COPI'S METHOD OF DEDUCTION

FREDERICK A. JOHNSON

In [1] Bradley pointed out that it was superfluous for Copi to refer to the completeness and analyticity of RS to show that the method of deduction set forth in Chapter 3 of Symbolic Logic, 3rd ed. [3], is complete. Since in the 4th edition [4] Copi continues to make his proof of completeness depend upon the completeness and analyticity of RS, it seems worthwhile to give a proof which clearly stands on its own. To do this, it is necessary to formalize Copi's method of deduction. We will call the formalization CMD.* We will let the capital letters, with or without subscripts, from the earlier part of the alphabet be the simple well-formed formulas in CMD and the capital letters, with or without subscripts, from the later part of the alphabet be variables in our meta-language which range over the well-formed formulas of CMD. The well-formed formulas of CMD are defined inductively in the classical way. Well-formed arguments have the form $x \rightarrow Q$, where x is the empty symbol or a well-formed formula of CMD. The intended reading of ' $P \rightarrow Q$ ' is Q follows from P; the intended reading of ' $x \rightarrow Q$ ', where x is the empty symbol, is Q follows from the empty premise, or Q follows from any premise. It will become evident that all of the theorems (and axioms) of CMD are well-formed arguments. The axiom schema for CMD areas follows, where ' $\vdash P \leftrightarrow Q$ ' abbreviates $\bullet \vdash P \rightarrow Q$ and $\vdash Q \rightarrow P$ ':

Ax1.	$\vdash(P \supset Q) \cdot P \rightarrow Q$	(M.P.)
Ax2.	$\vdash(P \supset Q) \cdot \sim Q \rightarrow \sim P$	(M.T.)
Ax3.	$\vdash(P \supset Q) \cdot(Q \supset R) \rightarrow P \supset R$	(H.S.)
Ax4.	$\vdash(P \vee Q) \cdot \sim P \rightarrow Q$	(D.S.)
Ax5.	$\vdash((P \supset Q) \cdot(R \supset S)) \cdot(P \vee R) \rightarrow Q \vee S$	(C.D.)
Ax6.	$\vdash((P \supset Q) \cdot(R \supset S)) \cdot(\sim Q \vee \sim S) \rightarrow \sim P \vee \sim R$	(D.D.)
Ax7.	$\vdash P \cdot Q \rightarrow P$	(Simp.)
Ax8.	$\vdash P \cdot Q \rightarrow P \cdot Q$	(Conj.)
Ax9.	$\vdash P \rightarrow P \vee Q$	(Add.)

[^0]```
Ax10. \(\vdash \sim(P \cdot Q) \leftrightarrow \sim P \vee \sim Q\)
 \(\vdash \sim(P \vee Q) \leftrightarrow \sim P \cdot \sim Q\)
Ax11. \(\vdash P \vee Q \leftrightarrow Q \vee P\)
 (Com.)
 \(\vdash P \cdot Q \leftrightarrow Q \cdot P\)
Ax 12. \(\vdash P \vee(Q \vee R) \leftrightarrow(P \vee Q) \vee R\)
 \(\vdash P \cdot(Q \cdot R) \leftrightarrow(P \cdot Q) \cdot R\)
Ax13. \(\vdash P \cdot(Q \vee R) \leftrightarrow(P \cdot Q) \vee(P \cdot R) \quad\) (Dist.)
 \(\vdash P \vee(Q \cdot R) \leftrightarrow(P \vee Q) \cdot(P \vee R)\)
Ax14. \(\vdash P \leftrightarrow \sim \sim P\)
 (D.N.)
Ax15. \(\vdash P \supset Q \leftrightarrow \sim Q \supset \sim P\)
(Trans.)
Ax16. \(\vdash P \supset Q \leftrightarrow \sim P \vee Q\)
(Impl.)
Ax17. \(\vdash P \equiv Q \leftrightarrow(P \supset Q) \cdot(Q \supset P)\)
(Equiv.)
 \(\vdash P \equiv Q \leftrightarrow(P \cdot Q) \vee(\sim P \cdot \sim Q)\)
Ax18. \(\vdash(P \cdot Q) \supset R \leftrightarrow P \supset(Q \supset R)\)
 (Exp.)
(Taut.)
Ax19. \(\vdash P \leftrightarrow P \vee P\)
\(\vdash P \leftrightarrow P \cdot P\)
```

The rules of inference for CMD are:
R1. (The Rule of Replacement) If $f(Q)$ is formed by replacing one occurrence of $P$ in $f(P)$ by $Q$, then
(i) if $\vdash P \leftrightarrow Q$ and $\vdash f(P) \rightarrow R$ then $\vdash f(Q) \rightarrow R$,
(ii) if $\vdash P \leftrightarrow Q$ and $\vdash R \rightarrow f(P)$ then $\vdash R \rightarrow f(Q)$,
and
(iii) if $\vdash P \leftrightarrow Q$ and $\vdash \rightarrow f(P)$ then $\vdash \longrightarrow f(Q)$.

R2. (Transitivity of $\rightarrow$ ) (i) If $\vdash P_{1} \ldots P_{m} \rightarrow Q_{1}$ and $\vdash R \rightarrow S$, where $R$ is any permutation of $Q_{1} \ldots Q_{n}$, then $\vdash T \rightarrow S$, where $T$ is any permutation of $P_{1} \ldots P_{m} Q_{2} \ldots Q_{n}$.
(ii) If $\vdash \rightarrow Q_{1}$ and $\vdash R \rightarrow S$, where $R$ is any permutation of $Q_{1} \ldots Q_{n}$, then $\vdash T \rightarrow S$, where $T$ is any permutation of $Q_{2} \ldots Q_{n}$.
R3. (Conditional Proof) If $\vdash P_{1} \ldots P_{m} \rightarrow Q$ then $\vdash R \rightarrow P_{i} \supset Q$, where $R$ is any permutation of $P_{1} \ldots P_{i-1} \cdot P_{i+1} \ldots P_{m}$.

R4. (Indirect Proof) If $\vdash P_{1} \ldots P_{m} \rightarrow Q \cdot \sim Q$ then $\vdash R \rightarrow S$, where $R$ is any permutation of $P_{1} \ldots P_{i-1} P_{i+1} \ldots P_{m}$ and $\vdash S \leftrightarrow \sim P_{i}$.

R5. (Adjunction) (i) If $\vdash P \rightarrow Q$ and $\vdash P \rightarrow R$ then $\vdash P \rightarrow Q \cdot R$.
(ii) If $\vdash \longrightarrow Q$ and $\vdash \longrightarrow R$ then $\vdash \longrightarrow Q \cdot R$.

R6. (Introduction of Superfluous Premises) (i) If $\vdash P_{1} \ldots P_{m} \rightarrow Q$ then $\vdash R \rightarrow Q$, where $R$ is any permutation of $P_{1} \ldots P_{m+n}$.
(ii) If $\vdash \rightarrow Q$ then $\vdash P_{1} \ldots P_{m} \rightarrow Q$.

For evidence that CMD is actually a formalization of Copi's method of deduction we will indicate how proofs in CMD can be constructed $f$ Copi's proofs in Chapter 3. Consider the proof on p. 61 in [4] argument with premise $(A \vee B) \supset((C \vee D) \supset E)$ and conclusion $\left.A^{-} \quad \hookleftarrow\right)$. Copi's proof:

| 1. $(A \vee B) \supset((C \vee D) \supset E)$ |  |
| :---: | :---: |
| $\rightarrow 2 . A$ |  |
| 3. $A \vee B$ | 2, Add. |
| 4. $(C \vee D) \supset E$ | 1, 3, M.P. |
| $\rightarrow 5 . C \cdot D$ |  |
| 6. $C$ | 5, Simp. |
| 7. $C \vee D$ | 6, Add. |
| 8. $E$ | 4, 7, M.P. |
| 9. $(C \cdot D) \supset E$ | 5-8, С.P. |
| 10. $A \supset((C \cdot D) \supset E)$ | 2-9, С. P. |

## Proof in CMD:

1. $\vdash A \rightarrow A \vee B$

Ax9. (Add.)
2. $\vdash((A \vee B) \supset((C \vee D) \supset E)) \cdot(A \vee B) \rightarrow(C \vee D) \supset E$

Ax1. (M.P.)
3. $\vdash A \cdot((A \vee B) \supset((C \vee D) \supset E)) \rightarrow(C \vee D) \supset E$

1, 2, R2
4. $\vdash C \cdot D \rightarrow C$

Ax7. (Simp.)
5. $\vdash C \rightarrow C \vee D$
6. $\vdash((C \vee D) \supset E) \cdot(C \vee D) \rightarrow E$

Ax8. (Add.)
7. $\vdash C \cdot D \rightarrow C \vee D$
8. $\vdash(C \cdot D) \cdot((C \vee D) \supset E) \rightarrow E$

Ax1. (M.P.)
4, 5, R2
9. $\vdash(C \cdot D) \cdot A \cdot((A \vee B) \supset((C \vee D) \supset E)) \rightarrow E$

6, 7, R2
10. $\vdash A \cdot((A \vee B) \supset((C \vee D) \supset E) \rightarrow(C \cdot D) \supset E$

3, 8, R2
11. $\vdash((A \vee B) \supset((C \vee D) \supset E) \rightarrow A \supset((C \cdot D) \supset E)$

9, R3. (C.P.)

Consider also his proof on page 54 of [4] for an argument with conclusion $E$ and premises $A \supset(B \cdot C),(B \vee D) \supset E$ and $D \vee A$. Copi's proof:

1. $A \supset(B \cdot C)$
2. $(B \vee D) \supset E$
3. $D \vee A$
4. $\sim E$
I.P. (Indirect Proof)
5. $\sim(B \vee D)$

2, 4, M.T.
6. $\sim B \cdot \sim D$

5, DeM.
7. $\sim D \cdot \sim B$

6, Com.
7, Simp.
8. $\sim D$
9. $A$
10. $B \cdot C$

3, 8, D.S.
1, 9, M.P.
11. $B$
12. $\sim B$

10, Simp.
6, Simp.
13. $B \cdot \sim B$

11, 12, Conj.
Proof in CMD:

1. $\vdash((B \vee D) \supset E) \cdot \sim E \rightarrow \sim(B \vee D)$

Ax2. (M.T.)
2. $\vdash \sim(B \vee D) \rightarrow \sim B \cdot \sim D$
3. $\vdash((B \vee D) \supset E) \cdot \sim E \rightarrow \sim B \cdot \sim D$
4. $\vdash \sim B \cdot \sim D \leftrightarrow \sim D \cdot \sim B$

Ax10. (DeM.)
1, 2, R1
5. $\vdash((B \vee D) \supset E) \cdot \sim E \rightarrow \sim D \cdot \sim B$

Ax11. (Com.)
3, 4, R2
6. $\vdash \sim D \cdot \sim B \rightarrow \sim D$

Ax7. (Simp.)

| 7. $\vdash((B \vee D) \supset E) \cdot \sim E \rightarrow \sim D$ | 5, 6, R2 |
| :---: | :---: |
| 8. $\vdash(D \vee A) \cdot \sim D \rightarrow A$ | Ax4. (D.S.) |
| 9. $\vdash((B \vee D) \supset E) \cdot \sim E \cdot(D \vee A) \rightarrow A$ | 7, 8, R2 |
| 10. $\vdash(A \supset(B \cdot C)) \cdot A \rightarrow B \cdot C$ | Ax1. (M.P.) |
| 11. $\vdash((B \vee D) \supset E) \cdot \sim E \cdot(D \vee A) \cdot(A \supset(B \cdot C)) \rightarrow B \cdot C$ | 9, 10, R2 |
| 12. $\vdash B \cdot C \rightarrow B$ | Ax7. (Simp.) |
| 13. $\vdash((B \vee D) \supset E) \cdot \sim E \cdot(D \vee A) \cdot(A \supset(B \cdot C)) \rightarrow B$ | 11, 12, R2 |
| 14. $\vdash \sim B \cdot \sim D \rightarrow \sim B$ | Ax7. (Simp.) |
| 15. $\vdash((B \vee D) \supset E) \cdot \sim E \rightarrow \sim B$ | 3, 14, R2 |
| 16. $\vdash((B \vee D) \supset E) \cdot \sim E \cdot(D \vee A) \cdot(A \supset(B \cdot C)) \rightarrow \sim B$ | 15, R6 |
| 17. $\vdash((B \vee D) \supset E) \cdot \sim E \cdot(D \vee A) \cdot(A \supset(B \cdot C)) \rightarrow B \cdot \sim B$ | 13, 16, R5 |
| 18. $\vdash((B \vee D) \supset E) \cdot(D \vee A) \cdot(A \supset(B \cdot C)) \rightarrow E$ | 17, R4 (I.P.) |

Let ' $\vDash P \rightarrow Q$ ' say that $P \supset Q$ is a truth-table tautology; let ' $\vDash \rightarrow Q$ ' say that $Q$ is a truth-table tautology. To show the completeness of CMD we need to show that (i) if $\vDash P \rightarrow Q$ then $\vdash P \rightarrow Q$ and (ii) if $\vDash \rightarrow Q$ then $\vdash \rightarrow Q$. By extrapolating from Canty [2], we can sketch a proof of (i) as follows. (The changes in the proof of (i) required for the proof of (ii) will be put in parentheses.) Suppose $\vDash P \rightarrow Q$. (Suppose $\vDash \rightarrow Q$.)

1. $\vdash P \cdot \sim Q \leftrightarrow$ a disjunctive normal form of $P \cdot \sim Q$, call it $R$.
( $\vdash \sim Q \leftrightarrow$ a disjunctive normal form of $\sim Q$, call it $R$.)
2. $\vdash R \rightarrow A \cdot \sim A$.
3. $\vdash P \cdot \sim Q \rightarrow A \cdot \sim A$.
$(\vdash \sim Q \leftrightarrow A \cdot \sim A$, by 1,2 and R2.)
4. $\vdash P \rightarrow Q$
$(\vdash \rightarrow Q$, by 3 and R4.) 3, R4

Call this the DNF proof. By using conjunctive normal forms we can give an equally simple proof. Suppose $\vDash P \rightarrow Q$. (Suppose $\vDash \rightarrow Q$.)

1. $\quad \vdash P \supset Q \leftrightarrow$ a conjunctive normal form of $P \supset Q$, call it $S$, where the conjuncts of $S$ are $S_{1}, \ldots, S_{n}$.
$(\vdash Q \leftrightarrow \mathrm{a}$ conjunctive normal form of $Q$, call it $S$, where the conjuncts of $S$ are $S_{1}, \ldots, S_{n}$.)
2. $\quad \vdash \rightarrow S_{1}$.
3. $\vdash \rightarrow S_{2}$.
$n+1 . \vdash \rightarrow S_{n}$.
$n+2 . \vdash \rightarrow S_{1} \cdot S_{2} . \quad 2,3$, R5
$2 n . \quad \vdash \rightarrow S_{1} \ldots S_{n}$.
$2 n-1, n+1, \mathrm{R} 5$
$2 n+1 . \vdash \rightarrow P \supset Q$. $1,2 n, \mathrm{R} 1$
$(\vdash \rightarrow Q$, by $1,2 n$ and R1.)
$2 n+2 . \vdash P \rightarrow Q$.
Ax1., $2 n+1, \mathrm{R} 2$
Call this the CNF proof. To complete the justifications for the steps in the

DNF and CNF proofs we need to show that CMD is analytic (if $\vdash P \rightarrow Q$ then $\vDash P \rightarrow Q$ and if $\vdash \rightarrow Q$ then $\vDash \rightarrow Q$ ). By using truth tables we can show that $\vDash P \rightarrow Q$, where $\vdash P \rightarrow Q$ is an axiom. So CMD is analytic if R1-R5 do not introduce theorems which are not semantically valid.

R1. By using induction on the number of occurrences of connectives in $f(P)$ other than those in that occurrence of $P$ which is replaced by $Q$ to form $f(Q)$, we can show that if $\vDash P \leftrightarrow Q$ then $\vDash f(P) \leftrightarrow f(Q)$. Now if $\vDash f(P) \leftrightarrow$ $f(Q)$ and $\vDash f(P) \rightarrow R$ then $\vDash f(Q) \rightarrow R$. So, if $\vDash P \leftrightarrow Q$ and $\vDash f(P) \rightarrow R$ then $\vDash f(Q) \rightarrow R$. We can treat the other parts of R1 in the same way.

R2. (i) Suppose $\vDash P_{1} \ldots P_{m} \rightarrow Q_{1}$ and $\vDash R \rightarrow S$, where $R$ is any permutation of $Q_{1} \ldots Q_{n}$. Suppose not $\vDash T \rightarrow S$, where $T$ is any permutation of $P_{1} \ldots P_{m} \cdot Q_{2} \ldots Q_{n}$. Then there are circumstances, C , in which $P_{1}-P_{m}$ are true, $Q_{2}-Q_{n}$ are true and $S$ false. So $Q_{1}$ is false in $C$ since $\vDash R \rightarrow S$. Since $\vDash P_{1} \ldots P_{m} \rightarrow Q_{1}, Q_{1}$ is also true in C. So $\vDash T \rightarrow S$.
(ii) Same argument as for (i).

The proofs for R3-R6 are no more complicated than the proof for R2 and will be omitted.

We will now use the analyticity of CMD to prove step 2 in the DNF proof if we are given step 1. From step 1 it follows that $\vdash R \rightarrow P \cdot \sim Q$. By the analyticity of CMD it follows that $\vDash R \rightarrow P \cdot \sim Q$. Since $\vDash P \rightarrow Q, P \cdot \sim Q$ is a contradiction. But then $R$ is a contradiction since $R \supset P \cdot \sim Q$ is a tautology. So in each disjunct of $R$ there are at least two conjuncts, one a propositional constant and another its negation. Suppose that $B$ and $\sim B$ occur in one of the disjuncts. By using Ax11, Ax12, $\vdash P \vee(Q \cdot \sim Q) \cdot R \rightarrow P$ (see Canty [2]), Ax7, R1 and R2, we can show that $\vdash R \rightarrow B \cdot \sim B$. But $\vdash B \cdot \sim B \rightarrow A \cdot \sim A$. So $\vdash R \rightarrow A \cdot \sim A$.

To prove step 2 in the CNF proof, given step 1, first note that from step $1 \vdash P \supset Q \rightarrow S$. By the analyticity of CMD $\vDash P \supset Q \rightarrow S$. Since $\vDash P \rightarrow Q$, $S$ is a tautology. But then each conjunct in $S$ must be a tautology. So in $S_{1}$ there must be at least two disjuncts, one a propositional constant, say $A$, and the other its negation, $\sim A$. Let $T$ be the disjunction of the other disjuncts, if any, in $S_{1}$. By Ax14 and $\mathrm{R} 2 \vdash A \rightarrow A$. By R3 $\vdash A \supset A$. By Ax16 and R1 $\rightarrow \sim A \vee A$. By Ax8 $\vdash \sim A \vee A \rightarrow(\sim A \vee A) \vee T$. By R2 $\vdash \rightarrow(\sim A \vee$ $A) \vee T$. Then by Ax11, Ax12 and R1, $\vdash \rightarrow S_{1}$. We can give the same proof for steps $3-n+1$.

To prove step 1 in each of the above proofs, first note that by Ax16, Ax17 and R1, $\vdash P \leftrightarrow P^{\prime}$, where $P^{\prime}$ contains no occurrences of the connectives, $\supset$ and $\equiv$. Now let $n(P)=$ the number of occurrences of connectives which are in the scope of a negation sign in $P$. By using induction on $n\left(P^{\prime}\right)$ we can show that $\vdash P^{\prime} \leftrightarrow P^{\prime \prime}$, where $n\left(P^{\prime \prime}\right)=0$.

Suppose $n\left(P^{\prime}\right)=0$. If $P^{\prime}=P^{\prime \prime}$ then $\vdash P^{\prime} \leftrightarrow P^{\prime \prime}$, where $n\left(P^{\prime \prime}\right)=0$. The induction hypothesis is that if $n\left(P^{\prime}\right)=j$, for $j<k$, then $\vdash P^{\prime} \leftrightarrow P^{\prime \prime}$, where $n\left(P^{\prime \prime}\right)=0$. Suppose $n\left(P^{\prime}\right)=k$, for $k>0$. Let $S$ be the smallest well-formed formula contained in $P^{\prime}$ such that $n(S)=k$. So $P^{\prime}=S, P^{\prime}=S \vee T, P^{\prime}=T \vee S$, $P^{\prime}=S \cdot T$ or $P^{\prime}=T \cdot S$, where $n(T)=0$. If we can show that $\vdash S \leftrightarrow S^{\prime}$, where
$n\left(S^{\prime}\right)=0$, then it is obvious that $\vdash P^{\prime} \leftrightarrow P^{\prime \prime}$, where $n\left(P^{\prime \prime}\right)=0$. There are three cases to consider: (a) $S=\sim S_{1}$. Subcase (i): $S_{1}=\sim S_{2}$. Since $n\left(S_{2}\right)<$ $n(S)$, by the induction hypothesis $\vdash S_{2} \leftrightarrow S_{3}$, where $n\left(S_{3}\right)=0$. So $\vdash S \leftrightarrow S_{3}$, where $n\left(S_{3}\right)=0$. Subcase (ii): $S_{1}=S_{2} \vee S_{3}$. By Ax14, R2, Ax9 and R1 $\vdash S \leftrightarrow \sim S_{2} \cdot \sim S_{3}$. Since $n\left(\sim S_{2}\right)<n(S)$ and $n\left(\sim S_{3}\right)<n(S)$, by the induction hypothesis $\vdash \sim S_{2} \leftrightarrow S_{4}$ and $\vdash \sim S_{3} \leftrightarrow S_{5}$, where $n\left(S_{4}\right)=0$ and $n\left(S_{5}\right)=0$. By R1 $\vdash S \leftrightarrow S_{4} \cdot S_{5}$, where $n\left(S_{4} \cdot S_{5}\right)=0$. Subcase (iii): $S_{1}=S_{2} \cdot S_{3}$. Use the same argument as for subcase (ii).
(b) $S=S_{1} \vee S_{2}$. Since $n\left(S_{1}\right)<n(S)$ and $n\left(S_{2}\right)<n(S)$, by the induction hypothesis $\vdash S_{1} \leftrightarrow S_{3}$ and $\vdash S_{2} \leftrightarrow S_{4}$, where $n\left(S_{3}\right)$ and $n\left(S_{4}\right)=0$. By Ax14, R2 and R1 $\vdash S \leftrightarrow S_{3} \vee S_{4}$, where $n\left(S_{3} \vee S_{4}\right)=0$.
(c) $S=S_{1} \cdot S_{2}$. Same argument as for (b).

If $P^{\prime \prime}$ is not in disjunctive normal form, then there is a constituent well-formed formula, $T$, of $P^{\prime \prime}$ such that $T=\left(R_{1} \vee \ldots \vee R_{m}\right) \cdot\left(S_{1} \vee \ldots \vee S_{n}\right)$ where $m>1$ or $n>1$. Call such formulas as $T$ disrupting formulas. By Ax14, Ax11, Ax13, R1 and R2 $\vdash T \leftrightarrow U$, where $U$ contains no disrupting formulas. So by $\mathrm{R} 1 \vdash P^{\prime \prime} \leftrightarrow R$, where $R$ is in disjunctive normal form. Since we have shown that $\vdash P \leftrightarrow P^{\prime}$ and $\vdash P^{\prime} \leftrightarrow P^{\prime \prime}$, it follows by R2 that $\vdash P \leftrightarrow R$. If $P^{\prime \prime}$ is not in conjunctive normal form, then the disrupting formulas are of the form $\left(R_{1} \ldots R_{m}\right) \vee\left(S_{1} \ldots S_{n}\right)$, where $m>1$ or $n>1$. By using Ax14, Ax11, Ax13, R1 and R2 we can remove all such disrupting formulas. So $\vdash P^{\prime \prime} \leftrightarrow S$, where $S$ is in conjunctive normal form, and $\vdash P \leftrightarrow S$.

## REFERENCES

[1] Bradley, M. C., "Copi’s method of deduction again," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 454-458.
[2] Canty, J. T., "Completeness of Copi's method of deduction," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 142-144.
[3] Copy, I. M., Symbolic Logic, 3rd Ed., The MacMillan Company, New York (1967).
[4] Copi, I. M., Symbolic Logic, 4th Ed., The MacMillan Company, New York (1973).

Colorado State University
Fort Collins, Colorado


[^0]:    *I am indebted to T. J. Smiley for his comments on an earlier version of this paper.

