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Quantum mechanics as quantum information, mostlyt 
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(Received 9 September 2002; revision received 17 December 2002) 

Abstract. In this paper, I try to cause some good-natured trouble. The issue 
is, when will we ever stop burdening the taxpayer with conferences devoted to 
the quantum foundations? The suspicion is expressed that no end will be in 
sight until a means is found to reduce quantum theory to two or three state- 
ments of crisp physical (rather than abstract, axiomatic) significance. In this 
regard, no tool appears better calibrated for a direct assault than quantum 
information theory. Far from a strained application of the latest fad to a time- 
honoured problem, this method holds promise precisely because a large part- 
but not all-of the structure of quantum theory has always concerned 
information. I t  is just that the physics community needs reminding. 

1. Introduction 
Quantum theory as a weather-sturdy structure has been with us for 75 years. 

Yet, there is a sense in which the struggle for its construction remains. I say this 
because not a year has gone by in the last 30 when there has not been a conference 
devoted to some aspect of quantum foundationst. 

How did this come about? What is the cause of this year-after-year sacrifice to 
the ‘great mystery’? Whatever it is, it cannot be for want of a self-ordained 
solution: go to any meeting, and it is like being in a holy city in great tumult. 
You will find all the religions with all their priests pitted in holy war-the Bohmians 
[2], the Consistent Historians [3], the Transactionalists [4], the Spontaneous 
Collapseans [S], the Einselectionists [6], the Contextual Objectivists [7], the 
outright Everettics [8], and many more beyond that. They all declare to see the 
light, the ultimate light. Each tells us that if we will accept their solution as our 
savior, then we too will see the light. 

But there has to be something wrong with this! If any of these priests had truly 
shown the light, there simply would not be the year-after-year conference. The  
verdict seems clear enough: if w e 4 . e .  the set of people who might be reading this 
paper-really care about quantum foundations, then it behooves us to ask why 
these meetings are happening and find a way to put them to a stop. 

My view of the problem is this. Despite the accusations of incompleteness, 
non-sensicality, irrelevance, and surreality one often sees one religion making 

t This paper, though containing some new material in sections 3 and 5, is predominantly 
a prkcis of [l]. 

See [l] for a table of 30 explicit examples. 
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against the other, I see little to no difference in any of their canons. They all look 
equally detached from the world of quantum practice to me. For, though each 
seems to want a firm reality within the theory4.e .  a single God they can point to 
and declare, ‘There, that term is what is real in the universe even when there are no 
physicists about’-none have worked very hard to get out of the Platonic realm of 
pure mathematics to find it. 

What I mean by this deliberately provocative statement is that in spite of the 
differences in what the churches label to be ‘real’ in quantum theory, they 
nonetheless all proceed from the same abstract starting point-the standard 
textbook accounts of the axioms of quantum theory. 

‘But what nonsense is this’, you must be asking. ‘Where else could they start?’ 
The main issde is this, and no one has said it more clearly than Rovelli [9]. Where 
present-day quantum-foundation studies have stagnated in the stream of history is 
not so unlike where the physics of length contraction and time dilation stood 
before Einstein’s 1905 paper on special relativity. 

The Canon for Most of the Quantum Churches: The Axioms (plain and simple) 

1. 
2. 
3. 

4. 

For every system, there is a complex Hilbert space 3-1. 
States of the system correspond to projection operators onto N. 
Those things that are observable somehow correspond to the eigenprojectors of 
Hermitian operators. 
Isolated systems evolve according to the Schrodinger equation. 

The Lorentz transformations have the name they do, rather than, say, the 
Einstein transformations, for a good reason: Lorentz had published some of them 
as early as 1895. Indeed one could say that most of the empirical predictions of 
special relativity were in place well before Einstein came onto the scene. But that 
was of little consolation to the pre-Einsteinian physics community striving so hard 
to make sense of electromagnetic phenomena and the luminiferous ether. Precisely 
because the only justification for the Lorentz transformations appeared to be their 
empirical adequacy, they remained a mystery to be conquered. More particularly, 
this was a mystery that heaping further ad hoc (mathematical) structure onto could 
not possibly solve. 

What was being begged for in the years between 1895 and 1905 was an 
understanding of the origin of that abstract, mathematical structure-some simple, 
crisp physical statements with respect to which the necessity of the mathematics 
would be indisputable, Einstein supplied that and became one of the greatest 
physicists of all time. He reduced the mysterious structure of the Lorentz trans- 
formations to two simple statements expressible in common language: (1) the speed 
of light in empty space is independent of the speed of its source and (2) physics 
should appear the same in all inertial reference frames. The deep significance of 
this for the quantum problem should stand up and speak overpoweringly to 
anyone who admires these principles. 

Einstein’s move effectively stopped all further debate on the origins of the 
Lorentz transformations. Outside of the time of the Nazi regime in Germany, 
I suspect there have been less than a handful of conferences devoted to 
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‘interpreting’ them. Most importantly, with the supreme simplicity of Einstein’s 
principles, physics became ready for ‘the next step’. Is it possible to imagine that 
any mind-ven Einstein’s-could have made the leap to general relativity directly 
from the original, abstract structure of the Lorentz transformations? A structure 
that was only empirically adequate? I would say no. Indeed, one can dream of the 
wonders we will find in pursuing the same strategy of simplification for the 
quantum foundations. 

The task is not to make sense of the quantum axioms by heaping more 
structure, more definitions, more science-fiction imagery on top of them, but to 
throw them away wholesale and start afresh. We should be relentless in asking 
ourselves: from what deep physical principles might we deriwe this exquisite 
mathematical structure? Those principles should be crisp; they should be 
compelling. They should stir the soul. When I was in junior high school, I sat 
down with Martin Gardner’s book Relativity for the Million and came away with 
an understanding of the subject that sustains me today: the concepts were strange, 
but they were clear enough that I could get a grasp on them knowing little more 
mathematics than simple arithmetic. One should expect no less for a proper 
foundation to quantum theory. Until we can explain quantum theory’s essence to a 
junior high-school or high-school student and have them walk away with a deep, 
lasting memory, we will not have understood a thing about the quantum 
foundations. 

Symbolically, where we are: Where we need to be: 

Speed of light is constant. 

Physics is the same in all inertial frames. tl  - r-ex/c2,,I 
( l - d l C 2 )  

So, throw the existing axioms of quantum mechanics away and start afresh! 
But how to proceed? I myself see no alternative but to contemplate deep and hard 
the tasks, techniques and implications of quantum information theory. The  reason 
is simple and I think inescapable. Quantum mechanics has always been about 
information; it is just that the physics community has forgotten this. 

This, I see as the line of attack we should pursue with relentless consistency: 
the quantum system represents something real and independent of us; the 
quantum state represents a collection of subjective degrees of belief about 
something to do with that system (even if only in connection with our experimental 
kicks to it). The  structure called quantum mechanics is about the interplay of these 
two things-the subjective and the objective. The task before us is to separate the 
wheat from the chaff. If the quantum state represents subjective information, then 
how much of its mathematical support structure might be of that same character? 
Some of it, maybe most of it, but surely not all of it. 

Our foremost task should be to go to each and every axiom of quantum theory 
and give it an information theoretic justification if we can. Only when we are 
finished picking off all the terms (or combinations of terms) that can be interpreted 
as subjective information will we be in a position to make real progress in quantum 
foundations. The raw distillate left behind-miniscule though it may be with 



990 C .  A. Fuchs 

respect to the full-blown theory-will be our first glimpse of what quantum 
mechanics is trying to tell us about nature itself. 

Let me try to give a better way to think about this by making use of Einstein 
again. What might have been his greatest achievement in building general 
relativity? I would say it was in his recognizing that the ‘gravitational field’ one 
feels in an accelerating elevator is a coordinate effect. That is, the ‘field’ in that case 
is something induced purely with respect to the description of an observer. From 
this view, the programme of trying to develop general relativity boiled down to 
recognizing all the things within gravitational and motional phenomena that 
should be viewed as consequences of our coordinate choices. It was in identifying 
all the things that are ‘numerically additional’ to the observer-free situation-i.e. 
those things that come about purely by bringing the observer (scientific agent, 
coordinate system, etc.) back into the picture. 

Quantum Mechanics: The Axioms and Our Imperative! 

States correspond to density operators 
p over a Hilbert space ‘H. 
Measurements correspond to positive 
operator-valued measures (POVMs) 
{Ed) on H. 
7-1 is a complex vector space, not a 
real vector space, not a quaternionic 
module. 
Systems combine according to the 
tensor product of their separate vector 
spaces, HAB = ‘HA Q ‘H,. 
Between measurements, states evolve 
according to trace-preserving completely 
positive linear maps. 
By way of measurement, states evolve 
(up to normalization) via outcome-dependent 
completely positive linear maps. 
Probabilities for the outcomes of a 
measurement obey the Born rule for 
POVMs tr @Ed).  

Give an information 
reason i f  possible! 
Give an information 
reason if possible! 

Give an information 
reason if possible! 

Give an information 
reason if possible! 

Give an information 
reason if possible! 

Give an information 
reason if possible! 

Give an information 
reason if possible! 

theoretic 

theoretic 

theoretic 

theoretic 

theoretic 

theoretic 

theoretic 

The distillate that remains-the piece of quantum theory with no information theoretic 
significance-will be our first unadorned glimpse of ‘quantum reality’. Far from being the 
end of the journey, placing this conception of nature in open view will be the beginning of a 
new physics. 

This was a breakthrough. For in weeding out all the things that can be 
interpreted as coordinate effects, the fruit left behind becomes clear to sight: it is 
the Riemannian manifold we call space-time-a mathematical object, the study of 
which one hopes will tell us something about nature itself, not merely about the 
observer in nature. 

The dream I see for quantum mechanics is just this. Weed out all the terms 
that have to do with gambling commitments, information, knowledge and belief, 
and what is left behind will play the role of Einstein’s manifold, That  is our goal. 
When we find it, it may be little more than a miniscule part of quantum theory. 
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But being a clear window into nature, we may start to see sights through it we  
could hardly have imagined before?. 

2. Summary 
T h i s  paper is about taking the Introduction’s imperative seriously, although 

it contributes only a small amount to the  labour it asks. Just as in the founding 
of quantum mechanics, this is not something that will spring forth from a single 
mind sheltered in a medieval college. I t  is a task for a community with diverse 
but  productive points of view. The quantum information community is nothing 
if not that [ll]. ‘Philosophy is too important to be left to the philosophers’, 
John Archibald Wheeler once said. Likewise, I a m  apt to say for the quantum 
foundations. 

T h e  structure of the remainder of the  paper is as follows. In section 3, I reiterate 
the cleanest argument I know that t he  quantum state is solely a n  expression of 
subjective information-the information one has about a quantum system. It has no 
objective reality in and of itself $. The argument is then refined by  considering the 
phenomenon of quantum teleportation [14]. 

I n  section 4, entitled ‘Information about what?’, I tackle that very question 
head-on. T h e  answer is ‘the potential consequences of our experimental 
interventions into nature’. Once freed from the notion that quantum measurement 
ought to be about revealing traces of some pre-existing property (or beable [15]), 
one finds no particular reason to take the standard account of measurement 
(in terms of complete sets of orthogonal projection operators) as a basic notion. 

t I should point out, however, that in contrast to the picture of general relativity, where 
reintroducing the coordinate system4.e. reintroducing the observer-changes nothing 
about the manifold (it only tells us what kind of sensations the observer will pick up), 
I do not suspect the same for the quantum world. Here I suspect that reintroducing the 
observer will be more like introducing matter into pure space-time, rather than simply 
gridding it off with a coordinate system. ‘Matter tells space-time how to curve (when matter 
is there), and space-time tells matter how to move (when matter is there)’ [lo]. Observers, 
scientific agents, a necessary part of reality? No. But do they tend to change things once they 
are on the scene? Yes. If quantum mechanics can tell us something deep about nature, 
I think it is this. 

$Previously, I have not emphasized so much the ‘radical’ Bayesian idea that the 
probability one ascribes to a phenomenon amounts to nothing other than the gambling 
commitments one is willing to make on it. To  the radical Bayesian, probabilities are 
subjective all the way to the bone. Here, I try to turn my earlier de-emphasis around. 
In particular, because of the objective overtones of the word ‘knowledge’-i.e. that a 
particular piece of knowledge is either ‘right’ or ‘wrong’-I try to steer clear of the term 
as much as possible. The conception lurking in the background of this paper is that there is 
simply no such thing as a ‘right and true’ quantum state. In all cases, a quantum state is 
specifically and only a mathematical symbol for capturing a set of beliefs or gambling 
committments. Thus I variously call quantum states ‘beliefs’, ‘states of belief, ‘information’ 
(though, by this I mean ‘information’ in a more subjective sense than is common in the 
quantum information community), ‘judgements’, ‘opinions’, and ‘gambling commitments’. 
Believe me, I understand fully well the jaws that will drop from the adoption of this 
terminology. However, if the reader finds that this gives him a sense of butterflies in the 
stomach-or fears that I will become a solipsist [12] or a crystal-toting New Age practitioner 
of homeopathic medicine [13]-I hope he will keep in mind that this attempt to be 
absolutely frank about the subjectivity of some of the terms in quantum theory is 
part of a larger programme to delimit the terms that can be interpreted as objective in a 
fruitful way. 
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Indeed quantum information theory, with its emphasis dn the utility of generalized 
measurements or positive operator-valued measures (POVMs) [16], suggests one 
should take those entities as the basic notion instead. The  productivity of this point 
of view is demonstrated by the enticingly simple Gleason-like derivation of the 
quantum probability rule recently found by Busch [17] and, independently, 
by Renes and collaborators [ 181. Contrary to Gleason’s original theorem [ 191, 
this theorem works just as well for two-dimensional Hilbert spaces, and even for 
Hilbert spaces over the field of rational numbers. In section 4.1, I start the process 
of defining what it means-from the Bayesian point of view-to accept quantum 
mechanics as a theory. This leads to the notion of fixing a fiducial or standard 
quantum measurement for defining the very meaning of a quantum state. 

In section 5 ,  I ask whether entanglement is all it is touted to be as far as 
quantum foundations are concerned. That is, is entanglement really as Schrodinger 
said, ‘the characteristic trait of quantum mechanics, the one that enforces its entire 
departure from classical lines of thought?’ To combat this, I give a simple 
derivation of the tensor-product rule for combining Hilbert spaces of individual 
systems which takes the structure of localized quantum measurements as its 
starting point. In particular, the derivation makes use of Gleason-like considera- 
tions in the presence of classical communication. With the tensor-product structure 
established, the very notion of entanglement follows in step. This shows how 
entanglement, just like the standard probability rule, is secondary to the structure 
of quantum measurements. Moreover, ‘locality’ is built in at the outset; there is 
simply nothing mysterious and non-local about entanglement. 

In section 6, I ask why one should expect the Bayes’ rule for updating quantum 
state assignments upon the completion of a measurement to take the form it 
actually does. Along the way, I give a simple derivation that one’s information 
always increases on average for any quantum mechanical measurement that does 
not itself discard information. (Despite the appearance otherwise, this is not a 
tautology!) Most importantly, the proof technique used for showing the theorem 
indicates an extremely strong analogy between quantum collapse and Bayes’ rule 
in classical probability theory: up to an overall unitary ‘readjustment’ of one’s final 
probabilistic beliefs-the readjustment takes into account one’s initial state for the 
system as well as one’s description of the measurement interaction-quantum 
collapse is precisely Bayesian conditionalization. In section 6.1, I complete the 
process started in section 4.1 and describe quantum measurement in Bayesian 
terms: an everyday measurement is any I-know-not-what that leads to an 
application of Bayes’ rule. 

In section 7, I argue that, to the extent that a quantum state is a subjective 
quantity, so must be the assignment of a state-change rule p -+ pd for describing 
what happens to an initial quantum state upon the completion of a measurement- 
generally some POVM-whose outcome is d. In fact, the levels of subjectivity for 
the state and the state-change rule must be precisely the same for consistency’s 
sake. T o  draw an analogy to Bayesian probability theory, the initial state p plays 
the role of an a priori probability distribution P(h) for some hypothesis, the final 
state Pd plays the role of a posterior probability distribution P(hld), and the state- 
change rule p + p d  plays the role of the ‘statistical model’ P(dlh) enacting the 
transition P(h) + P(hld). T o  the extent that all Bayesian probabilities are 
subjective-even the probabilities P(dlh) of a statistical model-so is the mapping 
p -+ P d .  Specializing to the case that no information is gathered, one finds that the 
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trace-preserving completely positive maps that describe quantum time-evolution 
are themselves nothing more than subjective judgements. 

In section 8, I review the parts of quantum mechanics argued to be subjective 
in character and reiterate that such an analysis cannot be the end of the journey. 

Finally, in section 9, I flirt with the most tantalizing question of all: why the 
quantum? There is no answer here, but I do not discount that we are on the brink of 
finding one. In this regard no platform seems firmer for the leap than the very 
existence of quantum cryptography and quantum computing. The  world is 
sensitive to our touch. It has a kind of ‘Zing!’ that makes it fly off in ways that were 
not imaginable classically. The whole structure of quantum mechanics-it is 
speculated-may be nothing more than the optimal method of reasoning and 
processing information in the light of such a fundamental (wonderful) sensitivity. 
As a concrete proposal for a potential mathematical expression of ‘Zing!’, I consider 
the integer parameter D traditionally ascribed to a quantum system by way of its 
Hilbert-space dimension. 

3. Why information? 
Einstein was the master of clear thought; I have expressed my opinion on this 

for both special and general relativity. But I can go further. I would say he 
possessed the same great penetrating power when it came to analysing the 
quantum too. For even there, he was immaculately clear and concise in his 
expression. In particular, he was the first person to say in unambiguous terms why 
the quantum state should be viewed as information (or, to say the same thing, as a 
representation of one’s beliefs and gambling commitments, credible or otherwise). 

His argument was simply that a quantum-state assignment for a system can be 
forced to go one way or the other by interacting with a part of the world that 
should have no causal connection with the system of interest. The  paradigm here is 
the one well known through the Einstein-Podolsky-Rosen paper [20], but simpler 
versions of it had a long pre-history with Einstein [21] alone. 

The best was in essence this. Take two spatially separated systems A and B 
prepared in some entangled quantum state I@’),. By measuring one or another of 
two observables on system A alone, one can immediately write down a new state for 
system B. Either the state will be drawn from one set of states {I&) or another 
(I$)}, depending upon which observable is measured. The key point is that it does 
not matter how distant the two systems are from each other, what sort of medium 
they might be immersed in, or any of the other fine details of the world. Einstein 
concluded that whatever these things called quantum states be, they cannot be ‘real 
states of affairs’ for system B alone. For, whatever the real, objective state of affairs 
at B is, it should not depend upon the measurements one makes on a causally 
unconnected system A. 

Thus one must take it seriously that the new state (either a I@) or a I$)) 
represents information about system B. In making a measurement on A, one learns 
something about B, but that is where the story ends. The  state change cannot be 
construed to be something more physical than that. More particularly, the final 
quantum state for B cannot be viewed as more than a reflection of some tricky 
combination of one’s initial information and the knowledge gained through the 
measurement. Expressed in the language of Einstein, the quantum state cannot be 
a ‘complete’ description of the quantum system. 
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Here is the way Einstein put it to Michele Besso in a 1952 letter [22] :  

What relation is there between the ‘state’ (‘quantum state’) described 
by a function + and a real deterministic situation (that we call the ‘real 
state’)? Does the quantum state characterize completely (1) or only 
incompletely (2) a real state?. . . 

I reject (1) because it obliges us to admit that there is a rigid 
connection between parts of the system separated from each other in 
space in an arbitrary way (instantaneous action at a distance, which 
doesn’t diminish when the distance increases). Here is the demonstra- 
tion: [The argument he uses is the same as the one reported abowe]. 

If one considers the method of the present quantum theory as being 
in principle definitive, that amounts to renouncing a complete 
description of real states. One could justify this renunciation if one 
assumes that there is no law for real states-i.e. that their description 
would be useless. Otherwise said, that would mean: laws don’t apply to 
things, but only to what observation teaches us about them. (The laws 
that relate to the temporal succession of this partial knowledge are 
however entirely deterministic.) 

Now, I can’t accept that. I think that the statistical character of the 
present theory is simply conditioned by the choice of an incomplete 
description. 

There are two issues in this letter worth disentangling. (1) Rejecting the rigid 
connection of all nature-that is to say, admitting that the very notion of separate 
systems has any meaning at a l l -one  is led to the conclusion that a quantum state 
cannot be a complete specification of a system. It must be information, at least in 
part. This point should be placed in contrast to the other well-known facet of 
Einstein’s thought: namely, (2) an unwillingness to accept such an ‘incomplete- 
ness’ as a necessary trait of the physical world. 

It is quite important to recognize that the first issue does not entail the second. 
Einstein had that firmly in mind, but he wanted more. His reason for going the 
further step was, I think, well justified at the time [23]: 

There exists . . . a simple psychological reason for the fact that this 
most nearly obvious interpretation is being shunned. For if the statistical 
quantum theory does not pretend to describe the individual system (and 
its development in time) completely, it appears unavoidable to look 
elsewhere for a complete description of the individual system; in doing 
so it would be clear from the very beginning that the elements of such a 
description are not contained within the conceptual scheme of the 
statistical quantum theory. With this one would admit that, in principle, 
this scheme could not serve as the basis of theoretical physics. 

But the world has seen much in the meantime. The  last 19 years have given 
confirmation after confirmation that the Bell inequality (and several variations of it) 
are indeed violated by the physical world. The  Kochen-Specker no-go theorems 
have been meticulously clarified to the point where simple textbook pictures can be 
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drawn of them [24]. Incompleteness, it seems, is here to stay: the theory prescribes 
that no matter how much we know about a quantum system-even when we have 
maximal information about it-there will always be a statistical residue. There will 
always be questions that we can ask of a system for which we cannot predict the 
outcomes. In quantum theory, maximal information is simply not complete 
information [25]. But neither can it be completed. As Wolfgang Pauli once wrote 
to Markus Fierz [26], ‘The well-known ‘incompleteness’ of quantum mechanics 
(Einstein) is certainly an existent fact somehow-somewhere, but certainly cannot 
be removed by reverting to classical field physics.’ Nor, I would add, will the 
mystery of that ‘existent fact’ be removed by attempting to give the quantum state 
an ontological status. 

The complete disconnectedness of the quantum-state change rule from 
anything to do with space-time considerations is telling us something deep: the 
quantum state is information. Subjective, incomplete information. Put in the right 
mindset, this is not so intolerable. It is a statement about our world. There is 
something about the world that keeps us from ever getting more information than 
can be captured through the formal structure of quantum mechanics. Einstein had 
wanted us to look further-to find out how the incomplete information could be 
completed-but perhaps the real question is, ‘why can it not be completed?’ 

Indeed I think this is one of the deepest questions we can ask and still hope to 
answer. But first things first. The more immediate question for anyone who has 
come this far-and one that deserves to be answered forthright-is what is this 
information symbolized by a I+) actually about? I have hinted that I would not 
dare say that it is about some kind of hidden variable (as the Bohmian might) or 
even about our place within the universal wavefunction (as the Everettic might). 

Perhaps the best way to build up to an answer is to be true to the theme of this 
paper. Let us forage the phenomena of quantum information to see if we might 
first refine Einstein’s argument. One need look no further than to the phenomenon 
of quantum teleportation [14]. Not only can a quantum-state assignment for a 
system be forced to go one way or the other by interacting with another part of the 
world of no causal significance, but, for the cost of two bits, one can make that 
quantum state assignment anything one wants it to be. 

Such an experiment starts out with Alice and Bob sharing a maximally 
entangled pair of qubits in the state I@”) = l0)lO) + 11)Il). Bob then goes to any 
place in the universe he wishes. Alice in her laboratory prepares another qubit 
with any state I+) which she ultimately wants to impart onto Bob’s system. 
She performs a Bell-basis measurement on the two qubits in her possession. In the 
same vein as Einstein’s thought experiment, Bob’s system immediately takes on 
the character of one of the states I + ) ,  crxl$), a,,l$), or ozI$). But that is only insofar 
as Alice is concerned?. Since there is no (reasonable) causal connection between 
Alice and Bob, it must be that these states represent the possibilities for Alice’s 
updated beliefs about Bob’s system. 

If now Alice broadcasts the result of her measurement to the world, Bob may 
complete the teleportation protocol by performing one of the four Pauli rotations 
(I, a,, a,,, a,) on his system, conditioning it on the information he receives. 

t A s  far as Bob is concerned, nothing whatsoever changes about the system in his 
possession: it started in the completely mixed state p = $1 and remains that way. 



996 C .  A .  Fuchs 

The result, as far as Alice is concerned, is that Bob’s system finally resides 
predictably in the state I+)?. 

How can Alice convince herself that such is the case? Well, if Bob is willing to 
reveal his location, she just need walk to his site and perform the YES-NO 
measurement: I+)(+[ versus I - l + ) ( + l .  The  outcome will be a YES with 
probability one for her if all has gone well in carrying out the protocol. Thus, 
for the cost of a measurement on a causally disconnected system and two bits 
worth of causal action on the system of actual interest-i.e. one of the four Pauli 
rotations-Alice can sharpen her predictability to complete certainty for any 
YES-NO observable she wishes. 

Penrose argues in his book The Emperor’s New Mind [27] that when a system 
‘has’ a state I+) there ought to be some property in the system (in and of itself) that 
corresponds to its ‘I+)’ness’. For how else could the system be prepared to reveal a 
YES in the case that Alice actually checks it? Asking this rhetorical question with a 
sufficient amount of command is enough to make many a would-be informationist 
weak at the knees. But there is a crucial oversight implicit in its confidence, and we 
have caught it in action. If Alice fails to reveal her information to anyone, there is 
no one else in the world who can predict the qubit’s ultimate revelation with 
certainty-examining Alice’s measurement device before and after the measure- 
ment tells us nothing about the posterior quantum state Alice ends up with for 
Bob’s system. How can a secret be anything more than pure information? More 
importantly, there is nothing in quantum mechanics that gives the qubit the power 
to stand up and say YES all by itself if Alice does not take the time to walk over to 
it and interact with it, there is no revelation. There is only the confidence in Alice’s 
mind that, should she interact with it, she could predict the consequence1 of that 
interaction. 

4. Information about what? 
There are great rewards in being a new parent. Not least of all is the 

opportunity to have a close-up look at a mind in formation. Last year, I watched 
my two-year old learn things at a fantastic rate, and though there were untold 
lessons for her, there were a sprinkling for me too. For instance, I started to see her 
come to grips with the idea that there is a world independent of her desires. What 
struck me was the contrast between that and the gain of confidence I saw grow in 
her that there are aspects of existence she could control. The two go hand in hand. 
She pushes on the world, and sometjmes it gives in a way that she has learned to 
predict, and sometimes it pushes back in a way she has not foreseen (and may 
never be able to). If she could manipulate the world to the complete desires of her 
will, there would be little difference between wake and dream. 

The  main point is that she learns from her forays into the world. In  my cynical 
moments, I find myself thinking, ‘How can she think that she’s learned anything at 
all? She has no theory of measurement. She leaves measurement completely 
undefined. How can she have a stake to knowledge if she does not have a theory of 
how she learns?’ 

t A s  far as Bob is concerned, nothing whatsoever changes about the system in his 

$ I  adopt this terminology to be similar to Savage’s book [28], on rational decision 
possession: it started in the completely mixed state p = $1 and remains that way. 

theory. 
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Hideo Mabuchi once told me, ‘The quantum measurement problem refers to a 
set of people.’ And though that is a bit harsh, maybe it also contains a bit of the 
truth. With the physics community making use of theories that tend to last 
between 100 and 300 years, we are apt to forget that scientific views of the world 
are built from the top down, not from the bottom up. The experiment is the basis 
of all that we try to describe with science. But an experiment is an active 
intervention into the course of nature on the part of the experimenter; it is not 
contemplation of nature from afar. We set up this or that experiment to see how 
nature reacts. It is the conjunction of myriads of such interventions and their 
consequences that we record into our data books. 

We tell ourselves that we have learned something new when we can distill from 
the data a compact description of all that was seen and-even more tellingly- 
when we can dream up further experiments to corroborate that description. This is 
the minimal requirement of science. If, however, from such a description we can 
further distill a model of a free-standing ‘reality’ independent of our interventions, 
then so much the better. I have no bone to pick with reality. It is the most solid 
thing we can hope for from a theory. Classical physics is the ultimate example in 
that regard. It gives us a compact description, but it can give much more if we 
want it to. 

The thing to realize, however, is that there is no logical necessity that such a 
worldview should always be obtainable. If the world is such that we can never 
identify a reality-a free-standing reality-independent of our experimental inter- 
ventions, then we must be prepared for that too. That is where quantum theory in 
its most minimal and conceptually simplest dispensation seems to stand [29]. I t  is a 
theory whose terms refer predominantly to our interface with the world. I t  is a 
theory that cannot go the extra step that classical physics did without tearing and 
straining to rhyme. It is a theory not about observables, not about beables, but 
about ‘ringables’. We tap a bell with our gentle touch and listen for its beautiful 
ring. 

So what are the ways we can intervene on the world? What are the ways we can 
push it and wait for its unpredictable reaction? The  textbook story is that 
measurables correspond to Hermitian operators. Or  to say it in more modern 
language, to each observable there corresponds a set of orthogonal projection 
operators {ni) over a complex Hilbert space 3-t, which form a complete resolution 
of the identity, xi ni = 1. The index i labels the potential outcomes of the 
measurement (or interwention, to slip back into the language above). When an 
observer possesses the information F a p t u r e d  most generally by a mixed-state 
density operator-quantum mechanics dictates that he can expect the various 
outcomes with a probability P(i) = tr @Hi). 

The best justification for this probability rule comes by way of Gleason’s 
amazing 1957 theorem [19]. For it states that the standard rule is the only rule that 
satisfies a very simple kind of non-contextuality for measurement outcomes [30]. 
In particular, if one contemplates measuring two distinct observables {Hi )  and {ri) 
which happen to share a single projector nk, then the probability of outcome k is 
independent of which observable it is associated with. More formally, the 
statement is this. Let PD be the set of projectors associated with a (real or complex) 
Hilbert space 3-tFlrmo for D 2 3, and let f : PD+[O, 13 be such that Ci f ( H i )  = 1 
whenever a set of projectors {Hi )  forms an observable. The  theorem concludes that 
there exists a density operator p such thatf(l7) = tr ( p n ) .  In  fact, in a single blow, 



998 C .  A .  Fuchs 

Gleason’s theorem derives not only the probability rule, but also the state-space 
structure for quantum mechanical states (i.e. that it corresponds to the convex set 
of density operators). 

In itself this is no small feat, but the thing that makes the theorem an ‘amazing’ 
theorem is the sheer difficulty required to prove it [31]. Note that no restrictions 
have been placed upon the function f beyond the ones mentioned above. There is 
no assumption that it need be differentiable, nor that it even need be continuous. 
All of that, and linearity too, comes from the structure of the observables-i.e. that 
they are complete sets of orthogonal projectors onto a linear vector space. 

Nonetheless, one should ask: does this theorem really give the physicist a clearer 
vision of where the probability rule comes from? Astounding feats of mathematics 
are one thing; insight into physics is another. The  two are often at opposite ends of 
the spectrum. As fortunes turn, a unifying strand can be drawn by viewing 
quantum foundations in the light of quantum information. 

The  place to start is to drop the fixation that the basic set of observables in 
quantum mechanics are complete sets of orthogonal projectors. In quantum 
information theory it has been found to be extremely convenient to expand the 
notion of measurement to also include general positive operator-valued measures 
(POVMs) [24, 321. In  other words, in place of the usual textbook notion of 
measurement, any set ( E d )  of positive-semi-definite operators on ‘&, that forms a 
resolution of the identity-ie. that satisfies (@l&l@) 2 0 for all I@) E ‘&, and 
x d E d  = I - coun t s  as a measurement. The outcomes of the measurement are 
identified with the indices d, and the probabilities of the outcomes are computed 
according to a generalized Born rule, 

The set ( E d )  is called a POVM, and the operators E d  are called POVM elements. 
(In the non-standard language promoted earlier, the set (Ed) signifies an 
intervention into nature, while the individual E d  represent the potential 
consequences of that intervention.) Unlike standard measurements, there is no 
limitation on the number of values the index d can take. Moreover, the E d  may be 
of any rank, and there is no requirement that they be mutually orthogonal. 

The  way this expansion of the notion of measurement is usually justified is that 
any POVM can be represented formally as a standard measurement on an ancillary 
system that has interacted in the past with the system of actual’ interest. Indeed, 
suppose the system and ancilla are initially described by the density operators ps 
and PA respectively. The  conjunction of the two systems is then described by the 
initial quantum state ~ S A  = ps @ PA. An interaction between the systems via some 
unitary time evolution leads to a new state p s ~ + U p s ~ U + .  Now, imagine a 
standard measurement on the ancilla. I t  is described on the total Hilbert space via 
a set of orthogonal projection operators {I @ n d } .  An outcome d will be found with 
probability 

The number of outcomes in this seemingly indirect notion of measurement is 
limited only by the dimensionality of the ancilla’s Hilbert space-in principle, 
there can be arbitrarily many. 
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As advertised, it turns out that the probability formula above can be expressed 
in terms of operators on the system’s Hilbert space alone: this is the origin of the 
POVM. If we let Is,) and la,) be an orthonormal basis for the system and ancilla 
respectively, then Is,)la,) will be a basis for the composite system. Using the cyclic 
property of the trace in equation (2), we obtain 

Letting trA and trs denote partial traces over the system and ancilla, respectively, it 
follows that P(d)  = trs (PSEd), where 

is an operator acting on the Hilbert space of the original system. This proves half 
of what is needed, but it is also straightforward to go in the reverse direction-i.e. 
to show that for any POVM (Ed} ,  one can pick an ancilla and find operators PA, U 
and n d  such that equation (4) is true. 

Putting this all together, there is a sense in which standard measurements 
capture everything that can be said about quantum measurement theory. What I 
would like to bring up is whether this standard way of justifying the POVM is the 
most productive point of view one can take. Might any of the mysteries of 
quantum mechanics be alleviated by taking the POVM as a basic notion of 
measurement? Does the POVM’s utility portend a larger role for it in the 
foundations of quantum mechanics? 

Standard measurements Generalized measurements 

I try to make this point dramatic in my lectures by exhibiting the table above. 
On the left-hand side there is a list of various properties for the standard notion of 
a quantum measurement. On the right-hand side, there is an almost identical list of 
properties for the POVMs. The only difference between the two columns is that 
the right-hand one is missing the orthonormality condition required of a standard 
measurement. The question I ask the audience is this: does the addition of that one 
extra assumption really make the process of measurement any less mysterious? 
Indeed, I imagine myself teaching quantum mechanics for the first time and taking 
a vote with the best audience of all, the students. ‘Which set of postulates for 
quantum measurement would you prefer?’ I am quite sure they would respond 
with a blank stare. But that is the point! It would make no difference to them, and 
it should make no difference to us. The only issue worth debating is which notion 
of measurement will allow us to see more deeply into quantum mechanics. 
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Therefore let us pose the question Gleason did, but with POVMs. In other 
words, let us suppose that the ways an experimenter can intervene on a quantum 
system corresponds to the set of POVMs on its Hilbert space ‘HD. I t  is the task of 
the theory to give him probabilities for the consequences of his interventions. 
Concerning those probabilities, let us again assume non-contextuality-i.e. 
whatever the probability for a given consequence E, is, it does not depend upon 
whether E, is associated with the POVM (Ed} or, instead, any other one ( E d ) .  This 
means there exists a function f : ED+[O, 11, where ED = (E : 0 < ($IEl$) < 1, 
Vl$) E ED), such that whenever ( E d }  forms a POVM, xdf(&) = 1. (In general, 
we will call any function satisfying f ( E )  2 0 and x d f ( & )  = constant a frame 
function, in analogy to Gleason’s non-negative frame functions.) 

It will come as no surprise, of course, that a Gleason-like theorem must hold 
for the function f .  Namely, it can be shown that there must exist a density operator 
p for which f ( E )  = tr(pE). This was recently shown by Busch [17] and, 
independently, by Renes and collaborators [18]. What is surprising however is 
the utter simplicity of the proof. 

T o  show that off, let us exhibit the whole proof for the special case where ‘HD is 
defined over the field of (complex) rational numbers. The full theorem based on 
the continuum, is a minor extension of this. It is no problem to see thatf is ‘linear’ 
with respect to positive combinations of operators that never go outside ED. 
Consider a three-element POVM (El, E2, E3). By assumption f ( E l )  +f(E2) + 
f(E3) = 1 .  However, we can also group the first two elements in this POVM 
to obtain a new POVM, and must therefore have f(E1 + E2) +f (E3)  = 1.  
In other words, the function f must be additive with respect to a fine-graining 
operation: 

Similarly for any two integers m and n, f ( E )  = mf[(l/m)E‘l = nf[(l/n)a. Suppose 
n / m  < 1 .  Then if we write E = nG, this statement becomes: f [ ( n / m ) q  = 
( n / m ) f ( G ) .  In other words, we immediately have a kind of limited linearity on ED.  

One might imagine using this property to cap off the theorem in the following 
way. Clearly the full D2-dimensional vector space OD of Hermitian operators on 
7 - l ~  is spanned by the set ED since that set contains, among other things, all the 
projection operators. Thus, we can write any operator E E ED as a linear 
combination E = CicriEi for some fixed operator-basis ( E i } g l .  ‘Linearity’ of f 
would then give f ( E )  = x i c r f ( E j ) .  So, if we define p by solving the D2 linear 
equations tr (pEi) = f (Ei) ,  we would have 

and essentially be done. (Positivity and normalization off would require p to be an 
actual density operator.) The problem is that in the expansion of E there is no 
guarantee that the coefficients cri can be chosen so that aiEi E ED. 

What remains to be shown is that f can be extended uniquely to a function that 
is truly linear on OD. This too is rather simple. First, take any positive semi- 
definite operator E. We can always find a positive rational number g such that 
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E = gG and G E ED. Therefore, we can simply define f ( E )  = gf(G). T o  see that 
this definition is unique, suppose there are two such operators G1 and G2 (with 
corresponding numbers gl and g2) such that E = gl G1 = g2G2. Further suppose 
g2 2 gl . Then G2 = (gl/g2)G1 and, by the homogeneity of the original unextended 
definition off, we obtain g d ( G 2 )  = gl f ( G I ) .  Furthermore this extension retains the 
additivity of the original function. For suppose that neither E nor G, although 
positive semi-definite, are necessarily in &D. We can find a positive rational 
number c 2 1 such that ( l / c ) ( E  + G), ( l / c ) E ,  and ( l / c ) G  are all in €D. Then, by 
the rules we have already obtained, 

(7) 

Let us now further extend f ’ s  domain to the full space O d .  This can be done by 
noting that any operator H can be written as the difference H = E - G of two 
positive semi-definite operators. Therefore define f ( H )  = f ( E )  - f ( G ) ,  from which 
it also follows that f(-G) = -f(G). T o  see that this definition is unique suppose 
there are four operators E l ,  E2, GI and G2, such that H = El - GI = E2 - G2. 
It follows that El + G2 = E2 + G I .  Applying f (as extended in the previous 
paragraph) to this equation, we obtain f (E1)  + f ( G 2 )  = f ( E 2 )  + f ( G 1 )  so that 
f (E1)  - f(G1) = f (E2)  - f(G2). Finally, with this new extension, full linearity can 
be checked immediately. This completes the proof as far as the (complex) rational 
number field is concerned: because f extends uniquely to a linear functional on OD, 
we can indeed go through the steps of equation (6) without worry. 

There are two things that are significant about this proof. First, in contrast to 
Gleason’s original theorem, there is nothing to bar the same logic from working 
when D = 2. This is quite nice because much of the community has gotten into the 
habit of thinking that there is nothing particularly ‘quantum mechanical’ about a 
single qubit. Indeed, because orthogonal projectors on I-tz can be mapped onto 
antipodes of the Bloch sphere, it is known that the measurement-outcome statistics 
for any standard measurement can be mocked-up through a non-contextual 
hidden-variable theory. What this result shows is that this simply is not the case 
when one considers the full set of POVMs as one’s potential measurements. 

The other important thing is that the theorem works for Hilbert spaces over 
the rational number field: one does not need to invoke the full power of the 
continuum. This contrasts with the surprising result of Meyer [33] that the 
standard Gleason theorem fails in such a setting. The  present theorem hints at a 
kind of resiliency to the structure of quantum mechanics which falls through the 
mesh of the standard Gleason result: the probability rule for POVMs does not 
actually depend so much upon the detailed workings of the number field. 

Of course we are not getting something for nothing. The  reason the present 
derivation is so easy in contrast to the standard proof is that mathematically the 
assumption of POVMs as the basic notion of measurement is significantly stronger 
than the usual assumption. Physically, though, I would say it is just the opposite. 
Why add extra restrictions to the notion of measurement when they only make 
the route from basic assumption to practical usage more circuitous than need be? 
In the end, a measurement, at some point in the chain, is always a black box-for 
the physicist every bit as much as for my two-year old daughter. The  issue is only 
to choose the prettiest black box possible. 
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4.1. The International Bureau of Weights and Measures 
There is one further, particularly important, advantage to thinking of POVMs 

as the basic notion of measurement in quantum mechanics. For with an 
appropriately chosen single POVM one can stop thinking of the quantum state 
as a linear operator altogether, and instead start thinking of it as a probabilistic 
judgement with respect to the (potential) outcomes of a standard quantum 
measurement. That is, a measurement device right next to the standard kilogram 
and the standard metre in a carefully guarded vault, deep within the bowels of the 
International Bureau of Weights and Measures?. Here is what I mean by this. 

Our problem hinges on finding a measurement for which the probabilities of 
outcomes completely specify a unique density operator. Such measurements are 
called informationally complete and have been studied for some time [35]. Here 
however, the picture is most pleasing if we consider a slightly refined version of 
the notion-that of the minimal informationally complete measurement [36 ] .  The 
space of Hermitian operators on 7 - l ~  is itself a linear vector space of dimension D2.  
The quantity tr(Atl3) serves as an inner product on that space. Hence, if we can 
find a POVM E = (Ed)  consisting of D2 linearly independent operators, the 
probabilities P ( d )  = tr (pEd)-now thought of as projections in the directions of the 
vectors &-will completely specify the operator p.  Any two distinct density 
operators p and cr must give rise to distinct outcome statistics for this 
measurement. The minimal number of outcomes a POVM can have and still be 
informationally complete is D 2 .  

Do minimal informationally complete POVMs exist? The answer is yes. Here 
is a simple way to produce one, although there are many other ways. Start with a 
complete orthonormal basis lej) on ‘HD. One can check that the following D2 rank-1 
projectors nd form a linearly independent set. 

(1) 

(2) 

(3 )  

For d = 1, ..., D, let nd = lej)(ejl, where j ,  too, runs over the values 
1 , .  . . , D. 
For d = D + 1, .  . . , i D ( D  + I), let nd = $ (lej) + lek))((ejl + (ekl), where 
j < k. 
F o r d  = i D ( D + 1 ) + 1  ,..., D2,  letnd=;(lej)+ilek))((ejl-i(ekl), where 
again j < k. 

All that remains is to transform these linearly independent operators nd into a 
proper POVM. This can be done by considering a positive semi-definite operator 
G defined by 

It is straightforward to show that (+lG[+) > 0 for all I+) # 0, thus establishing that 
G is positive definite and hence invertible. Applying the (invertible) linear 
transformation X --f G-1/2XG-’/2 to equation (8), we find a valid decomposition 
of the identity, 

d=l 

tThis idea has its roots in L. Hardy’s important paper [34]. 
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The operators E d  = G-’I2ndG-’l2 satisfy the conditions of a POVM, and 
moreover, they retain the rank and linear independence of the original n d .  Thus 
we have what we need. 

With the existence of minimal informationally complete POVMs assured, we 
can think about the vault in Paris. Let us suppose from here out that it contains a 
machine which enacts a minimal informationally complete POVM Eh whenever it 
is used. We reserve the index h to denote the outcomes of this standard quantum 
measurement, for they will replace the notion of the ‘hypothesis’ in classical 
statistical theory. Let us develop this from a Bayesian point of view. 

Whenever one has a quantum system in mind, it is legitimate for him to use all 
he knows and believes of it to ascribe a probability function P(h) to the (potential) 
outcomes of this standard measurement. In fact, that is all a quantum state is from 
this point of view: it is a subjective judgement about which consequence will 
obtain as a result of an interaction between one’s system and that machine. 
Whenever one performs a measurement (Ed) on the system-one different from 
the standard quantum measurement (Eh}-at the most basic level of under- 
standing, all one is doing is gathering (or evoking) a piece of data d that (among 
other things) allows one to update from one’s initial subjective judgement P(h) to 
something else Pd(h). 

It is important to recognize that, with this change of description, we may be 
edging toward a piece of quantum mechanics that is not of information theoretic 
origin. It is this. If one accepts quantum mechanics and supposes that one has a 
system for which the standard quantum measurement device has D2 outcomes, 
then one is no longer free to make just any subjective judgement P(h) he pleases. 
There are constraints. Let us call the allowed region of initial judgements P ~ Q M ~ .  

For any minimal informationally complete POVM {Eh), P(h) must be bounded 
away from unity for all its possible outcomes. Thus even at this stage, there is 
something driving a wedge between quantum mechanics and simple Bayesian 
probability theory. When one accepts quantum mechanics, one voluntarily accepts 
a restriction on one’s subjective judgements for the consequences of a standard 
quantum measurement intervention: for all consequences h, there are no conditions 
whatsoever convincing enough to compel one to a probability ascription P(h) = 1. 
That is, one gives up on the hope of certainty. This, indeed, one might pinpoint as 
an assumption about the physical world that goes beyond pure probability theory$. 

But what is that assumption in physical terms? What is our best description 
of the wedge? Some think they already know the answer, and it is quantum 
entanglement. 

5. Wither entanglement? 
Quantum entanglement has certainly captured the attention of our community. 

By most accounts it is the main ingredient in quantum information theory and 

tThis  region is a convex set. For details about the convex region generated by an 
arbitrary POVM, see [37]. 

$ It is at this point that the present account of quantum mechanics differs most crucially 
from [34]. Hardy sees quantum mechanics as a generalization and extension of classical 
probability theory, whereas quantum mechanics is depicted here as a restriction to 
probability theory. It is a restriction that takes into account how we ought to think and 
gamble in light of a certain physical fact-a fact which we are working to identify. 
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Figure 1. The planar surface represents the space of all probability distributions over D2 
outcomes. Accepting quantum mechanics is, in part, accepting that one’s subjective 
beliefs for the outcomes of a standard quantum measurement device will not fall 
outside a certain convex set. Each point within the convex region represents a valid 
quantum state. 

quantum computing, and it is the main mystery of the quantum foundations. 
But what is it? Where does it come from? 

The  predominant purpose it has served in this paper has been as a kind of 
background. For it, more than any other ingredient in quantum mechanics, has 
clinched the issue of ‘information about what?’ in the author’s mind: that 
information cannot be about a pre-existing reality (a hidden variable) unless we are 
willing to renege on our reason for rejecting the quantum state’s objective reality in 
the first place. What I am alluding to here is the conjunction of the Einstein 
argument reported in section 3 and the phenomena of the Bell inequality violations 
by quantum mechanics. Putting those points together gave us that the information 
symbolized by a I+) must be information about the potential consequences of our 
interventions into the world. 

But, now I would like to turn the tables and ask whether the structure of our 
potential interventions-the POVMs-can tell us something about the origin of 
entanglement. Could it be that the concept of entanglement is just a minor addition 
to the much deeper point that measurements have this structure? 

The  technical translation of this question is, why do we combine systems 
according to the tensor-product rule? There are certainly innumerable ways to 
combine two Hilbert spaces ‘HA and l i ~  to obtain a third ‘HAB.  We could take the 
direct sum of the two spaces N A B  = ‘HA @ ‘ H B .  We could take their Grassmann 
product ‘HAB = ‘HA A ‘ H B .  We could take scads of other things. But instead we take 
their tensor product, ‘FIAB = ‘HA 8 ‘ H B .  Why? 

Could it arise from the selfsame considerations as of the previous section- 
namely, from a non-contextuality property for measurement-outcome probabil- 
ities? The answer is yes, and the theorem I am about demonstrate owes much in 
inspiration to [38]. 

Here is the scenario. Suppose we have two quantum systems, and we can make 
a measurement on each. On the first, we can measure any POVM on the DA- 
dimensional Hilbert space ‘HA;  on the second, we can measure any POVM on the 
&-dimensional Hilbert space X B .  (This, one might think, is the very essence of 
having two systems rather than one4 .e .  that we can probe them independently.) 
Moreover, suppose we may condition the second measurement on the nature and 
the outcome of the first, and vice versa. That is to say-walking from A to B-we 
could first measure {&) on A, and then, depending on the outcome i, measure IF,!] 
on B. Similarly-walking from B to A-we could first measure {F’} on B, and 
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then, depending on the outcome j, measure (Ei] on A. So that we have valid 
POVMs, we must have Ci Ei = I and Vi Xi Fi = I ,  and similarly V j  X i  Ei = I and c, F, ,= I .  Let us denote by Sij an ordered pair of operators, either of the form 
(Ei, F,!) or of the form (E;, Fj), as appearing above. Let us call a set of such 
operators (SG]  a locally-measurable P O  V M  tree. 

Suppose now that-just as with the POVM-version of Gleason’s theorem in 
section +the joint probability P(i, j9 for the outcomes of such a measurement 
should not depend upon which tree Sij is embedded in: this is essentially the same 
assumption we made there, but now applied to local measurements on the separate 
systems. In other words, let us suppose there exists a functionf : ED, x E~, - - t [ 0 ,  11 
such that 

whenever the Sij form a locally-measurable POVM tree. Note in particular that 
this definition makes no use of the tensor product: the domain off is the Cartesian 
product of ED, and ED,. 

The theorem is this: iff satisfies equation (10) for all locally-measurable POVM 
trees, then there exists a linear operator C on ‘HA @ 7 - l ~  such that 

If ‘HA and ‘He are defined over the field of complex numbers, then c is unique. 
Uniqueness does not hold, however, if the underlying field is the real numbers. 

The  proof of this statement is almost a trivial extension of the proof in section 4. 
One again starts by showing additivity, but this time in the two variables E and F 
separately. For instance, for a fixed E E ED,, define gE(F) = f ( E ,  F) ,  and consider 
two locally-measurable POVM trees ((I - E, FJ, (E, G,)) and ( ( I  - E, Fi), 
(E,  Hg)), where (Fi] ,  {G,] and (Hg} are arbitrary POVMs on ‘HB.  Then equation 
(10) requires that Cigr-E(Fi) + c , g ~ ( G d  = 1 and Cigl-E(Fi) + C g g d H g )  = 1. 
From this it follows that, C,gE(G,) = c g g E ( H g )  = constant. In  other words, 
gE(F) is a frame function in the sense of section 4. Consequently, we know that we 
can use the same methods as there to uniquely extend gE(F) to a linear functional 
on the complete set of Hermitian operators on ‘HB.  Similarly, for fixed F E ED, ,  we 
can define hF(E) = f ( E ,  F ) ,  and prove that this function too can be extended 
uniquely to a linear functional on the Hermitian operators on ‘HA. 

The linear extensions of gE(F) and hF(E) can be put together in a simple way to 
give a full bilinear extension to the function f ( E ,  F ) .  Namely, for any two 
Hermitian operators A and B on ‘HA and ‘HB, respectively, let A = alE1 - a2E2 
and B = F1 - p2F2 be decompositions such that 0 1 1 ,  012, / l 1 , / 3 2  >, 0,  E l ,  E2 E ED,, 
and F1, F2 E ED,. Then define f (A, B) = q g E 1  (B)  - q g ~ ~ ( B ) .  T o  see that this 
definition is unique, take any other decomposition A = - &&. Then it 
is a simple matter to check that &gi , (B)  - &gi2(B) = cqgEI(B) - 012g~,(B) as 
desired. 

With bilinearity for the function f established, we have essentially the full 
story. For, let (Ei] ,  i = 1 ,  . . . , D:, be a complete basis for the Hermitian operators 
on ‘HA and let (Fj} ,  j = 1, . . . , D i ,  be a complete basis for the Hermitian operators 
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on 3-18. If E = xi aiEi and F = xi &F,, then f ( E ,  F) = & ai&f(Ei,  F,). Define 
C to be a linear operator on ‘HA 8 ‘HB satisfying the ( D A D B ) ~  linear equations 

Such an operator always exists. Consequently we have, 

For complex Hilbert spaces ‘HA and ‘HB,  the uniqueness of C follows because 
the set (Ei 8 Fj] forms a complete basis for the Hermitian operators on ‘HAB‘HB 
[39]. For real Hilbert spaces, however, the analogue of the Hermitian operators are 
the symmetric operators. The dimensionality of the space of symmetric operators 
on a real Hilbert space ‘HD is bD(D + l), rather than the D2 it is for the complex 
case. This means that in the steps above only ~ D A D B ( D A  + I)(& + 1) equations 
will appear in equation (12), whereas ~ D A D B ( D A D B  + 1) are needed to uniquely 
specify C. 

This establishes the theorem. It would be nice if we could go further and 
establish the full probability rule for local quantum measurements-i.e. that C 
must be a density operator. Unfortunately, our assumptions are not strong enough 
for that. For instance, suppose ‘HA = ‘HB and let @ be any positive, but not 
completely positive, trace-preserving linear map from and to the operators on ‘HA. 
Then, for any maximally entangled state I ~ E )  on ‘HA 8 ‘HB, c = 1 8  @ ( I ~ E )  
( + M E I )  will not be a density operator. Yet, the quantityf(E, F) in equation (1 1) will 
nevertheless be non-negative [40]. 

Of course, one could recover positivity for C by requiring that it give positive 
probabilities even for non-local measurements (i.e. resolutions of the identity 
operator on ‘HA 8x8). But in the purely local setting contemplated here, that 
would be a cheap way out. For, one should ask in good conscience what ought to be 
the rule for defining the full class of measurements (including non-local 
measurements): why should it correspond to an arbitrary resolution of the identity 
on the tensor product? There is nothing that makes it obviously so, unless one has 
already accepted standard quantum mechanics. Alternatively, it must be possible 
to give a purely local condition that will restrict C to be a density operator. This is 
because C, as noted above, is uniquely determined by the function f ( E ,  F); we 
never need to look further than the probabilities of local measurements outcomes 
in specifying C. Ferreting out such a condition supplies an avenue for future 
research. 

All of this does not, however, take away from the fact that whatever C is, it 
must be a linear operator on the tensor product ‘HA 8 ‘HB. Therefore, let US close 
by emphasizing the striking feature of this way of deriving the tensor-product rule 
for combining separate quantum systems: it is built on the very concept of local 
measurement. There is nothing ‘spooky’ or ‘non-local’ about it. 

Thus, the tensor-product rule, and with it quantum entanglement, seems to be 
more a statement of locality than anything else. It, like the single-system probability 
rule, is more a product of the structure of the observables-that they are POVMs- 
combined with non-contextuality. In searching for the secret ingredient to drive a 
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wedge between general Bayesian probability theory and quantum mechanics, it 
seems that the direction not to look is toward quantum entanglement. Perhaps the 
trick instead is to dig deeper into the Bayesian toolbox. 

6. Whither Bayes’ rule? 
Quantum states are states of information, knowledge, belief, pragmatic 

gambling commitments, not states of nature. That statement is the cornerstone 
of this paper. Thus, in searching to make sense of the remainder of quantum 
mechanics, one strategy ought to be to seek guidance from the most developed 
avenue of ‘rational-decision theory’ to date-Bayesian probability theory [41]. 
Indeed, the very aim of Bayesian theory is to develop reliable methods of reasoning 
and making decisions in the light of incomplete information. T o  what extent does 
that structure mesh with the seemingly independent structure of quantum 
mechanics? 

The core of the matter is the manner in which states of belief are updated in the 
two theories. At first sight, they appear to be quite different in character. T o  see 
this, let us first explore how quantum mechanical states change when information 
is gathered. In older accounts of quantum mechanics, one often encounters the 
‘collapse postulate’ as a basic statement of the theory. One hears things like, 
‘Axiom 5: upon the completion of an ideal measurement of an Hermitian operator 
H, the system is left in an eigenstate of H.’ In quantum information, however, it 
has become clear that it is useful to broaden the notion of measurement, and with 
it, the analysis of how a state can change in the process. The  foremost reason for 
this is that the collapse postulate is simply not true in general: depending upon the 
exact nature of the measurement interaction, there may be any of a large set of 
possibilities for the final state of a system. 

The broadest notion of state change is this [32]. Suppose one’s initial state for a 
quantum system is a density operator p, and a POVM { E d ]  is measured on that 
system. Then, the state after the measurement can be any state pd of the form 

where 

= E d .  
i 

Note the immense generality of this formula. There is no constraint on the number 
of indices i in the Adi and these operators need not even be Hermitian. 

The usual justification for this kind of generality-just as in the case of the 
common justification for the POVM formalism-comes by imagining that the 
measurement arises in an indirect fashion, rather than as a direct observation. 
In other words, the primary system is pictured to interact with an ancilla first, and 
only then subjected to a ‘real’ measurement on the ancilla alone. The  trick is that 
one posits a kind of projection postulate on the primary system due to this process. 
This assumption has a much safer feel than the raw projection postulate since, 
after the interaction, no measurement on the ancilla should cause a physical 
perturbation to the primary system. 
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More formally, we can start out by following the usual derivation of how a 
POVM can be thought of as a standard measurement on a larger system, but in 
place of equation (2) we must make an assumption about how the system’s state 
changes. For this one invokes a kind of ‘projection-postulate-at-a-distance’. 
Namely, one takes 

The reason for invoking the partial trace is to make sure that any hint of a state 
change for the ancilla remains unaddressed. 

To see how expression (16) makes connection to equation (14), denote the 
eigenvalues and eigenvectors of PA by A, and la,) respectively. Expanding equation 
(16), we have 

A representation of the form in equation (14) can be made by taking 
Akp = A;/*(a,l U(I 8 nd)lap) and lumping the two indices a and B into the single 
index i. Indeed, one can easily check that equation (15) holds. This completes what 
we had set out to show. However, just as with the case of the POVM (Ed),  one can 
always find a way to reverse engineer the derivation: given a set of &, one can 
always find a U ,  a PA, and set of nd such that equation (16) becomes true. 

Of course the old collapse postulate is contained within the extended formalism 
as a special case: there, one just takes both sets ( E d ]  and (A& = E d ]  to be sets of 
orthogonal projection operators. Let us take a moment to think about this special 
case in isolation. What is distinctive about it is that it captures in the extreme a 
common folklore associated with the measurement process. For it tends to convey 
the image that measurement is a kind of gut-wrenching violence: in one moment 
the state is p = l+)(+l, while in the very next it is a Hi = l i)( i l .  Moreover, such a 
wild transition need depend upon no details of I+) and li); in particular the two 
states may even be almost orthogonal to each other. In  density-operator language, 
there is no sense in which ni is contained in p: the two states are in distinct places 
of the operator space. That is, p # xi  P(i)ni. 

Contrast this with the description of information gathering that arises in 
Bayesian probability theory, There, an initial state of belief is captured by a 
probability distribution P(h) for some hypothesis H. The  way gathering a piece of 
data d is taken into account in assigning one’s new state of belief is through Bayes’ 
conditionalization rule. That is to say, one expands P(h) in terms of the relevant 
joint probability distribution and picks off the appropriate term: 

How gentle this looks in comparison to quantum collapse! When one gathers new 
information, one simply refines one’s old beliefs in the most literal of senses. It is 
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not as if the new state is incommensurable with the old. I t  was always there; it was 
just initially averaged in with various other potential beliefs. 

Why does quantum collapse not look more like Bayes’ rule? Is quantum collapse 
really a more violent kind of change, or might it be an artefact of a problematic 
representation? By this stage, it should come as no surprise to the reader that 
dropping the ancilla from our image of generalized measurements will be the first 
step to progress. Taking the transition from p to p d  in equations (14) and (15) as the 
basic statement of what quantum measurement is is a good starting point. 

T o  accentuate a similarity between equation (14) and Bayes’ rule, let us first 
contemplate cases 
conveniently drop 

where 

of it where the index i takes on a single value. Then, we can 
that index and write 

In a loose way, one can say that measurements of this sort are the most efficient 
they can be for a given POVM ( E d } :  for, a measurement interaction with an 
explicit i-dependence may be viewed as ‘more truly’ a measurement of a finer- 
grained POVM that just happens to throw away some of the information it gained. 
Let us make this point more precise. 

Notice that Bayes’ rule has the property that one’s uncertainty about a 
hypothesis can be expected to decrease upon the acquisition of data. This can be 
made rigorous, for instance, by gauging uncertainty in terms of the Shannon 
entropy function, S ( H )  = - Ch P(h) log P(h) .  Since f ( x )  = --x log x is concave on 
the interval [0,1], it follows that 

Indeed we hope to find a similar statement for how the result of efficient 
quantum measurements decrease uncertainty. But, what can be meant by a decrease 
of uncertainty through quantum measurement? I have argued that the information 
gain in a measurement cannot be about a pre-existing reality. The  way out of the 
impasse is simple: the uncertainty that decreases in quantum measurement is the 
uncertainty one expects for the results of other potential measurements. 

A good way to quantify this has to do with the von Neumann entropy, 
S(p) = -trp log p. The  intuitive meaning of the von Neumann entropy can be 
found by first thinking about the Shannon entropy. Consider any von Neumann 
measurement P consisting of d one-dimensional orthogonal projectors ni. 
A natural question to ask is: with respect to a given density operator p, which 
measurement P will give the most predictability over its outcomes? As it turns out, 
the answer is any P that forms a set of eigenprojectors for p [42]. When this is 
obtained, the Shannon entropy of the measurement outcomes reduces to simply 
the von Neumann entropy of the density operator. The von Neumann entropy, 
then, signifies the amount of impredictability one achieves by way of a standard 
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measurement in a best case scenario. Indeed, true to one's intuition, one has the 
most predictability by this account when p is a pure state-for then S(p) = 0. 
Alternatively, one has the least knowledge when p is proportional to the identity 
operator-for then any measurement P will have outcomes that are all equally 
likely. 

The  way to get at a quantum statement of equation (22) is to make use of the 
fact that S(p) is concave in the variable p [43]. A function F is concave in p when 

for any density operators $0 and 51 and any real number t E [0,1]. Therefore, one 
might hope that 

Such a result, however, cannot arise in the easy fashion it did for the classical case 
of equation (22). This is because generally (as already emphasized), p # Ed P(d)pd 
for p d  defined as in equation (20). One has to be a little more roundabout to make a 
proof happen [43, 441. 

For the purposes here, the key [43] is in noticing that 

d d 

where 

What is special about this decomposition of p is that for each d ,  p d  and z d  have the 
same eigenvalues. This follows since X t X  and XH have the same eigenvalues, for 
any operator X. In the present case, setting X = A,jp'l2 does the trick. Using the 
fact that S(p) depends only upon the eigenvalues of p we obtain: 

as we had been hoping for. Thus, in performing an efficient quantum measurement 
of a POVM (Ed] ,  an observer can expect to be left with less uncertainty than he 
started with. 

In this sense, quantum 'collapse' does indeed have some of the flavour of Bayes' 
rule. But we can expect more, and the derivation above hints at just the right 
ingredient: Pd and 5 d  have the same eigenvalues! T o  see the impact of this, let us 
once again explore the content of equations (20) and (21). A common way to 
describe their meaning is to use the operator polar-decomposition theorem to 
rewrite equation (20) in the form 
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where u d  is a unitary operator. Since-subject only to the constraint of 
efficiency-the operators Ad are not determined any further than equation (21), 
u d  can be any unitary operator whatsoever. Thus, a customary way of thinking of 
the state-change process is to break it up into two conceptual pieces. First there is a 
‘raw collapse’: 

Then, subject to the precise measurement interaction and the particular outcome 
d ,  one imagines the measuring device enforcing a further ‘back-action’ or 
‘feedback’ on the measured system [45]: 

But this breakdown of the transition is a purely conceptual game. 
Since the u d  are arbitrary to begin with, we might as well break down the state- 

change process into the following (non-standard) conceptual components. First 
one imagines an observer refining his initial state of belief and simply plucking out 
a term corresponding to the ‘data’ collected: 

d 

.1 
d 

p - 6 d -  

Finally, there may be a further ‘mental readjustment’ of the observer’s beliefs, 
which takes into account details both of the measurement interaction and the 
observer’s initial quantum state. This is enacted via some (formal) unitary 
operation v d :  

Putting the two processes together, one has the same result as the usual picture. 
The resemblance between the process in equation (32) and the classical Bayes’ 

rule of equation (1 9) is uncanny?. By this way of viewing things, quantum collapse 
is indeed not such a violent state of affairs after all. Quantum measurement is 
nothing more, and nothing less, than a refinement and a readjustment of one’s 
initial state of belief. More general state changes of the form equation (14) come 
about similarly, but with a further step of coarse-graining (i.e. throwing away 
information that was in principle accessible). 

Let us look at two limiting cases of efficient measurements. In  the first, we 
imagine an observer whose initial belief structure p = I+)(+[ is a maximally sharp 
state of belief. By this account, no measurement whatsoever can rejine it. 
This follows because, no matter what (Ed) is, ~ ‘ / ~ E d p ’ / ~  = P(d)l+)(+l. The only 
state change that can come about from a measurement must be purely of the 

t Other similarities between quantum collapse and Bayesian conditionalization have 
been discussed in [46]. 
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mental-readjustment sort: we learn nothing new; we just change what we can 
predict as a consequence of the side effects of our experimental intervention. That is 
to say, there is a sense in which the measurement is solely disturbance. In par- 
ticular, when the POVM is an orthogonal set of projectors {ni = Ii)(il) and the 
state-change mechanism is the von Neumann collapse postulate, this simply 
corresponds to a readjustment according to the unitary operators Ui = li)($l. 

At the opposite end of things, we can contemplate measurements that have no 
possibility at all of causing a physical disturbance to the system being measured. 
This could come about, for instance, by interacting with one side of an entangled 
pair of systems and using the consequence of that intervention to update one’s 
beliefs about the other side. In  such a case, one can show that the state change is 
purely of the refinement variety (with no further mental readjustment)t. For 
instance, consider a pure state 1v”) whose Schmidt decomposition takes the form 
Ip”) = xik:’21ai)lbi). An efficient measurement on the A side of this leads to a 
state update of the form 

Tracing out the A side, then gives 

where p is the initial quantum state on the B side, U is the unitary operator 
connecting the la;) basis to the Ibi) basis, and T represents taking a transpose with 
respect to the Ibi) basis. Since the operators 

go together to form a POVM, we indeed have the claimed result. 
In summary, the lesson here is that it turns out to be rather easy to think of 

quantum collapse as a non-commutative variant of Bayes’ rule. In fact it is just in 

t This should be contrasted with the usual picture of a ‘minimally disturbing’ measure- 
ment of some POVM. In our case, a minimal disturbance version of a POVM { E d }  
corresponds to taking v d  = I  for all d in equation (33). In the usual presentation-see 
[43] and [45]-it corresponds to taking u d  = I for all d in equation (30) instead. For 
instance, Howard Wiseman writes in [45]: 

The action of [.Ti’’] produces the minimum change in the system, required by 
Heisenberg’s relation, to be consistent with a measurement giving the information about 
the state specified by the probabilities [equation (l)]. The action of [Ud] represents 
additional back-action, an unnecessary perturbation of the system. . . . A back-action 
evading measurement is reasonably defined by the requirement that, for all [d ] ,  [Ud] equals 
unity (up to a phase factor that can be ignored without loss of generality). 

This of course means that, from the present point of view, there is no such thing as a state- 
independent notion of minimally disturbing measurement. Given an initial state p and a 
POVM {Ed}, the minimally disturbing measurement interaction is the one that produces 
pure Bayesian updating with no further (purely quantum) readjustment. 
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this that one starts to get a feel for a further reason for Gleason’s non-contextuality 
assumption. In the setting of classical Bayesian conditionalization we have just 
that: the probability of the transition P(h)-+P(hld) is governed solely by the local 
probability P(d) .  The transition does not care about how we have partitioned the 
rest of the potential transitions. That is, it does not care whether d is embedded in 
a two outcome set (d , - .d}  or whether it is embedded in a three outcome set, 
( d , e ,  ’ (d  v e ) } ,  etc. Similarly with the quantum case. The  probability for a 
transition from p to po cares not whether our refinement is of the form 
p = P(0)po -I- ELl P(d)pd or of the form p = P(0)po -I- P(18)plg, as long as 
P(18)plg = czl P(d)pd. What could be a simpler generalization of Bayes’ rule? 

Indeed, leaning on that, we can restate the discussion of the ‘measurement 
problem’ at the beginning of section 4 in more technical terms. Go back to the 
classical setting of equation (1 8) where an agent has a probability distribution 
P(h, d )  over two sets of hypotheses. Marginalizing over the possibilities for d ,  one 
obtains the agent’s initial belief P(h) about the hypothesis h. If he gathers an 
explicit piece of data d ,  he should use Bayes’ rule to update his probability about h 

The question is this: is the transition P(h)+P(hld) a mystery we should 
contend with? If someone asked for a physical description of this transition, would 
we be able to give an explanation? After all, one value for h is true and always 
remains true: there is no transition in it. One value for d is true and always remains 
true: there is no transition in it. The only discontinuous transition is in the belief 
P(h), and that presumably is a property of the believer’s brain. T o  put the issue 
into terms that start to sound like the quantum measurement problem, let us ask: 
should we not have a detailed theory of how the brain works before we can trust in 
the validity of Bayes’ rule?? 

The answer is, ‘of course not!’ Bayes’ rule-and beyond it all of probability 
theory-is a tool that stands above the details of physics. Boole called probability 
theory a law of thought [48]. Its calculus specifies the optimal way an agent should 
reason and make decisions when faced with incomplete information. In this way, 
probability theory is a generalization of Aristotelian logic [41]-a tool of thought 
few would accept as being anchored to the details of the physical world. As far as 
Bayesian probability theory is concerned, a ‘classical measurement’ is simply any 
I-Know-not-what that induces an application of Bayes’ rule. It is not the task of 
probability theory (nor is it solvable within probability theory) to explain how the 
transition Bayes’ rule comes about within the mind of the agent. 

The formal similarities between Bayes’ rule and quantum collapse may be 
telling us how to finally cut the Gordian knot of the measurement problem. 
Namely, it may be telling us that it is simply not a problem at all! Indeed, drawing 
on the analogies between the two theories, one is left with a spark of insight: 
perhaps the better part of quantum mechanics is simply ‘law of thought’ [49]. 
Perhaps the structure of the theory denotes the optimal way to reason and make 
decisions in light of some fundamental situation-a fundamental situation waiting 
to be ferreted out in a more satisfactory fashion. 

This much we know: that fundamental situation-whatever it is-must be an 
ingredient Bayesian probability theory does not have. As already emphasized, 
there must be something to drive a wedge between the two theories. Probability 

to P(hld). 

t This point was recently stated much more eloquently by Duvenhage in his paper [47]. 
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theory alone is too general a structure. Narrowing the structure will require input 
from the world around us. 

6.1. Accepting quantum mechanics 
Looking at the issue from this perspective, let us ask: what does it mean to accept 
quantum mechanics? Does it mean accepting (in essence) the existence of an 
‘expert’ whose probabilities we should strive to possess whenever we strive to be 
maximally rational? The  key to answering this question comes from combining the 
previous discussion of Bayes’ rule with the considerations of the standard 
quantum-measurement device of section 4.2. For contemplating this will allow us 
to go even further than calling quantum collapse a non-commutative variant of 
Bayes’ rule. 

Consider the description of quantum collapse in equations (31)  through (33 )  in 
terms of one’s subjective judgements for the outcomes of a standard quantum 
measurement (Eh}.  Using the notation there, one starts with an initial judgement 
P(h) = tr(pEh) and, after a measurement of some other observable (Ed}, ends up 
with a final judgement 

where Ff = VJEhVd. Note that, in general, (Eh} and ( E d }  refer to two entirely 
different POVMs; the range of their indices h and d need not even be the same. 
Also, since (Eh} is a minimal informationally complete POVM, ( F f }  will itself be 
informationally complete for each value of d .  

Thus, modulo a final unitary readjustment or redefinition of the standard quantum 
measurement based on the data gathered, one has precisely Bayes’ rule in this 
transition. This follows since p = Ed P(d)& implies 

with P(hJd)  = tr ( i i $ h ) .  

Figure 2. A quantum measurement is any ‘I-know-not-what’ that generates an 
application of Bayes’ rule to one’s beliefs for the outcomes of a standard quantum 
measurement, that is, a decomposition of the initial state into a convex combination of 
other states and then a final ‘choice’ (decided by the world, not the observer) within 
that set. Taking into account the idea that quantum measurements are ‘invasive’ or 
‘disturbing’ alters the classical Bayesian picture only in introducing a further 
outcome-dependent readjustment. 



Quantum mechanics as quantum information, mostly 101 5 

Another way of looking at this transition is from the ‘active’ point of view, i.e. 
that the axes of the probability simplex are held fixed, while the state is 
transformed from P(hld) to Pd(h). That is, writing 

h‘= 1 

where r;fh, are some real-valued coefficients and { E h t }  refers to a relabelling of the 
original standard quantum measurement, we get 

This gives an enticingly simple description of what quantum measurement is in 
Bayesian terms. Modulo the final readjustment, a quantum measurement is any 
application of Bayes’ rule whatsoever on the initial state P(h) .  By any application of 
Bayes’ rule, I mean in particular any convex decomposition of P(h)  into some 
refinements P(hld) that also live in P S Q M ~ .  Aside from the final readjustment, a 
quantum measurement is just like a classical measurement: it is any I-know-not- 
what that pushes an agent to an application of Bayes’ rule$. 

Accepting the formal structure of quantum mechanics is-in large part- 
simply accepting that it would not be in one’s best interest to hold a P(h) that falls 
outside the convex set PSQM. Moreover, up to the final conditionalization rule 
signified by a unitary operator v d ,  a measurement is simply anything that can 
cause an application of Bayes’ rule within P ~ Q M .  

But if there is nothing more than arbitrary applications of Bayes’ rule to ground 
the concept of quantum measurement, would not the solidity of quantum theory 
melt away? What else can determine when ‘this’ rather than ‘that’ measurement is 
performed? Surely that much has to be objective about the theory? 

7. What else is information? 
Suppose one wants to hold adamantly to the idea that the quantum state 

is purely subjective. That is, that there is no right and true quantum state for 
a system-the quantum state is ‘numerically additional’ to the quantum system. 

t Note a distinction between this way of posing Bayes’ rule and the usual way. In stating 
it, I give no status to a joint probability distribution P(h ,d ) .  If one insists on calling the 
product P(d)P(hld) a joint distribution P ( h , d ) ,  one can do so of course, but it is only a 
mathematical artifice without intrinsic meaning. In particular, one should not get a feeling 
from P(h, d) ’s  mathematical existence that the random variables h and d simultaneously 
coexist. As always, h and d stand only for the consequences of experimental interventions 
into nature; without the intervention, there is no h and no d. 

$Of course, I fear the wrath this phrase will bring upon me. For it will be claimed that 
I do not understand the first thing about the ‘problem’ of quantum measurement: it is to 
supply a mechanism for understanding how collapse comes about, not to dismiss it. But my 
language is meant to leave nothing hidden. The point here, as already emphasized in the 
classical case, is that it is not the task-and cannot be the task-of a theory that makes 
intrinsic use of probability to justify how an agent has gotten hold of a piece of information 
that causes him to change his beliefs. A belief is a property of one’s head, not of the object of 
one’s interest. 



1016 C .  A .  Fuchs 

It walks through the door when the agent who is interested in the system walks 
through the door. Can one uphold this view, at the same time supposing which 
POVM (Ed) and which state-change rule p’pd = a measurement device 
performs are objective features of the device? The answer is no, and it is not 
difficult to see why. 

Take as an example, a device that performs a standard von Neumann 
measurement { n d } ,  the measurement of which is accompanied by the standard 
collapse postulate. When a click d is found, the posterior quantum state will be 
pd = nd regardless of the initial state p. If this state-change rule is an objective 
feature of the device or its interaction with the system-i.e. it has nothing to do 
with the observer’s subjective judgement-then the final state pd too must be an 
objective feature of the quantum system. The  argument is that simple. Moreover, 
it generalizes to all state change rules for which the Ad are rank-one operators 
without adding any further complications. 

More generally, since the operators E d  control the maximal support of the final 
state p d  through Ad = UdE;l2, it must be that even the Ed are subjective 
judgements. For otherwise, one could say, ‘Only states with support within a 
subspace s d  are correct. All other states are simply wrong?.’ 

Thinking now of uninterrupted quantum time evolution as the special case of 
what happens to a state after the single-element POVM [ I }  is performed, one is 
forced to the same conclusion even in that case. The  time evolution super-operator 
for a quantum system-most generally a completely positive trace-preserving 
linear map on the space of operators for ‘HD [32]-is a subjective judgement on 
exactly the same par as the subjectivity of the quantum state. 

Here is another way of seeing the same thing. Recall what I viewed to be the 
most powerful argument for the quantum state’s subjectivity-the Einsteinian 
argument of section 3. Since we can toggle the quantum state from a distance, it 
must not be something sitting over there, but rather something sitting over here: it 
can only be information about the far-away system. Let us now apply a variation of 
this argument to time evolutions. 

Consider a simple quantum circuit on a bipartite quantum system that 
performs a controlled unitary operation Ui on the target. (For simplicity, let us say 
the bipartite system consists of two qubits.) Which unitary operation the circuit 
applies depends upon which state l i) ,  i = 0, 1, of two orthogonal states impinges 
upon the control. Thus, for an arbitrary state I$) on the target, one finds 
li)l$)+ li)(Ujl$)) for the overall evolution. Consequently the evolution of the 
target system alone is given by l$)+Ujl$). On the other hand, suppose the 
control is prepared in a superposition state 14) = ~10) + fill). Then the evolution 
for the target bit will be given by a completely positive map @+. That is, 

Now, to the point. Suppose rather than feeding a single qubit into the control, 
we feed half of an entangled pair, where the other qubit is physically far away. If an 
observer with this description of the set-up makes a measurement on the far-away 
qubit, then he will be able to induce any number of completely positive maps @# 
on the control bit. These will depend upon which measurement he performs and 
which outcome he gets. The  point is the same as before: invoking locality, 
one obtains that the time evolution mapping on the single qubit cannot be an 

I$) - @dl $1 ($1) = 14 Uo I $) ($1 Ui + 1812 U1 I $) ($1 UT . 

t Such a statement is not so dissimilar to the one found in [SO]. For rebuttals, see [ S l ,  521. 



Quantum mechanics as quantum information, mostly 1017 

objective state of affairs localized at that qubit. The  time evolution, like the state, 
is subjective information?. 

It has long been known that the trace preserving completely positive linear 
maps @ over a D-dimensional vector space can be placed in a one-to-one corre- 
spondence with density operators on a D*-dimensional space via the relation [40] 

where ]+ME) signifies a maximally entangled state on ‘HD @ HD. This is usually 
treated as a representation theorem only, but maybe it is no mathematical accident. 
Perhaps there is a deep physical reason for it: the time evolution one ascribes to a 
quantum system IS a density operator! It is a state of belief no more and no less 
than the quantum state one assigns to the same system$. 

How to think about this? Let us go back to the issue that closed the last section. 
How can one possibly identify the meaning of a measurement in the Bayesian view, 
where a measurement ascription is itself subjective4.e. a measurement finds a 
mathematical expression only in the subjective refinement of some agent’s beliefs? 
Here is the difficulty. When one agent contemplates viewing a piece of data d ,  he 
might be willing to use the data to refine his beliefs according to P(h)  = x d P ( d )  
P(h1d). However there is nothing to stop another agent from thinking the 
same data warrants him to refine his beliefs according to Q(h) = xd Q(d)Q(hld). 
A priori, there need be no relation between the P’s and the Q’s. 

A relation can only come from a criterion for when two agents will say that they 
believe they are drawing the same meaning from the data they obtain. That iden- 
tification is a purely voluntary act; for there is no way for the agent to walk outside 
of his beliefs and see the world as it completely and totally is. The standard Bayesian 
solution to the problem is this: when both agents accept the same ‘statistical model’ 
for their expectations of the data d given a hypothesis h, then they will agree to the 
identity of the measurements they are each (separately) considering. That is, two 
agents will deem they perform the same measurement when and only when 

P(dlh) = Q(d lh) ,  Vh and Vd. 

Putting this in a more evocative form, we can say that both agents agree to the 
meaning of a measurement when they adopt the same resolution of the identity 

t Of course, there are sideways moves one can use to try to get around this conclusion. 
For instance, one could argue that, “the time evolution operator @ on the control qubit is 
only an ‘effective’ evolution for it. The ‘true’ evolution for the system is the unitary evolution 
specified by the complete quantum circuit” [53]. In my opinion, however, moves like this are 
just prostrations to the Everettic temple. One could dismiss the original Einsteinian 
argument in the same way: “the observer toggles nothing with his localized measurement; 
the ‘true’ quantum state is the universal quantum state. All that is going on in a quantum 
measurement is the revelation of a relative state4.e.  the ‘effective’ quantum state.” 

$Adopting this point of view sheds significant light on the old ‘problem’ of correlations 
that violate Bell inequalities. Explaining the issue, however, will require a separate 
publication. 
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With this, the relation to quantum measurement should be apparent. If we take 
it seriously that a measurement is anything that generates a refinement of one's 
beliefs, then an agent specifies a measurement when he specifies a resolution of his 
initial density operator p = E d  P(d)$d. But again, there is nothing to stop another 
agent from thinking the data warrants a refinement that is completely unrelated to 
the first: 0 = xd Q(d)6d. And that is where the issue ends if the agents have no 
further agreement. 

Just as in the classical case, however, there is a solution for the identification 
problem. Using the canonical construction of equation (25) ,  we can say that both 
agents agree to the meaning of a measurement when they adopt the same resolution 
of the identity, 

Saying it in a more tautological way, two agents will be in agreement on the 
identity of a measurement when they assign it the same POVM {Ed},  

Ed = p(d)p-'I2$dp-'l2 = Q(d)a-'/26dda-'/2. (45) 

The importance of this move, however, is that it draws out the proper way to think 
about the operators Ed from the present perspective. They play part of the role of 
the 'statistical model' P(d1h). More generally, that role is fulfilled by the state 
change rule. That is to say, 

(46) . Ut P(dlh) - @ d ( ' )  = UdEd d d -  

The completely positive map that gives a mathematical description to quantum 
time evolution is just such a map. Its role is that of the subjective statistical model 
P(dlh), where d happens to be drawn from a one-element set. Thus, thinking back 
on entanglement, it seems the general structure of quantum time evolutions cannot 
be the wedge we are looking for either. What we see instead is that there is a secret 
waiting to be unlocked, and when it is unlocked, it will likely tell us as much about 
quantum time evolutions as quantum states and quantum measurements. 

8. Intermission 
Until now I have tried to tear down as much of quantum mechanics as possible. 

Section 3 argued that quantum states-whatever they be-cannot be objective 
entities. Section 4 argued that there is nothing sacred about the quantum 
probability rule and the best way to think of a quantum state is as a state of belief 
about what would happen if one were to approach a standard measurement device. 
Section 5 argued that even quantum entanglement is a secondary and subjective 
effect. Section 6 argued that all a measurement is is just an arbitrary application of 
Bayes' rule-an arbitrary refinement of one's beliefs-along with some account 
that measurements are invasive interventions into nature. Section 7 argued that 
even quantum time evolutions are subjective judgements; they just so happen to be 
conditional judgements. . . . And so it went. 

Subjective. Subjective! Subjective!! It is a word that will not go away. 
But finding overwhelming subjectivity in the theory is not something to be 
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proud of. There are limits: the last thing we need is a bloodbath of deconstruction. 
At the end of the day, there had better be some term, some element in quantum 
theory that stands for the objective, or we might as well melt away and call the 
whole world a dream. 

9. The oyster and the quantum 
A grain of sand falls into the shell of an oyster and the result is a pearl. The  

oyster’s sensitivity to the touch is the source of a beautiful gem. In the 75 years that 
have passed since the founding of quantum mechanics, only the last 10 have turned 
to a view and an attitude that may finally reveal the essence of the theory. 
The quantum world is sensitive to the touch, and that may be one of the best 
things about it. Quantum information-with its three specializations of quantum 
information theory, quantum cryptography and quantum computing-leads the 
way in telling us how to quantify this idea. Quantum algorithms can be 
exponentially faster than classical algorithms. Secret keys can be encoded into 
physical systems in such a way as to reveal whether information has been gathered 
about them. The  list of triumphs keeps growing. 

The key to so much of this has been simply in a change of attitude. This can be 
seen by going to almost any older textbook on quantum mechanics: nine times out 
of ten, the Heisenberg uncertainty relation is presented in a way that conveys the 
feeling that we have been short-changed by the physical world. ‘Look at classical 
physics, how nice it is: we can measure a particle’s position and momentum with as 
much accuracy as we wish. How limiting quantum theory is instead. We have 
AxAp 2 h / 2 ,  and there is nothing we can do about it. The  task of physics is to just 
sober up to this and make the best of it.’ 

How this contrasts with the point of departure of quantum information! There 
the task is not to ask what limits quantum mechanics places upon us, but what 
novel, productive things we can do in the quantum world that we could not have 
done otherwise. In what ways is the quantum world fantastically better than the 
classical one? 

If one is looking for something ‘real’ in quantum theory, what more direct tack 
could one take than to look to its technologies? People may argue about the 
objective reality of the wave function ad injinitum, but few would argue about the 
existence of quantum cryptography as a solid prediction of the theory. Why not 
take that or a similar effect as the grounding for what quantum mechanics is trying 
to tell us about nature? 

Let us give this imprecise set of thoughts some shape by re-expressing quantum 
cryptography in the language built up in the previous sections. For quantum key 
distribution it is essential to be able to prepare a physical system in one or another 
quantum state drawn from some fixed non-orthogonal set [54]. These non- 
orthogonal states are used to encode a potentially secret cryptographic key to be 
shared between the sender and receiver. The information an eavesdropper seeks is 
about which quantum state was actually prepared in each individual transmission. 
What is novel here is that the encoding of the proposed key into non-orthogonal 
states forces the information-gathering process to induce a disturbance to the 
overall set of states. That is, the presence of an active eavesdropper transforms the 
initial pure states into a set of mixed states or, at the very least, into a set of pure 
states with larger overlaps than before. This action ultimately boils down to a loss 
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of predictability for the sender over the outcomes of the receiver’s measurements 
and, so, is directly detectable by the receiver (who reveals some of those outcomes 
for the sender’s inspection). More importantly, there is a direct connection between 
the statistical information gained by an eavesdropper and the consequent distur- 
bance she must induce to the quantum states in the process. As the information 
gathered goes up, the necessary disturbance also goes up in a precise way [SS]. 

Note the two ingredients that appear in this. First, the information gathering or 
measurement is grounded with respect to one observer (in this case, the eaves- 
dropper), while the disturbance is grounded with respect to another (here, the 
sender). In particular, the disturbance is to the sender’s previous information-this 
is measured by her diminished ability to predict the outcomes of certain measure- 
ments the legitimate receiver might perform. No hint of any variable intrinsic to the 
system is made use of in this formulation of the idea of ‘measurement causing 
disturbance’. 

The second ingredient is that one must consider at least two non-orthogonal 
preparations for the formulation to have any meaning. This is because the 
information gathering is not about some classically-defined observable-i.e. about 
some unknown hidden variable or reality intrinsic to the system-but instead 
about which unknown state the sender actually prepared. The  lesson is this: forget 
about the unknown preparation, and the random outcome of the measurement is 
information about nothing. It is simply ‘quantum noise’ with no connection to any 
pre-existing variable. 

How crucial is this second ingredient-that is, that there be at least two non- 
orthogonal states within the set under consideration? We can address its necessity 
by making a shift in the account above: one might say that the eavesdropper’s goal is 
not so much to uncover the identity of the unknown quantum state, but to sharpen 
her predictability over the receiver’s measurement outcomes. In fact, she would like 
to do this at the same time as disturbing the sender’s predictions as little as possible. 
Changing the language still further to the terminology of section 4, the 
eavesdropper’s actions serve to sharpen her information about the potential 
consequences of the receiver’s further interventions on the system. (Again, she 
would like to do this while minimally diminishing the sender’s previous informa- 
tion about those same consequences.) In the cryptographic context, a by-product of 
this effort is that the eavesdropper ultimately comes to a more sound prediction of 
the secret key. From the present point of view, however, the importance of this 
change of language is that it leads to an almost Bayesian perspective on the 
information-disturbance problem. 

Within Bayesian probability the most significant theme is to identify conditions 
under which a set of decision-making agents can come to a common probability 
assignment for some random variable despite their initial differences [41]. One 
might similarly view the process of quantum eavesdropping. The sender and the 
eavesdropper start off initially with differing quantum state assignments for a single 
physical system. In this case it so happens that the sender can make sharper pre- 
dictions than the eavesdropper about the outcomes of the receiver’s measurements. 
The eavesdropper, not satisfied with the situation, performs a measurement on the 
system to sharpen those predictions. In  particular, there is an attempt to come into 
something of an agreement with the sender but without revealing the outcomes of 
her measurements or her very presence. 
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At this point a distinct property of the quantum world makes itself known. The  
eavesdropper’s attempt to surreptitiously come into alignment with the sender’s 
predictability is always shunted away from its goal. This shunting of various 
observer’s predictability is the subtle manner in which the quantum world is 
sensitive to our experimental interventions. 

Maybe this is our crucial hint! The  wedge that drives a distinction between 
Bayesian probability theory in general and quantum mechanics in particular is 
perhaps nothing more than this ‘Zing!’ of a quantum system that is manifested 
when an agent interacts with it. It is this wild sensitivity to the touch that keeps our 
information and beliefs from ever coming into too great an alignment. The  most 
our beliefs about the consequences of our interventions on a system can come into 
alignment is captured by the mathematical structure of a pure quantum state I+}. 
Take all possible information-disturbance curves for a quantum system, tie them 
into a bundle, and that is the long-awaited property, the input we have been 
looking for from nature. Or, that is the speculation. 

How might one hope to mathematize the bundle of all possible information- 
disturbance curves for a system? If it can be done at all, the effort will have to end 
up depending upon a single real parameter-the dimension of the system’s Hilbert 
space?. As a safety check, let us ask ourselves whether this is a tenable possibility? 
Or will the Hilbert-space dimension go the wayside of subjectivity, just as so many 
of the other terms in the theory? I think the answer will be in the negative: the 
Hilbert-space dimension will survive to be a stand-alone concept with no need of 
an agent for its definition. 

The simplest check perhaps is to pose the Einsteinian test for it as we did first 
for the quantum state and then for quantum time evolutions. Posit a bipartite 
system with Hilbert spaces ‘HD, and ‘HD, (with dimensions D1 and 0 2  respectively) 
and imagine an initial quantum state for that bipartite system. As argued too many 
times already, the quantum state must be a subjective component in the theory 
because the theory allows localized measurements on the D1 system to change the 
quantum state for the D2 system. In contrast, is there anything one can do at 
the D1 site to change the numerical value of D2? It does not appear so. Indeed, the 
only way to change that number is to scrap the initial supposition. Thus, to this 
extent, one has every right to call the numbers D1 and D2 potential ‘elements of 
reality’. 

It may not look like much, but it is a start. And one should not underestimate 
the power of a hint, no matter how small. 
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