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Abstract

Two expressive limitations of an infinitary higher-order modal lan-
guage interpreted on models for higher-order contingentism – the thesis
that it is contingent what propositions, properties and relations there are –
are established: First, the inexpressibility of certain relations, which leads
to the fact that certain model-theoretic existence conditions for relations
cannot equivalently be reformulated in terms of being expressible in such
a language. Second, the inexpressibility of certain modalized cardinality
claims, which shows that in such a language, higher-order contingentists
cannot express what is communicated using various instances of talk of
‘possible things’, such as ‘there are uncountably many possible stars’.

1 Introduction

Part 1 (Fritz and Goodman, 2016) explores several variants of a higher-order
contingentist theory, there called the Fine-Stalnaker view. This paper contin-
ues this exploration, and assumes that the reader is familiar with Part 1, al-
though familiarity with Part 2 (Fritz, forthcoming) is not needed. This third
part is concerned with two questions which arise from expressive limitations of
the infinitary higher-order modal language introduced in Part 1. The first is
the question how to state the Fine-Stalnaker view, continuing the discussion
of this issue started in Part 1. The second is the question what claims about
possible individuals can be expressed if the Fine-Stalnaker view is correct; the
formal results on this issue to be established here serve as central premises in
a philosophical evaluation of higher-order contingentism in Fritz and Goodman
(forthcoming). Before moving on to introducing the philosophical background
to the technical questions to be explored, recall that even though the models
developed in Part 1 are standard possible worlds models, it is not assumed that
necessarily equivalent relations are identical, and that therefore, the quantifiers
of the language to be used are read as implicitly restricted to hereditarily in-
tensional relations, as discussed in Part 1, section 3.4. This qualification will
mostly be left tacit in the following.

⇤Forthcoming in the Journal of Philosophical Logic. The final publication is available at
https://link.springer.com/article/10.1007/s10992-017-9443-0.
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1.1 Stating the Views

The investigation of theories of higher-order contingency in Part 1 starts with
two variants of the Fine-Stalnaker view, called the higher-order closure view
and the qualitative generation view. Formally, the class of closed models C⇥ is
developed, where ⇥ is a parameter which indicates whether a positive or neg-
ative semantics is used. It is argued that this class of models does not capture
the views expressed in the philosophical writings that serve as its motivation.
In the case of closure, this is spelled out formally by showing that the compre-
hension principle ⇥CompFS is not valid on C⇥. In response to this problem,
a more restrictive class of models is introduced which validates ⇥CompFS , but
this class of models turns out to be so restrictive as to rule out models that
are paradigmatic instances of the informal picture-thinking that motivated the
views.

In order to keep the original model theory, one might reject the way the basic
idea underlying the Fine-Stalnaker view was spelled out in terms of automor-
phisms. Instead, one might propose to spell it out by formulating the existence
condition for relations linguistically. The higher-order closure view would then
be cashed out as saying that necessarily, a relation exists if it is expressible in
principle using only existing parameters, and the qualitative generation view
as saying that necessarily, a relation exists if and only if it is expressible in
principle using only generating parameters. (Here, an existing/generating pa-
rameter is an expression which is interpreted as a relation which, in the world
in question, exists/is among the choice of relations from which the higher-order
domains are generated.)

While the notion of expressibility in principle – given certain parameters
– is somewhat unclear, it is not uncommon to find philosophers appeal to it.
E.g., as observed in Stalnaker (2012, p. 61), it is used in explications of the
notion of qualitativeness of relations in Adams (1979, p. 7) and Lewis (1986,
p. 221). Concerning the present issue of formulating a theory of higher-order
contingentism, the idea is discussed in Fine (1977b, section V). Adams, Lewis
and Fine all seem to suggest that expressibility in principle can be understood
as expressibility in a su�ciently rich language, but only Fine is more specific
about what such a language might look like. Fine in fact specifies an infinitary
language very similar to the one used in Part 1, and proves that his semantic
criterion of the existence of relations in terms of automorphisms coincides with
the linguistic criterion of being expressible in his infinitary language using only
generating parameters. Fine’s result is therefore a promising sign for formulating
the higher-order closure and qualitative generation views linguistically.

However, as will be shown here, Fine’s result essentially depends on a ques-
tionable resource to which he avails himself, namely a primitive “outer” first-
order quantifier binding infinite sets of variables, which he writes 9⌃. Understood
primitively, such a quantifier is highly suspect from the point of view of a con-
tingentist. Fine’s explanation of it on p. 161 suggests that it can be understood
as an infinite sequence of possibility operators and existential quantifiers, and
this understanding is supported further by the fact that in other writings on the
subject, Fine explicitly appeals to such embeddings; see Fine (1977a) and Fine
(2003). Infinitary embeddings of this kind are not allowed in the infinitary lan-
guage used in Part 1. The first main result to be established here is that without
these resources of infinitary outer quantification or infinitary embeddings, the
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analogs to Fine’s result fail: In the case of closure, it will be shown that there are
models in which necessarily, every relation expressible in the language of Part 1
using existing parameters exists but which are not closed. This is established in
section 2. It would be relatively straightforward to adapt this result to the case
of qualitative generation, using the extensions of syntax and semantics sketched
in Part 1, section 6.5. For simplicity, the following will consider only the case of
closure. Languages with infinitary embeddings will be discussed in section 4.1.

The condition on models that necessarily, every relation expressible using
existing parameters exists is equivalent to validating the comprehension princi-
ple ⇥CompC , as will be proven in Proposition 2.2. Since ⇥CompC is valid on
C⇥, the result to be proven can be restated as saying that ⇥CompC does not
define the class C⇥, in the sense that it is not the case for every model that
it validates ⇥CompC if and only if it is in C⇥; this results also holds when
only world-selective models are considered. In fact, the way the result is proven
establishes something stronger, namely that no class of sentences defines C⇥
(Corollary 2.15).

These results show that in formulating the higher-order closure and quali-
tative generation views of higher-order contingency, one cannot simply assume
that being expressible in principle can be cashed out as being expressible in
a particular language which provides the required infinitary resources; what is
expressible depends on subtle issues concerning which infinitary resources are
available. Of course, this does not mean that ⇥CompFS (or its analog for gen-
eration), which commits one to the more restrictive model theory of internally
closed or internally generated models, is the only way of formulating a theory
of higher-order contingency in the vicinity of the Fine-Stalnaker view. E.g., one
might hold the view that necessarily, a relation exists just in case all possible
individuals it is about exist.1 However, such a view is a significant departure
from the guiding ideas behind the Fine-Stalnaker view, and in particular from
the reductive ambitions which seem to lie at the heart of Fine (1977b).

1.2 Paraphrase

In Fritz and Goodman (forthcoming), it is argued that claims which seem to be
quantifying over merely possible individuals, such as the claim that there are
possible buildings which have never and will never be built, convey a proposition
other than the one they (literally) express. Such claims are trivially false accord-
ing to the contingentist’s metaphysics but seem to convey something true, so
it is argued that contingentists must provide paraphrases which (literally) ex-
press the proposition these claims convey. In the case just mentioned, this is
easily done by saying that there could have been buildings which actually have
never and will never be built. It is shown there that using even highly infinitary
first-order resources, analogous modalized cardinality claims such as the claim
that most possible people are never born cannot be paraphrased. Whether such
claims can be paraphrased using infinitary higher-order resources is the second
issue of expressivity of this part, which is the topic of section 3.

A positive expressivity result will be sketched and a negative expressivity
result will be proven. The positive result is that assuming first-order contingen-

1This was suggested by Kit Fine (p.c.). As he noted, this proposal also brings the existence
condition for relations more in line with that of the extensional entities treated in Fine (1977b),
but omitted in the present type hierarchy.
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tism but higher-order necessitism, any claim formulated with modalizations of
generalized quantifiers can be paraphrased using the corresponding unmodalized
quantifiers on properties restricted to certain haecceities. The negative result is
that using either the class of closed or internally closed models (whether posi-
tive or negative), the claim that there are at least  many possible individuals,
for a given uncountable cardinality , is inexpressible. Again, the results can
easily be adapted to the cases of generation and internal generation, but the
following focuses on closure for simplicity. On the basis of these results, Fritz
and Goodman (forthcoming) argue against the versions of higher-order contin-
gentism discussed here.

Before proceeding to proving these limitative results in sections 2 and 3,
the main tool for doing so will be defined, namely back and forth systems. In
section 4, some possible extensions of the formal object language are considered
and it is discussed how likely they are to overcome the expressive limitations
discussed here.

1.3 Back and Forth Systems

The central tool in proving the limitative results of this paper are back and forth
systems. Although their definition is somewhat complex, they are straightfor-
ward extensions of well-known definitions; see Fritz (2013, section 2.2) for ref-
erences. It may be of historical interest that back and forth systems for higher-
order logics were in fact defined relatively early; they go back at least to Fräıssé
(1958). As in Fritz (2013), the back and forth systems used here connect worlds
of two models, requiring connected worlds to be isomorphic. Whereas in Fritz
(2013), this was done merely for simplicity, it is essential here, since roughly,
any world can be described up to isomorphism using a sentence of infinitary
higher-order modal logic. Similar to the familiar notion of a bisimulation – see
Blackburn et al. (2001, section 2.2), the only closure condition on back and
forth systems here corresponds to the behaviour of modal operators, e↵ectively
interpreted using an implicit universal accessibility relation on worlds.

Recall that for a function f from a set A to a set B, dom(f) is the domain
of f . im(f) is now written for the image of f , the set {y 2 B : f(x) = y for
some x 2 A}. When convenient, functions are considered as functional relations.
For the rest of the paper, a choice of a signature � and sign ⇥ will tacitly be
assumed.

Definition 1.1. Let M = hW, I,D, V, wi and M0 = hW 0, I 0, D0, V 0, w0i be mod-
els. A partial isomorphism from M to M0 is a tuple h⌧, ⇢i such that

• ⌧ is a partial injection from W to W 0

• ⇢ is a function on types mapping each type t to a bijection ⇢t from Dt
dom(⌧)

to D0t
im(⌧) such that for all v 2 dom(⌧):

– for all types t, ⇢t|Dt
v is a bijection from Dt

v to D0t
⌧(v)

– for all types t̄, for all o 2 Dt
dom(⌧) and ō 2 ⇧inD

ti
dom(⌧), ō 2 o(v) i↵

h⇢ti(oi) : i  ni 2 ⇢t(o)(⌧(v))

• ⌧(w) = w0
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• for all types t and a 2 �(t), ⇢tV (a) = V 0(a)

Let a back and forth system from M to M0 be a non-empty set J of partial
isomorphisms from M to M0 such that for all h⌧, ⇢i 2 J :

• For all v 2 W , there is a h⌧ 0, ⇢0i 2 J such that ⌧ ✓ ⌧ 0 and ⇢t ✓ ⇢0t for all
types t, and v 2 dom(⌧ 0).

• For all v0 2 W 0, there is a h⌧ 0, ⇢0i 2 J such that ⌧ ✓ ⌧ 0 and ⇢t ✓ ⇢0t for
all types t, and v0 2 im(⌧ 0).

Write J : M ⇠=1 M0 for J being a back and forth system from M to M0 and
M ⇠=1 M0 for there being a J such that J : M ⇠=1 M0.

Proposition 1.2. For any models M and M0 of the same signature,

if M ⇠=1 M0 then M ⌘ M0.

Proof. By induction on the complexity of formulas.

2 Expressing Relations

The first task is to make the claim to be proven precise. Focussing on the case
of closure, it will be shown that there are models in which the semantic criterion
of closure comes apart from the syntactic criterion of necessarily containing ev-
ery relation expressible using existing parameters. The next definition therefore
formalizes the latter criterion, calling it expressible closure, using the notion of
a formula expressing a relation introduced in Part 1, Definition 20. (For alter-
native conceptions of expressibility, see Fine (1977b, pp. 162–163). The notion
used here is both natural from a conceptual point of view and useful from a
technical point of view.)

Definition 2.1. Let M = hW, I,D, V, wi be a model and t̄ a sequence of types.
Define any o 2 ◆t̄hW,Ii to be ⇥expressible in v 2 W if there is a formula ' of

L(;), sequence of variables x̄ of types t̄ and assignment a for hW, Ii admissible
for ' such that im(a) ✓ DT

v and o = '(x̄)⇥M,a.

M is expressibly ⇥closed if for all v 2 W , DT
v contains all o 2 ◆ThW,Ii which

are ⇥expressible in v.

As noted above, being expressibly closed is equivalent to verifying CompC :

Proposition 2.2. A model M is expressibly ⇥closed if and only if M ✏ ⇥CompC .

Proof. Immediate.

Since by Part 1, Proposition 8, every ⇥closed model verifies ⇥CompC , it
follows that every ⇥closed model is expressively ⇥closed. It will therefore have
to be shown that some expressively ⇥closed model is not ⇥closed. To do so, a
model will be considered in which there is a set of worlds which share a certain
individual, and a set of worlds which share a di↵erent individual. One of the
two sets of worlds is countably infinite and the other uncountably infinite. Any
automorphism must map any two worlds sharing an individual to worlds sharing
a corresponding individual, so for cardinality reasons, any automorphism must
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map each world of the uncountable set to a world of the same set. Similarly,
any automorphism must map any two worlds with distinct individuals to worlds
with corresponding distinct individuals, so no world of the countable set may be
mapped to a world of the uncountable set. Consequently, every automorphism
maps each of the countable and uncountable sets to itself. Closure therefore
forces the two propositions corresponding to these two sets of worlds to exist at
the distinguished world. However, by letting the individual domain of this world
be empty, the model can be constructed in such a way that these propositions
are not expressible at that world, which yields an expressibly closed model which
is not closed.

The di�cult part of this proof is specifying the higher-order domains of the
model in a way which guarantees that the model is expressibly closed. To do so,
a similar model is first defined in which the two sets of worlds – distinguished
by the individuals the respective worlds share – are both countably infinite; to
ensure that this model is closed, it is constructed by generation. The higher-
order domains of this model are then projected onto the frame of the model
to be constructed using a technique which will now be developed, and called
projective generation. (While this is a highly specific technique, it will also be
useful in section 3.) Projective generation leads to a back and forth system from
the original model to the one which is projectively generated. Since the original
model is generated, it is closed, and therefore verifies ⇥CompC . So by the equiv-
alence of models related by a back and forth system, the projectively generated
model also verifies ⇥CompC , and so by Proposition 2.2 is expressibly closed.
That it is not closed can easily be established by showing that the two propo-
sitions indicated earlier are not in the higher-order domain of the distinguished
world.

2.1 Projective Generation

Projective generation deals only with structures which are determined by their
worlds and the distribution of individuals at the worlds, and in which all worlds
only contain finitely many individuals:

Definition 2.3. Let a finitary individual structure, in short fis, be a structure
S = hW, I,Di such that

(i) for all types t 6= e, Dt
W = ;,

(ii) for all w 2 W , w = De
w, and

(iii) for all w 2 W , De
w is finite.

In the context of fiss, both automorphisms of a structure and partial isomor-
phisms, as used in back and forth systems between models, can be reduced to
partial injections between individuals. The relevant partial injections are singled
out in the following definition:

Definition 2.4. Let S = hW, I,Di and S0 = hW 0, I 0, D0i be fiss and f a
partial injection from I to I 0.

• f respects worlds if for all X ✓ dom(f), X 2 W i↵ {f(x) : x 2 X} 2 W 0.
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• If f respects worlds, let ḟ be the partial function from W to W 0 mapping
each w 2 W such that w ✓ dom(f) to {f(x) : x 2 w}, and f̂ = hḟ , fi.
Note that ḟ is injective.

This definition is slightly sloppy as the relativity to the structures is not
noted, but context will make this clear in all applications below. It will now
be shown how automorphisms of a structure – consisting of a permutation of
worlds and a permutation of individuals – can be reduced to a permutation of
individuals. To state this, recall that if a group G acts on some set X and x 2 X,
Gx is the stabilizer subgroup of x, the set of g 2 G which map x to itself. This
notion is now extended to sets: for any Y ✓ X, write G(Y ) for the point-wise
stabilizer subgroup of Y , the set of g 2 G which map each x 2 Y to itself.

Definition 2.5. Let S = hW, I,Di be an fis and w 2 W . Define:

• auti(S) = {f 2 SI : f respects worlds}

• fixi(S, w) = auti(S)(w)

Lemma 2.6. For any fis S = hW, I,Di and w 2 W , aut(S) = {f̂ : f 2
auti(S)} and fix(S, w) = {f̂ : f 2 fixi(S, w)}.

Proof. Immediate.

For the definition of projective generation, a class of special fiss is further
singled out, inspired by the notion of homogeneity in model theory, as defined,
e.g., in Hodges (1997, p. 160). To define it, let a partial permutation of a set X
be a partial injection from X to X. It should be noted that the present notion
of homogeneity is unrelated to the notion of homogeneity discussed in Fine
(1977b, p. 150); a notion similar to Fine’s notion of homogeneity is discussed in
section 3.2 under the label of being “fully symmetric”.

Definition 2.7. An fis S = hW, I,Di is homogeneous if each finite partial
permutation of I which respects worlds can be extended to a permutation of I
which respects worlds, i.e., an element of auti(S).

Projective generation makes it possible to project the higher-order domains
of a structure generated from a homogeneous fis onto an fis. This will be done
relative to a construction connecting the first to the second fis, which will be
called a projection. Projections can be thought of as back and forth systems
from the first to the second fis which satisfy certain additional conditions. In
the following definition, conditions (i) and (ii) correspond to the conditions on
back and forth systems; condition (iii) encodes the idea that the projection
maps every world of the first fis to a world of the second fis; and condition
(iv) encodes the idea that a projection must cohere with the automorphisms of
the first structure. For condition (iv), partial functions and total functions are
composed just as relations in general; i.e., fg = {hx, zi : there is a y such that
hx, yi 2 g and hy, zi 2 f}.

Definition 2.8. Let S = hW, I,Bi be an homogeneous fis and S0 = hW 0, I 0, B0i
an fis. A projection from S to S0 is a set P of finite partial injections from I
to I 0 which respect worlds such that for all p 2 P :

(i) For all w 2 W , there is a q 2 P such that p ✓ q and w ✓ dom(q).
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(ii) For all w0 2 W 0, there is a q 2 P such that p ✓ q and w0 ✓ im(q).

(iii) For all w 2 dom(ṗ), p|w 2 P .

(iv) For all f 2 auti(S), pf 2 P .

Members of P are called perspectives.

For the rest of this section, assume that S, S0 and P are given as in Def-
inition 2.8. Let ⌦S = hW, I,Di, F = hW, Ii and F0 = hW 0, I 0i. Using P , the
domain assignment of ⌦S will be projected onto F0; this will coincide with S0

for individuals, so one can also think of P as projecting the higher-order domains
of ⌦S onto S0.

The definition to be given simultaneously defines, first, a relation Z, para-
metric to types and perspectives, from D to intensions on F0 and, second, a
domain assignment DP on F 0. The idea behind this definition is to extend
any perspective p to a connection between intensions corresponding to relations
among individuals: An intension o in the domain of ⌦S is connected to an in-
tension o0 on F0 just in case for every perspective q extending p, o and o0 agree
on individuals related by q in worlds related by q. This extension of P can then
be used to define the domains of intensions corresponding to relations among
individuals on F0, including in the domain of a given world v all intensions in
the image of each of the extensions of a perspective restricted to the domain of
the world which it maps to v. Iterating this procedure along the type hierarchy
yields the definitions of Z and DP . Its statement uses the the convention of
writing, for a binary relation R ✓ X ⇥ Y and Z ✓ X, R[Z] for the image of Z
under R, i.e., the set {y : hx, yi 2 R for some x 2 Z}.

Definition 2.9. Define a relation Zt
p ✓ Dt

dom(ṗ)⇥ ◆tF0 for each type t and p 2 P

and a domain assignment DP for F0 by simultaneous induction on types:

t = e: For all p 2 P , Ze
p = p|De

dom(ṗ).

For all v 2 W 0, (DP )ev = B0e
v .

t = t̄: For all p 2 P , o 2 Dt
dom(ṗ) and o0 2 ◆tF0 , oZt

po
0 i↵

(1) DP ⇥ o0 and

(2) for all q 2 P such that p ✓ q, w 2 dom(q̇) and n-tuples ō, ō0 such
that oiZti

q o0i for all i  n, ō 2 o(w) i↵ ō0 2 o0(q̇(w)).

For all v 2 W 0, DP t
v =

S
{Zt

p[D
t
ṗ�1(v)] : p 2 P and v 2 im(ṗ)}.

For brevity, ōZpō0 will be written for the claim that oiZti
p o0i for all i  n. Let

the structure projectively ⇥generated by P be SP = hW 0, I 0, DP i.

This is well-defined since DP only needs to be defined for lower types to
evaluate whether DP ⇥ o0.

It now needs to be shown that Z is well-behaved. The main claim to be
established is that all relations Zt

p are bijections, which is proven in the next
lemma. It turns out to be convenient to prove also, by simultaneous induction,
that if two perspectives agree on the individuals of the generating structure,
their extensions agree on the higher-order domains of that world as well.
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Lemma 2.10. For all types t and p 2 P :

(i) Zt
p is a bijection from Dt

dom(ṗ) to (DP )tim(ṗ).

(ii) For all q 2 P , w 2 W such that w ✓ dom(p \ q) and o 2 Dt
w, Z

t
p(o) =

Zt
q(o).

Since the proof of this lemma is somewhat involved, it is given in Appendix A.
An immediate consequence of this which will be useful several times below is
the following lemma, which says that extending a perspective to relations and
then restricting this to the domain of some world yields the same result as first
restricting the perspective to that world and then extending this to relations:

Lemma 2.11. For any type t, p 2 P and w 2 dom(ṗ), Zt
p|Dt

w = Zt
p|w.

Proof. By condition (iii) of the definition of projections, p|w 2 P . If ho, o0i 2
Zt
p|w, then by Lemma 2.10 (i), there is a v 2 dom(ṗ) such that v 2 W and

o 2 Dt
v. Since v ✓ w, fix(S, w) ✓ fix(S, v), so Dt

v ✓ Dt
w, and thus o 2 Dt

w.
By Lemma 2.10 (ii), Zt

p(o) = Zt
p|w(o), so ho, o0i 2 Zt

p|Dt
w. If ho, o0i 2 Zt

p|Dt
w,

then o 2 Dt
w, so by Lemma 2.10 (i), o 2 dom(Zt

p|w), and so by Lemma 2.10 (ii),

Zt
p(o) = Zt

p|w(o), and therefore ho, o0i 2 Zt
p|w.

Finally, the construction is extended from structures to models. Consider a
model M = hW, I,D, V, wi on ⌦S. The following definition extends the genera-
tion of SP to a model, relative to a perspective, and defines the corresponding
back and forth system between the two models:

Definition 2.12. For any p 2 P such that w ✓ dom(p), let the model projec-
tively ⇥generated from M by P and p be MP

p = hW 0, I 0, DP , V P
p , ṗ(w)i, where

for all t 2 T and a 2 �(t), V P
p (a) = Zt

pV (a).
For every q 2 P , let Zq be the function on types mapping each type t to Zt

q.
Let JP

p = {hq̇, Zqi : q 2 P such that p ✓ q}.

By construction, MP
p is a ⇥model.

Theorem 2.13. JP
p : M ⇠=1 MP

p .

Proof. Since P is non-empty, so is JP
p . Consider any q 2 P ; it will first be shown

that hq̇, Zqi is a partial isomorphism from M to MP
p . Since q respects worlds, q̇

is a partial injection from W to W 0. Let t be a type. By Lemma 2.10, Zt
q is a

bijection fromDt
dom(q̇) toD

0t
im(q̇). Consider any v 2 dom(q̇). By Lemmas 2.10 and

2.11, Zt
q|Dt

v is a bijection from Dt
v to D0t

q̇(v). So let t = t̄ be a type, o 2 Dt
dom(q̇)

and ō 2 ⇧inD
ti
dom(q̇). Using Zt

q both as a relation and function, note that

trivially, ōZqhZti
q (oi) : i  ni, so by construction of Z, ō 2 o(v) i↵ hZti

q (oi) :
i  ni 2 Zt

q(o)(q̇(v)), as required. The last two conditions required for hq̇, Zqi
being a partial isomorphism from M to MP

p likewise follow straightforwardly
from the construction of MP

p and JP
p . By conditions (i) and (ii) of the definition

of projections and Lemma 2.10 (ii), the required closure conditions on JP
p can

be established.
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2.2 Inexpressible Relations

The next result constructs an expressibly closed model which is not closed. The
proof strategy is to construct two fiss, the first containing a countable set of
worlds sharing some individual and another countable set sharing another indi-
vidual, and the second containing a countable set sharing some individual and
an uncountable set sharing another individual. Since in fiss, worlds are deter-
mined by their individual domains, each world will be given a unique additional
individual. More concretely, the following proof will use unordered pairs of ordi-
nals as individual domains: In both fiss, there is a countable set of worlds of the
form {0,�}, with 0 < � < !. In the first fis, there is another countable set of
worlds of the form {!, �}, with ! < � < !2 (= ! + !). In the second fis, there
is an uncountable set of worlds of the form {!, �}, with ! < � < !1 (the first
uncountable ordinal). Each fis is completed by the addition of an empty world.
From a model based on a structure generated from the first, countable, fis,
a model will be projectively generated on the second, uncountable, fis. With
these constructions, the proof idea outlined at the beginning of this section can
be completed. In particular, at the empty world in the countable model, neither
proposition corresponding to one of the countable sets sharing one individual (0
or !) will exist, since various automorphisms map one to the other. So as the
uncountable model is constructed via the projection just sketched, neither the
proposition of worlds containing 0 nor the proposition of worlds containing !
will exist at the empty world. Thus this model cannot be closed, since for car-
dinality reasons, no automorphism can map a world of the former proposition
to a world of the latter proposition.

Theorem 2.14. There is a world-selective ⇥model which is expressibly ⇥closed
but not ⇥closed.

Proof. For any ordinal ↵ > !, let

W↵
2 = {;, {0,�}, {!, �} : 0 < � < ! < � < ↵},

and let S↵
2 be the unique fis determined by W↵

2 and ↵. Let P be the set of
partial injections p from !2 to !1 with finite domains satisfying the following
two conditions:

• For all � 2 dom(p), � 2 {0,!} i↵ p(�) 2 {0,!}.

• For all �, � 2 dom(p), (� < ! i↵ p(�) < !) i↵ (� < ! i↵ p(�) < !).

It is routine to verify that P is a projection from S!2
2 to S!1

2 . Let M be a model
based on ⌦S!2

2 with distinguished world ;, and MP
; the model projectively

⇥generated from M by P and ;.
To see that MP

; is world-selective, consider any v 2 W!1
2 . By conditions (ii)

and (iii) of the definition of projections, there is a p 2 P such that im(p) = v.

By the construction of SP , it su�ces to show that dom(p)hihW!2
2 ,!2iZ

hi
p vhihW!1

2 ,!1i
,

which is routine. As noted above, MP
; is a ⇥model by construction.

To see that MP
; is expressibly ⇥closed, note that since M is ⇥closed, M ✏

⇥CompC , and so by Theorem 2.13 and Proposition 1.2, MP
; ✏ ⇥CompC . That

MP
; is expressively ⇥closed follows with Proposition 2.2.
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It remains to show that MP
; is not ⇥closed. Let D and DP be the domain

assignments of M and MP
; , respectively. Assume for contradiction that MP

; is

closed. Then o0 = {0,� : 0 < � < !}hihW!1
2 ,!1i

2 (DP )hi; . Hence by construction

of DP , there must be a p 2 P and o 2 Dhi
; such that oZhi

p o0. With condition

(iii) of the definition of projections and Lemma 2.10, it follows that oZhi
; o0. But

this conflicts with condition (2) of the definition of Z.  .

In this proof, two models verifying ⇥CompC are used, only one of which is
⇥closed. It follows that ⇥CompC does not define C⇥. Moreover, the two models
satisfy the same sentences, so no class of sentences defines C⇥, and since both
models are world-selective, they lead to the following corollary:

Corollary 2.15. C⇥ is undefinable relative to the class of world-selective mod-
els. I.e., there is no class of sentences � such that a world-selective model M is
in C⇥ if and only if M ✏ �.

Above, it was suggested that the results obtained in this section show that
expressibility in principle cannot be cashed out in terms of expressibility in the
infinitary higher-order modal language used here. One may wonder whether one
could instead claim that in the relevant models, the relevant propositions are
simply not expressible in principle, and so that it is the automorphism-theoretic
condition which fails to capture expressibility in principle, rather than the con-
dition of being expressible in infinitary higher-order modal logic. However, there
is an intuitive sense in which the relevant propositions are expressible in prin-
ciple: In the above model, it is plausible to think that the relevant uncountable
proposition is conveyed (although maybe not literally expressed) by the sentence
“There is something which could have co-existed, pairwise, with uncountably
many possible individuals”. What can be conveyed with this kind of loose talk
seems to be expressible in principle as well. This observation also illustrates
how the expressive limitations of this section are connected to the expressive
limitations in the next section, where it will be shown that there is no way
of paraphrasing claims which state that there are uncountably many possible
individuals satisfying a given condition.

3 Expressing Modalized Cardinality Claims

Consider now what can be expressed given various theories of higher-order con-
tingency. As argued in Fritz and Goodman (forthcoming), the relevant distinc-
tions which are in need of being expressed relative to a certain theory of higher-
order contingentism can be identified, at least for present purposes, with classes
of models. Given a certain theory of higher-order contingency formalized using
a class of models X, a claim, understood as the subclass Y of X in which it is
true, is then expressible in a given language just in case there is a sentence in
this language which is true in a model in X if and only if it is in Y .

3.1 Expressivity via Haecceities

Recall the definition of existential and universal outer quantifiers in Part 1,
section 5.3. Analogous to these defined outer quantifiers one can consider prim-
itive generalized quantifiers which operate on the outer domain of models (see
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Fritz (2013) for this and other features of generalized quantifiers appealed to
below). It will be shown how, assuming higher-order necessitism, such general-
ized quantifiers can always be eliminated in favour of the corresponding (inner)
generalized quantifiers over properties, restricted to certain haecceities. Since
the main focus of this paper is on the expressive limitations of higher-order con-
tingentism, these constructions witnessing the expressive power of higher-order
necessitism will only be sketched.

Higher-order necessitism will here be understood as formalized using the
class of models in which necessarily, all relations exist which are compatible
with the being constraint or its positive weakening; call these full models. Let
Q be a generalized quantifier which binds a sequence of sequences of variables
¯̄x and operates on a sequence of formulas '̄ to yield a sentence of the form
Q¯̄x'̄. Assume first that the relativization of Q, written Qrel, is definable in
infinitary higher-order non-modal logic, in the sense that there is a formula
 without occurrences of ⇤ or non-logical constants and with free variables
X,Y1, . . . , Yn such that 8XY1 . . . Yn( $ Qrelx¯̄y(Xx, Y1ȳ1, . . . , Ynȳn)) is true
in all full models. In this case, the outer quantifier corresponding to Q can be
expressed by turning ' into a condition on haecceities instead of individuals.

To make this strategy precise, define first a mapping ·+ on types, mapping
e to hei and every complex type ht1, . . . , tni to ht+1 , . . . , t+n i. Extend this to a
mapping on non-modal formulas without non-logical constants which replaces
every variable Xt by X(t+) and = by

hi⇠. Define further what it is to be a
haecceity of a possible individual (h), what it is for a property of haecceities
to contain a haecceity for every possible individual (ch), and what it is for a
relation among haecceities to relate exactly those haecceities of a given choice of
representations which single out individuals which satisfy a given open formula
(hmap):

h(Xhei, xe) := ⇤8ye⇤(Xy $ (x = y ^ 9ze(z = x)))

ch(Xhheii) := 8Y hei(XY ! ⌃xeh(Y, x)) ^⇧xe9Y hei(XY ^ h(Y, x))

hmap(Xhheii, Y hein ,', x̄e) := 8Z̄hei⇧x̄e(
V

i<n(XZi ^ h(Zi, xi)) ! (Y Z̄ $ '))

Then the outer quantifier corresponding to Q can be expressed as follows:

Q⇤ ¯̄xe'̄ := 8XhheiiY heik1

1 . . . Y heikn

n ((ch(X) ^
V

i<n hmap(X,Yi,'i, x̄i)) !  +)

What about generalized quantifiers which cannot be defined as assumed for
Q? Given the construction just sketched, one might assume that such quanti-
fiers can at least be dealt with if the corresponding restricted quantifier among
properties of individuals is added as a primitive logical constant (Qrel)hei. In-
deed, this is so, but there is a subtlety to be noted. Since quantifiers in the
language used here are implicitly restricted to hereditarily intensional entities,
ch does not single out properties of haecceities which apply to a single haecceity
for each possible individual, but all such haecceities. Above, this was no prob-
lem, since all higher-order quantifiers in the defining formula  were restricted to
hereditarily intensional relations. But the primitive generalized quantifier among
properties of individuals cannot be assumed to only be sensitive to hereditarily
intensional distinctions. Thus, the constraint expressed by ch has to be aug-
mented by the condition that for each possible individual, the relevant choice
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of haecceities applies to only one of its haecceities. This requires predicating
identity of haecceities, which is not possible in the restricted language. To do
so, the unrestricted language of Part 1, section 3.4 is needed, where Xhei = Y hei

can be read as abbreviating 8UZhheii(ZX $ ZY ):

U(Xhheii) := 8Y heiZhei((XY ^XZ ^ ⌃xe(h(Y, x) ^ h(Z, x)) ! Y = Z)

Similarly, X must now be bound by a universal quantifier which is not re-
stricted to hereditarily intensional relations. Otherwise the paraphrase strategy
can be carried out as expected:

Q† ¯̄xe'̄ := 8UXhheiiY heik1

1 . . . Y heikn

n ((ch(X)^U(X)^
V

i<n hmap(X,Yi,'i, x̄i)) !
(Qrel)heiZhei ¯̄Zhei(XZ, Y1Z̄1, . . . , YnZ̄n))

3.2 FFISs and Bi-Projections

To show that analogous paraphrase strategies are not available given higher-
order contingentism, as formalized using the classes of models developed in
Part 1, the technique of projective generation is refined and used to construct
back and forth systems between closed models. First, even stronger constraints
will be imposed on fis, forcing them to be fully symmetric in the sense of
admitting each permutation of individuals as an automorphism:

Definition 3.1. An fis S = hW, I,Di is fully symmetric if auti(S) = SI . ffis
will be used to abbreviate finitary fully symmetric individual structure.

Note that every fully symmetric fis is trivially homogeneous. One important
feature of ffiss is that for purposes of generation, attention can be restricted to
permutations with finite support, as will now be shown. (Recall that the support
of a permutation is the set of elements it does not map to itself.)

Definition 3.2. Let S = hW, I,Di be an fis and w 2 W . Define:

• auti!(S) = {f 2 auti(S) : supp(f) is finite}

• fixi!(S, w) = {f 2 fixi(S, w) : supp(f) is finite}

Lemma 3.3. Let S be an ffis and ⌦S = hW, I,Di. Then for all types t 6= e,
w 2 W and o 2 ◆thW,Ii, o 2 Dt

w i↵ D ⇥ o and f̂ .o = o for all f 2 fixi!(S, w).

Proof. The left-to-right direction is immediate. For the right-to-left direction,
assume o /2 Dt

w and D⇥o. Then there is an f 2 fixi(S, w) and f̂ .o 6= o. So there
are v 2 W , v̄ 2 Wn and ō 2 ⇧inDti

vi such that not f̂ .ō 2 o(f̂ .v) i↵ ō 2 o(v).

Let X =
S
{v, v0, . . . , vn�1, w}. Since S is a ffis, there is a g 2 fixi!(S, w)

such that f |X = g|X and supp(g) is finite. Then ĝ.v = f̂ .v; similarly ĝ.v̄ = f̂ .v̄
from which it is straightforward to derive that ĝ.ō = f̂ .ō. So not ĝ.ō 2 o(ĝ.v) i↵
ō 2 o(v), and thus ĝ.o 6= o.

To be able to use projections to construct back and forth systems between
closed models, it will be shown that if a projection from one ffis to another is
such that its inverse (the set of inverses of its perspectives) is a projection as
well, then the structure it projectively generates is the structure generated by
the second ffis:
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Definition 3.4. A projection P from an fis S to an fis S0 is a bi-projection
if P�1 = {p�1 : p 2 P} is a projection from S0 to S.

Theorem 3.5. If S and S0 are ffiss and P is a bi-projection from S to S0,
then ⌦S0 is the structure projectively generated by P .

As it is somewhat complex, the proof is given in Appendix B. The condition
of being a ffis used here is of course extremely strong. This is mainly since it
is simple and the structures which will be used below satisfy it, but the results
of this section could very likely be proven on weaker assumptions.

3.3 Inexpressibility of Cardinality Claims

To show that various claims concerning the cardinality of possible individuals
are not expressible over closed and internally closed structures, for every infi-
nite cardinality , a highly symmetric structure with  individuals in the outer
domain will be defined. To do so, an fis will be defined on a set of cardinality
, taking its finite subsets as the worlds. Such structures are clearly ffis, and
the structures they generate turn out to be internally closed. Moreover, any
two such ffis can be related by a bi-projection, and the models based on the
structures they generate can be connected by a back and forth system, which
makes it possible to show that no distinctions among infinite cardinalities of
possible individuals can be drawn on internally closed, and so in particular also
on closed, models. For further philosophical discussion of these models, see Fritz
and Goodman (forthcoming, section 3.4). To define these models, write X ✓! Y
for X being a finite subset of Y .

Definition 3.6. For any set X, let WX
! = {Y : Y ✓! X}, FX

! =
⌦
WX

! , X
↵

and SX
! the unique fis determined by WX

! and X. Let MX
! be the model for

the empty signature based on ⌦SX
! with distinguished world ;.

Lemma 3.7. For any infinite set X, ⌦SX
! is internally ⇥closed.

Proof. Let SX
! =

⌦
WX

! , X,B
↵
and ⌦SX

! =
⌦
WX

! , X,D
↵
. Consider any w 2

WX
! , type t 6= e and o 2 ◆tFX

!
. By Part 1, Proposition 16, it su�ces to show that

o 2 Dt
w i↵ D ⇥ o and ⇠.o = o for all ⇠ 2 fix(⌦SX

! , w)|c ⌦SX
! . Since ⌦SX

! is a
⇥structure, if o 2 Dt

w then D ⇥ o, so the left to right direction is immediate.
So assume that o /2 Dt

w and D⇥ o. By Lemma 3.3, there is an f 2 fixi!(S
X
! , w)

such that f̂ .o 6= o. It only remains to show that f̂ 2 fix(⌦SX
! , w)|c ⌦SX

! .
Since f 2 fixi!(S

X
! , w), f̂ 2 fix(SX

! , w), and so by Part 1, Lemma 3 (ii),
f̂ 2 fix(⌦SX

! , w). Also, since f 2 fixi!(S
X
! , w), supp(f) is finite, and therefore

supp(f) 2 WX
! . Define fc 2 ◆he,eiFX

!
and ḟc 2 ◆hhi,hiiFX

!
such that for all v 2 WX

! :

fc(v) =

(
{hx, f(x)i : x 2 v} if supp(f) ✓ v

; otherwise

ḟc(v) =

(nD
uhi
FX

!
, ḟ(u)hiFX

!

E
: u ✓ v

o
if supp(f) ✓ v

; otherwise

Using the fact that g.f = f for any g 2 fixi!(S
X
! , supp(f)), it is routine to show

that fc 2 Dhe,ei
supp(f) and ḟc 2 Dhhi,hii

supp(f).
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Theorem 3.8. For any infinite sets X and Y , MX
!

⇠=! MY
! .

Proof. Let P be the set of partial injections from X to Y with finite domains.
It is straightforward to see that P is a bi-projection from SX

! to SY
! . So by

Theorem 2.13, JP
; : MX

!
⇠=! MP

; , where JP
; and MP

; are defined as above. By
Theorem 3.5, MP

; is based on ⌦SP
! , so MP

; = MY
! , hence J

P
; : MX

!
⇠=! MY

! .

Theorem 3.9. For any uncountable cardinality , there is no class of sentences
� such that for every internally ⇥closed model M = hW, I,D, V, wi, M ✏ � if
and only if

��S
w2W De

w

�� � .

Proof. Using Lemma 3.7, Theorem 3.8 and Proposition 1.2.

4 Extending the Language

In response to the expressive limitations seen above, one might suggest to enrich
the language used there. One natural suggestion would be to lift the restriction
of higher-order quantifiers to hereditarily intensional relations. This won’t be
considered in the following, simply because many aspects of the behaviour of
higher-order modal logic are unclear without this restriction unless one makes
the controversial assumption that the restriction is vacuous, in which case it
is uninteresting to lift it. Similarly, adding hyperintensional operators as log-
ical constants won’t be considered. See Fritz and Goodman (forthcoming) for
arguments that such resources are unpromising to deal with the problem of ex-
pressing modalized cardinality claims. Instead, this section considers two kinds
of infinitary resources.

4.1 Non-well-founded Languages

Although the language L used here allows conjunctions of infinite sets of for-
mulas and quantifiers binding infinite sets of variables, it is defined in the usual
recursive manner. Consequently, although a node in a syntax tree of one of its
formulas may have infinitely many immediate successors, this tree may not con-
tain a path, following the successor relation, of infinite length. That is, such a
tree may be infinitely branching, but it may not have infinite branches. This
is equivalent to the condition that the subformula relation among formulas is
well-founded, and in this sense, L may be called a well-founded language.

Since in such languages, formulas cannot contain infinite branches, every
subformula is in the scope of only a finite number of modal operators. Therefore,
in evaluating a sentence, a subformula will only be evaluated relative to an
assignment which maps its free variables to parameters from a finite number of
worlds. In this sense, it is impossible to say anything in these languages which
requires comparing parameters from an infinite number of worlds; it is exactly
this feature which both of the limitative results proven here exploit. In fact,
it seems likely that an abstract characterization of the class of well-founded
languages in which ⇤ is the only non-extensional operator can be given, and
that both of the limitative theorems can be extended to any such language.

It is therefore natural to consider non-well-founded languages. As noted
above, this is exactly what Fine does in appealing to languages in which infinite
embeddings of operators are allowed. To evaluate the use of such languages, two
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questions have to be considered: first, whether they are in good standing, and
second, whether they overcome the expressive limitations discussed here.

While Fine does not provide a formal syntax or a model-theoretic semantics
for such a language, this is done in Leuenberger (2006) and Fritz and Good-
man (forthcoming), building on Hintikka and Rantala (1976). Formally, these
languages are therefore in good standing. But they may still be philosophically
problematic, and arguments to this e↵ect are given in Williamson (2013, sec-
tion 7).

Consider the question whether non-well-founded languages overcome the ex-
pressive limitations discussed here. Concerning the first issue of expressing the
higher-order closure and qualitative generation view, it follows from results in
Fine (1977b) that allowing infinite embeddings of operators su�ces to establish
the equivalence of the semantic and the linguistic existence criteria in Fine’s
formal setting. Given the details of his proof, it is not to be expected that the
formal di↵erences between this and the present setting will a↵ect the result,
and it is therefore to be expected that the analog of Theorem 2.14 or a similar
result for generation do not hold for an extension of the language by infinitary
embeddings. However, such a positive result would crucially rely on the fact that
since models are based on sets, there are guaranteed to be formulas containing
as many variables as individuals, which is arguably an artifact of the model
theory; see the discussion in Fritz and Goodman (forthcoming, section 2.3). It
is therefore doubtful whether the non-well-founded languages considered here
address the first expressive limitation in a satisfactory way.

Consider now the case of paraphrasing claims formulated using modalized
generalized quantifiers. As shown in Fritz and Goodman (forthcoming), infini-
tary embeddings su�ce to paraphrase any claim formulated using modalized
cardinality quantifiers (i.e., “there are  many possible 's”, for any cardinality
), using only first-order quantifiers. But it is also shown there that in a first-
order language with such infinitary resources, claims of the form “most possible
's are possible  s” cannot be paraphrased. Can this be done if such a language
is extended by higher-order quantifiers and interpreted over (internally) closed
structures?

I conjecture that this is not the case: Even though for every cardinality ,
there are sentences in such a language which “collect and compare” possible
individuals from  worlds, every particular sentence of such a language is itself
a member of the set-theoretic hierarchy, and so can only “collect and compare”
possible individuals from collections of worlds up to some particular cardinality.
For a generalized quantifier like “most”, no particular cardinality su�ces, and
there are always countermodels to a proposed paraphrase using su�ciently large
models. While I won’t attempt to do so here, I conjecture that this rough idea
can be turned into a rigorous proof by combining the model-construction idea
of section 3.3 with the syntactic approach of Fritz and Goodman (forthcoming,
Appendix A.4). If this is right, then even on set-sized models, which introduce
the arguably unrealistic artifact that formulas can contain as many variables as
there are individuals, infinitary embeddings don’t su�ce to paraphrase “most
possible 's are possible  s”.
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4.2 Transfinite Types

As noted in Fine (1977b, p. 144), there are two dimensions along which the fini-
tary type hierarchy explored here can be extended to admit transfinite types.
On the one hand, one might extend the recursive definition of types by allowing
relational types of arbitrary arity. On the other hand, one might admit cumu-
lative types by adding in the recursive definition of types that each set of types
T 0 is a type as well, understanding an entity to be of type T 0 just in case it is
of a type which is a member of T 0. Conceptually, the former extension is much
more natural, and the following therefore concentrates on this extension. It is
important to note that extending the type hierarchy not only extends the formal
language, but also the semantic structures on which they are interpreted.

Working in a positive setting, consider the following further extension of the
language: For every sequence of types t̄, add a logical constant ⇡ of type ht̄, t̄i,
which expresses hereditary intensional equivalence, and a � operator binding a
sequence of variables of types t̄, where �v̄' is an expression of type t̄ interpreted
as the intension expressed by ', abstracted over v̄.

With these additional resources, Fine’s infinitary outer quantifier is defin-
able: letting whi be the true world proposition (see Part 1, section 5.3), the
universal outer quantification ⇧v̄' is true if and only if at(w,') and >, ab-
stracted over v̄, are hereditarily intensionally equivalent:

⇧v̄' := 9whi(world(w) ^ w ^ (�v̄at(w,') ⇡ �v̄>))

This makes it possible to express infinitary outer quantification without ap-
pealing to the potentially problematic resources of non-well-founded languages
discussed above. But as noted there, it is not clear that this will overcome either
of the expressive limitations discussed here, likely leaving the higher-order con-
tingentist unable to express their own view by cashing out talk of expressibility
in principle by appealing to a particular infinitary language, as well as unable
to express claims about most possible individuals.

A Appendix on Projective Generation

In this appendix, Lemma 2.10 is proven. To do so, two subsidiary lemmas are
established.

Lemma A.1. Let S = hW, I,Di be an homogeneous fis, S0 = hW 0, I 0, D0i an
fis and P a projection from S to S0. For all p, q 2 P , there are p0 2 P and
f 2 auti(S)(dom(p\q)) such that p ✓ p0 and q ✓ p0f .

Proof. By condition (ii) of projections, there is a p0 2 P such that p ✓ p0 and
im(q) ✓ im(p0). Let f be the partial function from I to I mapping every x 2
dom(q) to p0�1q(x). It is routine to show that f is a finite partial permutation of
I which respects worlds. Since S is homogeneous, there is an f 0 2 auti(S) such
that f ✓ f 0. It is routine to show that f 0 2 auti(S)(dom(p\q)) and q ✓ p0f 0.

Lemma A.2. For any type t, o 2 Dt
W , o0 2 ◆tF0 , p 2 P and f 2 auti(S), if

oZt
po

0 then f̂ .oZt
pf�1o0.

Proof. By induction on types. For t = e, note that if oZe
po

0, then p(o) = o0,

so pf�1f(o) = o, whence f̂ .oZe
pf�1o0. Let t = t̄. To show that f̂ .oZt

pf�1o0, note
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that condition (1) follows from oZt
po

0. For condition (2), consider any q 2 P such

that pf�1 ✓ q, v 2 dom(q̇), v̄ 2 dom(q̇)n, ō 2 ⇧inDti
vi , and ō0 2 ⇧in◆

ti
hW 0,I0i

such that ōZq ō0. It will be shown that ō 2 f̂ .o(v) i↵ ō0 2 o0(q̇(v)). By induction

hypothesis, it follows from ōZq ō0 that f̂�1.ōZqf ō0. Note also that p ✓ qf (for
any o 2 dom(p), p(o) = pf�1f(o) = qf(o)). Thus it follows from oZt

po
0 that

f̂�1.ō 2 o(f̂�1.v) i↵ ō0 2 o0(q̇(v)). Since ō 2 f̂ .o(v) i↵ f̂�1.ō 2 o(f̂�1.v), the
desired equivalence follows.

Lemma 2.10 can now be proven, which claims that for all types t and p 2 P :

(i) Zt
p is a bijection from Dt

dom(ṗ) to (DP )tim(ṗ).

(ii) For all q 2 P , w 2 W such that w ✓ dom(p\q) and o 2 Dt
w, Z

t
p(o) = Zt

q(o).

Proof of Lemma 2.10. By induction on types. The case of t = e is trivial for
both (i) and (ii). So consider any type t = t̄ and p 2 P . (i) will be established
first:

Claim 1: Zt
p is functional. Proof. Consider any o 2 Dt

dom(ṗ) and o0, o00 2
(DP )tim(ṗ) such that oZt

po
0 and oZt

po
00. Let v 2 W 0; it will be shown that o0(v) ✓

o00(v) (the other direction follows by symmetry). So consider any ō0 2 o0(v).
Since DP ⇥ o0, there are v̄ 2 W 0n such that ō0 2 ⇧in(DP )tivi . By condition
(ii) of the definition of projections, there is a q 2 P such that p ✓ q and
v, v1, . . . , vn 2 im(q̇). By induction hypothesis (i), there are ō 2 ⇧inD

ti
dom(q̇)

such that ōZq ō0. So it follows from oZt
po

0 that ō 2 o(q̇�1(v)), and therefore with
oZt

po
00 that ō0 2 o00(v).X

Claim 2: Zt
p is total. Proof. Consider any o 2 Dt

dom(ṗ). Define o0 2 ◆tF0

such that for all v 2 W 0, o0(v) is the set of ō0 2 ⇧in(DP )tiW 0 (if ⇥ = +) /
ō0 2 ⇧in(DP )tiv (if ⇥ = �) such that there is a q 2 P such that p ✓ q and
v ✓ im(q), and n-tuple ō such that ōZq ō0 and ō 2 o(q̇�1(v0)). It will be shown
that oZt

po
0. DP ⇥ o0 is immediate by construction. So consider any q 2 P such

that p ✓ q, w 2 dom(q̇) and n-tuples ō, ō0 such that ōZq ō0. It will be proven
that ō 2 o(w) i↵ ō0 2 o0(q̇(w)). By construction of o0, the latter follows from the
former. So assume that ō0 2 o0(q̇(w)). Then by construction of o0, there is an
r 2 P such that p ✓ r and q̇(w) ✓ im(r), and n-tuple ō⇤ such that ō⇤Zrō0 and
ō⇤ 2 o(ṙ�1q̇(w)). By Lemma A.1, there are q0, r0 2 P such that q ✓ q0, r ✓ r0 and
an f 2 auti(S)(dom(p)) such that q0f = r0. By induction hypothesis (ii), ōZq0 ō0

and ō⇤Zr0 ō0. Thus ō⇤Zq0f ō0, and so with Lemma A.2, f̂ .ō⇤Zq0 ō0. By induction

hypothesis (i), Zti
q0 is a bijection, for each i  n, so f̂ .ō⇤ = ō. Thus from the fact

that ō⇤ 2 o(ṙ�1q̇(w)), we obtain ō 2 f̂ .o(f̂ .ṙ�1q̇(w)). Since f 2 auti(S)(dom(p))

and o 2 Dt
dom(ṗ), f̂ .o = o, and so ō 2 o(f̂ .ṙ�1q̇(w)), from which ō 2 o(w) follows

with q0f = r0 as required. X
Claim 3: Zt

p is injective. Proof. Consider any o, o⇤ 2 Dt
dom(ṗ) and o0 2

(DP )tim(ṗ) such that oZt
po

0 and o⇤Zt
po

0. Let w 2 W ; it will be shown that o(w) ✓
o⇤(w) (the other direction follows by symmetry). So consider any ō 2 o(w). By
condition (i) of the definition of projections, there is a q 2 P such that p ✓ q,
w 2 dom(q̇) and ō 2 ⇧inD

ti
dom(q̇). So by induction hypothesis (i), there are

ō0 2 ⇧in(DP )tiim(q̇) such that ō0 2 o0(q̇(w)), and so ō 2 o⇤(w). X
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Claim 4: Zt
p is surjective. Proof. Consider any o0 2 (DP )tim(ṗ). By con-

struction of DP , there is a v 2 im(ṗ) and q 2 P such that v ✓ im(q) and
o0 2 Zt

q[D
t
q̇�1(v)]. Hence there is an o 2 Dt

q̇�1(v) such that oZt
qo

0. By Lemma A.1,

there are p0, q0 2 P such that p ✓ p0, q ✓ q0, and an f 2 auti(S) such that
p0f = q0. So by Lemma A.2, f̂ .oZt

q0f�1o0, hence f̂ .oZt
p0o0. Since o 2 Dt

q̇�1(v),

f̂ .o 2 Dt
f̂ .q�1(v)

= Dt
p�1(v). So f̂ .o 2 dom(Zt

p), and thus with induction hypoth-

esis (ii), f̂ .oZt
po

0. Hence o0 2 im(Zt
p) as required.

(ii): Since (i) has been established, Zt
p must be a bijection from Dt

dom(ṗ)

to (DP )tim(ṗ), for all o 2 P . Note first that it is routine to show that for all

p, q 2 P , if p ✓ q then Zt
p ✓ Zt

q. Now consider any p, q 2 P , w 2 W such that
w ✓ dom(p\q) and o 2 Dt

w; it will be shown that Zt
p(o) = Zt

q(o). By Lemma A.1,
there are p0, q0 2 P and f 2 auti(S)(w) such that p ✓ p0, q ✓ q0 and p0f = q0.

Since Zp ✓ Zp0 , Zt
p(o) = Zt

p0(o), which by Lemma A.2 is Zt
p0f (f̂

�1.o). Since

o 2 Dt
w, f̂

�1.o = o, so Zt
p(o) = Zt

p0f (o), which is Zt
q0(o). With the fact that

Zt
q ✓ Zt

q0 , it follows that Z
t
p(o) = Zt

q(o).

B Appendix on FFISs and Bi-Projections

This appendix proves Theorem 3.5. For the following, let S = hW, I,Bi and
S0 = hW 0, I 0, B0i be ffis, and P a bi-projection from S to S0. Let D and D0

be the domain assignments of ⌦S and ⌦S0, Z the extension of P as defined
above, and DP�1

and DP the domain assignments of the structures projectively
generated by P�1 and P , respectively.

Definition B.1. For any p 2 P , define a relation Zp
p ✓ auti!(S) ⇥ auti!(S

0)
such that for all f 2 auti!(S) and g 2 auti!(S

0), fZp
pg i↵

supp(f) ✓ dom(p),

supp(g) ✓ im(p), and

pf(o) = gp(o) for all o 2 supp(f).

Lemma B.2. For any p 2 P , w 2 dom(ṗ) and f 2 fixi!(S
0, ṗ(w)) such that

supp(f) ✓ im(p), there is a g 2 fixi!(S, w) such that gZp
pf .

Proof. Define g : I ! I such that for all o 2 I,

g(o) =

(
p�1fp(o) if o 2 dom(p)

o otherwise

It is routine to check that g 2 fixi!(S, w) and gZp
pf .

Lemma B.3. Let p, q 2 P , f 2 auti!(S) and g 2 auti!(S
0). If fZp

pg and p ✓ q
then f�1Zp

q g
�1.

Proof. Routine.

Lemma B.4. For all types t:
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(i) For all p 2 P , f 2 auti!(S), g 2 auti!(S
0) such that fZp

pg and ho, o0i 2 Zt
p,

f̂ .oZt
pĝ.o

0.

(ii) For all p 2 P , (Zt
p)

�1 = Zt
p�1 .

(iii) For all v 2 W 0, D0t
v = (DP )tv.

Proof. By induction on types. Let t = e. (i): Let p 2 P , f 2 auti!(S), g 2
auti!(S

0) such that fZp
pg and ho, o0i 2 Ze

p . Then o 2 dom(p), so p(o) = o0.

Since fZp
pg, pf(o) = gp(o), so pf(o) = g(o0), i.e., f̂ .oZe

p ĝ.o
0. (ii) and (iii) are

immediate. So let t = t̄.
(i): Consider any p 2 P , f 2 auti!(S), g 2 auti!(S

0) such that fZp
pg and

ho, o0i 2 Zt
p. Then f̂ .o 2 Dt

f̂ .dom(ṗ)
. Since supp(f) ✓ dom(p), f̂ .dom(ṗ) =

dom(ṗ), so f̂ .o 2 Dt
dom(ṗ). It will be shown that f̂ .oZt

pĝ.o
0 by checking con-

ditions (1) and (2) of the construction of Z.
(1): Consider any v 2 W 0 and ō0 2 ĝ.o0(v). Then ĝ�1.ō0 2 o0(ĝ�1.v). Since

oZt
po

0, DP ⇥ o0, so there are v̄ 2 W 0n such that ĝ�1.ō0 2 ⇧in(DP )tivi . g 2
auti!(S

0), so by Part 1, Lemma 3 (i), ĝ 2 aut(⌦S0). Since by IH (iii), (DP )tivi =
D0ti

vi for all i  n, it follows that ō0 2 ⇧in(DP )tiĝ.vi . If ⇥ = �, it can be assumed

that vi = v for all i < n, and therefore ō0 2 ⇧in(DP )tiĝ.v. Thus D
P ⇥ ō0.

(2): Consider any q 2 P such that p ✓ q, w 2 dom(q̇) and n-tuples ō, ō0 such
that ōZq ō0. It will be proven that ō 2 f̂ .o(w) i↵ ō0 2 ĝ.o0(q̇(w)). By Lemma B.3,

f�1Zp
q g

�1, so by IH (i), f̂�1.ōZq ĝ�1.ō0. Since supp(f) ✓ dom(q̇), f̂�1.w 2
dom(q̇), so f̂�1.ō 2 o(f̂�1.w) i↵ ĝ�1.ō0 2 o0(q̇(f̂�1.w)), and so ō 2 f̂ .o(w) i↵
ō0 2 ĝ.o0(ĝ.q̇(f̂�1.w)). qf = gq, so ĝ.q̇(f̂�1.w) = q̇(w), from which the desired
claim follows.

(ii): Let p 2 P . By symmetry, it su�ces to show that if ho, o0i 2 Zt
p then

ho0, oi 2 Zt
p�1 . So assume ho, o0i 2 Zt

p. Then there is a w 2 dom(ṗ) such that

o 2 Dt
w and o0 2 (DP )tṗ(w). It will first be shown that o0 2 D0t

ṗ(w). By Lemma 3.3,

it su�ces to show that D0 ⇥ o0 and f̂ .o0 = o0 for all f 2 fixi!(S
0, ṗ(w)). By

Lemma 2.10 (ii), o0 2 (DP )tim(ṗ), so with the fact that the structure projectively

generated by P is a ⇥structure, it follows that DP ⇥ o0. Therefore by IH (iii),
D0 ⇥ o0. So consider any f 2 fixi!(S

0, ṗ(w)). Since supp(f) is finite, there is a
q 2 P such that p ✓ q and supp(f) ✓ im(q). So by Lemma B.2, there is a
g 2 fixi!(S, w) such that gZp

q f . By Lemma 2.10 (ii), oZt
qo

0, so with claim (i) of

the present lemma, ĝ.oZt
q f̂ .o

0. As o 2 Dt
w, ĝ.o = o, so oZt

q f̂ .o
0. Hence by the

functionality of Zt
q, established in Lemma 2.10 (i), f̂ .o0 = o0.

With o0 2 D0t
ṗ(w) established, it can be proven that o0Zt

p�1o by checking

conditions (1) and (2) of the definition of Z. Since o 2 Dt
w, D ⇥ o, so by IH,

DP�1⇥o. For condition (2), consider any q 2 P�1 such that p�1 ✓ q, v 2 dom(q̇)
and n-tuples ō, ō0 such that ōZq ō0. By IH, ō0Zq�1 ō; also q�1 2 P , p ✓ q�1 and
q̇(v) 2 dom(q̇�1). So by oZt

po
0, ō0 2 o(q̇(v)) i↵ ō 2 o0(v), as required for condition

(2). So o0Zt
p�1o.

(iii): Let v 2 W 0. By condition (iii) of the definition of projections, there

is a p 2 P such that v 2 im(ṗ). By Lemma 2.11, D0t
v = dom

⇣
Zt
p�1|v

⌘
=

dom
⇣
Zt
(p|p�1(v))�1

⌘
. By (ii), this is im

⇣
Zt
p|p�1(v)

⌘
, which by Lemma 2.11 again
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is im
⇣
Zt
p|Dt

p�1(v)

⌘
. By Lemma 2.10 (i), this is (DP )tv.

Proof of Theorem 3.5. Immediate by Lemma B.4.

Acknowledgements

In addition to those thanked in the acknowledgements of Part 1, I would like to
thank a reviewer for comments on Part 3, and the editor, Frank Veltman, for
all his help with the publication of the three parts.

References

Robert Merrihew Adams. Primitive thisness and primitive identity. The Journal
of Philosophy, 76(1):5–26, 1979.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge
University Press, 2001.

Kit Fine. Postscript to Worlds, Times and Selves (with A. N. Prior). London:
Duckworth, 1977a.

Kit Fine. Properties, propositions and sets. Journal of Philosophical Logic, 6
(1):135–191, 1977b.

Kit Fine. The problem of possibilia. In Michael J. Loux and Dean W. Zimmer-
man, editors, The Oxford Handbook of Metaphysics, pages 161–179. Oxford:
Oxford University Press, 2003.
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