
Chapter 1
Non-Deductive Logic in Mathematics:
The Probability of Conjectures

James Franklin

1.1 Introduction

Mathematicians often speak of conjectures as being confirmed by evidence that falls
short of proof. For their own conjectures, evidence justifies further work in look-
ing for a proof. Those conjectures of mathematics that have long resisted proof,
as Fermat’s Last Theorem did and the Riemann Hypothesis still does, have had to
be considered in terms of the evidence for and against them. It is not adequate to
describe the relation of evidence to hypothesis as “subjective”, “heuristic” or “prag-
matic” there must be an element of what it is objectively rational to believe on the
evidence, that is, of non-deductive logic. Mathematics is therefore (among other
things) an experimental science.

The occurrence of non-deductive logic, or logical probability, or the rational sup-
port for unproved conjectures, in mathematics is however an embarrassment. It is
embarrassing to mathematicians, used to regarding deductive logic as the only real
logic. It is embarrassing for those statisticians who wish to see probability as solely
about random processes or relative frequencies: surely there is nothing probabilis-
tic about the truths of mathematics? It is a problem for philosophers who believe
that induction is justified not by logic but by natural laws or the “uniformity of na-
ture”: mathematics is the same no matter how lawless nature may be. It does not fit
well with most philosophies of mathematics. It is awkward even for proponents of
non-deductive logic. If non-deductive logic deals with logical relations weaker than
entailment, how can such relations hold between the necessary truths of mathemat-
ics?

Work on this topic was therefore rare in the mid-twentieth century “classical” pe-
riod in the philosophy of science and mathematics. The recent turning of attention in
philosophy of mathematics towards mathematical practice has produced a number
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of examinations of experimental mathematics (Franklin, 1987; Fallis, 1997; Brown,
1999, ch. 10; Fallis, 2000; Corfield, 2003, ch. 5; Lehrer Dive, 2003; Van Kerkhove
and Van Bendegem, 2008; Baker, 2009; Dove, 2009; brief earlier remarks in Ko-
lata, 1976) but these have mostly not discussed in depth the theoretical issues raised.
Many of these works were inspired by one important earlier contribution, the pair of
books by the mathematician George Pólya on Mathematics and Plausible Reason-
ing (1954). Despite their excellence, these books of Pólya’s had been little noticed
by mathematicians, and even less by philosophers. Undoubtedly that is largely be-
cause of Pólya’s unfortunate choice of the word “plausible” in his title—“plausible”
has a subjective, psychological ring to it, so that the word is almost equivalent to
“convincing” or “rhetorically persuasive”. Arguments that happen to persuade, for
psychological reasons, are rightly regarded as of little interest in mathematics and
philosophy. Pólya made it clear, however, that he was not concerned with subjective
impressions, but with what degree of belief was justified by the evidence (Pólya,
1954, I, 68).

Non-deductive logic deals with the support, short of entailment, that some propo-
sitions give to others. If a proposition has already been proved true, there is of course
no longer any need to consider non-conclusive evidence for it. Consequently, non-
deductive logic will be found in mathematics in those areas where mathematicians
consider propositions which are not yet proved. These are of two kinds. First there
are those that any working mathematician deals with in his preliminary work before
finding the proofs he hopes to publish, or indeed before finding the theorems he
hopes to prove. The second kind are the long-standing conjectures which have been
written about by many mathematicians but which have resisted proof.

It is obvious on reflection that a mathematician must use non-deductive logic in
the first stages of his work on a problem. Mathematics cannot consist just of conjec-
tures, refutations and proofs. Anyone can generate conjectures, but which ones are
worth investigating? Which ones are relevant to the problem at hand? Which can
be confirmed or refuted in some easy cases, so that there will be some indication of
their truth in a reasonable time? Which might be capable of proof by a method in
the mathematician’s repertoire? Which might follow from someone else’s theorem?
Which are unlikely to yield an answer until after the next review of tenure? The
mathematician must answer these questions to allocate his time and effort. But not
all answers to these questions are equally good. To stay employed as a mathemati-
cian, he must answer a proportion of them well. But to say that some answers are
better than others is to admit that some are, on the evidence he has, more reasonable
than others, that is, are rationally better supported by the evidence. That is to accept
a role for non-deductive logic.

The area where a mathematician must make the finest discriminations of this
kind—and where he might, in theory, be guilty of professional negligence if he
makes the wrong decisions—is as a supervisor advising a prospective Ph.D. student.
It is usual for a student beginning a Ph.D. to choose some general field of mathemat-
ics and then to approach an expert in the field as a supervisor. The supervisor then
selects a problem in that field for the student to investigate. In mathematics, more
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1 Non-Deductive Logic in Mathematics 3

than in any other discipline, the initial choice of problem is the crucial event in the
Ph.D.-gathering process. The problem must be

1. unsolved at present
2. not being worked on by someone who is likely to solve it soon

but most importantly

3. tractable, that is, probably solvable, or at least partially solvable, by three years’
work at the Ph.D. level

It is recognised that of the enormous number of unsolved problems that have been or
could be thought of, the tractable ones form a small proportion, and that it is difficult
to discern which they are. The skill in non-deductive logic required of a supervisor
is high. Hence the advice to Ph.D. students not to worry too much about what field
or problem to choose, but to concentrate on finding a good supervisor.

It is also clear why it is hard to find Ph.D. problems that are also

4. interesting

It is not possible to dismiss these non-deductive techniques as simply “heuristic” or
“pragmatic” or “subjective”. Although those are correct descriptions as far as they
go, they give no insight into the crucial differences among techniques, namely, that
some are more reasonable and consistently more successful than others. “Success-
ful” can mean “lucky”, but “consistently successful” cannot. “If you have a lot of
lucky breaks, it isn’t just an accident”, as Groucho Marx said (Chandler, 1999, 560).
Many techniques can be heuristic, in the sense of leading to the discovery of a true
result, but we are especially interested in those which give reason to believe the truth
has been arrived at, and justify further research. Allocation of effort on attempted
proofs may be guided by many factors, which can hence be called “pragmatic”, but
those which are likely to lead to a completed proof need to be distinguished from
those, such as sheer stubbornness, which are not. Opinions on which approaches
are likely to be fruitful in solving some problem may differ, and hence be called
“subjective”, but the beginning graduate student is not advised to pit his subjective
opinion against the experts’ without good reason. Damon Runyon’s observation on
horse-racing applies equally to courses of study: “The race is not always to the swift,
nor the battle to the strong, but that’s the way to bet” (Fadiman, 1955, 794). An ex-
ample where the experts agreed on their opinion and were eventually proved right
is the classification of finite simple groups, described in section 4 below.

It is true that similar remarks could be made about any attempt to see rational
principles at work in the evaluation of hypotheses, not just those in mathematical
research. In scientific investigations, various inductive principles obviously produce
results, and are not simply dismissed as pragmatic, heuristic or subjective. Yet it
is common to suppose that they are not principles of logic, but work because of
natural laws (or the principle of causality, or the regularity of nature). This option is
not available in the mathematical case. Mathematics is true in all worlds, chaotic or
regular. Any principles governing the relationship between hypothesis and evidence
in mathematics can only be logical.
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1.2 Evidence for (and against) the Riemann Hypothesis

In modern mathematics, it is usual to cover up the processes leading to the construc-
tion of a proof, when publishing it—naturally enough, since once a result is proved,
any non-conclusive evidence that existed before the proof is no longer of interest.
That was not always the case. Euler, in the eighteenth century, regularly published
conjectures which he could not prove, with his evidence for them. He used, for ex-
ample, some daring and obviously far from rigorous methods to conclude that the
infinite sum
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+ . . . (1.1)

(where the numbers on the bottom of the fractions are the successive squares of
whole numbers) is equal to the prima facie unlikely value π2

6 . Finding that the two
expressions agreed to seven decimal places, and that a similar method of argument
led to the already proved result
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Euler concluded, “For our method, which may appear to some as not reliable
enough, a great confirmation comes here to light. Therefore, we shall not doubt
at all of the other things which are derived by the same method” (Pólya, 1954, I,
18–21). He later proved the result. A translation of another of Euler’s publications
devoted to presenting “such evidence . . . as might be regarded as almost equivalent
to a rigorous demonstration” of a proposition is given as a chapter in Pólya’s books
(Pólya, 1954, I, 91–98).

Even today, mathematicians occasionally mention in print the evidence that led
to a theorem. Since the introduction of computers, and even more since the recent
use of symbolic manipulation software packages, it has become possible to collect
large amounts of evidence for certain kinds of conjectures. (Many examples in Bor-
wein and Bailey, 2004; Borwein et al., 2004; Müller and Neunhöffer, 1987; some
comments on experimental mathematics of this kind in Epstein et al., 1992; philo-
sophical examination in Baker, 2008). A few mathematicians argue that in some
cases, it is not worth the excessive cost of achieving certainty by proof when “semi-
rigorous” checking will do (Zeilberger, 1993).

At present, it is usual to delay publication until proofs have been found. This rule
is broken only in work on those long-standing conjectures of mathematics which are
believed to be true but have so far resisted proof. The most notable of these, which
stands since the proof of Fermat’s Last Theorem as the Everest of mathematics, is
the Riemann Hypothesis.

Riemann stated in a celebrated paper of 1859 (Riemann, 1974) that he thought it
“very likely” that

All the roots of the Riemann zeta function (with certain trivial exceptions) have real part
equal to 1

2 .
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1 Non-Deductive Logic in Mathematics 5

This is the still unproved Riemann Hypothesis. The Riemann zeta function is
defined on positive whole numbers s > 1 by the formula

ζ (s) =
1
1s +

1
2s +

1
3s + . . . (1.3)

(Thus for example ζ (2) = 1+ 1
4 +

1
9 +

1
16 + . . ., which is π2

6 , as mentioned above.)
The definition can be extended to the entire complex plane: ζ (s) is the unique com-
plex function, analytic except at s = 1, which agrees with the above formula on the
positive integers greater than 1. It is found that ζ (s) has obvious (“trivial”) zeros at
the negative even integers. The Riemann hypothesis is that all the (infinitely many)
other zeros have real part equal to 1

2 . For the present purpose an understanding of
complex functions is not necessary: it is only important that this is a simple uni-
versal proposition like “all ravens except Texan ones are black”. It is also true that
the infinitely many non-trivial roots of the Riemann zeta function have a natural or-
der, so that one can speak of “the first million roots”. (Accounts in Edwards, 1974;
Derbyshire, 2003, ch. 5; Sabbagh, 2002; du Sautoy, 2003.)

Once it became clear that the Riemann Hypothesis would be very hard to prove,
it was natural to look for evidence of its truth (or falsity). The simplest kind of
evidence would be ordinary induction: Calculate as many of the roots as possible
and see if they all have real part 1

2 . This is in principle straightforward (though in
practice computational mathematics is difficult, since one needs to devise subtle
algorithms which save as much calculation as possible, so that the results can go as
far as possible). Such numerical work was begun by Riemann and was carried on
later with the results in Table 1.1.

Table 1.1 Hand calculations of roots of the Riemann zeta function

Date Worker Number of roots found to have real part 1
2

1903 Gram 15
1914 Backlund 79
1925 Hutchinson 138
1935/6 Titchmarsh 1,041

“Broadly speaking, the computations of Gram, Backlund and Hutchinson con-
tributed substantially to the plausibility of the Riemann Hypothesis, but gave no
insight into the question of why it might be true” (Edwards, 1974, 97). The next
investigations were able to use electronic computers; the results are shown in Table
1.2 (Brent et al., 1982; Gourdon, 2004).

It is one of the largest inductions in the world.
Besides this simple inductive evidence, there are some other reasons for believing

that Riemann’s Hypothesis is true (and some reasons for doubting it). In favour,
there are:
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Table 1.2 Computer calculations of roots of the Riemann zeta function

Date Worker Number of roots found to have real part 1
2

1956 Lehmer 25,000
1958 Meller 35,337
1966 Lehman 250,000
1968 Rosser, Yohe & Schoenfeld 3,500,000
1979 Brent 81,000,001
1986 Te Riele, van de Lune et al 1,500,000,001
2004 Gourdon 1013

1. Hardy proved in 1914 that infinitely many roots of the Riemann zeta function
have real part 1

2 (Edwards, 1974, 226–9). This is quite a strong consequence
of Riemann’s Hypothesis, but is not sufficient to make the Hypothesis highly
probable, since if the Riemann Hypothesis is false, it would not be surprising if
the exceptions to it were rare.

2. Riemann himself showed that the Hypothesis implied the “prime number theo-
rem”, then unproved. This theorem was later proved independently. This is an
example of the general non-deductive principle that non-trivial consequences of
a proposition support it.

3. Also in 1914, Bohr and Landau proved a theorem roughly expressible as “Almost
all the roots have real part very close to 1

2 .” More exactly, “For any δ > 0, all
but an infinitesimal proportion of the roots have real part within δ of 1

2 .” This
result “is to this day the strongest theorem on the location of the roots which
substantiates the Riemann hypothesis” (Edwards, 1974, 193).

4. Studies in number theory revealed areas in which it was natural to consider zeta
functions analogous to Riemann’s zeta function. In some famous and difficult
work, André Weil proved that the analogue of Riemann’s Hypothesis is true for
these zeta functions (Weil, 1948), and his related conjectures for an even more
general class of zeta functions were proved to widespread applause in the 1970s.
“It seems that they provide some of the best reasons for believing that the Rie-
mann hypothesis is true—for believing, in other words, that there is a profound
and as yet uncomprehended number-theoretic phenomenon, one facet of which
is that the roots ρ all lie on Re s = 1

2 ” (Edwards, 1974, 298).
5. Finally, there is the remarkable “Denjoy’s probabilistic interpretation of the Rie-

mann hypothesis” (Edwards, 1974, 268–9). If a coin is tossed n times, then of
course we expect about 1

2 n heads and 1
2 n tails. But we do not expect exactly half

of each. We can ask, then, what the average deviation from equality is. The an-
swer, as was known by the time of Bernoulli, is

√
n. One exact expression of this

fact is:

For any ε > 0, with probability one the number of heads minus the number of tails in n
tosses grows less rapidly than n

1
2 +ε
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1 Non-Deductive Logic in Mathematics 7

Now we form a sequence of “heads” and “tails” by the following rule: Go along
the sequence of numbers and look at their prime factors. If a number has two
or more prime factors equal (i.e., is divisible by a square), do nothing. If not,
its prime factors must be all different; if it has an even number of prime factors,
write “heads”. If it has an odd number of prime factors, write “tails”. Table 1.3
shows the beginning of the sequence.

Table 1.3 “Head” and “tail” sequence from the factors of integers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · ·
2 3 22 5 2×3 7 23 32 2×5 11 22×3 13 2×7 3×5 24 17 · · ·
T T T H T H T T H H T · · ·

The resulting sequence is of course not “random” in the sense of “probabilistic”,
since it is totally determined. But it is “random” in the sense of “patternless” or
“erratic”; such sequences are common in number theory, and are studied by the
branch of the subject called misleadingly “probabilistic number theory” (Tenen-
baum, 1995). From the analogy with coin tossing, it is likely that

For any ε > 0, the number of heads minus the number of tails in the first n “tosses” in
this sequence grows less rapidly than n

1
2 +ε .

This statement is equivalent to Riemann’s Hypothesis. Edwards comments, in his
book on the Riemann zeta function,

One of the things which makes the Riemann hypothesis so difficult is the fact that there is
no plausibility argument, no hint of a reason, however unrigorous, why it should be true.
This fact gives some importance to Denjoy’s probabilistic interpretation of the Riemann
hypothesis which, though it is quite absurd when considered carefully, gives a fleeting
glimmer of plausibility to the Riemann hypothesis (Edwards, 1974, 268).

Not all of the probabilistic arguments bearing on the Riemann Hypothesis are in its
favour. In the balance against, there are the following arguments:

1. Riemann’s paper is only a summary of his researches, and he gives no reasons
for his belief that the Hypothesis is “very likely”. No reasons have been found in
his unpublished papers. Edwards does give an account, however, of facts which
Riemann knew, which would naturally have seemed to him evidence of the Hy-
pothesis. But the facts in question are true only of the early roots; there are some
exceptions among the later ones. Edwards concludes:

The discoveries . . . completely vitiate any argument based on the Riemann-Siegel for-
mula and suggest that, unless some basic cause is operating which has eluded mathe-
maticians for 110 years, occasional roots ρ off the line [i.e., with real part not 1

2 ] are
altogether possible. In short, although Riemann’s insight was stupendous it was not
supernatural, and what seemed “probable” to him in 1859 might seem less so today
(Edwards, 1974, 166).
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This is an example of the non-deductive rule given by Pólya, “Our confidence
in a conjecture can only diminish when a possible ground for the conjecture is
exploded” (Pólya, 1954, II, 20).

2. Although the calculations by computer did not reveal any counterexamples to
the Riemann Hypothesis, Lehmer’s and later work did unexpectedly find values
which it is natural to see as “near counterexamples” (Edwards, 1974, 175–9, fur-
ther in Ivić, 2003). An extremely close one appeared near the 13,400,000th root.
It is partly this that prompted the calculators to persevere in their labours, since
it gave reason to believe that if there were a counterexample it would probably
appear soon. So far it has not, despite the distance to which computation has pro-
ceeded, so the Riemann Hypothesis is not so undermined by this consideration
as appeared at first.

3. Perhaps the most serious reason for doubting the Riemann Hypothesis comes
from its close connections with the prime number theorem. The theorem states
that the number of primes less than x is (for large x) approximately equal to the
integral ∫ x

2

dt
log t

(1.4)

If tables are drawn up for the number of primes less than x and the values of this
integral, for x as far as calculations can reach, then it is always found that the
number of primes less than x is actually less than the integral. On this evidence,
it was thought for many years that this was true for all x. Nevertheless Littlewood
proved that this is false. While he did not produce an actual number for which it
is false, it appears that the first such number is extremely large—well beyond the
range of computer calculations. Edwards comments

In the light of these observations, the evidence for the Riemann hypothesis provided by
the computations of Rosser et al. . . . loses all its force.

That seems too strong a conclusion, since the degree of relevance of Littlewood’s
discovery to the Riemann Hypothesis is far from clear. But it does give some
reason to suspect that there may be a very large counterexample to the Hypothesis
even though there are no small ones.

It is plain, then, that there is much more to be said about the Riemann Hypothesis
than, “It is neither proved nor disproved.” Without non-deductive logic, though,
nothing more can be said.

1.3 Goldbach’s Conjecture

The situation with Goldbach’s Conjecture, possibly the easiest to state of the clas-
sic unsolved problems of mathematics, is similar. Based on a letter of 1742 from
Goldbach, Euler conjectured that every even number (except 2) is the sum of two
primes.
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The conjecture is still neither proved nor disproved and it is believed that a proof
is not close. There is a simple heuristic argument that the larger the number, the
more ways it can be made up of smaller numbers, so the easier it should be to write
it as the sum of two primes; but there seems to be no way of converting that into a
deductive argument. Computer verification for individual numbers is possible and
there is a distributed computing project that has checked the Conjecture for even
numbers up to and beyond 1018 (Wang, 2002; discussed from the point of view of
experimental methods in Echeverrı́a, 1996 and Baker, 2007).

Various consequences of it have been proved (Pólya, 1954, II, 210), and, remark-
ably, connections have appeared between Goldbach’s Conjecture and the Riemann
Hypothesis. Hardy and Littlewood proved in 1924 that a generalisation of the Rie-
mann Hypothesis and a certain estimate implied that most even integers are the sum
of two primes. Vinogradov in 1937 showed that every sufficiently large odd integer
is the sum of three primes, and these methods were soon adapted to show Hardy
and Littlewood’s result without any assumptions. In 1948 Renyi found that every
even number is the sum of a prime and an “almost prime” (a number with few prime
factors) (Renyi, 1962). Linnik showed in 1952 that the Riemann Hypothesis itself
implied a proposition relevant to Goldbach’s Conjecture (Linnik, 1952). Results on
the problem are still sometimes found, but there do not seem to have been dramatic
advances in the last fifty years.

1.4 The Classification of Finite Groups

A last mathematical example of the central role of non-deductive inference is pro-
vided by the classification of finite simple groups, one of the great co-operative
efforts of modern pure mathematics. As a case study, it has the merit that the non-
deductive character of certain aspects was admitted rather explicitly by the princi-
pals. That was so because of the size of the project. Since so many people were
involved, living in different continents and working over some years, it was neces-
sary to present partial findings in print and at conferences, with explanations as to
how these bore on the overall results hoped for.

Groups are one of the basic abstract entities of mathematics, having uses in de-
scribing symmetry, in classifying the kinds of curved surfaces and in many other
areas. To read the following it is only necessary to know:

1. A group consists of finitely or infinitely many members; the number of members
of a finite group is called its order.

2. Any group is composed, in a certain sense, of “simple” groups. (“Simple”, like
“group”, is a technical term; “simple” groups are not in any sense uncomplicated
or easy to understand but are so-called because they are not composed of smaller
groups.)

Page:9 job:franklin macro:svmult.cls date/time:28-Nov-2011/19:36



10 James Franklin

A fundamental question is then: how many different finite simple groups are there?
And what is the order of each? It is these questions that were attacked by the classi-
fication of finite groups project.

The project proper covered the twenty years from 1962 to 1981 inclusive. Groups
had been studied in the nineteenth and early twentieth centuries, and various finite
simple groups were found. It was discovered that most of them fell into a number of
infinite families. These families were quite well described by the mid-1950s, with
some mopping-up operations later. There were, however, five finite simple groups
left over from this classification, called the Mathieu groups after their discoverer in
the 1860s. Around 1960 it was not known whether any more should be expected,
or, if not, how much work it might take to prove that these were the only possible
simple groups.

The field was opened up by the celebrated theorem of Feit and Thompson in 1963
(“a moment in the evolution of finite group theory analogous to the emergence of
fish onto dry land” Solomon, 2001). The theorem stated:

The order of any finite simple group is an even number.

Though the result is easy to state and understand, their proof required an entire 255-
page issue of the Pacific Journal of Mathematics. This theorem is a consequence of
the full classification result (since if one knew all the finite simple groups, one could
easily check that the order of each of them was even). It thus appeared that if the
full classification could be found at all it would be a vast undertaking.

The final step in the answer was announced as completed in February, 1981. The
full proof is spread over some 300 to 500 journal papers, taking up somewhere be-
tween 5,000 and 10,000 pages (Gorenstein, 1982, 1; “cleaned-up” version in Goren-
stein et al., 2005). Of interest is the logical situation as the proof developed, partic-
ularly the increasing confidence—justified as it happened—that the workers in the
field had in the answer long before the end was reached.

It turned out that the five Mathieu groups were not the only “sporadic” groups,
as groups outside the infinite families came to be called. The first new one was dis-
covered by Zvonimir Janko in Canberra (Janko, 1966), and excitement ran high as
researchers applied many methods and discovered more. The final tally of sporadic
groups stands at 26. These “discoveries” had in many cases a strong non-deductive
aspect, as explained by Daniel Gorenstein of Rutgers, who became the father figure
of the project and leading expert on how it was progressing:

Another aspect of sporadic group theory makes the analogy with elementary particle theory
even more apt. In a number of cases (primarily but not exclusively those in which computer
calculations were ultimately required) “discover” did not include the actual construction of
a group—all that was established was strong evidence for the existence of a simple group
G satisfying some specified set of conditions X. The operative metamathematical group
principle is this: if the investigation of an arbitrary group G having property X does not lead
to a contradiction but rather to a “compatible” internal subgroup structure, then there exists
an actual group with property X. In all cases, the principle has been vindicated; however,
the interval between discovery and construction has varied from a few months to several
years (Gorenstein, 1982, 3–4).
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1 Non-Deductive Logic in Mathematics 11

Michael Aschbacher, another leader of the field in the 1970s, distinguished three
stages for any new group: discovery, existence and uniqueness.

I understand a sporadic group to be discovered when a sufficient amount of self-consistent
information about the group is available . . . Notice that under this definition the group can
be discovered before it is shown to exist . . . Of course the group is said to exist when there is
a proof that there exists some finite simple group satisfying P . . . (Aschbacher, 1980, 6–7).

Some groups attracted more suspicion than others; for example that discovered by
Richard Lyons was for some time habitually denoted Ly? and spoken of in such
terms as, “If this group exists, it has the following properties . . . ” (Tits, 1971, 204).
Lyons entitled his original paper ‘Evidence for the existence of a new finite simple
group’ (Lyons, 1972). A similar situation arose with another of the later groups,
discovered by O’Nan. His paper, ‘Some evidence for the existence of a new simple
group’, was devoted to finding “some properties of the new simple group G, whose
existence is pointed at by the above theorems” (O’Nan, 1976, 422).

The rate of discovery of new sporadic groups slowed after 1970 and attention
turned to the problem of showing that there were no more possible. At a conference
at the University of Chicago in 1972 Gorenstein laid out a sixteen-point program
for completing the classification (Gorenstein, 1979). It was thought over-optimistic
at the time but immense strides were soon made by Aschbacher, Glauberman and
others, more or less following Gorenstein’s program.

The turning point undoubtedly occurred at the 1976 summer conference in Duluth, Min-
nesota. The theorems presented there were so strong that the audience was unable to avoid
the conclusion that the full classification could not be far off. From that point on, the prac-
ticing finite group theorists became increasingly convinced that the “end was near”—at first
within five years, then within two years, and finally momentarily. Residual skepticism was
confined largely to the general mathematical community, which quite reasonably would
not accept at face value the assertion that the classification theorem was “almost proved”
(Gorenstein, 1982, 5–6).

Notice that “almost proved” indeed does not mean anything in deductive logic. With
hindsight, one can say that a theorem was almost proved when most of the steps in
the proof were found; but before a proof is complete, there can only be good non-
deductive reason to believe that a sequence of existing steps will constitute most of
a future proof.

By the time of the conference at Durham, England in 1978 (described in its Pro-
ceedings as on “the classification of simple groups, a programme which is now al-
most complete”) optimism ran even higher. At that stage existence and uniqueness
had been proved for 24 of the sporadic groups, leaving two “for which considerable
evidence exists” (Collins, 1980, 21). One of these was successfully dealt with in
1980 (“four years after Janko’s initial evidence for such a sporadic group” Goren-
stein, 1982, 110), and attention focussed on the last one, known as the “Monster”
because of its immense size (order about 1054).

That the search for sporadic groups was not totally haphazard can be seen from the remark-
able simultaneous realization by Fischer in West Germany and Griess in the United States
in 1974 that there might be a simple group having a covering group . . . (Gorenstein, 1982,
92).
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Consequences of the existence of this group were then studied:

Soon after the initial “discovery”, Griess, Conway and Norton noticed that every nontrivial
irreducible character of a group G of type F, has degree at least 196,883 and very likely such
a group G must have a character of this exact degree. Indeed, on this assumption, Fischer,
D. Livingstone and Thorne eventually computed the full character table of such a group G
(Gorenstein, 1982, 126–7).

Aschbacher, lecturing at Yale in 1978, said:

When the Monster was discovered it was observed that, if the group existed, it must contain
two new sporadic groups (the groups denoted by F3 and F5 in Table 2) whose existence
had not been suspected up to that time. That is, these groups were discovered as subgroups
of the Monster. Since that time the groups F3 and F5 have been shown to exist. This is
analogous to the situation in the physical sciences where a theory is constructed which
predicts certain physical phenomena that are later verified experimentally. Such verification
is usually interpreted as evidence that the theory is correct. In this case, I take the existence
of F3 and F5 to be very good evidence that the Monster exists . . . My belief is that there are
at most a few groups yet to be discovered. If I were to bet, I would say no more (Aschbacher,
1980, 13–15).

Gorenstein’s survey article of 1978 contains perhaps the experts’ last sop to deduc-
tivism, the thesis that all logic is deductive. He wrote:

At the present time the determination of all finite simple groups is very nearly complete.
Such an assertion is obviously presumptuous, if not meaningless, since one does not speak
of theorems as “almost proved” (Gorenstein, 1979, 50–51).

To the deductivist, the fact that most steps in a proposed proof are completed is no
reason to believe that the rest will be. Undeterred, however, Gorenstein went on to
say:

The complete proof, when it is obtained, will run to well over 5,000 journal pages! More-
over, it is likely that at the present time more than 80% of those pages exist . . . The assertion
that the classification is nearly complete is really a prediction that the presently available
techniques will be sufficient to deal with the problems still outstanding. In its support, we
cite the fact that, with two exceptions, all open questions are open because no one has yet
examined them and not because they involve some intrinsic difficulty.

A year after the Durham conference, the experts assembled again at Santa Cruz,
California, in a mood of supreme confidence. Gorenstein’s survey opened with the
remark:

My aim here is to present a brief outline of the classification of the finite simple groups,
now rapidly nearing completion (Gorenstein, 1980, 3).

Another contributor to the conference began his talk:

Now that the problem of classifying finite simple groups is probably close to completion
. . . (Hunt, 1980).

What concern remained was less about the completion of the project than about
what to do next; the editor of the conference proceedings began by commenting, “In
the last year or so there have been widespread rumors that group theory is finished,
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that there is nothing more to be done” (Mason, 1980, xii). The New York Times Week
in Review (June 22, 1980) headlined an article ‘A School of Theorists Works Itself
Out of a Job.’

The confidence proved justified. Griess was able to show the existence of the
Monster, and finally, in 1981, Simon Norton of Cambridge University completed
the proof of the uniqueness of the Monster (Gorenstein, 1982, 1).

At least, that was claimed at the time. In the late 1980s it was discovered that
a part of the proof, on “quasithin” groups, was not quite as complete as had been
thought. One gap proved hard to fill in, but was completed by Aschbacher and others
in 2001 (Aschbacher, 2001).

1.5 Probabilistic relations between necessary truths?

The most natural conceptualization of the non-deductive relations between evidence
and conclusion is that of objective Bayesianism. The (objective) Bayesian theory of
evidence (also known as the logical theory of probability) aims to explain what
the nature of evidence is. It holds that the relation of evidence to conclusion is a
matter of strict logic, like the relation of axioms to theorems in mathematics but less
conclusive—a kind of partial implication. Given a fixed body of evidence—say in
a trial, or in a dispute about a scientific theory—and given a conclusion, there is
a fixed degree to which the evidence supports the conclusion. It was defended in
Keynes’ Treatise on Probability (Keynes, 1921) and more recently by E.T. Jaynes
(Jaynes, 2003; a slightly less objective version in Williamson, 2010; introductions
in Franklin, 2001; Franklin, 2009, ch. 10). It says, for example, that if we could
establish just what the legal standard of “proof beyond reasonable doubt” is, then, in
a given trial, it is an objective matter of logical fact whether the evidence presented
does or does not meet that standard, and so a jury is either right or wrong in its
verdict on the evidence.

It is not essential to the Bayesian perspective that the relation of evidence to con-
clusion should be given a precise number, nor that it be possible to compute the
logical relation between evidence and conclusion in typical cases. It is sufficient for
objective Bayesianism that it is sometimes intuitively evident that some hypotheses,
on some bodies of evidence, are highly likely, or almost certain, or virtually im-
possible (Franklin, 2011). Keynes certainly believed that it was not always possible
even in principle to compute an exact number expressing the relation between an
arbitrary body of evidence and a conclusion. Nevertheless, it is usual as an ideal-
ization to suppose that for any body of evidence e and any conclusion h, there is as
number P(h|e), between 0 and 1, expressing the degree to which e supports h; and
that that number satisfies the usual axioms of conditional probability:

P(not-h|e) = 1 − P(h|e)
P(h1 and h2|e) = P(h1|e) × P(h2|h1 and e)
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Pólya’s qualitative principles of evidence, such as the confirmation of hypotheses
by their non-trivial consequences, are then easy deductions from those axioms.

The logical nature of the relation makes it particularly suitable for application
to the necessary subject matter of pure mathematics. Conversely, its intuitive agree-
ment with actual evaluation of conjectures supports it as a possible meaningful inter-
pretation of probability (not necessarily the only valid one, as stochastic outcomes
or idealized degrees of belief or idealized relative frequencies may also turn out to
satisfy the same axioms.)

There is one point that needs to be made precise especially in applying the theory
of logical probability or non-deductive logic in mathematics. If evidence e entails
hypothesis h, then P(h|e) is 1. But in mathematics, the typical case is that e does
entail h, though that is perhaps as yet unknown. If, however, P(h|e) is really 1, how
is it possible in the meantime to discuss the (non-deductive) support that e may give
to h, that is, to treat P(h|e) as not equal to 1? In other words, if h and e are necessarily
true or false, how can P(h|e) be other than 0 or 1? How can there be probabilistic
relations between necessary truths?

The answer is that, in both deductive and non-deductive logic, there can be many
logical relations between two propositions. Some may be known and some not. To
take an artificially simple example in deductive logic, consider the argument

If all men are mortal, then this man is mortal
All men are mortal
Therefore, this man is mortal

The premises entail the conclusion, certainly, but there is more to it than that. They
entail the conclusion in two ways: firstly, by modus ponens, and secondly by instan-
tiation from the second premise alone. That is, there are two logical paths from the
premises to the conclusion.

More complicated and realistic cases are common in the mathematical literature.
Feit and Thompson’s proof that all finite simple groups have even order, occupying
255 pages, was simplified by Bender (1970). That means that Bender found a dif-
ferent and shorter logical route from the definition of “finite simple group” to the
proposition, “All finite simple groups have even order” than the one known to Feit
and Thompson.

Now just as there can be two deductive paths between premises and conclusion,
so there can be a deductive and non-deductive path, and it may be that only the latter
is known. Before the Greeks’ development of deductive geometry, it was possible
to argue

All equilateral (plane) triangles so far measured have been found to be equiangular
This triangle is equilateral
Therefore, this triangle is equiangular

There is a non-deductive logical relation between the premises and the conclu-
sion; the premises inductively support the conclusion. But when deductive geom-
etry appeared, it was found that there was also a deductive relation, since the second
premise alone entails the conclusion. This discovery in no way vitiates the correct-
ness of the previous non-deductive reasoning or casts doubt on the existence of the
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non-deductive relation. That relation cannot be affected by discoveries about any
other relation.

So the answer to the question, “How can there be probabilistic relations between
necessary truths?” is simply that those relations are additional to any deductive re-
lations (and may be known independently of them).

1.6 The problem of induction in mathematics

That non-deductive logic is used in mathematics is important first of all to mathe-
matics. But there is also some wider significance for philosophy, in relation to the
problem of induction, or inference from the observed to the unobserved.

It is common to discuss induction using only examples from the natural world,
such as, “All observed flames have been hot, so the next flame observed will be
hot” and “All observed ravens have been black, so all ravens are black”. That has
encouraged the view that the problem of induction should be solved in terms of
natural laws (or causes, or dispositions, or the regularity of nature, or some other
contingent principle) which provide a kind of “cement of the universe” to bind the
observed to the unobserved.

The difficulty for such a view is that it does not apply to mathematics, which
deals in necessary matter. Yet induction works just as well in mathematics as in
natural science.

Examples were given above in the second section in connection with the calcu-
lation of roots for the Riemann Hypothesis, but let us take a particularly straightfor-
ward case:

The first million digits of π are random
Therefore, the second million digits of π are random

(“Random” here means “without pattern”, “passes statistical tests for random-
ness”, not “probabilistically generated”, “stochastic”: Ruhkin, 2001; Franklin, 2009,
162–3.) The number π has the decimal expansion

3.14159265358979323846264338327950288419716939937 . . .

There is no apparent pattern in these numbers. The first million digits have long
been calculated (calculations have reached beyond one trillion). Inspection of these
digits reveals no pattern, and computer calculations can confirm this impression. It
can then be argued inductively that the second million digits will likewise exhibit
no pattern. This induction is a good one (indeed, everyone believes that the digits of
π continue to be random indefinitely, though there is no proof, Marsaglia, 2005).

It is true, as argued by Baker (2007), that there is a special problem with induc-
tive arguments in mathematics in that all the observed cases are of small numbers.
Any number that can be calculated with is very small, compared to numbers in gen-
eral. That bias in the evidence could raise a question as to whether any induction of

Page:15 job:franklin macro:svmult.cls date/time:28-Nov-2011/19:36



16 James Franklin

the form “All observed numbers have property X, therefore all numbers have prop-
erty X” could have high probability. That does not imply, however, that inductive
arguments in mathematics are generally poor. Firstly, a bias in the evidence towards
small numbers does not affect inductive arguments with more modest conclusions,
such as “All observed numbers have property X, so the next number calculated will
have property X.” (The argument above about the randomness of the digits of π only
extrapolated a finite distance, keeping to small numbers.) Secondly, many other in-
ductive arguments have a bias in the evidence, without thereby becoming worthless
(though they may become less secure). For example, extrapolative inductive infer-
ence like “All observed European swans are white, therefore all swans are white” is
a worthwhile inductive argument, although the extrapolation beyond the observed
range weakens it.

Now there seems to be no reason to distinguish the logic involved in such mathe-
matical arguments from that used in inductions about flames or ravens. But the digits
of π are the same in all possible worlds, whatever natural laws may hold in them or
fail to. Any reasoning about π is also rational or otherwise, regardless of any empir-
ical facts about natural laws. Therefore, induction can be rational independently of
whether there are natural laws (or any other such contingent principle).

This argument does not show that natural laws have no place in discussing induc-
tion. It may be that mathematical examples of induction are rational because there
are mathematical laws or regularities, and that the aim in natural science is to find
some substitute, such as natural laws, which will take the place of mathematical
laws in accounting for the continuance of regularity. But if this line of reasoning is
pursued, it is clear that simply making the supposition, “There are laws”, is of little
help in making inductive inferences. No doubt mathematics is completely lawlike,
but that does not help at all in deciding whether the digits of π continue to be ran-
dom. In the absence of any proofs, induction is needed to support the law (if it is a
law), “The digits of π are random”, rather than the law being able to give support
to the induction. Either “The digits of π are random” or “The digits of π are not
random” is a law, but in the absence of knowledge as to which, we are left only
with the confirmation that the evidence gives to the first of these hypotheses. Thus
consideration of a mathematical example reveals what can be lost sight of in the
search for laws: laws or no laws, non-deductive logic is needed to make inductive
inferences.

It is worth noting that there are also mathematical analogues of Goodmans “grue”
paradox. Let a number be called “prue” if its decimal expansion is random for the
first million digits and 6 thereafter. The predicate “prue” is like “grue” in not being
projectible. “π is random for the first million digits” is logically equivalent to “π

is prue for the first million digits”, but this proposition supports “π is random al-
ways”, not “π is prue”. Any solutions to the “grue” paradox must allow projectible
or “natural” properties to be found not only in nature but also in mathematics.

These examples illustrate Pólya’s remark that non-deductive logic is better appre-
ciated in mathematics than in the natural sciences (Pólya, 1954, II, 24). In mathe-
matics there can be no confusion over natural laws, the regularity of nature, approx-
imations, propensities, the theory-ladenness of observation, pragmatics, scientific
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revolutions, the social relations of science or any other red herrings. There are only
the hypothesis, the evidence and the logical relations between them.
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Pólya, G. (1954). Mathematics and Plausible Reasoning. Two Volumes. Princeton University
Press, Princeton, N.J.

Renyi, A. (1962). On the representation of an even number as the sum of a prime and an almost
prime. American Mathematical Society Translations, 2nd series, 19:299–321.

Riemann, B. (1859 [1974]). On the number of primes less than a given magnitude. In Edwards,
H., editor, Riemann’s Zeta Function, pages 299–305. Academic Press, New York, NY.

Ruhkin, A. (2001). Testing randomness: a suite of statistical procedures. Theory of Probability
and its Applications, 45:111–132.

Sabbagh, K. (2002). Dr Riemann’s Zeros. Atlantic Books, London.
Solomon, R. (2001). A brief history of the classification of the finite simple groups. Bulletin of the

American Mathematical Society, 38:315–352.
Tenenbaum, G. (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge

University Press, Cambridge.
Tits, J. (1971). Groupes finis simples sporadiques. In Séminaire Bourbaki, volume 180 of Springer
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