2L × Z+ → 2L15. 

 
13  A set is decidable if both the set and its complement are r.e. (Boolos et al., 2007, p. 96). 
14  Here, I am following Davidson's contention that a finite reasoner can only learn a language if it is 
constructive, in the sense of having compositional syntax and semantics (Davidson, 1965, p. 387). 
Davidson himself requires those languages to contain finitely many terms, sentences, etc but, 
(Haack, 1978) gives reasons to require only that they are r.e.. 
15  A priori reasoners don't reason from perceptual information. This is modeled with INPUT = ∅, 
but, for simplicity, I will suppress INPUT from the model and make π : 2L × Z+ → 2L. Since the 
initial KB may store perceptual information, I will make KB = ∅. Finally, I will suppress L from the 
model. Since I always talk about reasoners in the context of a logic, I will presuppose that L is a r.e. 
arbitrary language for that logic. 
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This is a first approximation to the parameter of rationality: 
maximally rational reasoners believe all the logical consequences of 
their epistemic situation and have nontrivial sets of beliefs, where 
the epistemic situation of a reasoner is the information that the 
reasoner has available for reasoning (KB ∪ INPUT). In discussing 
the surprise test paradox, (Binkley, 1968) proposes a notion of an 
ideal reasoner with these requirements (also do Duc, 1995; E. 
Giunchiglia and F. Giunchiglia, 2001; Grim, 1988; Halpern and 
Moses, 1985; Stalnaker, 2006)16. This notion is not an adequate 
parameter of rationality because a reasoner with these features 
may still have all sorts of random beliefs17. This problem may be 
avoided implementing formally the following informal definition of 
the parameter of rationality: 
 
Definition 5 (Maximum rationality − Informal). A reasoner R is 
maximally rational iff: 
 
(r1) R believes all and only the logical consequences of the current 
epistemic situation; 
 
(r2) R has a nontrivial set of beliefs. 
 

The notion of maximum rationality is relative to a logic and 
to a notion of belief. Maximum rationality is relative to a logic 
because it is defined in terms of logical consequence and triviality, 
which are relative to a logic. The choice of a logic provides the 

 
16  In the literature, the second requirement is usually expressed as ‘R has a consistent set of beliefs’. 
A set of beliefs is consistent iff it does not entail a contradiction. A set of beliefs is nontrivial iff it does 
not entail every sentence in the language. If the logic is explosive (see section 3), these requirements 
coincide. (Duc, 1995; E. Giunchiglia and F. Giunchiglia, 2001; Grim, 1988) drop the second 
requirement. However, this requirement is important for blocking a fully credulous reasoner, a 
reasoner that believes all sentences in the language, from being maximally rational. 
17  As long as those beliefs do not contradict the second requirement. The existence of this 
phenomenon depends on the notion of belief used, but it holds for accessible and stable beliefs (see 
sec. 2) 
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normative content of the parameter of rationality. For example, 
the discussion about whether it is always irrational to have 
inconsistent beliefs is equivalent to the question about whether the 
relevant logic is consistent or paraconsistent. In the following, I 
will always talk about maximum rationality given a logic. The 
notion of maximum rationality is also relative to a notion of belief 
because the term “belief” used in Def. 5 is ambiguous among 
explicit belief, implicit belief, etc. In the following, ‘maximally 
rationalxy’ denotes the parameter of rationality given a logic x and 
a notion of belief y (beliefy). 

Most results of logical omnipotence are generated using 
supraclassical logics and the notion of explicit belief (e.g. Hintikka, 
1962). For example, the parameter of rationality in Def. 5 exhibits 
the problem of logical omnipotence when it is interpreted using 
classical logic and explicit beliefs (in this paper, ‘classical logic’ 
always refers to first-order logic). Informally, reasoners explicitly 
believe φ iff a representation with that content is inscribed in their 
“belief box” (see Schwitzgebel, 2015, sec. 2.2.1). Consider the 
notion of explicit belief (beliefex) in the model: 
 
Definition 6 (Beliefex). A reasoner R = <KB; π> believesex φ iff φ 
∈ KB. 
 

This is the parameter of rationality given (a logic x with 
consequence relation) ⊨x, defined in terms of beliefsex: 
 
Definition 7 (Maximum rationalityx

ex). A reasoner R = <KB; π> 
is maximally rationalxex iff: 
(r1x

ex) KB ⊨x φ iff φ ∈ KB; 
(r2x

ex) (Σφ) KB⊭x φ, 
 
where Σ is the meta-linguistic “for some” (the meta-linguistic “for 
all” is often omitted, as in r1x

ex). The parameter of rationality, 
when interpreted in terms of ⊨c (the consequence relation of 
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classical logic) and beliefsex, exhibits the problem of logical 
omnipotence. This is the case because maximally rationalcex 
reasoners believeex all tautologiesc (r1c

ex). There are infinitely many 
tautologiesc. Believingex infinitely many tautologiesc requires 
having infinitely many sentences in KB (Def. 6), but a finite 
reasoner cannot have infinitely many sentences in KB (Def. 4, 
finite memory). 
 
2. Two strategies 
 
The problem of logical omnipotence may be avoided by 
interpreting the parameter of rationality using a notion of belief 
different from beliefex, as, for example, implicit belief. In general, 
reasoners implicitly believe φ when they believe φ independently 
of having a representation with that content inscribed in their 
belief box (Schwitzgebel, 2015, sec. 2.2.1). There are several 
developments of the notion of implicit belief in the literature. Here, 
‘implicit belief’ denotes the crudest of these developments: 
reasoners implicitly believe the logical consequences of their 
beliefsex (Fagin et al., 2003, p. 363). Consider the notion of implicit 
belief (beliefim) in the model: 
 
Denition 8 (Beliefim). A reasoner R = <KB; π> believesim φ iff KB 
⊨x φ. 
 

This is the parameter of rationality given ⊨x, defined in 
terms of beliefsim: 
 
Denition 9 (Maximum rationalityx

im). A reasoner R = <KB; π> 
is maximally rationalxim iff: 
(r1x

im) KB ⊨x φ iff KB ⊨x φ; 
(r2x

im) (Σφ) KB ⊭x φ. 
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The parameter of rationality, when interpreted in terms of 
⊨c and beliefsim, does not exhibit the problem of logical 
omnipotence. But avoiding this problem comes with the price of 
‘trivializing’ the parameter of rationality: requirement r1x

im is 
obviously trivial. In this interpretation, all reasoners with 
nontrivial KBs meet the parameter of rationality (a reasoner with 
KB = Ø is maximally rationalx im given any ⊨x). In fact, what a 
reasoner believesim depends mostly on the parameter of rationality 
(and not on the reasoner's epistemic situation). This feature of the 
notion of beliefim defeats the purpose of keeping aside descriptive 
and normative considerations about reasoners. 

I survey two strategies for avoiding the problem of logical 
omnipotence. The first strategy is to interpret the parameter of 
rationality in terms of accessible beliefs. Informally, the belief that 
φ is accessible to a reasoner when the reasoner is able to infer φ 
from the available information18. Consider the notion of accessible 
belief (beliefac) in the model: 
 
Definition 10 (Beliefsac). A reasoner R = <KB; π> believesac φ iff 
φ ∈ π(KB). 
 

The set of beliefsac, π(KB), is the union of the outputs of 
function π for KB and every positive integer i. Formally, π(KB) = 

i π(KB; i). 
 
This is the parameter of rationality given ⊨x, defined in 

terms of beliefsac: 
 
Definition 11 (Maximum rationalityx

ac). A reasoner R = <KB; π> 
is maximally rationalxac iff: 
 

 
18 This is the definition of “belief” in (Konolige, 1986, p. 19): “A formula φ is said to be believed by an 
agent i, which we write Biφ i it is either in the agent's initial knowledge base or else is derivable from 
the knowledge base by applying the agent's deduction rules.” 
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(r1x

ac) KB ⊨x φ iff φ ∈ π(KB); 
(r2x

ac) (Σφ) π(KB) ⊭x φ. 
 
The parameter of rationality, when interpreted in terms of ⊨c and 
beliefsac, does not exhibit the problem of logical omnipotence. 
Consider a reasoner Rc

ac = <KB; π> and an axiomatization of 
classical logic (e.g. Smullyan, 1995, ch. 8). Let KB = Ø. For each 
axiom schema in the axiomatization, consider an inferential 
schema with no premises and with the axiom schema as 
conclusion. For each rule in the axiomatization, consider an 
inferential schema with the same premises and conclusion. 
Consider an ordering for the terms and sentences in L (L is r.e.). 
Then the execution of function π for KB and some positive integer i 
may be (roughly) defined as follows: for j = 1 to j = i, (i) execute all 
inferential schema without premises instantiated to all possible 
combinations of the terms and sentences with positions ≤ j and (ii) 
execute all inferential schema with premises instantiated for all 
possible combinations of sentences in KB before step ii and terms 
with positions ≤ j19. 
Function π generates all and only the theorems of classical logic for 
KB = Ø. The loop generates all theorems of classical logic because 
it executes all rules of classical logic for all possible combinations of 
sentences in L and the axiomatization is complete (Smullyan, 1995, 
ch. 8). The loop generates only the theorems of classical logic 
because the axiomatization is sound (Smullyan, 1995, ch. 8). Also, 
classical logic is consistent. Then Rc

ac is maximally rationalcac. 
Since KB = Ø, KB is finite. Function π is recursive because 

the number of operations executed by π for KB and an arbitrary 
integer i is finite. For i = 1, the number of operations executed by π 
is a product of the number of inferential schema without premises, 
the number of inferential schema with premises, and the number 

 
19 The existence of such a function is a consequence of classical logic being r.e. (see Boolos et al., 
2007, sec. 11). 
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of sentences in KB before step ii. Since the number of inferential 
schema is nite, this number is nite. For i = n + 1, the number of 
executed operations is the number of operations for i = n plus the 
number of operations for i = n + 1. Those two numbers are finite 
for the same reasons as for i = 1. Then Rc

ac is finite. 
The second strategy is to interpret the parameter of 

rationality in terms of stable beliefs. Informally, a reasoner has the 
stable belief that φ iff the reasoner could reason indefinitely from 
the available information, then there would be a moment such that 
the reasoner would believeex φ at every moment after that. 
Consider the notion of stable belief (beliefω) in the model: 
 
Definition 12 (Beliefω). A reasoner R = <KB; π> believesω φ iff φ 
∈ KBω. 
 
Function π defines a reasoning sequence KB0, KB1, ... ; KBi, ..., 
where KB0 is the initial KB of the reasoner and KBi+1 = π(KBi; i + 
1)20. In this context, KBω, the set of beliefsω of a reasoner with 
reasoning sequence KB0, KB1, …, KBi, ... is composed of the φ for 
which there is an i such that, for all j ≥ i, φ ∈ KBj. Formally, KBω = 

i j≥i KBj
21. 

 
This is the parameter of rationality given ⊨x, defined in 

terms of beliefsω: 
 
Definition 13 (Maximum rationalityx

ω). A reasoner R = <KB; π> 
is maximally rationalxω

 iff: 
(r1x

ω) KB ⊨x φ iff φ ∈ KBω; 
(r2x

ω) (Σφ) KBω ⊭x φ. 
 

20 In this case, for all i, π(KBi; i + 1) must designate how the reasoner would reason from KBi. This 
adds additional structure to the model, but I think that this addition pays off. 

21 The notion of beliefw is related to defeasible enumeration (Pollock, 1995, p. 143), identification in 
the limit (Kelly, 1990), limiting recursion (Gold, 1965), trial and error predicate (Putnam, 1965), and 
defeasible consequence (Antonelli, 2005, p. 87). 
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The parameter of rationality, when interpreted in terms of ⊨c and 
beliefsω, does not exhibit the problem of logical omnipotence. Rc

ac 
is not only maximally rationalcac but also maximally rationalcω. This 
is the case because function π of Rc

ac is such that, for every i, π(KB; 
i) ⊆ π(KB; i + 1). Then π(KB) = KBω. Let Rc

ω = Rc
ac. Then Rc

ω is 
maximally rationalcω for the same reasons that Rc

ac is maximally 
rationalcac. All KB output by π are finite because KB0 = Ø and each 
execution of function π has finitely many loops that add finitely 
many sentences to KB. The limiting knowledge base KBω has 
infinitely many sentences, but KBω is not an output of π. The 
function π of Rc

ω is recursive for the same reasons of that of Rc
ac. 

Then Rc
ω is finite. 

 
3. Conclusions 
 

Both strategies avoid the problem of logical omnipotence in 
classical settings, but they differ in an essential feature: whereas 
the notion of beliefw is sensitive to the order of inferences, the 
notion of beliefac is not. As a consequence, the beliefsac and beliefsω 
of a reasoner do not always coincide. This distinction doesn't show 
up in classical settings because maximally rationalcy reasoners do 
not need rules for deleting sentences. However, the notion of 
beliefac and the notion of beliefω yield different parameters of 
rationality in nonmonotonic settings, where maximally rational 
reasoners need rules for deleting sentences. In those settings, it is 
easy to construct cases in which a reasoner believesac φ, but does 
not believeω φ. For example, suppose that R = <KB; π> is such 
that φ ∈ KB, π(KB; 1) deletes φ and adds to KB, and π(KB; i) does 
nothing for every i > 1. In this case, R believesac φ because φ ∈ 
π(KB; 2) but R does not believew φ because φ ∉ KBi for every i > 1 
(see Pollock, 1995, p. 132, for a similar case). 
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