Notre Dame Journal of Formal Logic Volume XX, Number 2, April 1979 NDJFAM

COPI'S METHOD OF DEDUCTION

FREDERICK A. JOHNSON

In [1] Bradley pointed out that it was superfluous for Copi to refer to the completeness and analyticity of **RS** to show that the method of deduction set forth in Chapter 3 of Symbolic Logic, 3rd ed. [3], is complete. Since in the 4th edition [4] Copi continues to make his proof of completeness depend upon the completeness and analyticity of RS, it seems worthwhile to give a proof which clearly stands on its own. To do this, it is necessary to formalize Copi's method of deduction. We will call the formalization **CMD**.* We will let the capital letters, with or without subscripts, from the earlier part of the alphabet be the simple well-formed formulas in CMD and the capital letters, with or without subscripts, from the later part of the alphabet be variables in our meta-language which range over the well-formed formulas of CMD. The well-formed formulas of CMD are defined inductively in the classical way. Well-formed arguments have the form $x \to Q$, where x is the empty symbol or a well-formed formula of **CMD**. The intended reading of $P \rightarrow Q'$ is Q follows from P; the intended reading of ' $x \rightarrow Q$ ', where x is the empty symbol, is Q follows from the empty premise, or Q follows from any premise. It will become evident that all of the theorems (and axioms) of CMD are well-formed arguments. The axiom schema for CMD areas follows, where $(\vdash P \leftrightarrow Q)$ abbreviates $'\vdash P \rightarrow Q \text{ and } \vdash Q \rightarrow P'$:

Ax1.	$\vdash (P \supset Q) \cdot P \rightarrow Q$	(M.P.)
Ax2.	$\vdash (P \supset Q) \cdot \thicksim Q \rightarrow \thicksim P$	(M.T.)
Ax3.	$\vdash (P \supset Q) \cdot (Q \supset R) \rightarrow P \supset R$	(H.S.)
Ax4.	$\vdash (P \lor Q) \cdot \thicksim P \to Q$	(D.S.)
Ax5.	$\vdash ((P \supset Q) \cdot (R \supset S)) \cdot (P \lor R) \rightarrow Q \lor S$	(C.D.)
Ax6.	$\vdash ((P \supset Q) \cdot (R \supset S)) \cdot (\sim Q \lor \sim S) \rightarrow \sim P \lor \sim R$	(D.D.)
Ax7.	$\vdash P \cdot Q \rightarrow P$	(Simp.)
Ax8.	$\vdash P \cdot Q \rightarrow P \cdot Q$	(Conj.)
Ax9.	$\vdash P \rightarrow P \lor Q$	(Add.)

^{*}I am indebted to T. J. Smiley for his comments on an earlier version of this paper.

Ax10.	$\vdash \sim (P \cdot Q) \longleftrightarrow \sim P \lor \sim Q$	(DeM.)
	$\vdash \sim (P \lor Q) \longleftrightarrow \sim P \cdot \sim Q$	
Ax11.	$\vdash P \lor Q \longleftrightarrow Q \lor P$	(Com.)
	$\vdash P \cdot Q \longleftrightarrow Q \cdot P$	
Ax12.	$\vdash P \lor (Q \lor R) \longleftrightarrow (P \lor Q) \lor R$	(Assoc.)
	$\vdash P \cdot (Q \cdot R) \longleftrightarrow (P \cdot Q) \cdot R$	
Ax13.	$\vdash P \cdot (Q \lor R) \longleftrightarrow (P \cdot Q) \lor (P \cdot R)$	(Dist.)
	$\vdash P \lor (Q \cdot R) \longleftrightarrow (P \lor Q) \cdot (P \lor R)$	
Ax14.	$\vdash P \leftrightarrow \sim \sim P$	(D.N.)
Ax15.	$\vdash P \supset Q \longleftrightarrow \sim Q \supset \sim P$	(Trans.)
Ax16.	$\vdash P \supset Q \longleftrightarrow \sim P \lor Q$	(Impl.)
Ax17.	$\vdash P \equiv Q \longleftrightarrow (P \supset Q) \cdot (Q \supset P)$	(Equiv.)
	$\vdash P \equiv Q \longleftrightarrow (P \cdot Q) \lor (\sim P \cdot \sim Q)$	
Ax18.	$\vdash (P \cdot Q) \supset R \Longleftrightarrow P \supset (Q \supset R)$	(Exp.)
Ax19.	$\vdash P \leftrightarrow P \lor P$	(Taut.)
	$\vdash P \leftrightarrow P \cdot P$	

The rules of inference for CMD are:

R1. (The Rule of Replacement) If f(Q) is formed by replacing one occurrence of P in f(P) by Q, then

(i) if $\vdash P \leftrightarrow Q$ and $\vdash f(P) \rightarrow R$ then $\vdash f(Q) \rightarrow R$,

(ii) if $\vdash P \leftrightarrow Q$ and $\vdash R \to f(P)$ then $\vdash R \to f(Q)$,

and

(iii) if $\vdash P \leftrightarrow Q$ and $\vdash \rightarrow f(P)$ then $\vdash \rightarrow f(Q)$.

R2. (Transitivity of \rightarrow) (i) If $\vdash P_1 \ldots P_m \rightarrow Q_1$ and $\vdash R \rightarrow S$, where R is any permutation of $Q_1 \ldots Q_n$, then $\vdash T \rightarrow S$, where T is any permutation of $P_1 \ldots P_m Q_2 \ldots Q_n$.

(ii) If $\vdash \rightarrow Q_1$ and $\vdash R \rightarrow S$, where R is any permutation of $Q_1 \ldots Q_n$, then $\vdash T \rightarrow S$, where T is any permutation of $Q_2 \ldots Q_n$.

R3. (Conditional Proof) If $\vdash P_1 \ldots P_m \rightarrow Q$ then $\vdash R \rightarrow P_i \supset Q$, where R is any permutation of $P_1 \ldots P_{i-1} \cdot P_{i+1} \ldots P_m$.

R4. (Indirect Proof) If $\vdash P_1 \ldots P_m \rightarrow Q \cdot \sim Q$ then $\vdash R \rightarrow S$, where R is any permutation of $P_1 \ldots P_{i-1} P_{i+1} \ldots P_m$ and $\vdash S \leftrightarrow \sim P_i$.

R5. (Adjunction) (i) If $\vdash P \rightarrow Q$ and $\vdash P \rightarrow R$ then $\vdash P \rightarrow Q \cdot R$.

(ii) If $\vdash \rightarrow Q$ and $\vdash \rightarrow R$ then $\vdash \rightarrow Q \cdot R$.

R6. (Introduction of Superfluous Premises) (i) If $\vdash P_1 \ldots P_m \to Q$ then $\vdash R \to Q$, where R is any permutation of $P_1 \ldots P_{m+n}$. (ii) If $\vdash \to Q$ then $\vdash P_1 \ldots P_m \to Q$.

For evidence that **CMD** is actually a formalization of Copi's method of deduction we will indicate how proofs in **CMD** can be constructed f. Copi's proofs in Chapter 3. Consider the proof on p. 61 in [4¹ argument with premise $(A \lor B) \supset ((C \lor D) \supset E)$ and conclusion $A \supset (\Box \lor D)$. Copi's proof:

296

1. $(A \lor B) \supset ((C \lor D) \supset E)$	
$\rightarrow 2. A$	
3. $A \lor B$	2, Add.
4. $(C \lor D) \supset E$	1, 3, M.P.
$\rightarrow 5. C \cdot D$	
6. C	5, Simp.
$7. C \lor D$	6, Add.
8. E	4, 7, M.P.
9. $(C \cdot D) \supset E$	5-8, C.P.
10. $A \supset ((C \cdot D) \supset E)$	2-9, C.P.

Proof in CMD:

1. $\vdash A \rightarrow A \lor B$	Ax9. (Add.)
2. $\vdash ((A \lor B) \supset ((C \lor D) \supset E)) \cdot (A \lor B) \rightarrow (C \lor D) \supset E$	Ax1. (M.P.)
3. $\vdash A \cdot ((A \lor B) \supset ((C \lor D) \supset E)) \rightarrow (C \lor D) \supset E$	1, 2, R2
4. $\vdash C \cdot D \rightarrow C$	Ax7. (Simp.)
5. $\vdash C \rightarrow C \lor D$	Ax8. (Add.)
6. $\vdash ((C \lor D) \supseteq E) \cdot (C \lor D) \rightarrow E$	Ax1. (M.P.)
7. $\vdash C \cdot D \rightarrow C \lor D$	4, 5, R2
8. $\vdash (C \cdot D) \cdot ((C \lor D) \supseteq E) \rightarrow E$	6, 7, R2
9. $\vdash (C \cdot D) \cdot A \cdot ((A \lor B) \supset ((C \lor D) \supset E)) \rightarrow E$	3, 8, R2
10. $\vdash A \cdot ((A \lor B) \supset ((C \lor D) \supset E) \rightarrow (C \cdot D) \supset E$	9, R3. (C.P.)
11. $\vdash ((A \lor B) \supset ((C \lor D) \supset E) \rightarrow A \supset ((C \cdot D) \supset E)$	10, R3. (C.P.)

Consider also his proof on page 54 of [4] for an argument with conclusion E and premises $A \supset (B \cdot C)$, $(B \vee D) \supset E$ and $D \vee A$. Copi's proof:

2. 3. 4.	$A \supset (B \cdot C)$ $(B \lor D) \supset E$ $D \lor A$ $\sim E$ $\sim (B \lor D)$	I.P. (Indirect Proof) 2, 4, M.T.
	$\sim B \cdot \sim D$	5, DeM.
7.	$\sim D \cdot \sim B$	6, Com.
8.	$\sim D$	7, Simp.
9.	A	3, 8, D.S.
10.	$B \cdot C$	1, 9, M.P.
11.	В	10, Simp.
12.	$\sim B$	6, Simp.
13.	$B \cdot \sim B$	11, 12, Conj.
Pro	of in CMD:	
1.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \rightarrow \thicksim (B \lor D)$	Ax2. (M.T.)
2.	$\vdash \thicksim (B \lor D) \to \thicksim B \cdot \thicksim D$	Ax10. (DeM.)
3.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \rightarrow \thicksim B \cdot \backsim D$	1, 2, R1
4.	$\vdash \sim B \cdot \sim D \longleftrightarrow \sim D \cdot \sim B$	Ax11. (Com.)
5.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \rightarrow \thicksim D \cdot \thicksim B$	3, 4, R2
6.	$\vdash \thicksim D \cdot \thicksim B \rightarrow \thicksim D$	Ax7. (Simp.)

7.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \rightarrow \thicksim D$	5, 6, R2
8.	$\vdash (D \lor A) \cdot \thicksim D \to A$	Ax4. (D.S.)
9.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \cdot (D \lor A) \to A$	7, 8, R2
10.	$\vdash (A \supset (B \cdot C)) \cdot A \rightarrow B \cdot C$	Ax1. (M.P.)
11.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \cdot (D \lor A) \cdot (A \supset (B \cdot C)) \rightarrow B \cdot C$	9, 10, R2
12.	$\vdash B \cdot C \to B$	Ax7. (Simp.)
13.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \cdot (D \lor A) \cdot (A \supset (B \cdot C)) \rightarrow B$	11, 12, R2
14.	$\vdash \thicksim B \cdot \thicksim D \to \thicksim B$	Ax7. (Simp.)
15.	$\vdash ((B \lor D) \supset E) \cdot \thicksim E \rightarrow \thicksim B$	3, 14, R2
16.	$\vdash ((B \lor D) \supset E) \cdot \sim E \cdot (D \lor A) \cdot (A \supset (B \cdot C)) \rightarrow \sim B$	15, R6
17.	$\vdash ((B \lor D) \supset E) \cdot \sim E \cdot (D \lor A) \cdot (A \supset (B \cdot C)) \rightarrow B \cdot \sim B$	13, 16, R5
18.	$\vdash ((B \lor D) \supset E) \cdot (D \lor A) \cdot (A \supset (B \cdot C)) \to E$	17, R4 (I.P.)

Let ' $\models P \rightarrow Q$ ' say that $P \supset Q$ is a truth-table tautology; let ' $\models \rightarrow Q$ ' say that Q is a truth-table tautology. To show the completeness of **CMD** we need to show that (i) if $\models P \rightarrow Q$ then $\vdash P \rightarrow Q$ and (ii) if $\models \rightarrow Q$ then $\vdash \rightarrow Q$. By extrapolating from Canty [2], we can sketch a proof of (i) as follows. (The changes in the proof of (i) required for the proof of (ii) will be put in parentheses.) Suppose $\models P \rightarrow Q$. (Suppose $\models \rightarrow Q$.)

$$(\vdash \rightarrow Q, by 3 and R4.)$$

Call this the DNF proof. By using conjunctive normal forms we can give an equally simple proof. Suppose $\models P \rightarrow Q$. (Suppose $\models \rightarrow Q$.)

1.	$\vdash P \supset Q \leftrightarrow$ a conjunctive normal form of $P \supset Q$, ca	all it S, where the
	conjuncts of S are S_1, \ldots, S_n .	
	$(\vdash Q \leftrightarrow a \text{ conjunctive normal form of } Q, \text{ call it } S_{i}$, where the con-
	juncts of S are S_1, \ldots, S_n .)	
2.	$\vdash \rightarrow S_1.$	
3.	$\vdash \rightarrow S_2.$	
	•	
	•	
n + 1.	$\vdash \rightarrow S_n.$	
n + 2.	$\vdash \rightarrow S_1 \cdot S_2.$	2, 3, R5
	•	
	:	
2n.	$\vdash \rightarrow S_1 \ldots S_n.$	2n - 1, n + 1, R5
2n + 1	$. \vdash \to P \supset Q.$	1, 2n, R1
	$(\vdash \rightarrow Q, \text{ by } 1, 2n \text{ and } R1.)$	
2n + 2	$. \vdash P \rightarrow Q.$	Ax1., $2n + 1$, R2

Call this the CNF proof. To complete the justifications for the steps in the

DNF and **CNF** proofs we need to show that **CMD** is analytic (if $\vdash P \rightarrow Q$ then $\models P \rightarrow Q$ and if $\vdash \rightarrow Q$ then $\models \rightarrow Q$). By using truth tables we can show that $\models P \rightarrow Q$, where $\vdash P \rightarrow Q$ is an axiom. So **CMD** is analytic if R1-R5 do not introduce theorems which are not semantically valid.

R1. By using induction on the number of occurrences of connectives in f(P) other than those in that occurrence of P which is replaced by Q to form f(Q), we can show that if $\models P \leftrightarrow Q$ then $\models f(P) \leftrightarrow f(Q)$. Now if $\models f(P) \leftrightarrow f(Q)$ and $\models f(P) \rightarrow R$ then $\models f(Q) \rightarrow R$. So, if $\models P \leftrightarrow Q$ and $\models f(P) \rightarrow R$ then $\models f(Q) \rightarrow R$. We can treat the other parts of R1 in the same way.

R2. (i) Suppose $\models P_1 \ldots P_m \rightarrow Q_1$ and $\models R \rightarrow S$, where R is any permutation of $Q_1 \ldots Q_n$. Suppose not $\models T \rightarrow S$, where T is any permutation of $P_1 \ldots P_m \cdot Q_2 \ldots Q_n$. Then there are circumstances, C, in which $P_1 - P_m$ are true, $Q_2 - Q_n$ are true and S false. So Q_1 is false in C since $\models R \rightarrow S$. Since $\models P_1 \ldots P_m \rightarrow Q_1, Q_1$ is also true in C. So $\models T \rightarrow S$. (ii) Same argument as for (i).

The proofs for R3-R6 are no more complicated than the proof for R2 and will be omitted.

We will now use the analyticity of **CMD** to prove step 2 in the **DNF** proof if we are given step 1. From step 1 it follows that $\vdash R \to P \cdot \sim Q$. By the analyticity of **CMD** it follows that $\models R \to P \cdot \sim Q$. Since $\models P \to Q$, $P \cdot \sim Q$ is a contradiction. But then R is a contradiction since $R \supseteq P \cdot \sim Q$ is a tautology. So in each disjunct of R there are at least two conjuncts, one a propositional constant and another its negation. Suppose that B and $\sim B$ occur in one of the disjuncts. By using Ax11, Ax12, $\vdash P \vee (Q \cdot \sim Q) \cdot R \to P$ (see Canty [2]), Ax7, R1 and R2, we can show that $\vdash R \to B \cdot \sim B$. But $\vdash B \cdot \sim B \to A \cdot \sim A$. So $\vdash R \to A \cdot \sim A$.

To prove step 2 in the **CNF** proof, given step 1, first note that from step $1 \vdash P \supset Q \rightarrow S$. By the analyticity of **CMD** $\models P \supset Q \rightarrow S$. Since $\models P \rightarrow Q$, S is a tautology. But then each conjunct in S must be a tautology. So in S_1 there must be at least two disjuncts, one a propositional constant, say A, and the other its negation, $\sim A$. Let T be the disjunction of the other disjuncts, if any, in S_1 . By Ax14 and R2 $\vdash A \rightarrow A$. By R3 $\vdash \rightarrow A \supset A$. By Ax16 and R1 $\vdash \rightarrow \sim A \lor A$. By Ax8 $\vdash \sim A \lor A \rightarrow (\sim A \lor A) \lor T$. By R2 $\vdash \rightarrow (\sim A \lor A) \lor T$. Then by Ax11, Ax12 and R1, $\vdash \rightarrow S_1$. We can give the same proof for steps $3 \neg n + 1$.

To prove step 1 in each of the above proofs, first note that by Ax16, Ax17 and R1, $\vdash P \leftrightarrow P'$, where P' contains no occurrences of the connectives, \supset and \equiv . Now let n(P) = the number of occurrences of connectives which are in the scope of a negation sign in P. By using induction on n(P') we can show that $\vdash P' \leftrightarrow P''$, where n(P'') = 0.

Suppose n(P') = 0. If P' = P'' then $\vdash P' \leftrightarrow P''$, where n(P'') = 0. The induction hypothesis is that if n(P') = j, for j < k, then $\vdash P' \leftrightarrow P''$, where n(P'') = 0. Suppose n(P') = k, for k > 0. Let S be the smallest well-formed formula contained in P' such that n(S) = k. So $P' = S, P' = S \lor T, P' = T \lor S$, $P' = S \cdot T$ or $P' = T \cdot S$, where n(T) = 0. If we can show that $\vdash S \leftrightarrow S'$, where

n(S') = 0, then it is obvious that $\vdash P' \leftrightarrow P''$, where n(P'') = 0. There are three cases to consider: (a) $S = \sim S_1$. Subcase (i): $S_1 = \sim S_2$. Since $n(S_2) < n(S)$, by the induction hypothesis $\vdash S_2 \leftrightarrow S_3$, where $n(S_3) = 0$. So $\vdash S \leftrightarrow S_3$, where $n(S_3) = 0$. Subcase (ii): $S_1 = S_2 \vee S_3$. By Ax14, R2, Ax9 and R1 $\vdash S \leftrightarrow \sim S_2 \cdots S_3$. Since $n(\sim S_2) < n(S)$ and $n(\sim S_3) < n(S)$, by the induction hypothesis $\vdash \sim S_2 \leftrightarrow S_4$ and $\vdash \sim S_3 \leftrightarrow S_5$, where $n(S_4) = 0$ and $n(S_5) = 0$. By R1 $\vdash S \leftrightarrow S_4 \cdot S_5$, where $n(S_4 \cdot S_5) = 0$. Subcase (iii): $S_1 = S_2 \cdot S_3$. Use the same argument as for subcase (ii).

(b) $S = S_1 \vee S_2$. Since $n(S_1) < n(S)$ and $n(S_2) < n(S)$, by the induction hypothesis $\vdash S_1 \leftrightarrow S_3$ and $\vdash S_2 \leftrightarrow S_4$, where $n(S_3)$ and $n(S_4) = 0$. By Ax14, R2 and R1 $\vdash S \leftrightarrow S_3 \vee S_4$, where $n(S_3 \vee S_4) = 0$. (c) $S = S_1 \cdot S_2$. Same argument as for (b).

If P'' is not in disjunctive normal form, then there is a constituent well-formed formula, T, of P'' such that $T = (R_1 \vee \ldots \vee R_m) \cdot (S_1 \vee \ldots \vee S_n)$ where m > 1 or n > 1. Call such formulas as T disrupting formulas. By Ax14, Ax11, Ax13, R1 and R2 $\vdash T \leftrightarrow U$, where U contains no disrupting formulas. So by R1 $\vdash P'' \leftrightarrow R$, where R is in disjunctive normal form. Since we have shown that $\vdash P \leftrightarrow P'$ and $\vdash P' \leftrightarrow P''$, it follows by R2 that $\vdash P \leftrightarrow R$. If P'' is not in conjunctive normal form, then the disrupting formulas are of the form $(R_1 \ldots R_m) \vee (S_1 \ldots S_n)$, where m > 1 or n > 1. By using Ax14, Ax11, Ax13, R1 and R2 we can remove all such disrupting formulas. So $\vdash P'' \leftrightarrow S$, where S is in conjunctive normal form, and $\vdash P \leftrightarrow S$.

REFERENCES

- Bradley, M. C., "Copi's method of deduction again," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 454-458.
- [2] Canty, J. T., "Completeness of Copi's method of deduction," Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 142-144.
- [3] Copy, I. M., Symbolic Logic, 3rd Ed., The MacMillan Company, New York (1967).
- [4] Copi, I. M., Symbolic Logic, 4th Ed., The MacMillan Company, New York (1973).

Colorado State University Fort Collins, Colorado