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COPPS METHOD OF DEDUCTION

FREDERICK A. JOHNSON

In [1] Bradley pointed out that it was superfluous for Copi to refer to

the completeness and analyticity of RS to show that the method of deduction

set forth in Chapter 3 of Symbolic Logic, 3rd ed. [3], is complete. Since in

the 4th edition [4] Copi continues to make his proof of completeness depend

upon the completeness and analyticity of RS, it seems worthwhile to give a

proof which clearly stands on its own. To do this, it is necessary to

formalize Copi's method of deduction. We will call the formalization

CMD.* We will let the capital letters, with or without subscripts, from the

earlier part of the alphabe't be the simple well-formed formulas in CMD

and the capital letters, with or without subscripts, from the later part of

the alphabet be variables in our meta-language which range over the

well-formed formulas of CMD. The well-formed formulas of CMD are

defined inductively in the classical way. Well-formed arguments have the

form x —» Q, where x is the empty symbol or a well-formed formula of

CMD. The intended reading of 'P-+ Q' is Q follows from P; the intended

reading of ζx —* Q\ where x is the empty symbol, is Q follows from the

empty premise, or Q follows from any premise. It will become evident that

all of the theorems (and axioms) of CMD are well-formed arguments. The

axiom schema for CMD areas follows, where 'hP<r->Q' abbreviates

<\-P~* Q and \-Q — PΊ

Axl. HP^>Q)'P-*Q (M.P.)
Ax2. h(PD Q)>~Q-+ ~p (M.T.)

Ax3. K P = > Q) '(Q ̂ R) — P^R (H.S.)

Ax4. \-(PvQ) ~P-> Q (D.S.)

Ax5. H(P=> Q)'(R ̂ S)) (PvR) - QvS (CD.)

Ax6. h((PD Q)(R 3S)) .(~Qv~S)-> ~Pv~Λ (D.D.)

Ax7. \-P'Q-+P (Simp.)

Ax8. \-P Q-> P'Q (Conj.)

Ax9. \-P-*PvQ (Add.)

*I am indebted to T. J. Smiley for his comments on an earlier version of this paper.
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AxlO. I—(P Q)<->~Pv~Q (DeM.)

I—(PvQ)<->~P ~Q

Axil. \-PvQ<^QvP (Com.)

hP Q^+Q-P

Axl2. hPv(Qvi?)<->(PvQ)vi? (Assoc.)

t-P-(Q R)*->(P Q)'R

Axl3. \-P'(QvR)*->(P'Q)v(P'R) (Dist.)

hP v (Q i?) <-> (P v Q) (P vΛ)

Axl4. hP*->~~p (D.N.)

Axl5. h p D Q o - v Q D ^ ? (Trans.)

Axl6. hPDQ<-^~p v Q (Impl.)

Axl7. t-p = Q^> (P z> Q) (Q D p) (Equiv.)

hP = Q*->(P Q)v(~P ~Q)

Axl8. h(P Q) D Λ ^ P D (Q D/2) (Exp.)

Axl9. h P ^ P v P (Taut.)

hP^P P

The rules of inference for CMD are:

Rl. (The Rule of Replacement) If f(Q) is formed by replacing one

occurrence of P in f(P) by Q, then

(i) if hP ^> Q and h/(P) — R then h/(Q) — R,

(ii) if h P ^ Q and hi? ->/(P) then hi? — f{Q),

and

(Hi) if ι-P^->Q and I—> f(P) then I—>f(Q).

R2. (Transitivity of ->) (i) If HP1 . . . P w -^ Qx and Hi? -» S, where R is any

permutation of Qλ . . . Qn, then HT —* S, where T is any permutation of

P x . . . PWQ2 . . . Qn.

(ii) If I—» Qi and hi? —> S, where i? is any permutation of Qλ . . . QM? then

\-T -* S, where T is any permutation of Q2 . . . Qw.

R3. (Conditional Proof) If κP x . . . P m -* Q then hi? -• P f 3 Q, where i? is

any permutation of Pγ . . . P^-i P, + i . . . Pm.

R4. (Indirect Proof) If HP1 . . . P«.-> Q ~ Q then hi? — S, where i? is any

permutation of Pγ . . . Pi-λPi+1 . . . Pm and hS<->~P, .

R5. (Adjunction) (i) If hP-> Q and h P - ^ i? then hP-+ Q R.

(ii) If I—> Q and I—> R then I—> Q-R.

R6. (Introduction of Superfluous Premises) (i) If hPL . . . Pm -* Q then

hi? —• Q} where i? is any permutation of Px . . . Pw+W.

(ii) I f h - Q then H P l β . . Pm-* Q.

For evidence that CMD is actually a formalization of Copi's method of

deduction we will indicate how proofs in CMD can be constructed f-

Copi's proofs in Chapter 3. Consider the proof on p. 61 in [4Ί

argument with premise (A vB) D((C vD)^>E) and conclusion A r ' ^ .

Copi's proof:
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1. (AvB) 3 ((CvD) 3 E)

I—>-2. A

3. AvB 2, Add.

4. (CvD) 3 E 1, 3, M.P.

p 5 . C Z>
6. C 5, Simp.

7. CvD 6, Add.

1 8. E 4, 7, M.P.
9. {C D) D E 5-8, C.P.

10. AO ((C D) ̂  E) 2-9, C.P.

Proof in CMD:

1. \-A-> AvB Ax9. (Add.)

2. K U v ΰ ) => ((CvD) D £)) Uvΰ)-» (Cvΰ) => £ Axl. (M.P.)

3. l-A (Uv5) =) ((CvD) 3 £)) — (CvD) 3 E 1, 2, R2

4. f-C D->C Ax7. (Simp.)

5. h C - ^ C v ΰ Ax8. (Add.)

6. H(CvD) 3 E)'(CvD) - £ Axl. (M.P.)

7. I-C-D-* CvD 4, 5, R2

8. HC D) ((CvD)^>E)-7> E 6, 7, R2

9. h(C D) ,4 ((,4v£) D ((CvD) D£)) ->£ 3, 8, R2

10. l-A (Uv-B) 3 ((CvD) Ώ E) — (C D) DE 9,R3.(C.P.)

11. h((AvB)^> ((CvD) Ξ) E)->AΞ) ((C D) ̂  E) 10, R3. (C.P.)

Consider also his proof on page 54 of [4] for an argument with conclusion E

and premises A 3 (B C), (5 vD) 3 £ and D vA. Copi's proof:

1. A D CB C)

2. (ΰvD) 3 £

3. DvA

4. ~ £ I.P. (Indirect Proof)

5. ~(BvD) 2, 4,M.T.

6. -JB - D 5,DeM.

7. ~D-~B 6, Com.

8. ~D 7, Simp.

9. A 3, 8, D.S.

10. B'C 1, 9, M.P.

11. JB 10, Simp.

12. ~£ 6, Simp.

13. B ~B 11, 12, Conj.

Proof in CMD:

1. \-((BvD) 3 E) ~E-* ~(BvD) Ax2. (M.T.)

2. I—(BvD)-*~B'~D AxlO. (DeM.)

3. \-((BvD)^> E)-~E-+ ~B-~D 1, 2, Rl

4. l—B'~D<^>~D>~B Axil. (Com.)

5. \ - ( ( B v D ) D E ) . ~ E — ~ D - ~ B 3,4,R2

6. I — D -~B -* ~D Axl. (Simp.)



298 FREDERICK A. JOHNSON

7. \-((BwD) D£).~£ -> ~D 5, 6, R2

8. \-{DvA)-~D-*A Ax4. (D.S.)

9. H{BvD)^E) ~E {PvA)-+A 7, 8, R2

10. h(Az>(JB.C)) A - > B C Axl.(M.P )

11. \-((BvD) ^> E)'~E-(DvA)'{A D (B C)) - > £ C 9, 10, R2

12. KB C — £ Ax7. (Simp.)

13. h(tBvZ)) D £ ) . ~ £ (Dvi4) (A 3 {BO)) — £ 11, 12, R2

14. I—£ ~D-> ~B Ax7. (Simp.)

15. \-((BvD) ^> E)-~E-+~B 3, 14, R2

16. \-((BvD)^> E)-~E (DvA)'(A^> (B-C)) -> ~B 15, R6

17. h((BvD) ̂  E)'~E-(DvA)'(A^ (B C))-> B-~B 13, 16, R5

18. H(BvD)ΏE) (DvA)>(A^(B-C))-*E 17, R4 (I.P.)

Let '\=P -+ Q' say that P => Q is a truth-table tautology; let 'N-* Q' say

that Q is a truth-table tautology. To show the completeness of CMD we

need to show that (i) if HP -» Q then hP -> Q and (ii) if (=-» Q then h-H. Q.

By extrapolating from Canty [2], we can sketch a proof of (i) as follows.

(The changes in the proof of (i) required for the proof of (ii) will be put in

parentheses.) Suppose KP -* Q. (Suppose N-* Q.)

1. \-p ~ Q<r-> a disjunctive normal form of P ~ Q, call it i?.

(h~Q<->a disjunctive normal form of ~Q, call iti?.)

2. KR — A -A.

3. HP - Q - ^ A-~A. 1, 2,R2

(l—Q«->Λ --A, by 1, 2 and R2.)

4. HP— Q 3, R4

(l—» Q, by 3 andR4.)

Call this the DNF proof. By using conjunctive normal forms we can give an

equally simple proof. Suppose t=P —> Q. (Suppose h-* Q.)

1. i-p D ή o a conjunctive normal form of P D Q, call it S, where the

conjuncts of S are Sl9 . . ., Sw.

(l-Q<-^a conjunctive normal form of Q, call it S, where the con-

juncts of S are Sl9 . . ., Sw.)

2. I—>Sχ.

3 . I—> S2.

n+ 1. I—> Sw.

w + 2 . I — > S ι ' S 2 . 2, 3, R5

2n. I—» Sx . . . Sw. 2w - 1, n+ 1, R5

2w + 1. I—> P 3 Q. 1, 2/2, Rl

(l—> Q, by 1, 2n and Rl.)

In + 2. »-p _ Q. Axl., 2w + 1, R2

Call this the CNF proof. To complete the justifications for the steps in the
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DNF and CIMF proofs we need to show that CMD is analytic (if KP -* Q then
h P - * Q and if I—> Q then h-+ Q). By using truth tables we can show that
h P —> Q, where \-P -* Q is an axiom. So CMD is analytic if R1-R5 do not
introduce theorems which are not semantically valid.

R l . By using induction on the number of occurrences of connectives in
f{P) other than those in that occurrence of P which is replaced by Q to
form f{Q), we can show that if \?P*->Q then h/(P)<^/(Q). Now if h/(P)<^->
f(Q) and h/(P) — i? then h/(Q) -» R. So, if h P < ^ Q and f=/(P) -> i? then
KΛQ) —" -R. We can treat the other parts of Rl in the same way.

R2. (i) Suppose k P x . . . Pm -> Qx and hi? -* S, where R is any per-
mutation of Qx . . . Qn. Suppose not hT —> S, where T is any permutation of
P x . . . Pm Q2 . . . Qn. Then there are circumstances, C, in which P x - Pm

are true, Q2 - Qn are true and S false. So Qλ is false in C since hi? -* S.
Since hPi . . . Pm -> Qlf Qx is also true in C. So \=T-> S.
(ii) Same argument as for (i).

The proofs for R3-R6 are no more complicated than the proof for R2
and will be omitted.

We will now use the analyticity of CMD to prove step 2 in the DNF
proof if we are given step 1. From step 1 it follows that ϊ-R —* P ~ Q. By
the analyticity of CMD it follows that hi? -» P - ~ Q . Since hP-> Q, P ~Q
is a contradiction. But then R is a contradiction since R 3 P ~ Q is a
tautology. So in each disjunct of R there are at least two conjuncts, one a
propositional constant and another its negation. Suppose that B and ~ B
occur in one of the disjuncts. By using Axil, Axl2, KPv (Q ~ Q) R —• P
(see Canty [2]), Ax7, Rl and R2, we can show that \-R -* B ~ B . But
KB ~ £ -> A --A. So Hi? -> A -~A.

To prove step 2 in the CNF proof, given step 1, first note that from
step 1 KP => Q -> S. By the analyticity of CMD h P => Q -> S. Since h P -* Q,
S is a tautology. But then each conjunct in S must be a tautology. So in S :

there must be at least two disjuncts, one a propositional constant, say A,
and the other its negation, ~.A. Let T be the disjunction of the other
disjuncts, if any, in Sx. By Axl4 and R2 \-A -» A. By R3 I—> A 3 A. By
A x l β a n d R l l — > ~ A v A . By Ax8 I—A wA — (~A vA) v T. By R2 I—>(-Av
A) v T. Then by Axil, Axl2 and Rl, ι—> SlΛ We can give the same proof for
steps 3-n + 1.

To prove step 1 in each of the above proofs, first note that by Ax 16,
Axl7 and Rl, f-P<->P', where P1 contains no occurrences of the connec-
tives, ^ and =. Now let n(P) = the number of occurrences of connectives
which are in the scope of a negation sign in P. By using induction on n(P')
we can show that KP' <^P", where n{P") = 0.

Suppose n(P') = 0. If P' = P" then \-P' ^ P " , where n{P") = 0. The
induction hypothesis is that if n(P') = j , for j < k, then \-P'<-^Pn, where
n(P") = 0. Suppose n(P') = ̂ , for fe > 0. Let S be the smallest well-formed
formula contained in P' such that n(S) = k. So P1 = S, P' = S v T, P1 = T vS,
P ' = S T o r P ' = T S, where rc(T) = 0. If we can show that \-S<^>S', where
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n(S') = 0, then it is obvious that KPf<-»j?", where n(P") = 0. There are
three cases to consider: (a) S = ~ S X . Subcase (i): Si = ~ S 2 . Since n(S2) <
n(S), by the induction hypothesis HS2<->S3, where n(S3) = 0. So HS<-»'S3,
where n(S3) = 0. Subcase (ii): Si = S 2 vS 3 . By Axl4, R2, Ax9 and Rl
i-S^>~S 2 ~ S 3 . Since n(~S2)<n(S) and n(~S3) <n(S), by the induction
hypothesis h~S2«->S4 and i—S 3 <-^S 5 , where n(S4) = 0 and w(S5) = 0. By
Rl \-S^S4 S5, where rc(S4 S5) = 0. Subcase (iii): S ^ S a Sg. Use the
same argument as for subcase (ii).

(b) S = S^Sr,. Since n(S J < n(S) and n(S2) < n(S), by the induction hypothesis
i-Sx^Sa and hS 2«-*S 4, where w(S3) and n(S4) = 0. By Axl4, R2 and Rl
hS<e^S 3vS 4, where n(S3vS4) = 0.
(c) S = Si S2. Same argument as for (b).

If Prr is not in disjunctive normal form, then there is a constituent
well-formed formula, T, of P" such that T = ( i ? l V . . .vt f j ^ v . . .vSn)
where ra > 1 or n > 1. Call such formulas as T disrupting formulas. By
Axl4, Axil, Axl3, Rl and R2 i-T <->£/, where U contains no disrupting
formulas. So by Rl i-P"<->#, where R is in disjunctive normal form.
Since we have shown that \~P<^>Pr and KP'<->p", it follows by R2 that
)-P<r->R. If P" is not in conjunctive normal form, then the disrupting
formulas are of the form (Ri . . . Rm) y{Sγ . . . SJ, where m > 1 or n > 1.
By using Axl4, Axil, Axl3, Rl and R2 we can remove all such disrupting
formulas. So hP"*->S, where S is in conjunctive normal form, and

y-p<r-*s.
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