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Abstract

In this article, we analyse the ontological import of adding classes
to set theories. We assume that this increment is well represented by
going from ZF system to NBG. We thus consider the standard tech-
niques of reducing one system to the other. Novak proved that from
a model of ZF we can build a model of NBG (and vice versa), while
Shoenfield have shown that from a proof in NBG of a set-sentence
we can generate a proof in ZF of the same formula. We argue that
the first makes use of a too strong metatheory. Although meaningful,
this symmetrical reduction does not equate the ontological content of
the theories. The strong metatheory levels the two theories. More-
over, we will modernize Shoenfields proof, emphasizing its relation to
Herbrands theorem and that it can only be seen as a partial type of
reduction. In contrast with symmetrical reductions, we believe that
asymmetrical relations are powerful tools for comparing ontological
content. In virtue of this, we prove that there is no interpretation of
NBG in ZF, while NBG trivially interprets ZF. This challenges the
standard view that the two systems have the same ontological conten

1 How can we compare the ontological con-

tent of different theories?

Within the context of a formal theory, an assertion is ontologically commit-
ting if it expresses a closure property of the intended models. For example,
the power set and the union axioms express closure properties in set theories.
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If X and Y are elements in our set theory model, then the axioms guarantee
that their union and ther power sets are also in the model. This property
represents how an axiom generates ontological import. A detailed analysis
of this conception leads to an understanding of existential aspects in formal
theories (see [4]). But it is of no help if we want to compare different the-
ories regarding ontology. We propose a different approach for this kind of
comparison: If T1 and T2 are formal theories and T2 can reduce T1 but T1
cannot reduce T2 using a natural method of ontological reduction given in a
metatheory, then the ontological content of T2 is greater than that of T1.

Now, what is a natural method of ontological reduction? We expect
that if T1 reduces T2, then the consistency of T1 can be proved from the
consistency of T2 in the corresponding metatheory. This and other related
questions are dealt with in [1], which is the source of the main results in this
paper. Nevertheless, we will not be concerned with this question in its full
generality here, as we will concentrate on methods of interpretations between
first-order theories in a finitary metatheory. More precisely, using the method
of interpretations and the above conception of ontological comparison, we
prove that the ontological content of NBG is greater than the ontological
content of ZF. This result goes against the received view according to which
those theories are equivalent.

We will analyze the received view and point out its insufficiencies. It is
based on the folklore conservativity result: NBG is conservative with respect
to ZF. A detailed finitary proof of this result will be provided, as there is
basically no modern proof for this in the literature. We will argue that the
ontological reduction operating here is not conclusive, for the corresponding
reduction method is partial. Hence, it is not clear if it gives a right transposi-
tion of the ontology. Also, it is always possible to strengthen the metatheory
and weaken the reduction method in order to trivialize the comparison.

Therefore, for the equivalence claim, it is not enough to have one mutual
comparison according to some reduction method in some metatheory. In the
opposite direction, it is very significant to have an asymmetric comparison by
a standard method of reduction, and this result will be proved subsequently,
together with other related results. The absence of interpretation from NBG
to ZF thus understood is a strong evidence for the thesis that the ontological
content of the former surpasses that of the latter.
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2 Novak’s model-theoretic reduction of NBG

to ZF

From every model of ZF, a model of NBG can be obtained by the addition
of definable proper classes. This construction has the important feature that
the resulting model has the same sets as the original model. Therefore,
the following reduction of NBG to ZF is obtained: Assume that α is a ZF-
sentence and that NBG ⊢ α. Let M be a model of ZF, and let N be the
model of NBG obtained from M by the addition of the definable proper
classes. Since NBG ⊢ α, it follows that N ⊧ α. However, if N ⊧ α, then
M ⊧ α, for α is a ZF-sentence – it is about sets only – and M and N have
the same sets. Now, the completeness theorem gives that ZF ⊢ α, for M is
an arbitrary model of ZF.

The above reduction gives, in particular, a model-theoretic proof that
if ZF is consistent, so is NBG. However, a bolder philosophical conclusion
from this is that the ontological content of NBG is already present in ZF,
as it can be easily fulfilled by the definable classes lurking in models of ZF.
We claim that the bolder conclusion is unwarranted. The problem is that
the metatheory in which the reduction takes place is too strong and the
difference may be obliterated by its excessive strength. To make the point
clear, assume that we were interested in comparing theories T1 and T2 in a
metatheory which happens to be strong enough to prove the consistency of
both theories. The equivalence between the consistency of T1 and that of T2
is, therefore, valid in such a metatheory, but no ontological comparison can
be drawn.

From a proof of equiconsistency in some metatheory, one cannot conclude
ontological equivalence. However, there is another reduction of NBG to ZF
providing a finitary equiconsistency result due to Shoenfield. Although the
above argument does not apply to Shoenfield’s reduction, which takes place
in a finitary metatheory, we still claim that the bolder conclusion that the
ontological content of NBG is already present in ZF is unwarranted. The
problem is within the reduction method itself: It does not provide a reduc-
tion of the quantification over class variables, which gives NBG its extra
ontological content, but rather just shows that the quantificational reasoning
with class variables in NBG is dispensable and can be avoided in proofs of
ZF-sentences. Therefore, there is no real reduction taking place here, there is
no transposition of ontology, and the ontological equivalence does not follow.
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Shoenfield’s proof will be given in the next section and meticulously analyzed
to support our claim.

3 Shoenfield’s finitary reduction

The finitary proof of equiconsistency between NBG and ZF was provided by
Shoenfield in the article ”A relative consistency proof” ([9]). This article is
written in the language of Principia Mathematica by Whitehead and Rus-
sell, and makes extensive use of the techniques developed in Grundlagen der
Mathematik by Hilbert and Bernays. For this reason, we have developed this
section by an excavation, a reverse engineering, in which the tools used were
unraveled by the clues left in the article. In addition, changing the axiomatic
system (see [7]) poses several additional difficulties and, in many instances,
the proof changes significantly.

We will expose here the technique used for the equiconsistency proof. Be-
fore doing that, however, we need to remember the finitary proof technique
of Herbrand’s theorem. For this, we will go through the necessary defini-
tions, then we will enunciate Hilbert-Ackermann’s theorem and, finally, the
necessary part of the strategy for establishing Herbrand’s theorem.

Definition 1 A formula α is open if all variables occurring in the formula
are free.

Definition 2 A theory T is open if all its axioms are open formulas.

Definition 3 α is a quasi-tautology if, and only if, α is tautological conse-
quence of instances of identity and equality axioms.

Theorem 4 (Hilbert-Ackermann) A open theory T is inconsistent if, and
only if, there is a quasi-tautology α of the form ¬β1 ∨ ¬β2 ∨ . . . ∨ ¬βk, such
that βi is an instance of some axiom in T for each i ≤ k.

The finitary proof of this theorem can be found in [5, p. 48 - 52]. It is
important to bear in mind this theorem since it is equivalent to the existential
case of Herbrand’s theorem.

Definition 5 Let Q be a quantifier ∀ or ∃, then a prenex formula is of the
form:
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Qx1Qx2 . . .Qxnθ,

being θ a open formula.
We call θ the matrix of Qx1Qx2 . . .Qxnθ.

We can write the prenex form, without loss in generality, with explicit
quantifiers ∀ e ∃, instead of using the Q. The general formula is of the form:

∃z1∀y1 . . .∃zk∀yk θ[x, z1, y1, . . . , zk, yk],

being x the sequence of free variables in the matrix θ. Using this notation
will simplify the proof, since each quantifier ∀ and ∃ is treated differently.

Definition 6 A formula α is existential when α is a prenex formula of the
form ∃x1∃x2 . . .∃xnθ, being θ an open formula.

From prenex formulas, we have the following theorem:

Theorem 7 For any formula α, there is a α′, such that:

1. α′ is a prenex formula;

2. ⊢ α↔ α′;

3. α′ is obtained by a primitive recursive procedure;

We call α′ the prenex form of α.

Next we will expose Herbrand’s normal form. It can be understood as
the representation of any formula by an existential formula through a pro-
cedure of elimination of universal quantifiers. Such elimination is due to the
introduction of function symbols in language.

Definition 8 (Herbrand’s normal form) Let α be any formula, we build αH
through the following procedure:

1. α0 is the prenex form of α;

2. If αi is an existential formula, then αH is αi;
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3. If αi if of the form ∃x1∃x2 . . .∃xn∀yγ, we introduce a function symbol
f , such that:

αi+1 ∃x1∃x2 . . .∃xnγy(f(x1, x2, . . . , xn)).

If αi is of the form ∀yγ, we introduce a constant symbol c, such that:

αi+1 γy(c);

We can represent Herbrand’s normal form of a prenex formula

∃z1∀y1 . . .∃zk∀yk θ[x, z1, y1, . . . , zk, yk],

for

∃z1 . . .∃zk θ[x, z1, f1(z1), . . . , zk, fk(z1, . . . , zk)].

.

Theorem 9 (Herbrand) Let T be a theory without non logical axioms in the
language L. Then, for any prenex formula α in L, it holds that:
T ⊢ α in the language L ⇐⇒ there is a quasi-tautology β1 ∨ β2 . . . ∨ βk, for
which, for each i, βi is an instance of the matrix αH .

Proof. (Detailed strategy) The procedure for proving Herbrand’s theo-
rem follows the steps:

1. If α is an existential formula, the theorem is a corollary of Hilbert-
Ackermann’s theorem:

We suppose that α is of the form ∃x1∃x2 . . .∃xnβ, with β as an open
formula. In this case, ¬α is logically equivalent to ∀x1∀x2 . . .∀xn¬β.
Thus, T ⊢ ¬α↔ ¬β.

Because of that, T ⊢ α ⇐⇒ the theory {¬β} is inconsistent. By the
Hilbert-Ackermann’s theorem, for {¬β} is a open theory,

{¬β} is inconsistent ⇐⇒ there is a quasi-tautology ¬(¬β1)∨¬(¬β2)∨
. . . ∨ ¬(¬β1), with βi an instance of β for all i.

But this is equivalent to β1 ∨ β2 ∨ . . . ∨ β1, finalizing the proof.

2. We take, for the general case, a prenex formula α in the language L

∃z1∀y1 . . .∃zk∀yk θ[x, z1, y1, . . . , zk, yk].
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3. Let LH be the language L extended with functions used to built αH and
TH the theory without logical axioms in the language LH , we should
prove that:

T ⊢ α ⇐⇒ TH ⊢ αH .

4. Since αH is an existential formula, we obtain a quasi-tautology for the
extended language LH. Hence,

T ⊢ α ⇐⇒ TH ⊢ αH ⇐⇒ there is a quasi-tautology with instances of αH

For this reason, the proof of item 3 finish the proof.

5. To prove item 3, we only show the strategy for the converse implication,
that is, T ⊢ α⇐ T ′ ⊢ αH , since the direct proof is relatively simple.

6. Let Tc be the Henkin extension of T , defined in [5, p. 46], and Tc+eq
be the addition of equivalence axioms1 of Herbrand [5, p. 52] in Tc, we
show that:

(a) Tc is a conservative extension of T .

(b) Tc+eq is a conservative extension of Tc

These two fact will be important to the following steps.

7. We suppose that there is a quasi-tautology β1 ∨ β2 . . . ∨ βq in LH, with
βi being a instance of the matrix αH . We now do a procedure of
replacement of functions introduced for αH by constants in Lc. More
specifically, if αH is of the form

θ[x, z1, f1(z1), . . . , zk, fk(z1, . . . , zk)]

and βi if of the form

θ[t, u1, f1(u1), . . . , uk, fk(u1, . . . , uk)],

we define the sequence of special constants d(u1), d(u1, u2), . . . , d(u1, . . . , uk)
for eliminating the functions in the following manner:

1If c1 and c2 are special constant for the formulas ∃xα1(x) and ∃xα2(x), then the
equivalence axiom for these constants is ∀x(α1(x)↔ α2(x))→ c1 = c2.
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Notation 10 .

(a) z i→ is a sequence of terms of the sequence z from the index i
onward;

(b) z i→j is a sequence of terms of z from the index i up to the index
j;

(c) (z)i is the i’th term in the sequence z;

The constant (d(u1))i is a special constant for the formula

∃(y1)i(¬∀y1
(i+1)→

∃z2∀y2 . . .∃zk∀yk θ[t, u1,d(u1)
1→(i−1)

, f1(z1)
i→

,∗]),

begin ∗ a abbreviation that indicates the remaining sequence
u2, f2(u1), . . . , uk, fk(u1, . . . , uk).

And, generally, (d(u1, u2, . . . , ui))j is a special constant for the formula

∃(yi)j(¬∀yi
(j+1)→

∃zi+1∀yi+1 . . .∃zk∀yk θ[t,∗,d(u1, . . . ,ui)
1→(j−1)

, f1(zi)
j→

,∗]).

By successively applying the substitution axiom and modus ponens, we
have that, se β′i is the formula

θ[t, u1, d1(u1), . . . , uk, dk(u1, . . . , uk)],

then ⊢Tc+eq β
′
i → α.

8. Note that variables can occur in u. However, to ensure the use of
the equivalence axiom properties in Tc+eq, we need all variables to be
replaced by special constants. This will be necessary for the completion
of the proof.

So we make a second transformation in the quasi-tautology. Here equiv-
alence axioms play an important role: they ensure that any two equiv-
alent formulas refer to a single constant 2. With the addition of only

2Realizing this characteristic was instrumental in establishing the relationship between
the techniques used in [9] and the techniques presented in the book Grundlagen der Math-
ematik [10]. In this paper, prior to his textbook of mathematical logic [5], Shoenfield
makes use of epsilon Hilbert’s calculus as a way of guaranteeing the uniqueness of the
special constants. Modern techniques make the conservative introduction of equivalence
axioms.
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the special axioms, we do not have this guarantee, since we could have
two distinct elements satisfying the same formula of the form ∃xα.

We introduce distinct special constants for each variable in u, obtaining
u′. Subsequently, we prove, using the special equivalence axioms, that

⊢Tc+equ1 = u1
′ → d(u1) = d(u1

′)

⊢Tc+equ1 = u1
′ ∧ u2 = u2

′ → d(u1, u2) = d(u1
′, u2

′)

⋮

⊢Tc+equ1 = u1
′ ∧ uk = uk

′ → d(u1, . . . , uk) = d(u1
′, . . . , uk

′)

9. We usa a similar procedure as in [5, p. 55] to obtain a formula β′′1 ∨
β′′2 . . .∨β

′′
q , being β′′i the replacement of the functions and variables in-

troduced by the special constants shown above. Recall that the second
transformation ensure us that ⊢Tc+eq β

′′
i → α by the same procedure as

in item 7.

We suppose C1,C2, . . . ,Cm to be the proof sequence for the quasi-
tautology that uses only identity and equality in T . Thus we prove that
the transformation that have led β1∨β2 . . .∨βk to become β′′1 ∨β

′′
2 . . .∨β

′′
k

preserves tautologically the sequence. Therefore, β′′1 ∨β
′′
2 . . .∨β

′′
k is tau-

tological consequence of C ′′
1 ,C

′′
2 , . . . ,C

′′
m.

It remains to prove that each C ′′
i is a theorem of Tc+eq, when Ci is an

axiom of T . This will result in the proof of β′′1 ∨β
′′
2 . . .∨β

′′
k in Tc+eq. Each

Ci is an axiom of identity, equality, an instance of identity or an instance
of equality. We note that, when we get C ′′

i , we have transformed Ci
into axioms of identity or equality, unless Ci is an instance of identity.
This last case, though, is easily proved in Tc+eq from the propositions
shown in the end of last item.

10. As Tc+eq ⊢ β′′1 ∨β
′′
2 . . .∨β

′′
k and Tc+eq ⊢ β′′i → α for each i, then Tc+eq ⊢ α.

11. Since Tc+eq is a conservative extension of the logic in L, we lastly obtain
that T ⊢ α.

◻
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3.1 Finitary proof of equiconsistency

In order to understand the finitary proof, it is important to consider proce-
dures 7 and 8 of the previous section. In them, syntactic transformations are
performed to provide the formulas β′′i , eliminating the functions introduced
to obtain the Herbrand’s normal formula.

Each introduction of a function to eliminate a universal quantification is
performed independently of the other introductions. In this sense, we can
restrict the elimination procedure to certain universal quantifications. In
fact, we can eliminate one, some or all functions introduced to obtain the
Herbrand’s normal form.

For the proof of the equiconsistency theorem, we will use the direct part
of Herbrand’s theorem to obtain the quasi-tautology. Subsequently, we will
make the procedure of the converse proof of Herbrand’s theorem restricted
to the variables limited to sets.

Before performing this procedure, we will eliminate all universal quantifi-
cations that are not restricted to sets in the NBG axioms. We will therefore
prove that unrestricted universal quantifications are easily eliminated from
the axiomatization presented.

Proposition 11 (Extensionality)

⊢ (∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y)↔ (∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)).

Proof. By substitution, we have
{∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)} ⊢ ∀z(z ∈ x↔ z ∈ y)→ x = y.

And, by generalization,
{∀z(z ∈ x↔ z ∈ y)→ x = y} ⊢ ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y).

We should now prove that
⊢ (∀z(z ∈ x↔ z ∈ y)→ x = y)↔ (∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y),

We know that (α → β ∧ ¬α → β) → θ is tautologically equivalent to
β → θ. Thus, ∀z(z ∈ x ↔ z ∈ y) → x = y is tautologically equivalent to
(∀z ∈ V (z ∈ x↔ z ∈ y) ∧ ∀z ∉ V (z ∈ x↔ z ∈ y)) → x = y. Nevertheless, since
we know that, by definition, z ∈ V ↔ ∃w(z ∈ w), then z ∉ V is equivalent to
∀w(z ∉ w). From this, we have that ∀z ∉ V (z ∈ x↔ z ∈ y) is a tautology. We
thus obtain:

∀z(z ∈ x↔ z ∈ y)→ x = y ⇐⇒
(∀z ∈ V (z ∈ x↔ z ∈ y) ∧ ∀z ∉ V (z ∈ x↔ z ∈ y))→ x = y ⇐⇒

∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y.
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◻
Note that we can use a similar procedure to limit other quantifications

to sets, whenever we have a universal quantifier ∀z for a formula in which
z ∈ x occurs. Although this technique does not work in all cases, for the
axiomatization of NBG used in this article the procedure is effective. We
will not expose here the corresponding proof for each axiom, for they are all
very similar. In this sense, we have the following theorem:

Theorem 12 Let α be an axiom of NBG, then there is a formula α′ such
that α′ is the elimination or restriction (to V ) of all universal quantifications
occurring in α and ⊢ α′↔ α.

We modify NBG yet one more time. The unrestricted existential quan-
tifiers can be eliminated from instances of the scheme axiom for classes. We
add, for each instance ∀v ∈ V ∃z∀x(x ∈ z ↔ (x ∈ V ∧ α(x, v))), the constant
cα and replace the axiom for ∀v ∈ V ∀x ∈ V (x ∈ cα ↔ (x ∈ V ∧ α(x, v))).
Subsequently, we replace all other axiom of NBG by the version obtained by
the successive application of theorem 12. We call the resulting theory U .

We should prove the following theorem:

Theorem 13 For every formula γ, if NBG ⊢ γ, then U ⊢ γ.

Proof. In order to proof this theorem, we should just treat the case in
which γ is the scheme axiom for classes. From this and from theorem 12, we
obtain easily that U proves all other axioms of NBG.

We take a formula α with n free variables and in which all quantifications
are bouded to V . We then prove that

U ⊢ ∀v ∈ V ∃z∀x(x ∈ z ↔ (x ∈ V ∧ α(x, v))) (1)

(We call this formula θ).
By replacement and generalization, we can eliminate the universal quan-

tifications from the scheme axiom for classes. Thus we have

U ⊢ θ ⇐⇒ U ⊢ (v ∈ V )→ ∃z∀x(x ∈ z ↔ (x ∈ V ∧ α(x, v))). (2)

Since x and z do not occur in the left side of the implication, then

U ⊢ θ ⇐⇒ U ⊢ ∃z∀x((v ∈ V )→ (x ∈ z ↔ (x ∈ V ∧ α(x, v)))). (3)

Let θ′ be the formula ∀v ∈ V ∀x ∈ V (x ∈ cα↔ (x ∈ V ∧ α(x, v))).
We now eliminate the quantifiers of θ′, obtaining
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U ⊢ ∀x((v ∈ V )→ (x ∈ cα↔ (x ∈ V ∧ α(x, v)))).

Thus, by replacement and modus ponens,

U ⊢ ∃z∀x((v ∈ V )→ (x ∈ z ↔ (x ∈ V ∧ α(x, v)))).

Therefore, U ⊢ θ.
◻

We continue by proving the lemma:

Lemma 14 Let α be a sentence without variables for classes.
If α is a theorem of U , then there is a proof of α in U that is free of unre-
stricted quantifications.

Proof.
By hypothesis, we have a proof of α in U . Let γ [x] be the conjunction

of axioms used in the given proof, in which x is the sequence of variables for
classes that occur in the axioms. In this case, be the reduction theorem [5,
p. 42]:

T ⊢ ∀xγ[x]→ α,

or, equivalently,

T ⊢ ∃x(γ[x]→ α), for x does not occur in α,

in which T is the theory without non logical axioms in the language of U .
Let θ[x] be a prenex form of γ[x]→ α. The formula θ[x] is of the form

∃z1∀y1...∃zk∀ykβ[x, z1, y1, ..., zk, yk].

From Herbrand’s theorem provability equivalence,

T ⊢ ∃xθ[x]

if, and only if,

⊢TH ∃x∃z1...∃zkβ[x, z1, f1(x, z1), ..., zk, fk(x, z1, ..., zk)],
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in which TH is the theory obtained by the addition of function symbols in T ,
according to Herbrand’s normal form ∃xθ[x].

Let β′ be a open formula β[x, z1, f1(x, z1), ..., zk, fk(x, z1, ..., zk)].
By Herbrand’s theorem, there is a quasi-tautology β′1 ∨ ... ∨ β

′
m, in which

each β′i is an instance of β′ in the language of TH .
Let’s build the appropriate proof of α in Uc+eq, obtained from U by the

addition of special constants, special axioms and special axioms of equiva-
lence.

From start, we replace each free variaable in β′1 ∨ ... ∨ β
′
m for special con-

stants. The result is a disjunction of m sentences that are quasi-tautological
in Uc+eq. This quasi-tautology is the starting point of the proof of α in Uc+eq.

Subsequently, we replace the occurences of f1(a, b1), . . . , fk(a, b1, ..., bk)
for sequences of appropriate special constants. For this, we follow the items
7 and 8 in the proof of Herbrand’s theorem.

The result is the disjunction β′1c ∨ ... ∨ β
′
mc, tautological consequence of

instances of identity, equality, special axioms and special equivalence axioms,
having quantifications only for the variables z1, y1, ..., zk, yk.

Let θic be the formula

∃z1∀y1...∃zk∀ykβ[ti, z1, y1, ..., zk, yk],

obtained from βic by the restating the quantifications ∃z1∀y1...∃zk∀yk. The
closed terms in ti are in Uc+eq.

Each disjunction θic implies the corresponding β′ic in Uc+eq, as we have
seen in the first paragraph of item 9 in Herbrand’s theorem proof. To
show this, we use only simple properties of implication, of the quantifiers
∃z1...∃zk and the special axioms used in the replacement of the occurrences

f1(a, b1),...,fk(a, b1, ..., bk) described above. From what we have exposed, it
follows that

Uc+eq ⊢ θ1c ∨ ... ∨ θmc,

without using quantifications over classes.
However, since θ[x] is a prenex form of γ[x]→ α, we have

Uc+eq ⊢ θ[x]↔ (γ[x]→ α),

using only variations of quantifications that occur in γ[x] → α. Therefore,
no quantification for class variables. On the other hand, by the rule of
substitution,
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Uc+eq ⊢ θ[ti]↔ (γ[ti]→ α).

As θ[ti] θic, we conclude, using tautological consequence, that

Uc+eq ⊢ γ[t1] ∧ ... ∧ γ[tm]→ α,

without using quantification for class variables.
On the other hand, γ[x] is the conjunction of axioms in Uc+eq. Each γ[t1]

can be proved in Uc+eq using only tautological consequences and instances of
the substitution rule. Therefore,

Uc+eq ⊢ α,

without using quantification for class variables.
Finally, we observe that any proof of α of U in Uc+eq can be transformed

in a proof in U of the same α, and that this transformation introduces only
quantifications directly related to the special axioms used [5, p. 52]. Since
we haven’t used special axioms for class variables, the result follows.

◻
From this result, we prove by finitary means the equiconsistency result:

Theorem 15 Let α be a sentence with all its quantifiers bounded to sets and
such that NBG ⊢ α. Then, ZF ⊢ α.

Proof. Let α be a sentence with all its quantifiers bounded to sets and
such that NBG ⊢ α. Thus, by theorem 14, there is a proof in U in which no
unbounded quantifications occur. We call this proof sequence Seq.

We make transformations in this proof sequence that preserve tautological
consequences, do not affect α and such that the transformed axioms are
theorems of ZF.

Let x1, x2, . . . , xk be the free variables that occur in Seq. We add the
following initial segment to the proof sequence x1 ∈ V,x2 ∈ V, . . . , xk ∈ V ,
obtaining Seq∗1 .

Next, we apply the transformation ∗ZF in the formulas in Seq∗1 .
Every occurrence

1. cθ = cα, are replaced by ∀y ∈ V (y ∈ cθ ↔ y ∈ cα)

2. cθ ∈ x, are replaced by ∃y ∈ V (y = cθ ∧ y ∈ x)

3. cθ ∈ cα, are replaced by ∃y ∈ V (y = cθ ∧ y ∈ cα)
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4. x = cα, are replaced by ∀y ∈ V (y ∈ x↔ y ∈ cα)

5. x ∈ cθ, are replaced by θ(x)

The successive application of this transformation to Seq∗1 eliminate all
occurrences of cθ, forming the sequence Seq∗2 .

Recall that, for each logical axiom Axiomj in Seq∗1 , we should verify
whether Axiom∗ZF

j is also a logical axiom or a consequence of ZF together
with formulas x1 ∈ V,x2 ∈ V, . . . , xk ∈ V . In the second case, we replace each
axiom Axiom∗ZF

j in Seq∗2 by the proof sequence of Axiom∗ZF
j . Hence, we

obtain Seq∗3 .
We know the following proposition about functors [5, p. 30]:

Proposition 16 A functor ∗ of formulas to formulas satisfies for every for-
mula α and β:

1. (¬α)∗ ¬α∗

2. (α ∨ β)∗ α∗ ∨ β∗

Thus, if δ is tautological consequence of γ1, γ2, . . . , γn, then δ∗ is tautological
consequence of γ∗1 , γ

∗
2 , . . . , γ

∗
n.

Therefore, all transformations described above do not affect the proof
tautologically. However, some instances of the logical axioms may not be
logical axioms after the transformation. We now investigate what happen
with logical axioms in which constants of U occur.

1. Substitution axiom

There is no instance of the substitution θx(c) → ∃xθ in Seq∗1 since
unrestricted quantifications do not occur in the initial proof in U .

2. Identity axiom

Note that (cα = cα)∗
ZF

is ∀y ∈ V (α(y)↔ α(y)). And this last one is a
tautology.

3. Equality axiom

15



(a) If the axiom is of the form x1 = cα ∧ x2 = y2 → x1 ∈ x2 ↔ cα ∈ y2,
then, after the transformation:

(∀z ∈ V (z ∈ x1↔ α(z)) ∧ x2 = y2)

→ (x1 ∈ x2↔ ∃w ∈ V (∀z ∈ V (z ∈ w↔ α(z)) ∧w ∈ y2))

We show that this formula is theorem of ZF and of the formulas
x1 ∈ V,x2 ∈ V, . . . , xk ∈ V .

If we have that ∀z ∈ V (z ∈ x1 ↔ α(z)) ∧ x2 = y2 and we suppose
that x1 ∈ x2, the, by corollary 2 of the identity theorem in [5, p.
36], we obtain

∀z ∈ V (z ∈ x1↔ α(z)) ∧ x1 ∈ y2.

Then, by the substitution axiom in e x1 ∈ V ,

∃x1 ∈ V (∀z ∈ V (z ∈ x1↔ α(z)) ∧ x1 ∈ y2).

Using the variant theorem [5, p. 35],

∃w ∈ V (∀z ∈ V (z ∈ w↔ α(z)) ∧w ∈ y2).

On the other hand, if we suppose that ∃w ∈ V (∀z ∈ V (z ∈ w ↔
α(z)) ∧w ∈ y2), then, since ∀z ∈ V (z ∈ x1 ↔ α(z)) and by exten-
sionality in ZF, we prove that ∃w ∈ V (w = x1 ∧ w ∈ y2). Hence,
we obtain that x1 ∈ y2. As, from hypothesis, x2 = y2, we conclude
that x1 ∈ x2, finalizing the proof.

(b) x1 = y1 ∧ cα = y2 → x1 ∈ cα ↔ y1 ∈ y2. The strategy for item b is
similar to item a.

(c) x1 = y1 ∧ cα = cβ → x1 ∈ cα↔ y1 ∈ cβ. For this case, we obtain from
the transformation:
x1 = y1 ∧ ∀z ∈ V (α(z)↔ β(z))→ α(x1)↔ β(y1).
As x1 and y1 are free variables in the formula, the transformed for-
mula is tautological consequence of ∀x1 ∈ V ∀x2 ∈ V and instances
of identity axioms.

(d) cβ = cα ∧ cγ = y2 → cβ ∈ cγ ↔ cα ∈ y2.

(e) cβ = cα ∧ x2 = y2 → cβ ∈ x2↔ cα ∈ y2.

(f) cβ = cα ∧ cγ = cψ → cβ ∈ cγ ↔ cα ∈ cψ.
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We prove items d, e and f by a simple combination of the strategies
used in a and c.

Let’s now evaluate what occur to the aximos in U after the transformation
∗ZF :

The instances of extensionality, scheme for classes, replacement for classes
and foundations are the only ones we affect by applying ∗ZF (only in those
axioms constants of U occur).

1. Extensionality. We evaluate two cases:

∀y ∈ V (y ∈ x↔ y ∈ cθ)→ x = cθ.

∀y ∈ V (y ∈ cα↔ y ∈ cθ)→ cα = cθ.

After ∗ZF , we have respectively

∀y ∈ V (y ∈ x↔ θ(x))→ ∀y ∈ V (y ∈ x↔ θ(x))

∀y ∈ V (α(x)↔ θ(x))→ ∀y ∈ V (α(x)↔ θ(x)).

Both are tautologies.

2. Scheme for classes. Let v1, v2, . . . , vn be free variables occurring in θ

∀v1v2 . . . vn ∈ V ∀y ∈ V (y ∈ cθ ↔ θ(y))

After ∗ZF , we have

∀v1v2 . . . vn ∈ V ∀y ∈ V (θ(y)↔ θ(y))

And this is a tautology.

3. Replacement for classes.

∀x ∈ V (func(cθ)→ ∃y ∈ V ∀w(w ∈ y↔ ∃v ∈ x((v,w) ∈ cθ)))

becomes

∀x ∈ V (∀v1v2v3 ∈ V (θ(v1, v2) ∧ θ(v1, v3) → v2 = v3) → ∃y ∈ V ∀w1(w1 ∈
y↔ ∃w2 ∈ x(θ(w2,w1))))

Which is precisely the replacement axiom for ZF.

4. Foundation.

(cθ ≠ ∅→ ∃y ∈ V (y ∈ cθ → cθ ∩ y = ∅))

becomes
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∃x ∈ V θ(x)→ ∃y ∈ V (θ(y)→ ∀w(w ∉ y ∨ ¬θ(w)));

We suppose ∃x ∈ V θ(x). Then ⊢ ∃x(x ∈ Va ∧ θ(x)), for some ordinal a.
Let A = {x∣x ∈ Va ∧ θ(x)}, it follows that ZF ⊢ A ≠ ∅. By the axiom of
foundation, ∃y(y ∈ A→ A ∩ y = ∅).

This is equivalent to

∃y(θ(y) ∧ y ∈ Va → ∀w¬(w ∈ y ∧ θ(w) ∧w ∈ Va))

(as w ∈ y → w ∈ Va)

∃y(θ(y) ∧ y ∈ Va → ∀w¬(w ∈ y ∧ θ(w)))

That is, the formula is a theorem of ZF.

When axioms of U occur without constants, they can be understood as
axioms of ZF, since we have added the formulas xi ∈ V .

1. Extensionality ∀y ∈ V (y ∈ x↔ y ∈ z) → x = z, since we have x ∈ V and
z ∈ V , represents extensionality in ZF.

2. The same is true for the axiom of replacement and foundation.

3. The axiom scheme for classes do not occur without constants in U .

Therefore, in the sequence Seq∗3 , we have:

1. formulas of the form x ∈ V ,

2. logical axioms,

3. axioms of ZF,

4. and all others are consequence of logical inferences from previous for-
mulas in the sequence.

This is a proof in ZF. Since no transformation affect α, we have proved
that ZF ⊢ α.

◻

Corollary 17 If there is α such that NBG ⊢ α∧¬α, then there is a procedure
that generate β such that ZF ⊢ β ∧ ¬β.

Proof. If NBG ⊢ α ∧ ¬α, then NBG proves any formula. In particular,
it proves a formula β¬β in which all quantifications are bounded to sets.
Thus, by the theorem, ZF ⊢ β ∧ ¬β. ◻
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4 There is no interpretation of NBG in ZF

Before we prove there is no interpretation os NBG in ZF, we show some
definitions as propositions:

Definition 18 Let V be a model of ZF and M a class V -definable, we say
that the model M = (M, ∈V ) is a V -natural model.

Definition 19 Let M be a model in the language LZF (the only non logical
symbol is membership) and an interpretation I = ⟨U,φ⟩ of LZF in LZF (we
write ∈I for φ(∈)), then we define the model MI = (A, ∈I

M
) em L as

A = {x ∣M ⊧ U(x)} and ∈I
M
= {⟨x, y⟩ ∣M ⊧ U(x) ∧U(y)→ x ∈I y}

From this definition, we can easily prove by induction that:

Proposition 20 Let M be a model in LZF and I = ⟨U, ∈I⟩ be an interpreta-
tion of LZF in LZF , then, for all sentences α

M ⊧ αI ⇐⇒ MI ⊧ α

The following proposition is a strengthening of a result in [?]. They
show that if the existence of a transitive model of ZF is consistent with ZF,
then there cannot be a set-interpretation of ZF in ZF. Here, we replace that
consistency condition for “ZF does not prove the inconsistent sentence for
ZF itself”.

Proposition 21 Let I = ⟨U, ∈I⟩ be an interpretation of ZF in ZF, if ZF ⊢
{x ∣ U(x)} is a set, then ZF ⊢ ¬Con(ZF ).

Proof. Take I as in the proposition and suppose ZF ⊢ {x ∣ U(x)} is a
set.

Let ⌜α⌝ be the Gödel number of the formula α represented in ZF. Since
MI is a set for every M ⊧ ZF , we define recursively the set T for each
M ⊧ ZF :

Notation 22 a([k] = b) is the replacement of the k’th element of the se-
quence a for b.

19



⟨⌜α⌝, a⟩ ∈ T if, and only if, a ∈M I and

(1) if α if atomic of the form xi ∈ xj, ⟨ai, aj⟩ ∈ (∈M
I

)

(2) if α is of the form β ∧ γ ∶ ⟨⌜β⌝, a⟩ ∈ T and ⟨⌜γ⌝, a⟩ ∈ T

(3) if α is of the form ¬β ∶ ⟨⌜β⌝, a⟩ ∉ T

(4) if α is of the form ¬∃xkβ ∶ ⟨⌜β⌝, a([k] = b)⟩ ∈ T for some b ∈M I

By finite induction over the formula complexity, we prove that

M ⊧ ⟨⌜ϕ⌝, a⟩ ∈ T if, and only if, MI ⊧ ϕ(a)

Take PrZF (x, y) to be the provability predicate for ZF defined in ZF
and representing the statement “x is the number of the proof y”. Then,
we say that Th(ZF ) = {y ∣ ∃xPrZF (x, y)}. Hence, since MI ⊧ ZF , M ⊧
Th(ZF ) ⊆ T . As MI ⊭ ∅ ∈ ∅, we have ⌜∅ ∈ ∅⌝ ∉ T . From this, we obtain
M ⊧ ⌜∅ ∈ ∅⌝ ∉ Th(ZF ). Once M is arbitrary, by the completeness theorem,
if ZF has a model, then ZF ⊢ ⌜∅ ∈ ∅⌝ ∉ Th(ZF ). This is an absurd by
Gödel’s incompleteness theorem. Thus, ZF ⊢ ¬Con(ZF ).

◻

Definition 23 Let V be a model of ZF and M a V -natural model. We say
that M reflect a formula ϕ(x) if, and only if, for every a ∈M

V ⊧ ϕ(a) ⇐⇒ M ⊧ ϕ(a)

Theorem 24 [Reflection theorem] [6, p. 168] Let V be a model of ZF e and
φ1, φ2, . . . , φn any sequence of formulas, then, there is an ordinal a such that
M = (Va, ∈) reflect φi for i between 1 and n.

We show that the desired result is a consequence of the reflection theorem
and the fact that NBG is finitely axiomatizable:

Theorem 25 There is no interpretation of NBG in ZF.

Proof.
Suppose there is an interpretation I of NBG in ZF.
Since the number of axioms in NBG can be said to be finite, there is a

formula α that is equivalent to the conjunction of all NBG’s axioms:

α is Axiom1 ∧Axiom2 ∧ . . . ∧Axiomn.
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Thus, NBG ⊢ α and, from the interpretation theorem for first-order logic,
ZF ⊢ αI .

Suppose V ⊧ ZF , then V ⊧ αI . By the reflection theorem, there is an
ordinal a such that Va ⊧ αI . It follows that V I

a ⊧ α.
Since Va is a set, we obtain that the domain in V I

a is also a set.
We define the model V ∗ in LZF :

1. The domain D in V ∗ is such that D = {x ∣ V I
a ⊧ ∃y(x ∈ y)}.

2. The predicate ∈V
∗
= {⟨x, y⟩ ∣ V I

a ⊧ x ∈ y}.

Since NBG proves the restriction to sets of all ZF axioms, we have that
V ∗ ⊧ ZF . Since the domain V I

a is a set, it follows that D is also a set. It
means that ZF ⊢ Con(ZF ), absurd by the incompleteness theorem.

◻
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