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Models for Modal Syllogisms

FRED JOHNSON*

Abstract A semantics is presented for Storrs McCalΓs separate axiomatiza-
tions of Aristotle's accepted and rejected polysyllogisms. The polysyllogisms
under discussion are made up of either assertoric or apodeictic propositions.
The semantics is given by associating a property with a pair of sets: one set
consists of things having the property essentially and the other of things hav-
ing it accidentally. A completeness proof and a semantic decision procedure
are given.

In the opening chapters of [2] Lukasiewicz developed a nonmodal system
of logic to illuminate Aristotle's discussion of nonmodal syllogisms. One of the
distinctive features of his presentation is his syntactic treatment of the invalid
syllogisms. In effect, invalid syllogisms are deduced in his system.1 Also, a deci-
sion procedure for determining the validity and invalidity of Aristotelian non-
modal syllogisms is given in purely syntactic terms. Though Lukasiewicz does
not extend his treatment of Aristotelian nonmodal syllogisms to Aristotelian
modal syllogisms, Storrs McCall in [3] does, by developing the system L-X-M,
which treats syllogisms formed from assertoric and apodeictic propositions. The
purpose of this paper is to provide a semantics for L-X-M. (McCall did not pro-
vide a semantics for L-X-M.) I shall assume that L-X-M's relationship to Ar-
istotle's modal syllogisms is accurately described in [3]. So my primary interest
is mathematical rather than historical. But my hope is that the semantics will
provide the reader with an intuitive grasp of Aristotle's thinking about a sub-
stantial fragment of Aristotelian syllogisms.

Since modifications, though minor, will be made in McCalΓs L-X-M, we
shall refer to the modified system as LXM, whose presentation will be self-
contained. The syntax of LXM is as follows.

*I am grateful to David Bostock and a referee of this journal for comments on an earlier
draft of this paper. And I extend my thanks to Timothy Smiley, who read a second ver-
sion of my paper with remarkable care and made numerous significant corrections and
improvements in it.
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Primitive symbols
Variables a,b,c, etc.
Functions of one argument N,L,*
Functions of two arguments C,A,I

Rules of Formation

(i) If x and y are variables, Axy and \xy are categorical expressions.
(ii) If x is a categorical expression, Nx is a categorical expression.

(iii) All categorical expressions are well-formed formulas (wffs).
(iv) If x is a categorical expression, Lx is a w/y.
(v) If x and j are wffs, Nx and Cxy are wffs.

(vi) If x is a wff, *x is a starred expression.
(vii) The only categorical expressions, wffs, and starred expressions are

those in virtue of (i)-(vi).2

Definitions
Def E E = NI
Def O O = NA
Def M M = NLN
Def K Kxy = NCxNy.

Unstarred axioms
Al Aaa
A2 Llaa
A3 CKAbcAabAac
A4 CKAbclbalac
A5 CKLAZ>cAtf6LAtfc
A6 CKLEc£Aα6LEtfc
A7 CKLAbclabLlac
A8 CKLE6cIύ*LOtfC
A9 CKLAcbLOabLOac

A10 CKLOόcLAZwLOtfC
All CLItfZ?LIZw
A12 CLAabAab
A13 CLlablab
A14 CLOabOab.

Unstarred rules of inference
Rl x; Cxy; so j>.3

R2 F(x); so F(x/y). F(x/y) is the result of substituting y for x in each of x's
occurrences in F(x). (So, for example, R2 justifies this inference: Aab\ so
Aaa.)

R3 'x; so >>' is a rule of inference if *x; so >>' is valid in the propositional cal-
culus, where x may be the empty symbol. (So, for example, R3 justifies the
following inferences: (i) CCAabNAabNAab and (ii) CAabNAab; so
NAab.)

R4 F(x); so F(NNx). And F(NNx); so F(x).
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Starred axioms
*A1 CLAaaMOaa
*A2 ClΈabhAaa

*A5.12 LAbbLAbaLAacAcaMAcb -» LAaa (6xy -> z' abbreviates
4CKxyz' etc.)

*A5.21 LAbbMAabAacLAcaLAbc -> LAac
*A5.3 LA## LAccMAαcLAcα -> LAαc

*A5.41 LAbbLAffAadLAdaMAaeLAcbLAbdLAceAecLAfcMAdf-*
MAac

*A5.42 LAZ?Z?LAccMAα&AtftfLAtfαLAc6LAMMA<tfc -» MAαc
*A5.511 LAabAcaAbc -> Llαc
*A5.512 LAddLAabAbaAcaLAdaMAbcMAbdLAcgAgc -> Llαc
*A5.514 LAbbLAddLAeeLAhhLAabLAdaLAafAfaAhaMAbdMAbh

MAbeAhcAgcLAcgLAecLAcb -• Llαc
*A5.6 LAraLAZ?Z?LAccLA^MAZ?αMAZ?cLAcZ? -> Iαc
*A5.7 LAaufLA^LAccLA^LA^LAj^LAad/MA^LAMLAiZ/MA

/&LAe/LAteMA<?cLAc£? -* Mlαc.4

Starred rules of inference
*R1 *y; Cxy; so *x.
*R2 *F(x/y); so *F(x). (So, for example, *R2 validates this inference:

*CLAaaMOaa; so *CLAabMOab.)
*R3 *Cxz; *CJZ; SO *CxCγz. Here x and y are simple negative wffs, and z is

an elementary wff. The simple negative wffs are LErs, LOrs, Er5, O/*5,
MErs, and MOA*5. The simple affirmative wffs are LArs, LIA*5, Ars, Irs,
MAr5, and Mlrs. The simple wffs are the simple negative wffs and the
simple affirmative wffs. Simple wffs are elementary wffs. And if x is a
simple wff and y is an elementary wff then Cxy is an elementary wff. (So,
for example, *R3 justifies this inference: *CΈaclab; *CEbcIab; so
*CEacCEbclab.)

The axioms are the starred axioms and the unstarred axioms. The rules of
inference are the starred rules of inference and the unstarred rules of inference.
By a deduction we mean a sequence of wffs or starred expressions such that each
member of the sequence is an axiom or is entered by one of the rules of infer-
ence. A wff x is accepted if x is a member of a deduction. And a wff x is rejected
if *x is a member of a deduction.

Theorem 1 Every elementary wff is either accepted or rejected.

The proof is found in [3], where McCall identifies a finite number of types of
elementary wffs and gives a procedure that shows that each formula of each of
these types is either accepted or rejected. So, for example, he shows that any ele-
mentary wff with affirmative antecedents and a negative consequent is rejected.
CLAabCAbcMOca is of this form, and we can follow the recipe in his discus-
sion of Case 1 (p. 52) to construct a deduction in which *CLAabCAbcMOca
is a member. Here is the deduction:

1. CCLAtftfCLAtftfMOtftfCLAtftfMOtftf R3
2. *CLAaaMOaa *A1
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3. *CLAaaCLAaaMOaa *R1, 2, 1
4. CLAabAab A12
5. CLAaaAaa R2,4
6. CCLAaaAaaCCLAaaCAaaMOaaCLaaMOaa R3
7. CCLA^CAααMO^CL^MOαα Rl, 5, 6
8. *CLAaaCAaaMOaa *R1, 2, 7
9. *CLAtfZ?CAZ?cMOα7. *R2, 8

By verifying an instance of McCalPs Case 3 (p. 53) we shall illustrate *R3.
The following deduction shows that CLEabCLEbcMOac is rejected.

1. CCLAαc/MIαc (*5.7)5 R3
2. *5.7 *5.7
3. *CLAadMlac *R1, 2, 1
4. *CLAacMlab *R2, 3
5. CCLAccMlac (*5.7) R3
6. *CLAccMI#c *R1, 2, 5
7. *CLAtfcMIZ?e *R2, 6

8. CCLEabMOacCLNNAacMlab R3
9. CCLEαftMOαcCLAαcMIύffo R4, 8

10. *CLEabMOac *R1, 4, 9
11. CCLEZ?cMOtfcCLNNAtfcMIZ?c R3
12. CCLEbcMOacCLAacMlbc R4, 11
13. *CLEbcMOac *R1, 7, 12
14. *CLEabCLEbcMOac. *R3, 10, 13

By a model we mean an ordered quintuple <JF, F e , F σ , F*, F«?>, where F e ,
F α , Vc, and F* are functions that map term variables into subsets of the set W.
(Think of W as the world, Ve{x) as the things that are essentially x, Vα{x) as
the things that are accidentally x, Vc(x) as the things that are essentially non-
x, and Vc{x) as the things that are accidentally non-x.) And we define Fso
that V(x) = Ve(x) U Vα(x). Each of the four functions that make up the
model meets the following conditions:

(a) Ve(x) is nonempty
(b) For each x, V{{x) Π V™(x) = 0 , if either j Φ m or k Φ n\ and for

each x, Ve(x) U Vα(x) U Ve

c{x) U Vα

c(x) = W
(c) If V(z) C Ve

c{y) and V(x) C V(γ) then V(x) C Ve

c{z)
(d) If V(y) C Ve(z) and K(JC) Π V(y) Φ 0 then Fe(jc) Π F e(z) ̂  0
(e) If V(y) C Fc

e(z) and V(x) Π F(y) ̂  0 then Ve(x) Π Fc

e(z) ^ 0
(f) If F(z) C Ve(y) and Fβ(x) Π Kc

e(y) Φ 0 then Fe(x) Π Fc

e(z) ^ 0 .

The function Fmaps wffs into the truth values t and/as follows:

(i) V(Axy) = t iff V(x) C V(y)
(ii) V(lxy) = t iff V(x) Π F(y) ̂  0

(iii) F(NJC) = Mff V(x) =f

(iv) F(LAx^) = t iff F(x) C Ve(y)

(v) F(LIΛ J ) = / iff Ve(x) Π F e (^) gt 0

(vi) F(LNAxy) = ί iff Ve(x) Π Fc

e(^) ^ 0
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(vii) V(LNlxy) = / iff V(x) C Ve

c(y)
(viii) F(LNNx) = t iff V(Lx) = t

(ix) V(Cxy) = t iff either V(x) = / o r F(j>) = t.

A wff is valid iff in every model (W9 Ve, Va, Ve

c, V?) V(x) = t.

Theorem 2 Accepted wffs are valid, and rejected wffs are invalid.

Proof: We shall show by induction on n that if the nth member of a deduction
is unstarred it is valid and if starred it is invalid. The only cases that call for dis-
cussion are the starred and unstarred axioms and the rejection rule *R3. First,
we shall indicate why unstarred axioms are true in every model. Al: (By set
theory since V(a) C V(a).) A2: (By condition (a) used to define a model,
Ve(a) Φ 0.) A3-A5: (Set theory.) A6-A9: (Conditions (c)-(f), respectively, for
being a model.) A10-A14: (Set theory.)

Next, for each of the starred axioms we shall specify a model in which it
is false. The model for *A1 is:

*A1 W= (1), Ve(a) = {1}, Va(a) = Ve

c(a) = V?(a) = 0

In this model and in those for the other starred axioms W will consist of all and
only those objects that belong to the sets Ve(a)f Va(a), Ve

c{a), or V?(a) as
specified in the table that corresponds to the axiom. If x is a term that does not
occur in the table then VJ

k(x) = VJ

k{a). The job of verifying that each table
yields a model is routine, and the reader is invited to check the details.

*A2 Ve Va Ve

c Va

c

a \ 2 3
b 3 1,2

When presenting tables we shall drop brackets and omit the symbol for the
empty set to make the assignments of values easier to read. So, according to the
above table Ve{a) = (1) and Va(b) = 0 .

*A5.12 V
e
 V

a
 V

e

c
 V

a

c

a 1,2 3
b 1,2 3
c 1,2,3

*A5.21 V
e
 V

a
 V

e

c
 V

a

c

a 1,2
b 1 2
c 1 2

*A5.3 V
e
 V

a
 V

e

c
 V

a

c

a 1,2

c 1 2
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*A5.41 Ve V Ve
c V°

a 1,2,3,4
b 3,4 1,2
c 4 3 1 2
d 3,4 1,2
e 3,4 1,2
/ 4 2 1,3

*A5.42 Ve Va Ve
c Va

c

a 1,2,3
b 2,3 1
c 2 1 3
d 2,3 1

*A5.511 Ve V Ve
c Va

c

a 1 2
6 1,2
c 2 1

*A5.512 Kg F f l Ve
c Vc

a 1 2
b 1,2
c 2 1
rf 1 2
g 2 1

*A5.514 Ve Va Ve
c Va

c

a 1,2 3,4 5,6
b 1,2,3

4,5,6
c 3,5,6 1,4 2
rf 2 1,3,4

5,6
e 6 1,2,3

4,5
/ 1,2,3,4 5,6
g 1.3,4 2

5,6
A 1,3,4 2,5,6

*A5.6 Ve V Ve
c Va

c

a 1 2
6 1,2
c 2 1
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*A5.7 Ve Va Ve

c Va

c

a \ 2 3,4
b 3 1,2,4
c 2 1 3,4
d 1,3 2,4
e 2,3,4 1
/ 1,2,3,4

Finally, for *R3, assume that Cxz is false in < W, F>, Cyz is false in < W, V' >,
Λ: and y are simple negative wffs, z is an elementary wff, and W C\ W = 0 .
(Note that if models (WuVι) and {W2,V2) are such that ^ and ΪF2 are not
disjoint one can construct models (W3,V3) and (W4,V4) such that PF3 and fiΓ4

are disjoint, (W\y V\) is isomorphic to <PF3, F3>, and <JF2, F2> is isomorphic to
<^ 4 , K4>.) We shall show that CxCyz is false in <^ / /, V"), where W" = W X
W\ V"e{x) = Ve(x) X F/e(x), F//α(x) = V(x) X K'(A:) - V"e(x), V"e

c{x) =
(Fc

e(x) x HH U (fFx K'?(Λ:)), and F/r?(x) = W" - V"(x) - V"e

c{x). (So,
for example, let W= (1,2), ^ = {3,4), and let Fand F be defined by these
tables:

V Ve Va Ve

c Va

c

a 1 2 •

6 2 1
c 1 2

F r V'e V'a V'ec V'ac

a 3 4
b 3 4
c 4 3

Then F " is defined as follows:

yn yrre yrra yne ytra

a 1;3 2;3 1;4,2;4
b 2;3 1;3,1;4

2;4
c 1;4 2;4 1;3,2;3

We can illustrate the general claim we wish to establish by noting that COabOba
is false in <W, F>, CEbcOba is false in (W, F'>, and'COabCEbcOba is false
in (W\V"), assuming that the various functions treat terms not in the table as
they treat the term V.)

First, we shall show that (W, V") meets the six conditions required of all
models. Condition a. Ve(x) x V/e(x) Φ 0 , since Ve(x) Φ 0 and V'e(x) Φ 0 .
Condition b. (V"(x) U V"e

c{x)) Π V"a

c(x) = 0 (by the definitions). And
V"{x) Π V"e

c{x) = 0 . (If a b G V" (x) then a <£ Ve

c{x) and b <£ V'ec{x). Then
a b £ Ve

c{x) x PF' and a b £ W x F ^ ( x ) . Then «;Z? fέ V"e

c{x).) And
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V"e(x) Π V"a{x) = 0 (by the definitions). So the first part of Condition b is
satisfied. The second is immediate from the definition of V"a

c. Condition c.
Suppose V"(z) C V%(y) and F"(x) C V"{y). Then either V(z) C Ve

c{y) or
V'{z) C F'*(j/). And both V{x) C F(y) and K'(x) C V'(y). So, either
F(x) C Ve

c{z) or F'(x) C V'ec(z). So F"(JC) C K"*U). Condition d. Suppose
K"(JO C V"e(z) and F"(JC) Π K"(j) Φ 0 . Then F(j>) C Ve(z), V'(y) C
F'*U), F(x) Π V(y) Φ 0 , and V'(x) Π F'(j>) * 0 . So Ve(x) Π Fe(z) * 0
and F/έ?(x) Π F / e(z) Φ 0 . So F//e(x) Π V"e{z) Φ 0 . Condition e. Suppose
V"(y) C F^(z) and F"(x) Π F"(j>) * 0 . Then V(y) C K*(z) or V'(y) c
K'*(z). Since F(x) Π F(j>) * 0 and V(x) Π F ' ( j ) * 0 , either V(x) Π
Fc

e(z) * 0 or V'(x) Π K'*(z) * 0 . So V(x) Π F^(z) ^ 0 . Condition/.
Suppose Fr/(z) C V"e(y) and F//e(x) Π F ^ ( ^ ) Φ 0 . Then F(z) C Ve(y) and
F r(z) C F / e (^) . And either Ve(x) Π Fc

e(j^) Φ 0 or F/e(x) Π F^( j ) ^ 0 . So
Fe(x) Π Fc

e(z) ^ 0 or Vfe{x) Π F'^(z) ^ 0 . So V"e(x) Π F^(z) ^ 0 .
To complete the proof we shall make use of five lemmas.

Lemma 1 If x is a simple negative wff and is true in < W> V) then x is true
in <JF",F">.

We shall prove the lemma by showing that it is true for each of the six forms
a simple negative wff may have. Assume that x is true in (W,V). Form i: x =
LEyz. So V(y) C Ve

c(z). So V(y) x V(y) C Ve

c(z) x W. So V"(y) C
V"e

c{z). So xis true in (W",V"). Form ii: x = LOyz. So Ve(y) Π Ve

c(z) Φ 0 ,
and Vfe{y) Π W Φ 0 . So V"e(y) Π F^(z) Φ 0 . Form //ι: x = Έyz. Use an
argument like that for Form i. Form iv: x = Oyz. Use an argument like that for
F o r m ii. Form v: x = MEj>z. So Ve(y) C Ve(z). Suppose a b G Ve(y) x

F^(z). Then α ^ Kβ(z). So α Z? £ κ e(z) x F / e(z). So F / / e(j) c F / / e(z).
Form w: x = MOĵ z. So F(j) Π Fe(z) #= 0 . Let a G F( j ) , α ^ Ve(z), and
fte F r (^) . Thenα δG V(y) x F r ( j ) and α Z? £ Ve(z) x F / e(z). So x is true
in (W\V").

Lemma 2 If x is a simple negative wff and is true in (W,Vf), then x is true
in {W\V").

Proof: Modify the proof of Lemma 1.

Lemma 3 If x is a simple affirmative wff and is true in both < W, F> and
<JV\V'), then x is true in (W",V").

Proof: We shall show that the lemma holds for each of the six types of simple
affirmative wffs. Assume that x is true in (W, V) and (W\ F'>. Form i: x =
LAyz. Then V(y) C Ve(z) and V (y) C V'e(z). So V"' (y) C V"e(z). So x is
true in (W\V"). Form ii: x = Llyz. So Ve(y) Π Ve{z) Φ 0 and V'e(y) Π
V/e(z) Φ 0 . Let a G Ve(y) Π Ve(z) and b G V'e{y) Π F / β(z). Then a b G
F / / β(j) Π F / / e(z). So x is true in {W\ V"). Form Hi and Form iv: x = Aab
and x = lab. Use arguments like those for Forms i and ii. Form v: x = MAyz.
So Ve(y) C Vξ(z) and V'e(y) C V^X). Suppose a b G F e ( j ) x V'e(y).
Then g ; 6 ^ F^z) X PFr and α Z? ^ PFx F^(z). So α Z? ί F^(z) . S o J ^ ( ^ ) C
K^UJ.For/w i;/: Λ = MIjz. So V(y) Π Fc

e(z) ^ 0 and F / (^)Π Fr?(z) ^ 0 .
Suppose a G F(y) Π Fc

β(z) and b G F ^ j ) Π V'ec{z). Then α Z? G F(y) x
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V'(y),a;b£ Ve

c{z) x W',mda;b£ Wx V'ec{z). So V"(y) Π V^ϊϊϊ) Φ0.
So, x is true in (W",V").

Lemma 4 If x is a simple wff and is true in both < W9 V) and (W'9V')9 then
x is true in (W\V").

Proof: It is an immediate consequence of Lemmas 1 and 3.

Lemma 5 If x is a simple wff and is false in both (W, V) and (W\ V')9 then
x is false in (W\V").

Proof: Note that LAxy is true in a model iff MOxy is false in it. And the fol-
lowing pairs of wffs are such that the former is true in a model iff the latter is
false in it: \Λxy and MExy, Axy and O cy, \xy and Exy, MAxy and LOxy, and
Mlxy and LExy (the so-called octagon of opposition). So, suppose x is a sim-
ple wff and is false in (W, V) and (W'9V

f). Then there is a simple wff y (the
contradictory of x) which is true in these models. By Lemma 4, y is true in
{W\V"). So, xis false in (W\V").

We shall invoke the above lemmas in a proof by induction on the number
n of occurrences of simple wffs in the elementary wff z. Assume that x and y
are simple negative wffs and z is an elementary wff. And assume that Cxz is false
in (W, V) and Cyz is false in (W 9 F'>.

Basis step: n = 1. So z is a simple wff. By Lemmas 1 and 2, x and y are true
in {W\V"), and, by Lemma 5, z is false in (W\ V"). So, CxCyz is false
m<W",V").

Induction step: n = k + \. So z = CziCzzC... Zk+ι- C x C ^ C . . . Zk+i is false
in (W,V) and CyCz 2C.. .z#+i i s fa^se i n <W,F' ) So, by the induction
hypothesis, CxQyC^C. . . Zk+\ is false in (W'\ V").Since Zi is true in
{W\V"), CxCyzis false in (W\V").

An immediate consequence of the first two theorems is:

Theorem 3 Elementary valid wffs are accepted, and elementary invalid wffs
are rejected.

Theorem 4 Valid wffs are accepted, and invalid wffs are rejected.

Proof: We shall exploit Theorem 3 by linking wffs that may not be elementary
to wffs that are elementary. We shall call these links OE-chains. An OE-chain
is a sequence of sets SUS2,... of wffs such that (Sj,Sj+ι) (1 < j) is an
instance of one of the following pairs:

(i) <{PNNX,. . . j , IPX,. .. }> (NN)
(ii) <{QCNCXYZ,...},{QCXCNYZ,. .. )> (CNC)

(iii) ({QCCXYZ,... j , {QCNXZ, QCYZ,.. . j> (CC)
(iv) <{ QNCXF,...},{QX, QNY9... }> (NC)

where P is any string of symbols and Q has the form CXiC^ Cxn9 where
each Xi (\ < / < ή) is a simple wff, or Q is the empty symbol. And we shall say
that S is OE-connected to Γif there is an OE-chain Si9. .. ,Sn such that Si =
{S}anάSn = {T}.
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Lemma 1 If {w} is OE-connected to {wx,..., w,} then if x is a wff then
{Cxw} is OE-connected to {Cxw 1 ? . . . ,Cxw,}.

Proof: We shall use induction on n, where SΪ9... ,Sn is the OE-chain in virtue
of which {w} is OE-connected to {wx,..., w7}, assuming that the former is OE-
connected to the latter.

Basis step: n = 1. Note that every set is OE-connected to itself.

Induction step: n = k + 1. There are two cases. Case 1: (Sk,Sk+ι) is equal to
<{t>,v2,. . 9Vj},[vι,... ,Vj}), where each υm (1 < m < y ) is equal to some wn

(1 < n <j) and each wn is equal to some υm, and (Sk,Sk+\) is an instance of
(NN) or (CNC). Then (Tk, Tk+ι) is an instance of (NN) or (CNC). Since, by the
induction hypothesis, {Cxw} is OE-connected to {Cxv,Cxv2,. . . ,CxVj}9 it fol-
lows that {Cxw} is OE-connected to [Cxυu... ,Cxvj}. So {Cxw} is OE-con-
nected to iCxwu.. .,Cxwj). Case 2: (Sk,Sk+ι) is an instance of (CC) or (NC).
This case is treated like Case 1.

Lemma 2 If w is a wff then there are elementary wffs wx,.. ., Wj such that
{w} is OE-connected to {w\,..., Wj}.

Proof: We shall use induction on the number n of C's in w.

Basis step: n = 0. Then w = N{c or w = N!LN 2 c, where Nj and N 2 are (pos-
sibly empty) strings of N's, and c is a categorical expression. By (NN) and the
definitions of M, E, and O, {w} is OE-connected to {s}, where s is a simple wff
(and hence an elementary wff).

Induction step: n = k + 1. We consider two cases.

Case 1: There is exactly one C prior to the leftmost occurrence of a categori-
cal expression c in w. Then w = NiCN 2cx or w = N!CN 2LN 3cx, where N l s N 2 ,
and N 3 are (possibly empty) sequences of N's. So, by (NN) and the definitions
of M, E, and O, {w} is OE-connected either to {Csx} or to {NCsx}, where
s is a simple wff. So, there are two subcases to consider. Subcase i: {w} is
OE-connected to {Csx}. By the induction hypothesis {x} is OE-connected to
[xι,... ,Xfl}, where each xt (1 < / < n) is an elementary wff. By Lemma 1
{Csx} is OE-connected to {Gsx l 5 . . . ,Csxn}. So {w) is OE-connected to a set
of elementary wffs. Subcase ii: {w) is OE-connected to {NCsx}. Since {NGsx}
is OE-connected to {s,Nx} and since, by the induction hypothesis, {Nx} is OE-
connected to {xu ... ,xn], where each x; (1 < / < n) is an elementary wff, it fol-
lows that {w) is OE-connected to a set of elementary wffs.

Case 2: There are at least two C's to the left of the leftmost categorical expres-
sion in w. Then w = NiCN2Cx^z. There are three subcases to consider.

Subcase i: {w} is OE-connected to {CCxyz}. By (CC), {CCxyz} is OE-connected
to {CNxZyCyz}. So, by the induction hypothesis, {w} is OE-connected to a set
containing only elementary wffs. Subcase ii: {w} is OE-connected to {CNCxyz}.
By (CNC), {CNCxyz} is OE-connected to {CxCNyz}. By the induction hypoth-
esis {CNyz} is OE-connected to {xiy. . . ,xn}9 where each xι (I < / < n) is an
elementary wff. By Lemma 1, {CxCNyz} is OE-connected to {Cxx!,... ,Cxx^},
whose members are elementary wffs. Subcase Hi: {w} is OE-connected to
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INCCxyz] or to {NCNCxyz}. So, {w] is OE-connected either to {Cxy,Nz} or
to {NCxy,Nz}. So, by the induction hypothesis, {w) is OE-connected to a set
that has only elementary wffs as members.

To illustrate OE-chains note that {CCNAabAbalab} is OE-connected to
{CNNAablab,CAbalab} (by (CQ), which is OE-connected to {CAablab,
CAbalab},6 whose members are elementary wffs.

As another example note that (by (NQ) {NClabNlcd} is OE-connected to
{Iab,NNlcd}9 which (by (NN)) is OE-connected to {labeled}. By two applica-
tions of Lemma 1, {CAabCAcdNClabNlcd} is OE-connected to {CAabCA-
cdlab,CAabCAcdlcd).

Lemma 3 If {w} is OE-connected to [ wλ,..., Wj} then: (i) if w is valid,
each Wi is valid; (ii) if w is invalid, some w, is invalid; (Hi) if each w,- is accepted,
w is accepted; and (iv) if some w, is rejected, w is rejected.

Proof: The proof is by induction on n where Sx,..., Sn is the OE-chain in vir-
tue of which {w} is OE-connected to {Wj,..., wy ).

Basis step: n = 1. Tautological.

Induction step: n = k + 1. There are two cases to consider. Case 1: (Sk9Sk+ι)
is an instance of (NN) or (CNC). Then (Sk9Sk+{) is an instance of <{JC, . .. },
ί y9 - }>> where Cxy and Cyx may be entered as members of a deduction, given
R4 and R3. So, if Sk has only valid members so does Sk+{ if Sk has an invalid
member so does Sk+χ\ if Sk+\ has only accepted members so does Sk (by Rl);
and if Sk+i has a rejected member so does Sk (by *R3). Case2: (Sk,Sk+ι) is an
instance of (CC) or (NC). The reasoning is similar to that for Case 1.

Now we are ready to prove Theorem 4. Suppose w is valid. Then by
Lemma 2 there are elementary wffs wx,..., Wj such that {w] is OE-connected
to {Wγ,..., Wj}. By Lemma 3 each wt is valid. By Theorem 3 each w, is ac-
cepted. And by Lemma 3 w is accepted. By similar reasoning it follows that if
w is invalid then w is rejected.

With the proof of Theorem 4 and the earlier proof of Theorem 2 we have
reached our main goal: providing a semantics for LXM. We shall conclude our
discussion by considering a semantic decision procedure for LXM. To this end
we shall show that:

Theorem 5 If a wffS{au ... ,an) is false in a model M then there is a model
M', where M' = (W, V'e, V/a, V'ec, V'ac), such that W is a subset of {1,2,...,
4n] and S(au ... ,an) is false in M'.

Theorem 5 yields a decision procedure for validity, since in virtue of it only
a finite number of models need to be examined to test a wff for validity.

To show that Theorem 5 is true we shall specify a procedure for construct-
ing a model M' of the sort specified:

n

(a) Let M=(W, Ve, Va, Ve

c, V
a

c). Enumerate the 4n sets f) VJl^ai), where

ji = e or jι = #, and kt — c or kι•• — 0 . Call these 4n sets the basic sets
of M relative to aua2, .. ,an. (Here are three of the sixteen basic sets
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relative to ax and a2: Ve{ax)(Λ Ve(a2), Ve{ax)fλ Va(a2),and Ve

c{ax)Γι

V?(a2).)
(b) Let E be an enumeration of the basic sets relative to ax,..., an. Then

let x G W iff the x-th set in the enumeration E is nonempty.
(c) Let x E Vtfiai) (ji = e or a, kt = c or 0) iff

(i) Ύiίicii)' is used to form the expression that denotes the x-th set in
E, and

(ii) the x-th set in E is nonempty.

Let us illustrate the procedure. 'ClabAab' is falsified in this model: W — the set
of natural numbers, Ve(a) = the set of odd numbers, Va(a) = 0 , Ve

c(a) = the
set of even numbers, F*(a) = 0 , Ve(b) — the set of prime numbers, Va(b) =
0> Vc(b) = the set of natural numbers that are not prime, and Vc(b) = 0 .
The basic sets relative to a and b that are nonempty are listed as: (1) Ve(a) Π
Ve(b)9 (2) Ve(a) Π Ve

c{b), (3) Ve

c{a) Π K*(6), and (4) K*(α) Π F«(i>). By
part (b) of the procedure, W = {1,2,3,4}. By part (c) of the procedure,
V'e(a) = [1,2], V'a{a) = 0 , V'ec(a) = (3,4), Vta

c(a) = 0 , V'e(b) = {1,3},
F/β(δ) = 0, K/?(6) = {2,4},and K'?(6) = 0. So F'(Iα&) = ίand V'(Aab)=f.
So V'(ClabAab) =/.

To prove Theorem 5, we shall first verify that M' is a model if M is a
model. Let us assume that Mis a model and let us examine the conditions (a)-(f)
used to define a model. Condition (a). Ve(a) Φ 0 . So one of the basic sets of M
relative to α,. . . denoted by using ίVe{a)' is nonempty. So V'e(a) Φ 0 . Condi-
tion (b). Suppose V'i(a)Π Vf%(a) Φ 0 for j Φ m and k Φ n. Then 'Vί(a)' and
'V^ia)' are used to denote the same basic set of M relative to α, But this
is impossible. So the V'i(a) 's are mutually exclusive. To see that they are mutu-
ally exhaustive suppose there is an x such that x E W and x £ V'e(a) U
V/a(a) U F^(α) U Vfa

c{a). Since x G W\ the x-th basic set of M relative to
a,. . . is nonempty. This set must be denoted by using one of the expressions
Ύe(a)', Ύa(a) \ Ύe

c{a)', or Ύ?(a) \ But thenxmust belong to one of V'e(a),
V/a(a), V'l(a) or V'?(a). But this is impossible. Condition (c). Suppose
V'(z) C Vte

c(y) and V'(x) C ^ ( j ) . Then V(z) C Kc

β(ĵ ) and F(x) C F ( j ) .
By the assumption that Mis a model, F(x) C V£(z). But then F r(x) c V'ec(z).
(For suppose F'(A") ζί Vfe

c{z). Then one of these cases obtains: (i) V'e(x) Π
V'e{z) Φ 0 ; (ii) F/β(jc) Π F/ί7(z) ^ 0 ; (iϋ) V'e{x) Π F^(z) ^ 0 ; (iv) V'a(x) Π
F / e(z) ^ 0 ; (v) F'"(x) Π F/ί?(z) Φ 0 ; or (vi) F/ί?(x) (Ί F^(z) =̂ 0 . In the
first case it follows that Ve(x) Π Ve(z) Φ 0 , which contradicts the claim that
V(x) C Fc(z). This claim is also contradicted in the other five cases.) Condi-
tions (d), (e), and (f). Use the same type of argument as that used for Condi-
tion (c).

To complete the proof we shall use:

Lemma 1 If c is equal to any of the expressions Axy, Ixy, LAxy, Llxy,
LNAxy, or LNIxy, where x and y need not be distinct, then c is true in M iff
c is true in Mf.

Proof: Axy is true in Miff V(x) C V(y). And V(x) C V(y) iff V (x) C V'{y).
(First, suppose V(x) C V{y) and V (x) <£ V'(y). Then one of these cases
obtains: (i) V'e(x) Π V'ec(y) Φ 0 ; (ii) V'e(x) Π V'ac{y) Φ 0 ; (iii) V'a{x) Π
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V/eΛy) * 0 ; or (iv) Vfa{x) Π Va

c{y) Φ 0 . In the first case Ve(x) Π Ve

c{y) Φ
0 . But then V(x) ζ£ V(γ). And the other three cases yield the same result. Sec-
ondly, suppose V'(x) C V'(y) and V(x) ζί V(y). Then one of these cases
obtains: (i) Ve(x) Π Ve

c{y) Φ 0 ; (ii) Ve(x) Π Va

c{y) Φ 0 ; (iii) Va(x) Π V*(y) Φ
0; or (iv) Va(x) Π V*(y) Φ 0 . In the first case V'e(x) Π V'ec(y) Φ 0 . But
then V (x) <£ V (y). And the other three cases yield the same result.) So Axy
is true in Miff Axy is true in M'. And the arguments for the other expressions
follow the same pattern.

Now we use strong induction on the number m of C's in S(#i , . . . ,an).

Basis step: m = 0. Then S = Nλc or S = NiLN2c, where N! and N2 are (pos-
sibly empty) strings of N's, and c is either Axy or Ixy. So, by Lemma 1, S is true
in M iff S is true in M'.

Induction step: m = k + 1. Then it is an immediate consequence of the induc-
tion hypothesis and the truth-conditions for C that S is true in M iff S is true
in M'. And thus, a fortiori, Theorem 5 holds.

A natural extension of the above development of Aristotle's logic would
provide a semantics for a logical system that captured Aristotle's insights about
contingent propositions. But so far I have been unable to give a satisfactory in-
terpretation of his contingency operator.7

And another direction to move the discussion is into the area of natural
deduction systems. Smiley in [4] gives very persuasive arguments to show that
syllogisms should not be treated as conditional statements in the style of
Lukasiewicz, but should be treated as deductive structures. And Corcoran in
[1] also presents Aristotle's logic by using a natural deduction system. The dif-
ferences in the systems of Smiley and Corcoran suggest that many natural deduc-
tion complements to LXM are possible.8

NOTES

1. Whether his treatment of syllogisms as conditional statements is proper is debatable.
See the conclusion of this paper and see [1] and [4].

2. Note that LLAab is not a wff. Since LAab is not a categorical expression, though
it is a wff, (iv) cannot be applied to it to generate a wff. And note that *Aab is not
a wff, and **Aab is not a starred expression.

3. Here x and y range over wffs, and in some other places they range over term vari-
ables, as in R2 below. But they never range over starred expressions.

4. Note that the top line on page 65 of [3], where the proof of *A5.7 is underway,
should have 'MAec' in place of 'LAec'. On the preceding page McCall has shown
that his substitutions do not permit the occurrence of Άec\ So there could be no
occurrence of 'LAec\

5. The full line is found by replacing '(*A5.7)' by *A5.7. And we shall also abbreviate
other lines by using names of axioms.

6. Lukasiewicz also reduces CCNAabAbalab to these elementary wffs (see p. 119 of
[2]). But OE-chains provide a simpler means of accomplishing the reduction. Note
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that Lukasiewicz uses nine reduction rules, whereas only four are used to construct
OE-chains.

7. See [3] for a purely syntactical system that is designed to illuminate Aristotle's con-
tingency operator. And note McCalΓs strong arguments to show that the contingency
operator cannot be defined in terms of the syntactical connectives of LXM.

8. Smiley (p. 140 of [4]) says that the following arguments are not Aristotelian syllo-
gisms: (1) Άaby Oab; so led9 and (2) Άab, Έab; so Oca\ But the following anno-
tated deductions in Corcoran's system show that Corcoran counts them as valid
Aristotelian syllogisms: (1) -\-Aab, +Oab\ Ίlcd, hΈcd, aAab, BaOab and (2) +Aab,
+Έab, ΊOca, hAca, sAcb, clcb, sΈcb.
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