Notre Dame Journal of Formal Logic
Volume 33, Number 4, Fall 1992

Counting Functions

FRED JOHNSON

Abstract Counting functions are shown to be closed under composition.

The proof by Pelletier and Martin [1] of Post's Functional Completeness Theorem contains a very complex argument that shows in effect that counting functions are closed under composition. The purpose of this note is to give a simple proof of this result.

A function f^{n} is an n-ary truth function iff the domain of f^{n} consists of the set of n-tuples of truth values (t and f) and f^{n} assigns t or f to each member of the domain. Let R_{n} be an n-tuple of truth values. $O_{n, i}$, for $1 \leq i \leq n$, is an operator iff, for every $R_{n}, O_{n, i} R_{n}$ is an n-tuple of truth values that differs from R_{n} in and only in the i th place. A function f^{n} is counting iff f^{n} is an n-ary truth function and for every operator $O_{n, i}$ either $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq f^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n}. (Suppose $f^{2}=\{\langle\langle t\rangle, f\rangle,\langle\langle t f\rangle, t\rangle,\langle\langle f t\rangle, f\rangle$, $\langle\langle f\rangle, t\rangle\} \cdot f^{2}$ is counting since $f^{2}\left(R_{2}\right)=f^{2}\left(O_{2,1} R_{2}\right)$ for every R_{2} and $f^{2}\left(R_{2}\right) \neq$ $f^{2}\left(O_{2,2} R_{2}\right)$ for every R_{2}.)

Theorem 1 If function f^{n} is counting and $\left\langle O_{n, i_{1}}, \ldots, O_{n, i_{m}}\right\rangle$ is a sequence of operators then either $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i_{1}} \ldots O_{n, i_{m}} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq$ $f^{n}\left(O_{n, i_{1}} \ldots O_{n, i_{m}} R_{n}\right)$ for every R_{n}.

Proof: Assume the antecedent. We use induction on the length m of the sequence of operators. Basis step: $m=1$. Immediate. Induction step: $m>1$. By the induction hypothesis either $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i_{2}} \ldots O_{n, i_{m+1}} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq$ $f^{n}\left(O_{n, i_{2}} \ldots O_{n, i_{m+1}} R_{n}\right)$ for every R_{n}. So either $f^{n}\left(O_{n, i_{1}} R_{n}\right)=f^{n}\left(O_{n, i_{1}} O_{n, i_{2}} \ldots\right.$ $\left.O_{n, i_{m+1}} R_{n}\right)$ for every R_{n} or $f^{n}\left(O_{n, i_{1}} R_{n}\right) \neq f^{n}\left(O_{n, i_{1}} O_{n, i_{2}} \ldots O_{n, i_{m+1}} R_{n}\right)$ for every R_{n}. Since either $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i_{1}} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq f^{n}\left(O_{n, i_{1}} R_{n}\right)$ for every R_{n}, either $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i_{1}} \ldots O_{n, i_{m+1}} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq$ $f^{n}\left(O_{n, i_{1}} \ldots O_{n, i_{m+1}} R_{n}\right)$ for every R_{n}.

Theorem 2 If functions $g^{m}, h_{1}^{n}, \ldots h_{m}^{n}$ are counting and $f^{n}=g^{m}\left(h_{1}^{n}, \ldots h_{m}^{n}\right)$ then f^{n} is counting.

Proof: Assume the antecedent. Then f^{n} is an n-ary truth function. Suppose $O_{n, i}$ is an operator. Let $y \in X$ iff $h_{y}^{n}\left(R_{n}\right) \neq h_{y}^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n}. If X is empty then $g^{m}\left(h_{1}^{n}\left(R_{n}\right), \ldots h_{m}^{n}\left(R_{n}\right)\right)=g^{m}\left(h_{1}^{n}\left(O_{n, i} R_{n}\right), \ldots h_{m}^{n}\left(O_{n, i} R_{n}\right)\right)$ for every R_{n}. So $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n}. So f^{n} is counting. If X is nonempty then $X=\left\{k_{1}, \ldots k_{r}\right\}$ (for $\left.r \leq m\right)$. Then $g^{m}\left(O_{m, k_{1}} \ldots O_{m, k_{r}}\left(h_{1}^{n}\left(R_{n}\right), \ldots\right.\right.$ $\left.h_{m}^{n}\left(R_{n}\right)\right)=g^{m}\left(h_{1}^{n}\left(O_{n, i} R_{n}\right), \ldots h_{m}^{n}\left(O_{n, i} R_{n}\right)\right)$ for every R_{n}. By Theorem 1, $g^{m}\left(h_{1}^{n}\left(R_{n}\right), \ldots h_{m}^{n}\left(R_{n}\right)\right)=g^{m}\left(O_{m, k_{1}} \ldots O_{m, k_{r}}\left(h_{1}^{n}\left(R_{n}\right), \ldots h_{m}^{n}\left(R_{n}\right)\right)\right)$ for every R_{n} or $g^{m}\left(h_{1}^{n}\left(R_{n}\right), \ldots h_{m}^{n}\left(R_{n}\right)\right) \neq g^{m}\left(O_{m, k_{1}} \ldots O_{m, k_{r}}\left(h_{1}^{n}\left(R_{n}\right), \ldots h_{m}^{n}\left(R_{n}\right)\right)\right)$ for every R_{n}. So $f^{n}\left(R_{n}\right)=f^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n} or $f^{n}\left(R_{n}\right) \neq f^{n}\left(O_{n, i} R_{n}\right)$ for every R_{n}. So f^{n} is counting.

Acknowledgment I am grateful to an anonymous referee for refinements of the argument.

REFERENCE

[1] Pelletier, F. and N. Martin, "Post's Functional Completeness Theorem," Notre Dame Journal of Formal Logic, vol. 31 (1990), pp. 462-475.

Department of Philosophy
Colorado State University
Fort Collins, Colorado

