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Abstract

The probabilities a Bayesian agent assigns to a set of events typically change
with time, for instance when the agent updates them in the light of new data.
In this paper we address the question of how an agent’s probabilities at different
times are constrained by Dutch-book coherence. We review and attempt to clarify
the argument that, although an agent is not forced by coherence to use the usual
Bayesian conditioning rule to update his probabilities, coherence does require the
agent’s probabilities to satisfy van Fraassen’s [1984] reflection principle (which
entails a related constraint pointed out by Goldstein [1983]). We then exhibit the
specialized assumption needed to recover Bayesian conditioning from an analogous
reflection-style consideration. Bringing the argument to the context of quantum
measurement theory, we show that “quantum decoherence” can be understood in
purely personalist terms—quantum decoherence (as supposed in a von Neumann
chain) is not a physical process at all, but an application of the reflection principle.
From this point of view, the decoherence theory of Zeh, Zurek, and others as a
story of quantum measurement has the plot turned exactly backward.

1 Introduction

At the center of most accounts of Bayesian probability theory [4] is the procedure of
Bayesian conditioning. By this we mean the following. Assume a Bayesian agent, at
some time ¢ = 0, has assigned probabilities Py(E), Po(D) and Py(E, D) to events E and
D and their conjunction. As long as Py(D) # 0, the conditional probability of E given

D is then P(ED
A(EID) =52 )

Now assume that, at a later time ¢ = 7, the agent learns that D is true and updates
his probability for E. We denote the agent’s updated probability by P.(FE). Standard
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Bayesian conditioning consists of setting
P(E) = R(E|D) . (2)

The rule Eq. (2) can be viewed as a possible answer to the general question of how
an agent’s probabilities at two different times should be related. We will address this
question from a personalist Bayesian perspective [4], Bl 6] [7, 8, @], according to which
probabilities express an agent’s uncertainty, or degrees of belief, about future events
and acquire an operational meaning through decision theory [4]. Although they are
not determined by agent-independent facts, personalist probability assignments are not
arbitrary. Dutch-book coherence [5], 8, 9] as a normative principle requires an agent
to try her best to make her numerical belief assignments conform to the usual rules of
the probability calculus. When coupled with the agent’s overall belief system, this is a
powerful constraint [10]. Personalist Bayesian probability is at the heart of Quantum
Bayesianism, a radical new approach to the foundations of quantum mechanics developed
by Caves, Fuchs, Schack, Appleby, Barnum, and others. (See [11l, 12] for an extensive
reference list.) The motivation for the present investigation is to explore the relevance
of Bayesian conditioning to the Quantum Bayesian program.

It was first pointed out by Hacking [13] that there is no coherence argument that
compels the agent to take into account the earlier probabilities Py(F|D) when setting the
later probabilities P, (E). Similar points have been made by other authors (see, e.g., [14]).
Hacking was writing about the standard synchronic Dutch book arguments, but the
above statement remains true even for the diachronic Dutch book arguments, originally
due to Lewis and first reported by Teller [15]. Without further assumptions, diachronic
coherence does not compel the agent, at t = 7, to use the Bayesian conditioning rule ().

The way diachronic coherence arguments connect probability assignments at different
times is more subtle. It is expressed elegantly through van Fraassen’s reflection principle
[16], which itself entails the related constraints of Shafer [I7] and Goldstein [I8]. The
key idea behind the reflection principle is to consider the agent’s beliefs about his own
future probabilities, i.e., to consider expressions such as Py(P;(E) = q). Shafer [17] put
the point very nicely,

This interpretation is based on the assumption that a person has subjective
probabilities for how his information and probabilities may change over time.
This means we are concerned not with how the person should or will change
his beliefs, but rather with what he believes about how these beliefs will
change. [Emphases added.]

The same idea underlies the approach this paper takes towards Bayesian conditioning
and quantum decoherence.

In the next section, we present a detailed example where the agent appears justified
to depart from the Bayesian conditioning rule. In Section [3] we review the standard,
synchronic, Dutch book arguments and show why they do not imply Bayesian condition-
ing. Section [ introduces diachronic coherence and presents a derivation of the reflection
principle. In Section Bl we show that the Bayesian conditioning rule can be understood
as a variant of the reflection principle valid for a particular class of situations. Sec-
tion [0 addresses an argument that has been advanced against the reflection principle



and shows that it is based on a misconception of the role that coherence considerations
have in probability assignments. Finally, in Section [ we give a natural application of
the reflection principle to decoherence in quantum mechanics from a Quantum Bayesian
perspective.

2 Example: Polarization Data

Consider a physicist running an experiment to discover the linear polarization of photons
coming from a rather complicated optical device which he had built himself. Perhaps
he is convinced that every photon is produced the same way, only that he has forgotten
which orientation 6 he gave to a certain polarization filter deep within the set-up. It
might thus be easier to discover # and recalibrate than to tear the whole thing apart and
readjust. A statistical analysis is in order.

Our experimenter will measure polarization for a sequence of n individual photons
and carry out a Bayesian analysis of the outcomes consisting of a string, s,, of zeros
and ones. The zeros stand for horizontal polarization and ones for vertical polarization.
Before starting, the experimenter records his probabilistic prior, which in the person-
alist approach to probability adopted in this paper, represents his Bayesian degrees of
belief about the measurement outcomes. To be specific we assume that the prior is
exchangeable, i.e., of the form [ 19

Pulsn) = [ al@)a*(1 — o) de 3)

where k is the number of zeros in s,, and ¢o(x) is a probability density. If the ex-
perimenter is completely ignorant of what orientation he had given the filter, he might
assume ¢o(x) to be the constant density, but the precise form of gy(z) is of no great
importance to the argument below.

The prior Py(s,) is a convex sum of binomial distributions {z,1—x}, with z = cos? 6.
It is symmetric in the sense that it is invariant under permutations of the bits in s,,. By
adopting this prior, the experimenter judges that the order in which the photons arrive is
irrelevant to his analysis. To a Bayesian, this is in fact the operational meaning that all
photons are “produced the same way.” A simple consequence of this is that a posterior
probability calculated from this prior by Bayesian conditionalization after some number
of trials will not depend on the order of the zeros and ones found in those trials.

Suppose now that the experimenter observes 4000 trials, and finds very nicely that
the number of zeros and ones is not very far from 2000 each. Technically this means
that if the experimenter updates his prior to a posterior by Bayesian conditionalization,
the posterior for the next n bits will be

1
Pposterior(sn) = /0 q,(l’)xk(l - I)n_kdx ) (4)

where ¢'(x) is a function on the interval [0, 1] peaked very near 1/2. If the experimenter
were asked to bet on the next bit, this probability distribution would advise him to bet
at close to even odds.



But now consider the following fantastic scenario. Suppose the experimenter becomes
aware that the string s, he accumulated is identical to the first 4000 bits of the binary
expansion of 7! Any sane person would be flabbergasted. Even though the experimenter
built the device with his own hands, he would surely wonder what was up. Perhaps one
of his lab partners has played an immense joke on him?

The following question becomes immediate: If the experimenter is rational, how
should he bet now on the next bit? Sticking doggedly with Bayesian conditioning,
he would be advised to use near even odds, just as before. But the number 7 is too
significant to ignore: His heart says to bet with

P.(E) = 0.99 (5)

on the event F that the next bit equals the 4001th bit of the binary expansion of 7. Our
experimenter faces a stark choice: He can either ignore his heartfelt belief and use the
value P,(FE) ~ 1/2 obtained from the conditioning rule, or he can ignore the conditioning
rule and use the value P,(E) = 0.99 representing what he really feels. Both choices are
deeply problematical: the second one seems to be incoherent because it is contradicted
by the usual understanding of the formalism, whereas the first one seems to be ignoring
common sense to the point of being foolish.

Is the second choice really incoherent however? Does it violate a reasonable normative
requirement? We will see in the next sections that this is not the case.

3 Synchronic Dutch Book

A simple way to give an operational meaning to personalist Bayesian probabilities is
through the agent’s betting preferences. When an agent assigns probability p to an
event F, she regards $p to be the fair price of a standard lottery ticket that pays $1 if £
is true. In other words, an agent who assigns probability p to the event E regards both
buying and selling a standard lottery ticket for $p as fair transactions; for her, the ticket
is worth $p.

In the following, we will call a set of probability assignments incoherent if it can lead
to a sure loss in the following sense: there exists a combination of transactions consisting
of buying and/or selling a finite number of lottery tickets which (i) lead to a sure loss
and (ii) the agent regards as fair according to these probability assignments. A set of
probability assignments is coherent if it is not incoherent. We accept as a normative
principle that an agent should aim to avoid incoherent probability assignments.

The standard, synchronic, Dutch book argument [, 8, 9] shows that an agent’s
probability assignments P, at a given time are coherent if and only if they obey the
usual probability rules, i.e., 0 < Fy(E) < 1 for any event E; Fy(S) = 1 if the agent
believes the event S to be true; and Py(E V D) = Py(E) + Py(D) for any two events F
and D that the agent believes to be mutually exclusive.

In this approach, conditional probability is introduced as the fair price of a lottery
ticket that is refunded if the condition turns out to be false. Formally, let D and E
be events, and let $¢ be the price of a lottery ticket that pays $1 if both D and E are
true, and $¢ (thus refunding the original price) if D is false. For the agent to make the



conditional probability assignment Py(F|D) = ¢ means that she regards $q to be the fair
price of this ticket.

It is then a consequence of Dutch-book coherence that the product rule Py(E, D) =
Py(E|D)Py(D) must hold [9]. In other words, conditional probability assignments vio-
lating this rule are incoherent. If Py(D) # 0, we obtain Bayes’s rule,

Py(E, D)
It is worth pointing out that Bayes’s rule emerges here as a theorem, combining terms
that are defined independently, in contrast to the common axiomatic approach to prob-
ability theory where Eq. (6]) is used as the definition of conditional probability.

The above shows that a coherent agent must use Bayes’s rule to set the conditional
probability Py(E|D). The value of Py(E|D) expresses what ticket prices the agent regards
as fair at time ¢ = 0, i.e., before she finds out the truth value of either D or E. It says
nothing about what ticket prices she will regard as fair at some later time ¢ > 0.

In particular, assume that, at some time ¢ = 7 > 0, the agent learns that D is
true and updates her probabilities accordingly. Denote by P,(E) the agent’s updated
probability of £, meaning that she now regards $P,(E) as the new fair price of a ticket
that pays $1 if and only if E is true. Nothing in the Dutch book argument sketched
above implies that P,(E) should be equal to Py(E|D) [13]. All probabilities used in the
argument are the agent’s probabilities at time ¢t = 0; they are defined via ticket prices for
bets on F, D and their conjunction which the agent regards as fair at ¢ = 0. The Dutch
book argument leading to Eq. (@) is a synchronic argument. It does not connect in any
way the agent’s probability assignments at ¢ = 0 and ¢ = 7. In particular, it does not
imply that the agent has to use Bayesian conditioning to update her probabilities. In the
next section we will see what connection between the agent’s probability assignments at
different times actually is implied by diachronic Dutch book arguments.

4 Diachronic Dutch Book

To set the scene, we consider an investor who today buys 500 shares of some company
at a price of $20 each, which he regards as a fair deal. The next day, his appreciation of
the market has changed, and he sells his 500 shares at $18 each, which now, given the
new situation, he again regards as a fair deal. Despite the fact that the investor makes a
net loss of $1000, he does not behave irrationally. By selling his shares at a lower price
on the next day, he simply cuts his losses.

But what if the investor is certain today that tomorrow he will regard $18 as the fair
price for a share? It would then be foolish for him to buy, today, 500 shares for $20 each,
because he is certain that tomorrow he would be willing to sell the shares for $18 each,
leading to a net loss of $1000. As a matter of fact, buying shares at any price above $18
today would be foolish in this situation, as would be selling shares today at any price
below $18.

In the above example, we have assumed that money has the same utility for the
investor today and tomorrow, i.e., we have assumed a zero interest rate. This is an



assumption we will make throughout the present paper. More precisely, we will assume
that the time at which she receives a sum of money is irrelevant to a Bayesian agent.

In probability language, what we have just described is the following. Assume Py(FE)
is an agent’s probability at ¢ = 0 of some event E. The agent buys a lottery ticket that
pays $1if E is true, for $P(E) which she regards as the fair price. At a later time t = 7,
she updates her beliefs. Her probability for E is now P,(F), which happens to be less
than Py(FE). At this point, the agent decides to cut her losses by selling the ticket for
$P.(E). Despite the net loss, there is nothing irrational about the agent’s transactions.

But now suppose that at ¢ = 0 the agent is certain that, at ¢ = 7, her probability
of E will be ¢, where q # Py(F). In the case ¢ < Py(E), this means that, at t = 0, she
is willing to buy a ticket for $FPy(E) although she already knows that later she will be
willing to sell it for the lower price $¢. In the case ¢ > Fy(E), it means that, at t = 0,
she is willing to sell a ticket for $Py(F) although she already knows that later she will
be willing to buy the same ticket for the higher price $¢. In both cases, already at t = 0
the agent is certain of a sure loss.

This simple scenario contains the main idea of van Fraassen’s diachronic Dutch book
argument. Similar to the synchronic case discussed in the previous section, we call an
agent’s probability assignments incoherent if there exists a combination of transactions
consisting of buying and/or selling a finite number of lottery tickets at two different
times such that (i) already at the earlier time, the agent is sure of a net loss; and (ii) each
transaction is regarded as fair by the agent according to her probability assignments at
the time the transaction takes place. We will continue to accept as a normative principle
that an agent should aim to avoid incoherent probability assignments.

To turn our simple scenario into the full-fledged diachronic Dutch-book argument,
we only need to relax the assumption that at ¢t = 0 the agent is certain that P,(F) = q.
Instead, we assume that

Py(P.(E) =q) >0, (7)

i.e, at t = 0 the agent believes with some positive probability that at ¢t = 7 her probability
of F will be equal to ¢. We will now show that this implies the agent’s probability
assignments are incoherent unless

Ry(E|PAE)=q) =4, (8)

i.e., unless at ¢t = 0 the agent’s conditional probability of E, given that P.(E) = ¢, equals
g. This is van Fraassen’s reflection principle [16].

To derive the reflection principle, denote by @ the proposition P.(FE) = g, i.e., the
assertion that at time ¢t = 7, the agent will regard $¢ as the fair price for a ticket that
pays $1 if and only if F is true. The inequality (7)) thus becomes Py(Q) > 0. To establish
that coherence implies the reflection principle (8), one must show that the assumption
Py(E|Q) # q leads to a sure loss for an appropriately chosen set of bets no matter what
outcomes occur for the events considered.

As a warm-up to gain intuition, suppose that Py(E|Q) > ¢ and that @ is true. This
means that at ¢t = 0, the agent is willing to buy a ticket for $P(E|Q) that pays $1 if
both ) and E are true, and refunds the ticket price if () is false. But, because of )’s
truth, this ticket will further be equivalent to a ticket that pays $1 if E is true. Finally,



the truth of @ also implies that at t = 7 the agent will be willing to sell this ticket for
$¢, which is less than what she paid for it. In other words, if () is true, the agent is sure
to lose $d, where d = Py(E|Q) — q.

But this simple argument—illustrative though it may be—is not a full-fledged proof
of incoherence. To get a full proof we need to show that the agent is sure of a loss not
only when @) turns out to be true, but also when ) turns out to be false. For this it is
sufficient to consider an alternate scenario where there is a side bet on @), such that the
agent loses some amount if () is false, and wins less than $d if ) is true. Such a side bet
may be realized by a lottery ticket that pays $d/2 if @ is true, which the agent is willing
to buy for $7(Q)d/2.

We have thus the following combination of transactions, each of which the agent
regards as fair at the time it takes place:

(i) to buy, at t = 0, for $P(F|Q), a ticket that pays $1 if both @ and E are true, and
refunds the ticket price if @) is false;

(ii) to buy, at t = 0, for $FP(Q)d/2, a lottery ticket that pays $d/2 if @ is true;

(iii) if @ is true (i.e., if P.(E) = q), to sell, at t = 7, for $¢, a lottery ticket that pays
$1 if F is true.

Already at t = 0, the agent knows that these transactions result in a net loss, equal to
$(Po(Q) + 1)d/2 if Q is true, and $dPy(Q)/2 if @ is false. We have thus shown that the
assumption Py(E|Q) > ¢ implies that the agent’s probability assignments are incoherent.

The final piece of a proof is to consider the case Py(E|Q) < q. By reversing the signs
of all transactions above, it is easy to see that this case leads to a sure loss in exactly
the same way. Putting these two cases together, this completes the full derivation of the
reflection principle.

The coherence condition of Shafer [I7] and Goldstein [I§] follows by a simple ap-
plication of synchronic coherence along with the reflection principle. Suppose the agent
instead of contemplating a single Q = [P,(E) = ¢ for what she will believe of E at t = T,
contemplates a range of mutually exclusive and exhaustive propositions {Q} to which
she assigns probabilities Py(()). Then, straightforward synchronic coherence requires

Py(E) = %:Po(Q)Po(EIQ) =Y R (P(E) =q) R(E| P.(E) =q) , (9)

for which reflection in turn implies
PO(E):ZPO(PT(E):q)q' (10)
q

This implication of the reflection principle will turn out to be particularly important for
our exposition of quantum decoherence.

5 Bayesian Conditioning in Reflectional Terms

The reflection principle is a constraint on an agent’s present beliefs about her future
probability assignments. It does not directly provide an explicit rule for assigning prob-
abilities, either for the present ones or the future ones. An agent whose probabilities



violate the reflection principle is incoherent and should strive to remove this incoherence.
The reflection principle does not provide a recipe for how to do this.

One way in which the agent can achieve coherence is by adopting an “updating
strategy” [20] based on the Bayesian conditioning rule. We will now explore to what
extent the Bayesian conditioning rule follows for such a strategy in a way analogous to
the reflection principle—that is, in a way “concerned not with how the person should
or will change his beliefs, but rather with what he believes about how these beliefs will
change” [17].

Let E and D be events, and let Py(E), Py(D) and Py(E|D) denote the agent’s
respective probabilities at ¢ = 0. Assume that the truth value of D will be revealed to
the agent at t = 7. Suppose she now adopts the strategy that, if at ¢ = 7 she learns that
D is true, her updated probability of E, denoted by P,(FE), will be given by some value
¢ 0<q¢<1

The above can be phrased in terms of the agent’s probabilities at ¢ = 0. For her to
adopt this strategy simply means that she is certain that, if D turns out to be true, she
will make the probability assignment P,(E) = q, i.e.,

Py(P-(E) =g|D) =1. (11)

This statement about the agent’s current belief about her future probability captures
the essence of Bayesian conditioning. Together with diachronic coherence it implies that

q=F(E|D), (12)

i.e., the Bayesian conditioning rule. Presented in this way, it can be regarded as a variant
of the reflection principle, valid whenever the condition (I1I) holds.

To derive Eq. (I2)), we consider again the combinations of bets introduced in Sec. @]
but with the event D replacing @) throughout. We assume first that PBy(E|D) > ¢ and
define d = Py(F|D) — q. The transactions are

(i) to buy, at t = 0, for $P,(E|D), a ticket that pays $1 if both D and E are true, and
refunds the ticket price if D is false;

(ii) to buy, at t =0, for $Fy(D)d/2, a lottery ticket that pays $d/2 if D is true;
(iii) if D is true, to sell, at t = 7, for $¢, a lottery ticket that pays $1 if F is true.

At t = 0, the agent is certain that these transactions result in a net loss, equal to
$(Po(D) + 1)d/2 if D is true, and $FPy(D)d/2 if D is false. At t = 0, the agent regards
(i) and (ii) as fair transactions, and because of Eq. (III), she is certain that at ¢ = 7 she
will regard (iii) as a fair transaction. We have thus shown that the agent’s probabilities
are incoherent if Py(E|D) > q. The case Py(F|D) < g is similar. Thus coherence implies
that Py(E|D) = q, as required.

The key assumption in this derivation, expressed by Eq. (1), is that the agent can
identify an event D that she expects to determine her future beliefs. There are more
general updating strategies that are not of this form. Jeffrey’s probability kinematics [21]
is such an example. Probability kinematics is a coherent updating strategy [20] which



does not make use of the Bayesian conditioning rule, but it too can be put in reflectional
terms as we did with Bayesian conditioning.

Actually, one can go still further along these reflectional lines if one strengthens the
assumption in Eq. (II) to also make a direct identification between the possible values
for P.(E) and the D, i.e., that there is bijection between them. In such a case, one can
say that Bayesian conditioning follows directly from the reflection principle. For then,

R(EID) = RK(E|D, Q) = R(E|Q) (13)

by standard synchronic logic, and Py(F|Q) = ¢ by reflection.

The discussion above is entirely in terms of the agent’s beliefs at ¢ = 0. What if|
at t = 7, after learning that D is true, the agent re-analyses the situation, possibly
taking into account circumstances she was not aware of at t = 0, and concludes that
her new probability, P.(E), differs from Py(F|D). Does this imply that her probability
assignment is incoherent? The answer is no. Coherence is a condition about an agent’s
current beliefs, including her beliefs about her future probability assignments. In the
above scenario, the agent’s beliefs at ¢ = 7 are coherent as long as 0 < P.(F) < 1.
Nothing in the Dutch book argument implies that the agent’s actual probabilities at t = 7
are constrained by her probabilities at ¢ = 0, which supports the conclusion of Sec.
that there is no conflict with coherence for an experimenter who assigns P.(F) = 0.99
although the Bayesian conditioning rule appears to mandate P, (F) ~ 1/2.

6 Sirens, Car Keys, and Married Couples

We have seen in the previous section that one way of satisfying the reflection principle
and thereby avoiding incoherence is to set your future probabilities in terms of your
current probabilities via Bayesian conditioning. The form of the reflection principle,
however, suggests a different way of proceeding. Since Eq. () expresses a constraint on
a current probability, conditioned on a future probability assignment, one could take the
future probability as given and set the current probability in terms of it, thus reversing
the usual direction of Bayesian updating. This can be a useful and legitimate procedure.
An important application will be given in Sec. [1] below.

If the reflection principle is taken as a rule to set future probabilities in terms of
current probabilities, it can lead to decisions that appear irrational [22] 23] 24, 25]. A
classic example [26] is provided by the story of Ulysses and the Sirens. Ulysses knows
that tomorrow, as soon as he is within earshot of the Sirens, he will make a catastrophic
decision. Does the reflection principle force him to endorse this catastrophic decision
today?

Since analysing this story would involve a discussion of utility, here is another famous
example [23]. I know that I will get drunk this evening and that I will assign probability
107 to the event E of my causing an accident while driving home late at night. Does
reflection imply that I must assign probability 107° to the event £ now?

Examples like this have led, e.g., Christensen [23] to the conclusion that the reflection
principle is unsound. This conclusion stems from a confusion about the role of coherence



arguments, however. The reflection principle can be regarded as a tool to detect inco-
herence. The Dutch book arguments show that incoherent probability assignments have
the potential to lead to catastrophic consequences. This justifies accepting a normative
rule that an agent should adhere to the reflection principle in order to avoid incoherence.
The reflection principle does not, however, give a prescription for setting probabilities,
either today’s in terms of tomorrow’s or vice versa. There is a range of options for the
agent once she has detected an incoherence, as we will now illustrate.

Suppose that, in the example above, my initial conditional probability for an accident
if I drive home drunk is 0.01. Suppose further that I am certain that I will get drunk,
and that my probability for an accident will then be 1076, These probabilities violate
the reflection principle. My probability assignments are therefore incoherent. One way
of avoiding this incoherence would be to decide not to get drunk, which would mean
assigning probability 0 to this event and therefore restore coherence. There is another
very practical solution, which is to give my car keys to a trusted friend before I start
drinking. My probability assignments will still be incoherent, but I will be unable to act
on them.

Ulysses’s solution, 3000 years ago, was very similar. He ordered his men to chain
him to the mast of his ship. His men were to plug their ears. He accepted incoherence,
but prevented himself from acting on his incoherent probability assignments. His men
achieved coherence by reducing the probability of hearing the Sirens to zero. Coherence
is an ideal one should always strive for. Incoherent probability assignments have the
potential to lead to catastrophic consequences. If one can’t achieve coherence, one should
give up the car keys, plug one’s ears or chain oneself to a mast.

In his article contra reflection, Christensen [23] pointed out that the reflection prin-
ciple is very similar to a related principle which he called solidarity. Consider husband
and wife who share a bank account. Denote the husband’s probabilities by P, and the
wife’s by P,,, and consider some event, . Solidarity is the principle that, given that the
wife’s probability of E is ¢, the husband’s probability must also be ¢, i.e.,

Py(E|P,(E)=q) =q. (14)

Violating solidarity leads to a sure loss for the joint bank account exactly like in the
diachronic Dutch book argument for the reflection principle.

Christensen argued that the solidarity principle is clearly absurd. This may be a
case of confusion between normative and descriptive rules. The solidarity principle is a
normative principle and does not claim that actual agents’ probability assignments are
always compatible with it. What it says instead is that, to avoid potential catastrophic
consequences for their common bank account, husband and wife must strive for coher-
ence. The solidarity principle, or more generally, the reflection principle, provides a tool
to detect incoherence. It is then up to the agents how to resolve the incoherence. The
husband might give, the wife might give, or they might compromise after debating all
the relevant issues. The key point is that deliberation is to their mutual benefit, and
coherence is their goal.
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7 Quantum Decoherence

In the last section, we described how the reflection principle can be used to detect
incoherence and thus to avoid catastrophic consequences. In this section, we will see
that there is a generic situation in quantum theory where the reflection principle is used
directly to set today’s probabilities in terms of tomorrow’s.

We will look at a standard quantum measurement situation [27] from the perspective
of Quantum Bayesianism, according to which all quantum states, pure or mixed, repre-
sent an agent’s degrees of belief about future measurement outcomes. Assume an agent
has, at time ¢ = 0, assigned a quantum state (i.e., density operator) py to a quantum
system. She intends to perform two measurements on the system, the first one at time
t =7 > 0, the second one at a still later time ¢ = 7/. She describes the first measurement
by a collection of trace-decreasing completely positive maps {F;}, each corresponding
to a potential outcome, i, for the first measurement. These completely positive maps
determine the agent’s probabilities Py(i) = tr[F;(po)], at time ¢ = 0, for the outcomes i,
but they also determine the states she will assign to the system after the measurement:
If outcome 7, then p, = Py(i) "1 F;(po).

To describe the second measurement, it is enough to use a POVM, i.e., positive op-
erator valued measure, {£;}, since we will not be considering any further measurements
after it. In this description each positive operator F; corresponds to a potential outcome,
J, for the second measurement. If p, is the agent’s system state at time ¢ = 7, then her
probabilities, at t = 7, for the outcomes j are given by P (j) = tr(E;p,).

Now suppose our agent is confronted at time ¢t = 0 with a bet concerning the outcome
j at t = 7'. How should she gamble without having yet performed the measurement at
t = 77 We can read the answer straight off the reflection principle as written in the form
of Goldstein and Shafer, Eq. (I0)—remember here that P.(j) is implicitly dependent
upon i

Po(i) = 3 Boli) P () = 3 6B Filpo)] (15)
Cleaning this up a bit, we can write:
Po(j) = tr[E; Zﬂ(ﬂo)] = tr(£jpp) (16)

where

ph=2_Filpo) (17)

What we have shown here is that the reflection principle entails that the agent can obtain
her probabilities at ¢ = 0 for the outcomes of the second measurement from the density
operator pj. The state p,, which has the form of a “decohered” state, is the agent’s
quantum state at ¢t = 0 as far as the second measurement is concerned.

These conclusions are valid for any pair of measurements, but a little more can be said
if the POVM {E,} is informationally complete, i.e., if the state p, is fully determined by
the probabilities P, (7). In this case p, as defined in Eq. (I7) is the only density operator
that gives rise to the probabilities Py(j) required by the reflection principle.

Equation (IT) takes a perhaps more familiar form if the first measurement is a von
Neumann measurement and the updating is given by the Liiders rule. In this case the
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action of the maps F; on the state py can be written as F;(pg) = II;poll;, where the II;
are projection operators, and Eq. (I7]) becomes

Po = ZHiPOHi : (18)

A common attitude about quantum measurement is that it is something that demands
a detailed physical explanation. Much of the folklore since the publication of John
von Neumann’s 1932 book Mathematical Foundations of Quantum Mechanics is that
a quantum measurement is something that occurs in two steps: First, there is a kind
of “pre-measurement” where the quantum system becomes entangled with a measuring
device. Secondly, there is a “selection” of one of the entangled state’s components; this
is what singles out a particular measurement result.

The trouble with this description, however, is that the entangled wave function, with
its freedom to be expressed in any bipartite basis, does not have enough structure to
specify how it should be decomposed so that such a “selection” can be effected. The
theory of quantum decoherence, developed by Zeh, Zurek, and others [2§], attempts to
overcome this deficiency in the von Neumann story by supplementing it with a further
story of interaction between the measuring device and an environment: The idea is
that the specific form of the interaction with the environment specifies how the joint
state of system plus device ought to be decomposed. In this picture, the decoherence
process preceding the “selection” step leads to a state of the form (I8)), or more generally,
(I7). What remains mysterious in this picture, however, is “the selection step” itself.
Decoherence theorists usually leave that question aside, implicitly endorsing one variety
or another of an Everettian interpretation of quantum mechanics.

In contrast, the Quantum Bayesian view of quantum theory leaves most of the usual
von Neumann story aside: Instead of taking quantum states and unitary evolution as
the ontic elements to which the theory refers, it takes the idea of an individual agent’s
decisions and experience as the theory’s real subject matter. In this view, the process
called “quantum measurement” is nothing other than an agent acting upon the world
and experiencing the consequences of her actions. For a Quantum Bayesian, the only
physical process in a quantum measurement is what was previously seen as “the selection
step”’—i.e., the agent’s action on the external world and its unpredictable consequence
for her, the data that leads to a new state of belief about the system.

Thus, it would seem there is no foundational place for decoherence in the Quantum
Bayesian program. And this is true. Nonetheless, in the two-time measurement scenario
we described above, there is a coherent state assignment at time ¢ = 0 for the second
measurement that mimics a belief in decoherence. This is simply a consequence of the
implications of the reflection principle. The “decohered” state pj is not the agent’s state
after she has made the first measurement (that would have been one of the p, depending
upon the ¢ found). It is not the state resulting from the measurement interaction before
the selection step takes place as the decoherence program would have it (nothing is so
intricately modeled here). It is simply a quantum state the agent uses at time ¢t = 0
before the first measurement to make decisions regarding the outcomes of the second
measurement.

That is the story of decoherence from the Quantum Bayesian perspective. Decoher-
ence does not come conceptually before a “selection,” but rather is predicated on a time
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t = 0 belief regarding the possibilities for the next quantum state at time ¢t = 7. Deco-
herence comes conceptually after the recognition of the future possibilities. In this sense
the decoherence program of Zeh and Zurek [28], regarded as an attempt to contribute
to our understanding of quantum measurement, has the story exactly backward.
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