
Chapter 7

A New Approach to the Approach

to Equilibrium

Roman Frigg and Charlotte Werndl

Abstract Consider a gas confined to the left half of a container. Then remove the

wall separating the two parts. The gas will start spreading and soon be evenly

distributed over the entire available space. The gas has approached equilibrium.

Why does the gas behave in this way? The canonical answer to this question,

originally proffered by Boltzmann, is that the system has to be ergodic for the

approach to equilibrium to take place. This answer has been criticised on different

grounds and is now widely regarded as flawed. In this paper we argue that these

criticisms have dismissed Boltzmann’s answer too quickly and that something

almost like Boltzmann’s answer is true: the approach to equilibrium takes place if

the system is epsilon-ergodic, i.e. ergodic on the entire accessible phase space

except for a small region of measure epsilon. We introduce epsilon-ergodicity and

argue that relevant systems in statistical mechanics are indeed espsilon-ergodic.

7.1 Introduction

Let us begin with a paradigmatic example. A gas is confined to the left half of a

container by a dividing wall. We now remove the wall, and as a result the gas spreads

uniformly across the entire container. It reaches equilibrium. Thermodynamics (TD),

via its Second Law, regards this process as uniform and irreversible: once the wall is

removed, the entropy increases until it reaches its maximum which it will thereafter
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never leave. Statistical mechanics (SM) tries to understand this manifest macroscopic

behaviour in terms of the dynamics of the micro-constituents of the system.

One might expect SM to provide a justification of the exact laws of TD, in our

case a justification of why systems invariably exhibit monotonic and irreversible

entropy increase. This is asking for too much. In fact we have to rest content with

less in two respects. First, classical Hamiltonian systems are time-reversal invariant

and show Poincaré recurrence; it is therefore impossible for the entropy of such a

system to increase irreversibly: sooner or later the system will move out of

equilibrium again. Thermodynamics is an approximation, which, echoing

Callender’s [1] memorable phrase, we should not take too seriously.1 Instead of

trying to derive irreversible behaviour stricto sensu we should aim to show that

systems in SM exhibit thermodynamic-like behaviour (TD-like behaviour): the

entropy of the evolving system is most of the time close to its maximum value,

from which it exhibits frequent small and rare large fluctuations [3, p. 255]. Second,

the Second Law of TD does not allow for exceptions. However, no statistical theory

can ever justify an exceptionless law. The best one could hope for is to show that

something happens with probability equal to one (but even then zero-probability-

events are not ruled out because zero probability is not impossibility!). But even

that is a tall order since probability zero results are usually unattainable. What we

have to aim for instead is showing that the desired behaviour is very likely [4].
These considerations suggest a new approach to the approach to equilibrium:

rather than trying to derive monotonic and exceptionless entropy increase, we ought

to aim to show that systems in SM are very likely to exhibit TD-like behaviour. The

aim of this paper is to propose a response to this challenge. But before turning to our

proposal, let us briefly comment on a recent approach which offers an explanation

of TD-like behaviour in terms of the notion of typicality (see, for instance, [5]) and

without explicit reference to dynamical properties of the system. In our view, such

an explanation is either flawed or incomplete.2

TD-like behaviour is a dynamical phenomenon. SM is a reductionist enterprise

in that its constitutive assumption is that the behaviour of large systems is deter-

mined by the behaviour of its constituents. In the case of the initial example this

means that the behaviour of the gas is determined by the behaviour of the gas

molecules; that is, the gas spreads because the individual molecules bounce around

in such a way that they fill the space evenly and that their velocities obey the

Maxwell-Boltzmann distribution. So the question is: what kind of motion do

the molecules have to carry out for the gas as a whole to show TD-like behaviour?

The motion of molecules is governed by the laws of mechanics, which we assume

to be the laws of classical Hamiltonian mechanics. What kind of motion a Hamil-

tonian system carries out is determined by the Hamiltonian of the system. The

question then becomes: what dynamical properties does the Hamiltonian have to

possess for the system to show TD-like behaviour?

1 In passing we would like to mention that deriving the exact laws of TD from SM is also not a

requirement for a successful reduction (see 2).
2 For a detailed discussion of this approach see Frigg [6, 7].
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An answer to this question is an essential ingredient of an explanation of the

approach to equilibrium. For one, the only way to deny that the dynamics of

molecules matters is to deny reduction, but this amounts to pulling the rug from

underneath SM altogether. For another, the answer to the question about dynamics

is non-trivial because there are Hamiltonians under which systems do not show TD-

like behaviour (for instance, quadratic Hamiltonians). So we need to know what

properties a Hamiltonian must have for TD-like behaviour to take place. And this

question must be answered in a non-trivial way. Just saying the relevant

Hamiltonians possess the dynamical property of TD-likeness has no explanatory

power—it would be a pseudo-explanation of the vis dormitiva variety. The chal-
lenge is to identify in a non-question-beggingway a dynamical property (or, indeed,

properties) that those Hamiltionians whose flow is TD-like have.

The traditional answer to this question (which can be traced back to Boltzmann)

is that the system has to be ergodic. In recent discussions this answer has fallen out

of favour. After introducing the formalism of Boltzmannian Statistical Mechanics

(Sect. 7.2), we briefly discuss the Boltzmannian justification of TD-like behaviour

along with the criticisms levelled against it (Sect. 7.3). There is indeed a serious

question whether the original proposal is workable (although, rife prejudice not-

withstanding, there is no proof that it fails). For this reason is seems sensible to look

for a less uncertain solution. We point out that to justify TD-like behaviour it

suffices that a system be almost ergodic, where being almost ergodicis is explained

in terms of epsilon-ergodicity (Sect. 7.4). The most important criticism of the

ergodic programme is that relevant systems in SM are, as a matter of fact, not

ergodic. We review the two most powerful arguments for this conclusion—based

on the so-called KAM-Theorem and Markus-Meyer-Theorem, respectively—and

argue that they have no force against epsilon-ergodicity (Sect. 7.5). Not only do

these arguments have no force against epsilon-ergodicty, there are good reasons to

believe that relevant systems in SM are epsilon-ergodic (Sect. 7.6). We end with a

summary of our results (Sect. 7.7).

7.2 Boltzmannian Statistical Mechanics

We consider Boltzmannian SM and set Gibbsian SM aside, and we restrict attention

to gases.3 Furthermore we assume systems to be classical;4 a discussion of quantum

SM can found in Emch and Liu [10].

Consider a system of n particles moving in three-dimensional physical space.

The system’s microstate is specified by a point x in its 6n-dimensional phase

3 The explanation of TD-like behaviour in liquids and solids demands conceptual resources we

cannot discuss here. Let us just mention that an explanation of thermodynamic-like behaviour in

liquids and solids might well differ from an explanation of thermodynamic-like behaviour in

gases. In other words, we see no reason why for systems as different as gases and solids there has to

be one single dynamical property that explains thermodynamic-like behaviour.
4 For a discussion of Gibbsian SM see Frigg [8] and Uffink [9].
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space Г. This space is endowed with the standard Lebesgue measure m. The time

evolution of the system is governed by Hamilton’s equations, and the function sx :
R ! GE; sxðtÞ ¼ ftðxÞ is the solution originating in x. Because the energy is

conserved, the motion of the system is confined to a 6n � 1 dimensional energy

hypersurface ГE, where E is the value of the energy of the system. The measure m is

preserved under the dynamics of the system, and so is its restriction to ГE, mE.
If normalised, mE is a probability measure on ГE. From now on we assume that mE
be normalised. The triple ðGE; mE;ftÞ is a measure-preserving dynamical system,
where ft : GE ! GEðt 2 RÞ is a family a one-to-one measurable mappings such

that ftþs ¼ ftðfsÞ for all t; s 2 R; ftðxÞ is jointly measurable in (x, t), and mEðRÞ ¼
mEðftðRÞÞ for all measurable R � GE and all t 2 R (which is the condition of

measure-preservation).

From a macroscopic perspective the system is characterised by a set of

macrostates Mi, i ¼ 1, . . . , m. To each macrostate corresponds a macro-region GMi

consisting of all x 2 GE for which the system is inMi. The GMi
form a partition of ГE,

meaning that they do not overlap and jointly cover ГE. The Boltzmann entropy of a

macrostateMi is SBðMiÞ :¼ kBlog½mðGMi
Þ� (where kB is the Boltzmann constant), and

the Boltzmann entropy of a system at time t, SBðtÞ, is the entropy of the macrostate of

the system at t: S
B
ðtÞ :¼ S

B
ðMxðtÞÞ, where x(t) is the microstate at t and MxðtÞ is the

macrostate corresponding to x(t) (cf. [11]). The equilibrium state, Meq, and the

macrostate at the beginning of the process, Mp, also referred to as the ‘past state’,

are particularly important. For gases GMeq
is vastly larger (with respect to mE) than

any other macro-region, a fact also known as the ‘dominance of the equilibrium

macrostate’ (we briefly return to this in the conclusion); in fact ГE is almost entirely

taken up by equilibrium microstates (see, for instance, [5], p. 45).5 For this reason

the equilibrium state has maximum entropy. The past state is, by assumption, a

low entropy state. The Boltzmann entropy is the quantity that is expected to show

TD-like behaviour.

7.3 The Ergodic Programme

We now introduce the notion of ergodicity and discuss the problems that attach to it

when used in the context of Boltzmannian SM. The time-average of the phase flow
ft relative to a measurable set A of GE of a solution starting at x 2 GE is

LAðxÞ ¼ lim
t!1

1

t

ðt
0

wAðftðxÞÞdt; (7.1)

5As Lavis [3, pp. 255–258] has pointed out, some care is needed here. Non-equilibrium states can

be degenerate and together can take up a large part of ГE. However, those non-equilibrium states

that occupy most of the non-equilibrium area have close to equilibrium entropy values and so one

can then lump together equilibrium and close-to-equilibrium states and get an ‘equilibrium or

almost equilibrium’ region, which indeed takes up most of ГE. The approach to equilibrium can

then be understood as the approach to this ‘equilibrium or almost equilibrium’ state.
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where the measure on the time axis is the Lebesgue measure and wAðxÞ is the

characteristic function of A: wAðxÞ ¼ 1 for x 2 A and 0 otherwise. Birkhoff [12]

could prove that LAðxÞ exists except for a set of measure zero, i.e., except for a set B
in ГE with mEðBÞ ¼ 0. A system is ergodic (on the energy hypersurface) if and only

if (iff) for all measurable A in GE

LAðxÞ ¼ mEðAÞ (7.2)

for all x 2 GE except for a set of measure zero.

Ergodic systems exhibit TD-like behaviour. Setting A ¼ GMeq
and taking into

account the dominance of the equilibrium macro region, it follows immediately that

almost all initial conditions lie on solutions that spend most the time in equilibrium

and only show relatively short fluctuations away from it (because non-equilibrium

regions are small compared to GMeq
). Therefore, the Boltzmann entropy is maximal

most of the time and fluctuates away from its maximum only occasionally: the

system behaves TD-like.6

In passing we would like mention that neither TD itself, nor TD-like behaviour

as defined above, make any statement about how quickly a system approaches

equilibrium; that is, they remain silent about relaxation times. The same holds true

of ergodicity, which is also silent about how long it takes a system to reach

equilibrium. This is no drawback: it is unlikely that one can say much about the

speed of convergence in general because this will depend on the system under

consideration. However, it is true that many gases approach equilibrium fairly

quickly, and a full justification of the macroscopic behaviour of systems has to

show that the relevant dynamical systems show realistic relaxation times. For want

of space we do not pursue this issue further.

The two main arguments levelled against the ergodic approach are the measure

zero problem and the irrelevancy charge. The measure zero problem is that LAðxÞ ¼
mEðAÞ holds only ‘almost everywhere’, i.e. except, perhaps, for initial conditions of

a set of measure zero. This is seen as a problem because sets of measure zero can be

rather ‘big’ (for instance, the rational numbers have measure zero within the real

numbers) and because sets of measure zero need not be negligible if sets are

compared with respect to properties other than their measures (see, for instance,

[16], pp. 182–188).

What lies in the background of this criticism is the quest for a justification of a

strict version of the Second Law. However, as we have pointed out in the introduc-

tion, this is an impossible goal. At best SM can show that TD-like behaviour is very

likely, and there is no way to rule out that there are initial conditions for which this

is not the case. As long as the probability for this to happen is low, this is no threat to

the programme. In fact, our explanation (in the next section) for why systems

behave TD-like is even more permissive than the traditional ergodic programme:

6We can then interpret mE as a time-average. For a discussion of this interpretation see Frigg [13],

Lavis [14] and Werndl [15].
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it allows for sets of ‘bad’ initial conditions that have finite (yet very small)

measure.7

The second objection, the irrelevancy challenge, is that ergodicity is irrelevant to

SM because real systems are not ergodic. In effect, by appealing to ergodicity we

are like the proverbial fool who searches for his lost wallet underneath the lantern.

This is a serious objection, and the aim of this paper is to develop a response to it.

Our response departs from the observation that less than full-fledged ergodicity is

sufficient to explain why systems behave TD-like most of the time. We introduce

epsilon-ergodicity and then argue that epsilon-ergodicity gives us what we need.

We then revisit the main two arguments for the conclusion that SM systems are not

ergodic and show that they have no force against epsilon-ergodicity (or ergodicity).

7.4 Epsilon-Ergodicity and Thermodynamic-Like Behaviour

Roughly speaking, a system is epsilon-ergodic if it is ergodic on the entire energy

hypersurface except, perhaps, on a set of measure e, where e is very small or zero.8

In order to eventually introduce epsilon-ergodicity, we first define the (different!)

notion of e-ergodicity. The latter captures the idea that a system is ergodic on a set of

measure 1 � e: ðGE; mE;ftÞ is e-ergodic, e 2 R; 0 � e<1, iff there is a set Z � GE,

mðZÞ ¼ e, withftðĜEÞ � ĜE for all t 2 R, where ĜE :¼ GE n Z, such that the system
ðĜE; mĜE

;fĜE
t Þ is ergodic, where mĜE

ð�Þ :¼ mEð�Þ=mEðĜEÞ for any measurable set in

ĜE and fĜE
t is ft restricted to ĜE . Trivially, a 0-ergodic system is simply an ergodic

system. We now say that a dynamical system ðGE; mE;ftÞ is epsilon-ergodic iff there
exists a very small e (i.e. e<<1) for which the system is e-ergodic.

An epsilon-ergodic system ðGE; mE;ftÞ is ergodic on GE n Z, and, therefore, it
shows thermodynamic-like behaviour for the initial conditions in GE n Z. If e is very
small compared to mEðGMp

Þ, then the system will behave TD-like for most initial

conditions (i.e. for all initial conditions except, perhaps, ones that form a set of

measure e).9 If we now interpret mE as a probability density (which we are free to do
because it has the formal properties of a probability measure),10 then it follows that

7 This solution (or rather: dissolution) of the measure zero problem presupposes that the initial

conditions are measured with respect to the Lebesgue measure. Justifying this choice is a well-

known and thorny problem which we cannot address here. In what follows we assume that such a

justification can be given and that the Lebesgue measure is the right measure to use in these cases.
8 Epsilon-ergodicity has been introduced into the foundations of SM by Vranas [17]. However,

Vranas uses it to justify Gibbsian equilibrium theory, while we use it within Boltzmannian SM. For

a discussion of Vranas’ views, see Frigg [8, pp. 149–151].
9 A weaker antecedent still warrants the consequent: mEðGMp

n ZÞ=mEðGMp
Þ has to be close to one.

This is trivially true if mEðZÞ is small compared to mEðGMp
Þ, but it can also be true if mEðZÞ is larger

(but substantial parts of Z come to lie in other macro-regions).
10 For a discussion of how to interpret these probabilities see Frigg and Hoefer [18].
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the system is overwhelmingly likely to behave TD-like. Therefore, we find that if a

system is epsilon-ergodic, then it is overwhelmingly likely to behave TD-like. This

is the sought after result.

7.5 Threats from the Sidelines

This result is relevant only if real systems are actually epsilon-ergodic. In this

section we discuss two general mathematical theorems that are often marshaled

against ergodicity and argue that these arguments are based on a misinterpretation

of the theorems. In the next section we look at some important systems in SM and

provide evidence (both mathematical and numerical) that they are indeed epsilon-

ergodic.

The Kolmogorov-Arnold-Moser theorem (KAM-Theorem). Physically speaking,

a first integral of a dynamical system is constant of motion. Formally, a function G
is a first integral of a dynamical system with Hamiltonian H just in case the Poisson

bracket {H,G} equals zero. A dynamical system with n degrees of freedom is called

integrable (in the sense of Liouville) just in case there are n independent first

integrals Gi which are in involution (the Gi are in involution iff fGi;Gjg ¼ 0 for

all i; j; 1 � i; j � n). Iff a dynamical system is not integrable, it is called

nonintegrable. For an integrable system the energy hypersurface is foliated into

tori, and on each torus there is either periodic motion or quasi-periodic motion with

a specific frequency [19, 20].

The KAM-theorem gives an answer to the question of what happens when an

integrable system is perturbed by a small perturbation which is nonintegrable.

According to the KAM-theorem, under certain conditions,11 there are two kinds

of motion on the hypersurface of constant energy. Namely, first, there is the motion

on tori with sufficiently irrational frequencies; the solutions on these tori behave

like the ones in the integrable case, meaning that there is quasi-periodic motion

(these tori are said to “survive the perturbation”). Second, between the surviving

tori the motion is irregular and unpredictable. As the perturbation decreases, the

measure of the tori which survive the perturbation goes to one. Thus the hypersur-

face of constant energy splits into two regions invariant under the dynamics: the

region where the tori survive and the region where this is not the case; moreover, the

measure of the former goes to one as the perturbation goes to zero. The motion on

the region where the tori survive cannot be ergodic or epsilon-ergodic because the

solutions are confined to tori. Consequently, dynamical systems to which the KAM-

Theorem applies fail to be ergodic, and for a small enough perturbations they also

fail to be epsilon-ergodic (cf. [20]).

11 It is required that (i) one of the frequencies never vanishes, and (ii) that the ratios of the non-

vanishing frequency to the remaining n � 1 frequencies are functionally independent on the entire

energy hypersurface (this means that the ratios depend on the action) [20, pp. 182–183].

7 A New Approach to the Approach to Equilibrium 105

r.p.frigg@lse.ac.uk



This consequence of the KAM-theorem is often taken to show that many, or even

all, systems in SM fail to be ergodic. Consider, for instance, the following

quotations:

[T]he evidence against the applicability [of ergodicity in SM] is strong. The KAM-

Theorem leads one to expect that for systems where the interactions among the molecules

are non-singular, the phase space will contain islands of stability where the flow is non-

ergodic. [21, p. 70]

Actually, demonstrating that the conditions sufficient for the regions of KAM-stability

to exist can only be done for simple cases. But there is strong reason to suspect that the case

of a gas of molecules interacting by typical intermolecular potential forces will meet the

conditions for the KAM result to hold. [. . .] So there is plausible theoretical reason to

believe that more realistic models of typical systems discussed in statistical mechanics will

fail to be ergodic. [16, p. 72]

First appearances notwithstanding, these claims are unfounded. The KAM-

Theorem does not show that gases in SM fail to be ergodic (and hence does not

show that they fail to be epsilon-ergodic). The crucial point, which is often ignored,

is that the KAM-theorem only applies to extremely small perturbations of integrable
systems. For systems in SM it has been found that the largest admissible perturba-

tion parameter rapidly converges toward zero as the number of degrees of freedom

n goes to infinity [22, 23]. Consequently, as Pettini points out, “for large n-systems

– which are dealt with in statistical mechanics – the admissible perturbation

amplitudes for the KAM-theorem to apply drop down to exceedingly tiny values

of no physical meaning” [22, p. 60]. For larger perturbations the surviving tori

disappear and the motion can be epsilon-ergodic or even ergodic. Thus the KAM-

theorem is simply irrelevant because it does not apply to gases in SM.

Moreover, it is at best unclear whether systems in SM can be represented as

integrable systems plus a small perturbation.12 Hamiltonians of that kind are

extremely special. And not only is there no reason to believe that SM systems are

of this special kind; the systems commonly studied in SM are not (as becomes clear

in the next section). Hence, once again, the KAM-Theorem is just irrelevant to the

question of whether or not systems in SM are epsilon-ergodic (or ergodic), and

dismissals of the ergodic approach based on the KAM-Theorem are misguided.

The Markus-Meyer Theorem (MM-Theorem). The MM-theorem is about the

class of infinitely differentiable Hamiltonians on a compact manifold. It says that in

this class nonergodic systems are generic in a topological sense (of first Baire

category) [24]. Furthermore, when studying the proof of the MM-Theorem, one

sees that the proof implies that the set of Hamiltonians which are not epsilon-ergodic

are also generic. Here an ergodic Hamiltonian (epsilon-ergodic Hamiltonian)
(as opposed to a dynamical system) is defined to be a Hamiltonian which is ergodic

(epsilon-ergodic) on the energy hypersurface for a dense set of energy values. So is

the MM-Theorem a threat to the claim that all gases in SM are epsilon-ergodic?

12 Thanks to Pierre Lochack for making us aware of this.
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We do not think so for two reasons. First, the proof of the MM-theorem

shows that those Hamiltonians which are generic are not epsilon-ergodic because

there is exactly one minimum value of the energy (where the motion is a general

elliptic equilibrium point). And for energy values which are arbitrarily close to this

minimum the motion on the energy hypersurface is not epsilon-ergodic. However,

these very low energy values are of no relevance to gases in SM. Either for very low

energy values quantum effects come in, rendering these energy values irrelevant for

SM. Or these low energy values do not correspond to gases but to glasses or solids

[17, 25–28].

Second, the MM-Theorem only holds for compact phase spaces. However, for

systems considered in SM the phase space is usually not compact (see, e.g., [19]).13

The proof of the MM-Theorem cannot be easily transferred to noncompact phase

spaces; but this is exactly what would be needed. For these reasons, also the MM-

Theorem is no threat to the claim that all gases in SM are epsilon-ergodic (or

ergodic).

7.6 Relevant Cases

A different line of attack draws attention to particular systems that fail to be ergodic

and yet behave TD-like, from which it is concluded that ergodicity cannot explain

TD-like behaviour. We will argue that these examples are besides the point and that

there are good reasons to believe that gases in SM are epsilon-ergodic.

Common counterexamples to the ergodic programme are the following. First,

solids show thermodynamic-like behaviour; however, in a solid the molecules

oscillate around fixed positions in a lattice, implying that a state can only access a

small part of the energy hypersurface [9, p. 1017]. Second, a system of n uncoupled
anharmonic oscillators of identical mass shows TD-like behaviour, but it is not

ergodic [29]. Third, the Kac Ring Model is known not to be ergodic, but it still

shows TD-like behaviour (ibid.). Fourth, a system of non-interacting point particles

is not ergodic, yet it is still often studied in SM [30, p. 381].

None of these examples threatens our claim that gases in SM are epsilon-

ergodic. Clearly, solids are not gases and hence can be set aside. Similarly,

uncoupled harmonic oscillators and the Kac-ring model are irrelevant because

they seem to have nothing to do with gases. The properties of ideal gases are

very different from the properties of real gases because there are no collisions in

ideal gases and collisions are essential to the behaviour of gases. So while ideal

gases may be an expedient in certain context, no conclusion about the dynamics of

real gases should be drawn from them. Hence, the well-rehearsed examples do not

establish that there is a gas-like system which behaves TD-like while failing to be

13 The hypersurface of constant energy is usually compact, but the phase space is not, and the

theorem cannot be rephrased as one about the energy hypersurface.
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ergodic.14 We now argue that this is not an artifact of the way the examples have

been chosen; gases do seem to be epsilon-ergodic. We should point out that there

are only few rigorous results about the dynamical properties of gases. Nevertheless,

these, together with the results of some numerical studies, support the hypothesis

that gases in SM are epsilon-ergodic.

The dynamics of a gas is specified by the potential which models the force

between the particles. Two potentials are of particular importance: the Lennard-
Jones potential and the hard-sphere potential. For two particles the Lennard-Jones

potential has the form:

UðrÞ ¼ 4a
r
r

� �12

� r
r

� �6
� �

; (7.3)

where r is the distance between the particles, a corresponds to the depth of the

potential well and r is the distance at which the inter-particle potential is 0. From

this one obtains the potential of the entire system by summing over all two-particle

interactions or by considering only the interactions between the nearest neighbours.

The Lennard-Jones potential is among the most widely-used potentials because it

agrees well with the data about inter-particle forces [31, pp. 236–237, 32,

pp. 502–505].

The hard-sphere potential models the motion of impenetrable spheres of radius R
that bounce off elastically. For two particles the hard-sphere potential is:

UðrÞ ¼ 1 for r < R and 0 otherwise; (7.4)

where r is the distance between the particles. Again, one obtains the potential of the
entire system by summing over all two-particles interactions. The hard-sphere

potential simulates the steep repulsive part of realistic potentials [31, p. 234]. It is

widely used in mathematical as well as numerical studies because it is the simplest

potential.

Let us start by discussing the hard-sphere potential. Boltzmann [33] already

studied this potential and conjectured that hard-sphere systems are ergodic when

the number of balls is large. From a mathematical viewpoint it is easier to study the

movement of particles on a torus rather than the movement of particles in box or in

other containers with walls. For particles moving on a torus there are no walls; it is

like if a ball reappears at the opposite side of the box instead of bouncing off the

wall. Studying the motion of hard-spheres on a torus is important: if anything,

the walls cause the motion to be more random than the motion on a torus (relative to

the trivial invariants of motion; see Chernov [34]). Thus if the motion of hard-

spheres on a torus is ergodic, this provides good evidence that the motion of hard

14However, the case of solids highlights an important issue. Namely that the approach to

equilibrium in solids is an unsolved problem and that this problem deserves more attention than

it has received so far.
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spheres in a box (or other containers) is ergodic. Sinai [35] hypothesised that a

system of N hard-spheres moving on T2 and on T3 is ergodic for all N � 2 where Tm

is the m-torus [36]; this hypothesis became known later as the ‘Boltzmann-Sinai

ergodic hypothesis’. The first step towards proving this hypothesis was made by

Sinai [37], who showed that the motion of two hard spheres on T2 is ergodic.15

Since then several important proofs have been accomplished; taken together, they

add up to an almost complete proof of the Boltzmann-Sinai ergodic hypothesis (and

mathematicians in this field expect that a full proof will be forthcoming soon).

Three results are particularly important. First, Simányi [42] showed that a system of

N hard-spheres moving on Tm is ergodic for all m � N, N � 2. Second, Simányi

[43] proved that a system of N hard spheres moving on Tm is ergodic for all N � 2

and all m � 2 and for almost all values ðM1; . . . ;MN; rÞ, whereMi is the mass of the

i-th ball and r is the radius of the balls.16 Third, Simányi [44] showed that a system

of N hard spheres moving on Tm is ergodic for all N and all m provided that the

Sinai-Chernov Ansatz is true (mathematicians who work in this field widely expect

that the Sinai-Chernov Ansatz holds).17

Obtaining strict mathematical results about the more realistic case of hard-

spheres moving in a box (rather than on a torus) is more difficult. Only few results

have been obtained here. Most importantly, Simányi [45] proved that the system of

two balls moving in an m-dimensional box is ergodic for all m. Numerical studies

suggest that the same result holds true for an arbitrary number of balls. Zheng

et al. [46] found evidence that systems of identical hard-spheres in a two-dimensional

and a three-dimensional box are ergodic. Dellago and Posch [47] studied systems of

a large number of identical hard-spheres in a three-dimensional box, and obtained

numerical evidence that the motion is ergodic.

We now turn to the Lennard-Jones potential, which is much harder to treat

mathematically. Donnay [48] showed that a system of two particles moving on T2

where there is a generalised Lennard-Jones type potential is not ergodic for certain

values of the energy of the system.18 However, this result does not say anything

15All hard-sphere systems which are discussed in this section are not only ergodic but are also

strongly chaotic – they are Bernoulli systems (for a discussion of the meaning of Bernoulli

systems, see [38–41]).
16We are most interested in the case where the system has equal masses. Unfortunately, it is

unknown whether the system is ergodic for equal masses because the proof does not provide an

effective method of checking whether a given ðM1; . . . ;MN ; rÞ is among the values where the

system is ergodic [44, p. 383].
17 Consider @M, the boundary of all possible statesM of the hard-sphere system. Define SRþ as the

set of all states x in dM which correspond to singular reflections with the post-collision velocity v0,
for any arbitrary v0. According to the Chernov-Sinai Ansatz, the forward solution originating from
x is geometrically hyperbolic for almost every x 2 SRþ [44, p. 392].
18 The set of generalised Lennard-Jones potentials consists of potentials of the same general shape

as the Lennard-Jones potential and potentials which share some characteristics with the Lennard-

Jones potential. More specifically, generalised Lennard-Jones potentials as considered by Donnay

are smooth potentials where (a) for large r the potential is attracting, (b) as r goes to zero the
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about the cases of interest in SM, namely systems with a large number of particles.

And there is a general tendency that the larger the number of particles, the more

often systems are ergodic. Important for us is that even if systems with Lennard-

Jones potentials and with a large number of particles should turn out to be non-

ergodic, they are likely to be epsilon-ergodic [49]. Donnay [48, p. 1024] expresses

this as follows:

Even if one could find such examples [generalised Lennard-Jones systems with a large

number of particles that are non-ergodic], the measure of the set of solutions constrained to

lie near the elliptic periodic orbits is likely to be very small. Thus from a practical point of

view, these systems may appear to be ergodic.

Indeed, it is widely believed that Lennard-Jones type systems are epsilon-

ergodic because similar systems are epsilon-ergodic and numerical studies provide

evidence that they are epsilon-ergodic. More specifically, numerical studies of

systems with Lennard-Jones potentials have found that there exists an energy

threshold (a specific value of the energy) such that the system is epsilon-ergodic

for values above the energy threshold and fails to be epsilon-ergodic for values

below the threshold. Whether for energy values below the threshold the system is

really not epsilon-ergodic, or is epsilon-ergodic but appears to be not so because it

needs a very long time to approach equilibrium is still discussed [49–51]. Important

for our purpose is that the energy values below the energy threshold are very low.

This implies that the classical statistical mechanical description breaks down

because quantum effects cannot be ignored any longer [17, 27, 32]. Consequently,

the behaviour of these systems with very low energy values is irrelevant. In

conclusion, there is evidence that gases with a Lennard-Jones potential are epsi-

lon-ergodic for the relevant energy values.

After having discussed the hard-sphere potential and the Lennard-Jones poten-

tial, we want to briefly mention two important results about other potentials of

relevance in SM. First, Donnay and Liverani [52] proved that the motion of two

particles moving on T2 is ergodic for three types of potentials, namely for a general

class of repelling potentials, a general class of attracting potentials, and a class of

potentials with attracting and repelling parts (the latter are called mixed potentials).

Of particular importance here are the mixed potentials because they are everywhere

smooth. Everywhere smooth potentials are regarded as more realistic than

potentials with singularities, and Donnay and Liverani’s [52] mixed potentials

were the first smooth potentials which were proven to lead to ergodic motion.

Second, among the systems with many degrees of freedom which have been most

extensively investigated is the one-dimensional self-gravitating system consisting

of N plane-parallel sheets with uniform density; this system models processes in

plasma physics. Numerical investigations suggest that for N � 11 the system is

potential approaches infinity, and (c) the potential has finite range, i.e., there exists an R>0 such

that UðrÞ ¼ 0 for all r � R ((c) is assumed because it considerably simplifies the mathematical

treatment).
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ergodic [53–55]. To conclude, the mathematical and numerical results provide

evidence for the claim that all gases in SM are epsilon-ergodic.

7.7 Conclusion

This paper aimed to explain why gases exhibit thermodynamic-like behaviour. We

have argued that there is thermodynamic-like behaviour when the system is epsilon-

ergodic, i.e., ergodic on the entire accessible phase space except for a small

region of measure epsilon. Then we have shown that the common objections

against the ergodic approach are misguided and that there are good reasons to

believe that the relevant systems in statistical mechanics are indeed epsilon-ergodic.

Therefore, epsilon-ergodicity seems to be the sought-after explanation of why

gases show thermodynamic-like behaviour. However, our approach presupposes

that the equilibrium macro region is dominant, which can be shown only for gases.

The situation might well be different in liquids and solids. Whether, and if so how,

the current approach generalises to liquids and solids is an open question.
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