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Abstract This paper presents a range of new triviality proofs pertaining to näıve
truth theory formulated in paraconsistent relevant logics. It is shown that excluded
middle together with various permutation principles such as A → (B → C) `
B → (A → C) trivialize näıve truth theory. The paper also provides some new
triviality proofs which utilize the axioms ((A → B) ∧ (B → C)) → (A → C)
and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. An
overview over various ways to formulate Leibniz’s law in non-classical logics and
two new triviality proofs for näıve set theory are also provided.
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1 Introduction

Recent years have seen an increasing interest in non-classical logics in which it is
possible to uphold the näıve theories of truth, properties and sets—the theories
consisting of, respectively, every instance of the T -schema T 〈A〉 ↔ A, the unre-
stricted abstraction schema a ∈ {x|A} ↔ A(x/a), and the unrestricted abstraction
schema together with the claim that coextensional sets are identical. Prominent
amongst such logics are the contraction-free and paraconsistent relevant logics.

Ross Brady showed in the late seventies that there are logics in which näıve set
theory is non-trivial ([9], [10]).1 John Slaney showed around the same time that
there is a definite limit on how strong such a paraconsistent logic can be ([51]);
although the contraction axiom (A → (A → B)) → (A → B) is not derivable in

1 There were earlier attempts at showing that the näıve theories can be non-trivial, notably
[8], [24], [31], [47], [48], [49] and [50]. However, these results either restrict abstraction or lack
a decent conditional, one satisfying at least identity and modus ponens—A→ A and A,A→
B ` B—and so at best show that A & T 〈A〉 and A(a) & a ∈ {x|A} are intersubstitutable
without delivering the biconditionals A↔ T 〈A〉 and a ∈ {x|A} ↔ A(x/a).
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the logic RWX, the instance (A → (A → ⊥)) → (A → ⊥) is, and so Curry’s
paradox trivialize any näıve theory based upon it.2

Contraction wreaks havoc on any näıve theory. The reason for this is that
for each sentence α, a näıve theory suffices for the existence of a sentence C
such that both C → (C → α) and (C → α) → C hold. The following proof,
a slight variant of Haskell Curry’s proof in [15], shows how the contraction rule
A→ (A→ B) ` A→ B together with modus ponens suffice for deriving α:

(1) C → (C → α) näıve theory
(2) C → α 1, contraction
(3) (C → α)→ C näıve theory
(4) C 2, 3, modus ponens
(5) α 2, 4, modus ponens

Since ⊥ is a sentence the defining axiom of which is ⊥ → A, it follows that if
⊥ is derivable, then so is every sentence. By replacing α with ⊥ in the above
proof and using the instance A → (A → ⊥) ` A → ⊥ of the contraction rule one
therefore gets a triviality proof as good as any other. Thus Slaney’s proof that
(A → (A → ⊥)) → (A → ⊥) is derivable in RWX shows that RWX validates
too much contraction for any näıve theory.

Whereas Brady’s constructions fail to validate any form of permutation—all
the principles

(A→ (B → C))→ (B → (A→ C)) A→ (B → C), B ` B → (A→ C)
A→ (B → C) ` B → (A→ C) A→ (B → C), B ` A→ C

fail in them—the axiom form of permutation holds in RWX. This makes for a
considerable gap between what has been shown to work and what has been shown
not to work. After having defined the logics that will be under scrutiny throughout
this paper and given a brief review of the available positive results concerning
näıve theories, section 4 closes the aforementioned gap by showing that virtually
any form of permutation has to go if excluded middle is to be part of the logic.

Reductio, the axiom (A → ¬A) → ¬A, is a strong form of excluded middle.
It is as of yet unknown if any logic can validate this axiom while retaining näıve
theories as non-trivial. Section 5 of this paper shows, among other things, that
the logic TL, a logic which includes reductio, is too strong for näıve theories in
the sense that a propositional schema which is not a a theorem of classical logic
becomes provable.

Brady’s constructions do not cater for the connective ◦ called fusion. The
defining rule for ◦ is the two-way residuation rule

(A ◦B)→ C a` A→ (B → C).

Brady’s construction in [10] does however validate the rule defining the Ackermann
constant t, namely

A a` t→ A.

2 Both Brady’s [10] and Slaney’s [51] were published in [37] which came out in 1989. The
results in these articles were however discovered about a decade earlier. Slaney tells me that
he discovered his proof around the end/beginning of 1978/1979. The earliest reference to this
result that I have been able to find is in Graham Priest’s 1983 paper [34, fn. 6]. Brady on the
other hand has informed me that he completed [10] in late 1979 and that the results in [9]
were proved in 1980. Brady gave two seminars on the results in the latter paper that year.
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Section 6 presents some triviality proofs which utilize the fusion connective and
the Ackermann constant.

The proofs in sections 4–6 are proofs relating to näıve truth theory, T . This
paper also offers two new triviality proofs for näıve set theory, S. The first one
shows that the mere presence of the fusion connective together with the Ackermann
constant is sufficient for trivializing näıve set theory, and the latter shows that any
logic with the weak permutation rule A → (B → C), B ` A → C trivializes S.
These proofs are to be found in section 9. The two preceding sections, section 7 and
section 8, provide, respectively, an overview over various versions of Leibniz’s law
and a quick discussion of restricted quantification and coextensionality. Section 10
gives some perspectives on the prospects of näıve set theory. Lastly, appendix A
shows that giving up structural contraction is not sufficient for saving näıve set
theory from triviality, while appendix B casts doubt on the possibility of deriving
unrestricted abstraction for pairs in any logic which does not trivialize näıve set
theory.

Triviality proofs, like limitative results more generally, are interesting in their
own right. This is not to say that some kind of explanation is uncalled for. It
would however take this paper too far afield to engage in the philosophical debate
concerning näıve theories and non-classical logics. The purpose of this paper is
therefore neither more nor less than to present the new triviality proofs in the
hope that both friend and foe of näıve theories may find them both interesting
and useful.

2 Logics and näıve theories

The logics of interest in this paper are all extensions of the relevant logic BB.
Despite being rather weak, BB is still a decent logic in the sense that it is possible
to prove, where ΨB is obtained from ΨA by replacing any number of instances of
A by B, that the intersubstitutability rule A↔ B ` ΨA ↔ ΨB holds. This section
shows how BB and its extensions are pieced together, and provides a handful of
definitions which will be used throughout this paper.

Definition 1 A proof of a formula A from a set of formulas Γ in the logic L is
defined to be a finite list A1, . . . , An such that An = A and every Ai≤n is either
a member of Γ , a logical axiom of L, or there is a set ∆ ⊆ {Aj |j < i} such that
∆ ` Ai is an instance of a rule of L. The existential claim that there is such a
proof is is written Γ `L A.

To improve readability, I will use the convention that ¬ binds most strongly
of every connective and the connectives ∧,∨ and ◦ bind equally strong, but more
strongly than →. Thus ¬A ◦ B → C ∨D is parsed as ((¬A) ◦ B) → (C ∨D). ↔
will throughout the paper be a defined connective:

Definition 2 A↔ B =df (A→ B) ∧ (B → A)
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Ax1 A→ A
Ax2 A→ A ∨B and B → A ∨B
Ax3 A ∧B → A and A ∧B → B
Ax4 ¬¬A→ A
Ax5 A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)

Ax6 (A→ B) ∧ (A→ C)→ (A→ B ∧ C) strong lattice ∧
Ax7 (A→ C) ∧ (B → C)→ (A ∨B → C) strong lattice ∨
Ax8 (A→ ¬B)→ (B → ¬A) contraposition axiom
Ax9 (A→ B)→ ((B → C)→ (A→ C)) suffixing axiom
Ax10 (A→ B)→ ((C → A)→ (C → B)) prefixing axiom
Ax11 (A→ (B → C))→ (B → (A→ C)) permutation axiom

Ax12 (A→ B) ∧ (B → C)→ (A→ C) conjunctive syllogism
Ax13 A ∨ ¬A excluded middle
Ax14 (A→ ¬A)→ ¬A reductio
Ax15 (A→ (A→ B))→ (A→ B) contraction axiom

Ax16 A→ (B → A) weakening
Ax17 (A→ B) ∨ (B → A) Dummett’s axiom
Ax18 ((A→ B)→ B)→ A ∨B  Lℵ-axiom

R1 A,B ` A ∧B adjunction
R2 A,A→ B ` B modus ponens
R3 A→ B ` (B → C)→ (A→ C) suffixing rule
R4 A→ B ` (C → A)→ (C → B) prefixing rule
R5 A→ ¬B ` B → ¬A contraposition rule
R6 A→ B,A→ C ` A→ B ∧ C lattice ∧
R7 A→ C,B → C ` A ∨B → C lattice ∨
R8 A→ (B → C), B ` A→ C δ
R9 A→ (B → C), B ` B → (A→ C)
R10 A→ (B → C) ` B → (A→ C) permutation rule

R11 A ` ¬(A→ ¬A) counter-example rule

R12 A a` t→ A t-rule
R13 A ◦B → C a` A→ (B → C) residuation

R14 A→ (A→ B) ` A→ B contraction rule
R15 A,¬A ` B explosion
R16 A,¬A ∨B ` B γ, disjunctive syllogism

MR1
A ` C B ` C

A ∨B ` C reasoning by cases

Table 1 shows how the most familiar relevant logics and some of their irrelevant
siblings are pieced together. Fig. 1 is a maps of these logics in terms of the sublogic
relation. The depicted logics between BB and R are relevant logics, whereas those
between BBK and CL are not.3 The four-valued logic FDE is the extensional
fragment of BB. The three-valued logics K3 and LP are got from FDE by adding,
respectively, the explosion rule A,¬A ` B and excluded middle. A presentation of
these logics can be found in [20, pp. 79–82].

3 Ax5, Ax17 and Ax18 will not concern us in this paper. The only reason for mentioning
them is to give the reader a better picture of where in the logical landscape the relevant logics
fit in. Notice that the logics DJX and TJX are more commonly known as DK and TK.
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Fig. 1 Map of logics and their sublogic relations

Not every logic of interest in this paper can be found in Fig. 1. For instance the
logic DWX strengthened by the permutation rule R10 is nowhere to be found.
The following definition makes it easier to talk about such logics:

Definition 3 If L is a logic, then Ld is L with the meta-rule MR1 added. Fur-
thermore, Lt and L◦ are the logics L with, respectively, the Ackermann constant
together with rule R12 and the fusion connective together with rule R13 added.
The logic obtained from a logic L by adding the rules and axioms Rm1 , . . . , Rmi

and Axn1 , . . . , Axnj will be denoted L[Rm1 , . . . , Rmi , Axn1 , . . . , Axnj ].

BB Ax1–Ax5, R1–R7 T TL +Ax15
B BB +A6 +A7 −R6 −R7 E EL +Ax15
DW B +A8 −R5 R RW +Ax12/Ax14/Ax15
TW DW +A10 +A11 −R3 −R4 DR DJX +R11
EW TW +R8 TR TJX +R11
RW TW +Ax11 CL BBK +Ax13
IMTL RWK +Ax17  Lℵ RWK +Ax18

J +Ax12 K +Ax16
X +Ax13 L +J +I
I +Ax14

Table 1 Relevant logics and associates
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I will occasionally make use of quantification and identity principles, and so
a quick presentation on how to extend the various logics from propositional to
first-order quantificational logics with identity is in order.

Q1 ∀xA→ A(x/a) a free for x
Q2 ∀x(A ∨B)→ A ∨ ∀xB x 6∈ FV {A}
Q3 ∀x(A→ B)→ (A→ ∀xB) x 6∈ FV {A}
Q4 A(x/a)→ ∃xA a free for x
Q5 A ∧ ∃xB → ∃x(A ∧B) x 6∈ FV {A}
Q6 ∀x(B → A)→ (∃xB → A) x 6∈ FV {A}

Q7 ∀x(A→ B) ` A→ ∀xB x 6∈ FV {A}
Q8 ∀x(B → A) ` ∃xB → A x 6∈ FV {A}

RQ
Γ ` A(x/y)

Γ ` ∀xA
y 6∈ FV (Γ ∪ {∀xA})

MR2
A(x/y) ` B
∃xA ` B

y 6∈ FV {∃xA,B}

Definition 4 If L is a logic extending BB but not B, then ∀L is L augmented
with Q1–Q2, Q4–Q5, Q7–Q8 and RQ. If L extends B, then ∀L is L augmented
with Q1–Q6 and RQ. ∀Ld is got from ∀L by adding MR1 and MR2.

Definition 5
=
∀L is ∀L augmented with the identity principles4

(Ax=) ∀x(x = x)

(LL2``) a = b, A(x/a) ` A(x/b) a&b free for x.

Definition 6 A logic in which the explosion rule A,¬A ` B is not derivable is
called paraconsistent. A paraconsistent logic in which excluded middle is derivable
is called strongly paraconsistent. Any logic in which excluded middle is not deriv-
able is called paracomplete. A paracomplete logic in which A,¬A ` B is derivable
is called strongly paracomplete.

Writing out a proof in full detail is tedious and makes for quite an onerous read.
Some corners will therefore be cut. Double negation introduction and elimination
will be such corners throughout this paper. It will also be convenient to make use
of derivable rules. The following four rules, one simple transitivity rule, and three
“embedding rules” will be used extensively throughout the paper.

Lemma 1

(transitivity) A→ B,B → C `BB A→ C
(leftER) A→ (B → C), D → B `BB A→ (D → C)
(rightER) A→ (B → C), C → D `BB A→ (B → D)
(left/rightER) A→ (B → C), B1 → B,C → C1 `BB A→ (B1 → C1)

4 Stronger versions of Leibniz’s law than LL2`` will be presented in section 7.
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Proof I’ll show that (leftER) holds. The others are left for the reader.

(1) A→ (B → C) assumption
(2) D → B assumption
(3) (B → C)→ (D → C) 2, R3
(4) A→ (D → C) 1, 3, transitivity

ut

Lemma 2 The following pairs are interderivable in BB

(1) A ∨ ¬A excluded middle (Ax13)
(2) A→ ¬A ` ¬A reductio rule

(3) A ∧ ¬B → ¬(A→ B) counter-example axiom
(4) (A→ ¬A)→ ¬A reductio (Ax14)

(5) A,¬B ` ¬(A→ B) counter-example rule v.2
(6) A ` ¬(A→ ¬A) counter-example rule (R11).

Proof Quite trivially we have that (1) ⇒ (2), (3) ⇒ (4) and (5) ⇒ (6). That
(2) ⇒ (1), (4) ⇒ (3) and (6) ⇒ (5) is easily seen by noting that (A → B) →
(A ∧ ¬B → ¬(A ∧ ¬B)) is a logical theorem of BB (use left/rightER). ut

The Church constants > and ⊥ are not definable in relevant logics. I will
throughout this paper simply assume that these constants are available, and that
they obey their defining axioms A → > and ⊥ → A. The justification given in
proofs will be def. of > and def. of ⊥.5

Many of the triviality proofs in this paper are like Slaney’s RWX-proof in that
they show that some instance of a version of contraction holds. It will in such cases
be possible to read off the proof which instance of which version of contraction is
in play. I will make a comment on this after presenting each proof or cluster of
such. If a triviality proof needs ⊥ to be present, the proof will be a proof of ⊥,
and if not it will be a proof of the arbitrary formula α.

Definition 7 (Näıve theories)

– N , our minimal näıve theory, can throughout this paper be taken to be any
theory which yields fixed-point sentences; for any formula B(p), where p is a
propositional variable, there is a sentence C such that

N ` C ↔ B(C)

where B(C) is obtained from B(p) by replacing every occurrence of p by C.
– T , näıve truth theory, is the set of T -biconditionals A ↔ T 〈A〉. 〈·〉 is here a

naming device and T is assumed to be such that for any logic L which extends
BB and every open formula B(x), there is a sentence C such that

T `L C ↔ B(x/〈C〉).

– P, näıve property theory, is the universal closure of the schema of unrestricted
abstraction

∀x(x ∈ {x|A} ↔ A).

5 > and ⊥ can in näıve truth theory be defined as ∃xT (x) and ∀xT (x).
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– S, näıve set theory, extends P with the axiom of extensionality

∀x∀y(x = y ↔ ∀z(z ∈ x↔ z ∈ y)).

Theorem 1 6

N is a sub-theory of T which is interpretable in P.

Proof That N is a sub-theory of T : Let B(p) be any formula in which p is a
propositional variable. Replace every p by T (x) where x is a variable not occurring
in B. T now entails that there is a sentence C such that T ` C ↔ B(p/T 〈C〉).
Since T ` C ↔ T 〈C〉 and the intersubstitutability rule A ↔ D ` ΨA ↔ ΨD is
derivable for BB, it follows that T ` C ↔ B(C).

That T is interpretable in P: Let ∅ =df {z|∀x∀y(x ∈ y)}. For every sentence
A let 〈A〉 =df {x|A} where x is a fixed variable. By defining T (x) =df ∅ ∈ x we
get that P ` A ↔ T 〈A〉. To show that P suffices for the diagonalization theorem,
let B(x) be any formula in which x is a free variable and let for simplicity w1 and
w2 be variables not occurring in B.

σB =df {w2|B(x/{x|∅∈{w1|w2∈w2}})}
τB =df {w1|σB ∈ σB}
C =df ∅ ∈ τB
〈C〉 =df {x|∅ ∈ τB}

It is easily seen that both τB and σB are closed terms.

(1) C ↔ ∅ ∈ τB def. of C
(2) ∅ ∈ τB ↔ (σB ∈ σB)(w1/∅) P
(3) (σB ∈ σB)(w1/∅)↔ σB ∈ σB σB is closed
(4) σB ∈ σB ↔ B(x/{x|∅∈{w1|w2∈w2}})(w2/σB) P
(5) B(x/{x|∅∈{w1|w2∈w2}})(w2/σB)↔ B(x/{x|∅∈{w1|σB∈σB}}) def. of (w2/σB)
(6) B(x/{x|∅∈{w1|σB∈σB}})↔ B(x/{x|∅∈τB}) def. of τB
(7) B(x/{x|∅∈τB})↔ B(x/〈C〉) def. of 〈C〉
(8) C ↔ B(x/〈C〉) 1–7, trans. of ↔

ut

The Ackermann constant t is, like the Church constants, not definable in rel-
evant logics. It is however a definable truth-constant in T provided the logic in
question validates the rule A→ (B → C), B ` A→ C:

Theorem 2 T formulated in any logic extending ∀BB[R8] has a definable truth-
constant t such that the theory is closed under the two-way rule

A a` t→ A.

6 Priest showed in [35, p. 363] that T is interpretable in P provided it is extended to its
absolutely unrestricted form ∀x(x ∈ {x; y|A} ↔ A(y/{x;y|A})) where {x; y|A} is free for y in
A. See Appendix B for more on this version of abstraction.
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Proof

(1) t↔ ∀x(T (x) ∧ t→ T (x)) N
(2) ∀x(T (x) ∧ t→ T (x)) Ax3 + RQ
(3) t 1, 2, R2

(4) t→ A assumption
(5) A 3, 4, R2

(6) A assumption
(7) T 〈A〉 ∧ t 3, 6, T + R1
(8) t→ (T 〈A〉 ∧ t→ T 〈A〉) 1, Q1
(9) t→ A 7, 8, R8 + T

ut

3 State of the art

The purpose of this short section is to give an overview of which logics has been
shown to support which näıve theory non-trivially in the sense that a model val-
idating the axioms and rules of both the logic and the näıve theory has been
constructed. Table 2 gives such an overview.7

Extensional identity a e= b =df ∀z(z ∈ a↔ z ∈ b)
Intensional identity a i= b =df ∀z(a ∈ z ↔ b ∈ z)

(Ext i
=

) ∀x∀y(x e= y → x i= y)

(ExtB) ∀x∀y∀w((x e= y ∧ w e= w)→ (x ∈ w ↔ y ∈ w))

(Extr) a e= b ` a i= b

Table 2 Models for näıve theories

Author Year Work Logic Theory Ext?

Brady 1983 [9]
=
∀TWd[R11, R16] S Extr

Brady 1989 [10]
=
∀DRdt S ExtB

Hájek et al. 2000 [29]
=
∀  Lℵ T —

Field 2002 [16]
=
∀TJd T —

Brady 2006 [11]
=
∀TJd[R11, R16],

=
∀TJXd S Ext i

=

Field 2003/11 [17]+[21]
=
∀BBKd[R11, Ax8] T —

Field 2004/11 [18]+[21]
=
∀BBKd[R11, Ax8] P —

7 I defined näıve set theory above to be P together with the extensionality axiom ∀x∀y(x =
y ↔ x e= y). Given this it is easy to see that (Ext i

=
) is interderivable with the version ∀x∀y(x =

y → (A(x)→ A(y))) of Leibniz’s law, that (ExtB) is slightly stronger than ∀x∀y((x = y∧t)→
(A(x) → A(y))), whereas (Extr) is interderivable with the rule, a = b ` A(a) → A(b). This
latter version of Leibniz’s law is interderivable with the seemingly weaker rule a = b, A(a) `
A(b) (see section 7). From this it is easy to see that S is non-trivial in

=
∀L if and only if

P + (Extr) is non-trivial in ∀L for any logic L which extends BB.
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Brady’s 1983 and 2006 non-triviality proofs do not cater for the Ackermann
constant, and so even though both ∀TJXd and ∀TJd[R11] have been shown to
treat näıve theories non-trivially, nothing is known about ∀TJt. Brady’s method
in [10] does however make room for t.8

Richard White’s paper [54] purportedly showed that P is consistent in ∀ Lℵ.
Petr Hájek remarked in [28] that Kazushige Terui ([52]) has found a gap in White’s
proof, and so the consistency of P in logics between ∀EW & ∀ Lℵ and between
∀BK & ∀ Lℵ is as of yet unknown.9

Field’s constructions in [17] and [18] validates the rule A ` B → A, but not
the stronger K axiom A → (B → A). However, as Field notes in [21], it is easy
to simply define a new conditional which will validate the K-axiom; A ⇀ B =df

(A → B) ∨ (¬A ∨ B) is such a conditional. The logic with → replaced by ⇀
validated in both [17] and [18] extends ∀BBKd[R11, Ax8].

It should be noted that the constructions in [9], [10], [11] and [18] either do,
or can easily be modified so as to validate the absolutely unrestricted form of
P, ∀x(x ∈ {x; y|A} ↔ A(y/{x;y|A})), mentioned in fn. 6. Furthermore, there are
interesting proof-theoretic results for linear logics. For instance, White’s paper [55]
shows that ∀RWK minus the distribution axioms Ax5, Q2 and Q5, but with an
added implication connective, does treat the absolutely unrestricted version of P
non-trivially.

4 Proofs involving permutation and excluded middle

Slaney showed in his paper RWX is not Curry Paraconsistent that RWX suffice,
given the availability of ⊥, for proving the contraction formula (A→ (A→ ⊥))→
(A → ⊥). His proof appeals to both the permutation axiom (Ax11), the strong
lattice ∨ axiom (Ax7) and the contraposition axiom (Ax8). In chapter 18 of In
Contraction, after having described a logic extending DWX, Graham Priest raised
the following problem:

Various natural arguments require the use of principles that involve nested
→s, such as Permutation, {α → (β → γ)} ` β → (α → γ). The logic just
described does not contain this principle. Whether it can be added while
maintaining non-triviality is not known. There is certainly triviality in the
area. See Slaney (1989). [36, p. 253 fn. 11]

Slaney ended his paper with the sentence “Meanwhile it seems some more in-
vestigation would be appropriate, and of course some more theorems would be
absolutely splendid.” [51, p. 479]. This section answers Slaney’s call for more the-
orems by showing three new proofs to the effect that if excluded middle is to be
part of the logic, then (1) the permutation rule (R10) has to go, (2) if the logic

8 Andrew Bacon’s paper [2], Brady’s paper [12], and the paper [23] of Field et al. should
be mentioned in relation to the logic ∀TJK. Bacon shows that the positive fragment of
∀TJK[MR1] does treat näıve truth theory non-trivially. Furthermore, it is shown in [23] that
the positive fragment of ∀TJKd treats P+Ext i

=
, and thus S, non-trivially. Brady claims in

[12, Cor. 4–5] that the construction made use of there validates P+Ext i
=

over the logic full

logic ∀TJKd. This is sadly not the case. See [13] and section 5 below for further comments.
9 T formulated in ∀ Lℵ is, although a non-trivial theory, riddled with ω-troubles. See [1],

[27], [29] and [38].
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has both the contraposition axiom (Ax8) and the strong lattice axioms (Ax6–7),
then R9 has to go, and (3) that if the logic has the meta-rule of reasoning by cases
(MR1), then even R8 has to go.

Theorem 3 N `BBX[R10] ⊥

Proof
(1) C ↔ (¬(C → ⊥)→ ⊥) N
(2) ¬(C → ⊥)→ (C → ⊥) 1, R10
(3) C → ⊥ 2, reductio rule
(4) C → (> → ⊥) 3 + def. of ⊥
(5) > → (C → ⊥) 4, R10
(6) ¬(C → ⊥)→ ⊥ 5, R5
(7) C 1, 6, R2
(8) ⊥ 3, 7, R2

ut

Lemma 3 `BX[R8] (A→ B) ∧ (¬A→ B)→ B

Proof
(1) (A→ C) ∧ (¬A→ B)→ (A ∨ ¬A→ B) Ax7
(2) A ∨ ¬A Ax13
(3) (A→ B) ∧ (¬A→ B)→ B 1, 2, Ax8

ut

Theorem 4 N `DWX[R9] ⊥

Proof

(1) C ↔ (> → (C → ⊥)) N
(2) > → (C → (C → ⊥)) 1, R9
(3) > → (¬(C → ⊥)→ ¬C) 2, Ax8
(4) (C → ⊥)→ (> → ¬C) Ax8
(5) > → ((C → ⊥)→ ¬C) 4, R9
(6) > → ((C → ⊥)→ ¬C) ∧ (¬(C → ⊥)→ ¬C) 3, 5, R6
(7) ((C → ⊥)→ ¬C) ∧ (¬(C → ⊥)→ ¬C)→ ¬C Lem. 3
(8) > → ¬C 6, 7, transitivity
(9) C → ⊥ 8, R5

(10) C → (> → ⊥) 9 + def. of ⊥
(11) > → (C → ⊥) 10, R9
(12) C 1, 11, R2
(13) ⊥ 9, 12, R2

ut

The two triviality proofs above both show that some form of contraction is at
work. Lines 1–6 of the first proof show that the rule

A→ (¬(A→ ⊥)→ ⊥) ` ¬(A→ ⊥)→ ⊥

holds in BBX[R10], whereas lines 1–11 of the second proof show that the rule

A→ (> → (A→ ⊥)) ` > → (A→ ⊥)

holds in DWX[R9].
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Theorem 5 N `BBXd[R8] (¬(A→ A)→ A)→ A

Proof

(1) C ↔ (¬(C → A)→ A) N
(2) (C → A) ∨ ¬(C → A) Ax13
(3) ¬(C → A) assumption for MR1
(4) C → A 1, 3, R8
(5) C → A 2, 3–4, MR1
(6) (A→ A)→ (C → A) 5, R3
(7) ¬(C → A)→ ¬(A→ A) 6, R5
(8) (¬(A→ A)→ A)→ (¬(C → A)→ A) 7, R3
(9) (¬(A→ A)→ A)→ A 1, 5, 8, transitivity

ut

Although the above proof is far short of a triviality proof, I take it that deriving a
propositional schema which is not a theorem of classical logic is bad enough. Thus
I take it that the strong paraconsistentist ought to either drop reasoning by cases,
or the weak permutation rule R8.

This section has focused on the X-logics—the logics with excluded middle.
The next section will shift the focus onto the J-logics—the logics with conjunctive
syllogism (Ax12).

5 Proofs involving conjunctive syllogism

Prominent paraconsistentists such as Brady, Priest, Richard Routley and Zach
Weber have all at one time or another opted for extensions of the logic DJ.10 DJ
contains the axiom called conjunctive syllogism. The proofs in this section show
that even if excluded middle is dropped, the permutation rule can’t be added if
conjunctive syllogism is to be part of the logic and that both TL and EJ are too
strong for N .

Both R8 and R9 are variants of the permutation rule A → (B → C) ` B →
(A→ C) got by imposing restrictions on B.11 One may of course consider weaken-
ings of the permutation rule got by imposing conditions of C instead. Brady con-
sidered in [12] so-called M1-logics—logics contained in ∀TJKd strengthened by
the permutation axiom (A → (B → (C0 → C1))) → (B → (A → (C0 → C1))).12

Brady furthermore claimed that any such M1-logic can consistently support näıve
set theory even as strong as P+Ext i

=
([12, Cor. 4–5]). This is not the case as I

will now show.13

10 See for instance [11], [36], [44] and [53].
11 This is easily seen in the case of R9. In the case of R8 it should suffice to note that in the

presence of t it is interderivable with A→ (t→ C) ` t→ (A→ C). Thus whereas R9 licenses
permutation under the condition that B is true, R8 does so only if B is the particular true
sentence t.
12 He also allows a M1-logic to have the axiom (A → B ∨ C) ∧ (A ∧ B → C) → (A → C).

M1-logics are contrasted to M2-logics which defines to be any logic between ∀Bd[R11] and
∀RWKd.
13 The reader is referred to the correction note [13] for further comments.
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Definition 8

(R10n) A→ (B → (C0 → (. . .→ Cn))) ` B → (A→ (C0 → (. . .→ Cn)

A
0→ B =df B A

n+1→ B =df A→ (A n→ B)

Theorem 6 `BBJ[R10n] (A
n+2→ B)→ (A

n+1→ B)

Proof

(1) (A
n+1→ B)→ (A→ (A n→ B)) Ax1, def. of n→

(2) A→ ((A
n+1→ B)→ (A n→ B)) 2, R10n

(3) (A
n+2→ B)→ (A→ (A

n+1→ B)) Ax1, def. of n→
(4) A→ ((A

n+2→ B)→ (A
n+1→ B)) 4, R10n

(5) A→ ((A
n+2→ B)→ (A

n+1→ B)) ∧ ((A
n+1→ B)→ (A n→ B)) 2, 4, R6

(6) ((A
n+2→ B)→ (A

n+1→ B)) ∧ ((A
n+1→ B)→ (A n→ B))→

((A
n+2→ B)→ (A n→ B)) Ax12

(7) A→ ((A
n+2→ B)→ (A n→ B)) 5, 6, transitivity

(8) (A
n+2→ B)→ (A

n+1→ B) 7, R10n, def. of n→
ut

For n = 0, the rule A
n+2→ B ` A n+1→ B is simply the contraction rule which

Curry showed to trivialize näıve theories. It is however easy to see that if the logic
validates A

n+2→ B ` A n+1→ B for any n, then by using the sentence C ↔ (C
n+1→ α)

and modifying Curry’s proof slightly, one obtains yet another triviality proof.14

We therefore have the following corollary:

Corollary 1 For any n, N `BBJ[R10n] α.

Theorem 7 (EJ trivialize N )
N `BBJ[R8,Ax10] α

Proof Let �A =df (A→ A)→ A and D =df C → C.

(1) C ↔ (�C → α) N
(2) �C → ((C → C)→ C) Ax1, def. of �C
(3) C → C Ax1
(4) �C → C 2, 3, R8
(5) �C → (�C → α) 1, 4, transitivity
(6) �C → ((D → D)→ �C) Ax10
(7) �C → ((D → D)→ �C) ∧ (�C → α) 5, 6, R6
(8) ((D → D)→ �C) ∧ (�C → α)→ ((D → D)→ α) Ax12
(9) �C → ((D → D)→ α) 7, 8, transitivity

(10) D → D Ax1
(11) �C → α 9, 10, R8
(12) C 1, 11, R2
(13) (C → C)→ (C → C) Ax1
(14) �C 12, 13, R8
(15) α 11, 14, R2

ut
14 This was first shown by Moh Shaw-Kwei in [46, Thm. 1].
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Lines 1–11 show that EJ validates the the contraction rule A → (�A → B) `
�A→ B.15

The next theorem shows that N is badly non-conservative in TL; although a
triviality proof has yet to be discovered, TL, like BBXd[R8] in Thm. 5, proves a
propositional schema which is not a theorem of classical logic and certainly not a
theorem of TL.

Lemma 4 A↔ (A→ B) `BBJ[Ax9] A→ ((B → B)→ B)

Proof

(1) A↔ (A→ B) assumption
(2) (A→ B)→ ((B → B)→ (A→ B)) Ax9
(3) A→ ((B → B)→ A) 1, 2, rightER+trans.
(4) A→ ((B → B)→ A) ∧ (A→ B) 1, 3, R6
(5) ((B → B)→ A) ∧ (A→ B)→ ((B → B)→ B) Ax12
(6) A→ ((B → B)→ B) 4, 5, transitivity

ut

Theorem 8 (N is non-classical in TL)16

N `BBL[Ax9] (A→ (¬A→ ¬A))→ ¬A

Proof

(1) C ↔ (C → ¬A) N
(2) C → ((¬A→ ¬A)→ ¬A) 1, Lem. 4
(3) (A→ (¬A→ ¬A))→ (((¬A→ ¬A)→ ¬A)→ (A→ ¬A)) Ax9
(4) (A→ (¬A→ ¬A))→ (C → (A→ ¬A)) 2, 3, leftER
(5) (A→ ¬A)→ ¬A Ax14
(6) (A→ (¬A→ ¬A))→ (C → ¬A) 4, 5, rightER
(7) (A→ (¬A→ ¬A))→ C 1, 6, trans.
(8) (A→ (¬A→ ¬A))→ ((¬A→ ¬A)→ ¬A) 2, 7, trans.
(9) (A→ (¬A→ ¬A))→

(A→ (¬A→ ¬A)) ∧ ((¬A→ ¬A)→ ¬A) 8, Ax1, R6
(10) (A→ (¬A→ ¬A)) ∧ ((¬A→ ¬A)→ ¬A)→ (A→ ¬A) Ax12
(11) (A→ (¬A→ ¬A))→ (A→ ¬A) 9, 10, trans.
(12) (A→ (¬A→ ¬A))→ ¬A 5, 11, trans.

ut

I have so far shown that conjunctive syllogism and permutation makes for a
potent mix—too potent for N—and that N is non-conservative over TL. The
three logics DLdt, TRdt and TIdt seem to be some of the strongest strongly
paraconsistent logics which may treat N non-trivially. The next section shows
that these logics are altogether too strong if the the fusion connective is added.

15 A similar proof shows that the strongly paracomplete logic BBJK can’t be extended by
R11, A ` ¬(A → ¬A): let C be the Curry sentence. Then by the K-axiom and R6 one gets
C → (> → C) ∧ (C → ⊥). Conjunction syllogism (Ax12) delivers (> → C) ∧ (C → ⊥) →
(> → ⊥) and R11 together with the K-rule (> → ⊥) → ⊥. Transitivity then yields C → ⊥
from which ⊥ easily follows.
16 I owe Weber thanks in regards to this theorem. My original proof was to the effect that

(> → (⊥ → ⊥)) → ⊥ is derivable in BBL[Ax9]. It was Weber who noticed that the proof
sufficed for (A→ (¬A→ ¬A))→ ¬A.
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6 Proofs involving fusion

In intuitionistic and classical logic conjunction residuates the implication connec-
tive; the two-way rule A ∧ B → C a` A → (B → C) holds in these logics. It
is easily seen that the rule A → (B → C) ` A ∧ B → C is interderivable with
the contraction rule, and so ∧ can’t residuate → in logics fit for N . For logics in
the vicinity of relevant logics it is however common to enrich the set of logical
connectives with an intensional conjunction, ◦, called fusion which by definition
(R13) residuates →. This section presents one old and three new triviality proofs
which utilize ◦.

The first theorem is due to J. Michael Dunn and Slaney and was first published
in the first volume of Relevant Logics and their Rivals ([45, pp. 366–367]).

Theorem 9 (Dunn/Slaney) N `BBJ◦ α

Proof

(1) C ↔ (C ◦ C → α) N
(2) C ◦ C → C ◦ C Ax1
(3) C → (C → C ◦ C) 2, R13
(4) C → (C → C ◦ C) ∧ (C ◦ C → α) 1, 3, R6
(5) (C → C ◦ C) ∧ (C ◦ C → α)→ (C → α) Ax12
(6) C → (C → α) 4, 5, transitivity
(7) C ◦ C → α 6, R13
(8) C 1, 7, R2
(9) α 6, 8, R2

ut

Lines 1–7 show that BBJ◦ validates the contraction rule

A→ (A ◦A→ B) ` A ◦A→ B.

Dunn and Slaney’s result shows that the J-logics are off the table if fusion is
present. Since näıve truth theory is non-trivial in  Lℵ and fusion is definable in
B[R10, Ax8] (A◦B =df ¬(A→ ¬B)), we’re left with investigating whether or not
fusion can be added to the X- and I-logics—the strongly paraconsistent logics.

Lemma 5 (>/⊥-lemma)

`BB◦[Ax8] > → (⊥ → ⊥) `BBI◦[Ax9] > → (⊥ → ⊥)

Proof

(1) (> → ⊥)↔ ⊥ Ax13 + def. of ⊥
(2) (> → >)→ ((> → ⊥)→ (> → ⊥)) Ax9
(3) (> → >)→ (⊥ → ⊥) (1, 2, left/rightER) or Ax8
(4) > ◦ > → > def. of >
(5) > → (> → >) 4, R13
(6) > → (⊥ → ⊥) 3, 5, transitivity

ut
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Theorem 10 N `BBXdt◦[Ax8] ⊥

Proof

(1) C ↔ (¬(C ◦ t→ ⊥)→ ⊥) N
(2) (C ◦ t→ ⊥) ∨ ¬(C ◦ t→ ⊥) Ax13
(3) ¬(C ◦ t→ ⊥) assumption for MR1
(4) t→ ¬(C ◦ t→ ⊥) 3, R12
(5) (¬(C ◦ t→ ⊥)→ ⊥)→ (t→ ⊥) 4, R3
(6) C → (t→ ⊥) 1, 5, transitivity
(7) C ◦ t→ ⊥ 6, R13
(8) C ◦ t→ ⊥ 2, 3–7, MR1
(9) > → (⊥ → ⊥) >/⊥-lemma

(10) > → (C ◦ t→ ⊥) 8, 10, leftER
(11) ¬(C ◦ t→ ⊥)→ ⊥ 10, R5
(12) C 1, 11, R2
(13) C → (t→ ⊥) 8, R13
(14) t Ax1 + R12
(15) ⊥ 12, 13, 14, R2

ut

Lines 1–11 show that the contraction rule

A→ (¬(A ◦ t→ ⊥)→ ⊥) ` ¬(A ◦ t→ ⊥)→ ⊥

holds in BBXdt◦[Ax8].

Theorem 11 N `BBX◦[R8,Ax8] ⊥

Proof

(1) C ↔ (C ◦ > → ⊥) N
(2) C → (> → ¬(C ◦ >)) 1, Ax8
(3) C ◦ > → ¬(C ◦ >) 2, R13
(4) ¬(C ◦ >) 3, reductio rule
(5) C ◦ > → C ◦ > Ax1
(6) C → (> → C ◦ >) 5, R13
(7) C → (¬(C ◦ >)→ ⊥) 6, Ax8
(8) C → ⊥ 4, 7, R8
(9) C → (> → ⊥) 8 + def. of ⊥

(10) C ◦ > → ⊥ 9, R13
(11) C 1, 10, R2
(12) ⊥ 8, 11, R2

ut
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Theorem 12 N `BBI◦[Ax8] ⊥ N `BBI◦[Ax9] ⊥
Proof

(1) C ↔ (> ◦ C → ⊥) N
(2) ⊥ → ¬(> ◦ C) def. of ⊥
(3) (> ◦ C → ⊥)→ (> ◦ C → ¬(> ◦ C)) 2, R4
(4) (> ◦ C → ¬(> ◦ C))→ ¬(> ◦ C) Ax14
(5) C → ¬(> ◦ C) 1, 3, 4, transitivity
(6) (> ◦ C)→ ¬C 5, R5
(7) > → (C → ¬C) 6, R13
(8) (C → ¬C)→ ¬C Ax14
(9) > → ¬C 7, 8, transitivity

(10) C → ⊥ 9, R5
(11) > → (⊥ → ⊥) >/⊥-lemma
(12) > → (C → ⊥) 10, 11, leftER
(13) (> ◦ C)→ ⊥ 12, R13
(14) C 1, 12, R2
(15) ⊥ 10, 14, R2

ut

Lines 1–10 in Thm. 11 show that the contraction rule

A→ (A ◦ > → ⊥) ` A ◦ > → ⊥

holds in BBX◦[R8, Ax8] and lines 1–13 in Thm. 12 show that

A→ (> ◦A→ ⊥) ` > ◦A→ ⊥

holds in both BBI◦[Ax8] and BBI◦[Ax9].
I have in this section shown that adding the fusion connective and the Acker-

mann constant narrows the possible logics a paraconsistentist can adhere to. The
proofs leave the logics BIdt◦ and BXdt◦[R11, Ax9, Ax10] as two of the strongest
candidates among the strongly paraconsistent logics which might treat näıve the-
ories non-trivially. Let me also note that if the paraconsistentist is willing to drop
MR1, then both TWXt◦[R11] and BIt◦[R8] are still on the table.

The triviality proofs so far have been proofs that N is trivial in some logic.
I will present two more triviality proof. These are however proofs that näıve set
theory, S, is trivial. Since these proofs go beyond N , T and P in that they rely
on Leibniz’s law in some shape or form, it seems fitting to end this section with a
clear picture over at least some of the logics which might, but for which nothing
is as of yet known, treat N , T and P as non-trivial theories.

Strongly paraconsistent



TIdt

TRdt

TWXt◦[R11]

DLdt

BIt◦[R8]

BIdt◦

BXdt◦[R11, Ax9, Ax10]

Strongly paracomplete

{
TJKd

DJdt[R9, R16]
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7 Leibniz’s law in non-classical logics

The one principle of näıve set theory which makes it stand out amongst the näıve
theories is the principle of extensionality. The added strength of S over P does
not primarily depend on the formulation of this principle however, but on how it
connects up with Leibniz’s law. This section shows forth various ways to formulate
Leibniz’s law in non-classical logics. The next section will then show why the
relevantist should formulate the axiom of extensionality in the way that I have
done. I then go on to give two triviality proofs for näıve set theory.

In classical first-order logic there is basically just one way to formulate Leibniz’s
law, the idea behind which is that identical objects co-instantiate every (nameable)
property, namely as

a = b→ (A(a)→ A(b)).

This contrasts to non-classical logics in which there generally are several non-
equivalent ways to formulate this idea. Fig. 2 depicts some of these in terms of
strength. After some brief comments on the classification I will prove that the
arrows in the figure are appropriate; that if a is below b in the map, then b is
at least as strong as a assuming the logic

=
∀BB. I’ll also show that the difference

between some of these principles collapse when
=
∀BB is strengthened in various

ways.

Definition 9 A 7→ B =df A ∧ t→ B

Definition 10 Variations on Leibniz’s law ( ,�∈ {→, 7→}):

(
 �

LL1) A(a) (a = b� A(b))

(
 

LL1`) A(a) ` a = b A(b)

(
 �

LL2) a = b (A(a)� A(b))

(
 

LL2`) a = b ` A(a) A(b)

(LL2``) a = b, A(a) ` A(b)

(
 

LL3) a = b ∧A(a) A(b)
(LL`¬ ) A(a),¬A(b) ` a 6= b

The relevance property can be ascribed to a propositional logic just in case
A→ B is a logical theorem only for sentences A and B which share a propositional
variable. As such it pertains only to propositional logics, and so to classify identity
principles according to relevance seems to be a category mistake. However, there
seems to be, at least amongst the relevant logicians, an intuitive notion of relevance
which is appealed to when applying relevant to other things than propositional

logics. For instance, relevant logicians agree on classifying
→→
LL2 as irrelevant since

it entails instances such as a = a→ (A→ A). In this spirit let me note that
→
LL3

also preserves at least some idea of relevance even in the relevant logic
=
∀Rdt[R16]

which
→7→
LL2 does not. As an indication that this classification is a sound one let

me note that it is easy to extend the 8-valued model Belnap used in [7] to show
that logics such as E[R16] has the variable sharing property in such a way so

that the resulting model validates the axioms and rules of
=
∀Rdt[R16,

→
LL3], but

fails to validate
→7→
LL2.17 This is the reason why the principles at least as strong

17 Such a model is shown in [33, Thm. 15].
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→→
LL1

(R10)

��

(Ax6+Ax16)

xx

7→→
LL1

::

→
LL1`

;;

(R8)





→7→
LL1

OO

(R10)

→→
LL2

;;
7→7→
LL1

::

OO

→
LL3

→7→
LL2

;;
7→
LL1`

;;

OO

(R8)

qq

// 7→LL3

::

(R14)
nn

Irrelevant
7→→
LL2

;;

OO

Relevant

7→7→
LL2

;;

OO

LL¬̀

(R11+R16)

<<
(R11)

??

→
LL2` oo //

OO

7→
LL2` oo // LL2``

An arrow from a to
b indicates that a
is a derivable prin-
ciple in BB[b]. If
such an arrow is la-
beled by a logical
principle p, it in-
dicates that a is a
derivable principle
in BB[p, b].

Fig. 2 Map of identity principles

as
→7→
LL2 have been classified as irrelevant, whereas identity principles derivable in

=
∀Rdt[R16,

→
LL3] are on the relevant side of the dotted line in Fig. 2.

Lemma 6 The arrows in Fig. 2 are appropriate.

Proof

1.
→→
LLi ⇒

7→→
LLi ⇒

7→7→
LLi and

→→
LLi ⇒

→7→
LLi ⇒

7→7→
LLi: use Ax3 and leftER.

2.
7→→
LL1 ⇒

→
LL1` ⇒

7→
LL1` and

7→7→
LL1 ⇒

7→
LL1`: use Ax3, R1 and R2.

3.
 

LL1` ⇒
 →
LL2: A(a) → A(x/a) is a theorem and applying

 

LL1` to it yields
a = b (A(a)→ A(b)).

4.
→
LL2` ⇔

7→
LL2` ⇔ LL2``: similar to 3.

5.
7→7→
LL2 ⇒

→
LL2`: obvious given 4.

6.
→
LL3 ⇒

7→
LL3: obvious.

7→
LL3 ⇒

7→
LL1`:

(1) A(a) assumption
(2) t→ A(a) 1, R12
(3) a = b ∧ t→ a = b ∧A(a) ∧ t 2, fiddling

(4) a = b ∧A(a) ∧ t→ A(b)
7→
LL3

(5) a = b 7→ A(b) 3, 4, transitivity

7. That
→
LL3 ⇒

→→
LL1 given for Ax6 & Ax16 (BK): this is easily seen by noting

that A ∧B → C ` B → (A→ C) is a derivable rule:
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(1) A ∧B → C assumption
(2) (A→ B) ∧ (A→ A)→ (A→ B ∧A) Ax6
(3) (A→ B) ∧ (A→ A)→ (A→ C) 1, 2, rightER
(4) B → (A→ B) Ax16
(5) B → (A→ A) Ax16 + fiddling
(6) B → (A→ B) ∧ (A→ A) 4, 5, R6
(7) B → (A→ C) 3, 6, transitivity

8.
 7→
LL2 ⇒

 

LL1` given R8:

(1) A(a) assumption

(2) a = b (A(a) 7→ A(b))
 7→
LL2

(3) A(a) ∧ t 1, R1 + t-fiddling
(4) a = b A(b) 2, 3, R8

9.
 7→
LL2 ⇒

→ 
LL1 given R10: trivial given 8.

10.
7→7→
LL2 ⇒

7→
LL3 given R14: A→ (B → C) ` A ∧B → (A ∧B → C) is a derivable

rule in BB (use Ax3 and leftER). The contraction rule, R14, therefore yields
A→ (B → C) ` A ∧B → C.18

11.
 7→
LL2 ⇒ LL`¬ given R11 and, if  is 7→, also R16:

(1) A(a) assumption
(2) ¬A(b) assumption
(3) t t-fiddling
(4) A(a) ∧ t 1, 3, R1
(5) ¬(A(a) 7→ A(b)) 2, 4, R11 (Lem. 2)

(6) a = b 7→ (A(a) 7→ A(b))
7→7→
LL2

(7) a 6= b ∨ ¬t 5, 6, modus tollens
(8) a 6= b 3, 7, R16

ut
ut

I end this section by noting that, besides preserving an intuitive notion of
relevance, one might also want to preserve other features of the underlying propo-

sitional logic in question. For instance,
→7→
LL1 entails A → (t → A) which is gen-

erally not a theorem of logics without the permutation rule R10. Furthermore,
LL¬` seems to be an unnatural rule for paraconsistent logics; the explosion rule,
A,¬A ` B, fails to hold in such logics and there seems little reason to accept
instances of it such as A,¬A ` ∀x(x 6= x) if explosion does not hold. LL¬` is
however an interesting rule for strongly paracomplete logics.

8 Coextensionality in näıve set theory

The two triviality proofs to be presented in the next section rely on the extension-
ality rule a e= b ` a = b which intuitively allows one to infer that ‘a’ denotes the

18 And similarly that
→
LL3 is derivable in BB[

→→
LL2, R14].
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same object as ‘b’ provided that a and b are coextensional sets.19 Since it is far
from evident that the coextensionality of a and b is to be expressed as a e= b, that
is ∀z(z ∈ a↔ z ∈ b), I will now give a brief discussion of coextensionality and the
problem of restricted quantification.

The coextensionality of a and b is simply the claim that every member of a is a
member of b and vice versa, and so is a claim utilizing restricted quantification. It
seems therefore reasonable to claim that if Πx[A(x), B(x)] is the way all A’s are
B’s is to be formalized, then the coextensionality of a and b should be expressed
as Πx[x ∈ a, x ∈ b] ∧Πx[x ∈ b, x ∈ a].

All the logics of interest for näıve theories in this paper have trouble with
expressing restricted quantification. For instance, a side effect of the failure of
contraction is that if all A’s are B’s is to be expressed as ∀x(A(x)→ B(x)), then
the modus ponens like rule that from the sentences every D is B if it’s A and
every D is A to infer that every D is B,

∀x(D(x)→ (A(x)→ B(x))),∀x(D(x)→ A(x)) ` ∀x(D(x)→ B(x)),

fails unless contraction holds for the predicate D. For both the paraconsistentist
and the relevantist this problem is particularly pressing; the failure of the K-
rule A ` B → A entails that one is not licensed by logic to infer that every A
is B follows from everything is B.20 Many authors have thought this counter-
intuitive and sought other ways of expressing restricted quantification. I will now
show that both the relevantist and the paraconsistentist interested in näıve set
theory can’t validate this rule—∀xB(x) ` Πx[A(x), B(x)]—no matter what form
Πx[A(x), B(x)] takes.

Definition 11 CoExt(a, b) =df Πx[x ∈ a, x ∈ b] ∧Πx[x ∈ b, x ∈ a].

Theorem 13 P together with the three rules
→
LL2` ∀xB(x) ` Πx[A(x), B(x)] CoExt(a, b) ` a = b

suffice for deriving, where x 6∈ FV {A}, the rule A ` B → A in
=
∀BB.

Proof

(1) A assumption
(2) ∀x(x ∈ {x|A}) 1, P, x 6∈ FV {A}, RQ
(3) Πx[x ∈ {x|>}, x ∈ {x|A}] 2, assumed rule
(4) > theorem
(5) Πx[x ∈ {x|A}, x ∈ {x|>}] 4, similar to 3
(6) CoExt({x|>}, {x|A}) 3, 5, R1 & def. of CoExt
(7) {x|>} = {x|A} 6, assumed rule

(8) {x|>} ∈ {x|>} → {x|A} ∈ {x|A} 7,
→
LL2`

(9) > → A 8, P; x 6∈ FV {A,>}
(10) B → > def. of >
(11) B → A 9, 10, transitivity

ut
19 If one wishes to quantify over other things than sets as well, one could weaken the rule to
Set(a), Set(b), a e= b ` a = b, where Set({x|A}) is assumed to hold for every A.
20 For more discussion on restricted quantification in non-classical logics see [4, pp. 119–126],

[5], [6], [14, §13.3] and [22].
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The only viable option currently on the table for expressing restricted quantifi-
cation within näıve set theory, and therefore coextensionality, for both the para-
consistentist and the relevantist alike seems to be the standard one; all A’s are
B’s is best formalized as ∀x(A(x) → B(x)) and the coextensionality of a and b
therefore as a e= b. The next section therefore assume that the näıve set theorist
accepts at least the rule a e= b ` a = b.

9 Two triviality proofs for näıve set theory

If A is a sentence, one may think of {x|A} as the proposition expressed by A. It
will be convenient to have a simpler notation for such sets:

Definition 12 If A is a sentence, then pA =df {x|A}.

Roland Hinnion and Thierry Libert introduced in [30] what has become known
as the Hinnion class:

h =df {y|{x|y ∈ y} = {x|⊥}}.

If we let H =df h ∈ h we get by abstraction that H↔ pH = p⊥. Thus the Hinnion
sentence H says that the proposition expressed by it is identical to the trivial one.

Restall showed in [40] and [41] that the Hinnion class can be used to give a
triviality proof.21 Bacon showed in [3] that the Hinnion sentence can be used to
show that virtually any logic with modus ponens will trivialize N given that there
is a propositional identity connective ≡ which satisfies the three rules

(i) A ` B ≡ C → A(B/C)
(ii) A ≡ A
(iii) A↔ B ` A ≡ B,

where A(B/C) is the result of substituting C everywhere for B. He also remarks
that a similar proof can be given using a “normal” identity predicate provided
it satisfies the analogues of (i)–(iii). The following proof uses such an identity

predicate, but assumes instead of
→
LL1` the weaker rule A(a) ` a = b 7→ (t→ A(b))

which is easily seen to be derivable from
7→7→
LL2.22

Lemma 7 P formulated in any logic extending ∀BBt◦ is the trivial theory if there
is a definable binary relation ≈ such that the theory is closed under the rules

(I) A↔ B ` pA ≈ pB
(II) A(a) ` a ≈ b 7→ (t→ A(b)),

where A & B are sentences in (I).

21 For a discussion of the proof, see sections 2.3 and 5.2 of Edwin Mares and Francesco Paoli’s
paper [32].
22 I should emphasize that the proof of Lem. 7 is at heart quite similar to that given by

Bacon in [3, sec. 2.2].
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Proof

(1) (((pC ≈ p⊥ ∧ t) ◦ t) ◦ t)↔ C N
(2) {x|((pC ≈ p⊥ ∧ t) ◦ t) ◦ t} ≈ pC ∧ t 1, (I), t-fiddle
(3) pC ≈ p⊥ 7→ (t→ {x|((p⊥ ≈ p⊥ ∧ t) ◦ t) ◦ t} ≈ p⊥ ∧ t) 2, (II)
(4) ((p⊥ ≈ p⊥ ∧ t) ◦ t) ◦ t theorem
(5) p⊥ ∈ {x|((p⊥ ≈ p⊥ ∧ t) ◦ t) ◦ t} 4, P
(6) {x|(p⊥ ≈ p⊥ ∧ t) ◦ t) ◦ t} ≈ p⊥ 7→ (t→ p⊥ ∈ p⊥) 5, (II)
(7) pC ≈ p⊥ 7→ (t→ (t→ p⊥ ∈ p⊥)) 3, 6, rightER
(8) ((pC ≈ p⊥ ∧ t) ◦ t) ◦ t→ p⊥ ∈ p⊥ 7, R13
(9) p⊥ ∈ p⊥ → ⊥ P

(10) ((pC ≈ p⊥ ∧ t) ◦ t) ◦ t→ ⊥ 8, 9, transitivity
(11) C → ⊥ 1, 10, transitivity
(12) C ↔ ⊥ 11, fiddling
(13) pC ≈ p⊥ 12, (I)
(14) ((pC ≈ p⊥ ∧ t) ◦ t) ◦ t 13, t-fiddling
(15) ⊥ 10, 14, R2

ut

Theorem 14 P trivializes if closed under the rule a e= b ` a i= b (Extr) in any
logic extending ∀BBt◦, and so S `=

∀BBt◦ ⊥.

Proof i= satisfies conditions (I) and (II) in Lem. 7: since P is, for sentences A
and B, closed under the rule A↔ B ` pA

e= pB and is furthermore assumed closed
under the rule a e= b ` a i= b, we get that (I) in Lem. 7 holds. It is easily seen that
i= is such that a i= b 7→ (A(a)→ A(b)) is a theorem of P from which it follows that
it is closed under the rule A(a) ` a i= b 7→ (t → A(b)). Thus also (II) in Lem. 7
holds. ut

Corollary 2 P formulated in any logic extending ∀BB is the trivial theory if there
is a definable binary relation ≈ such that the theory is closed under the rules

(I) A↔ B ` pA ≈ pB
(III) A(a) ` a ≈ b A(b),

where A & B are sentences in (I) and  is either → or 7→.

Proof A proof using A(a) ` a ≈ b 7→ A(b) instead of A(a) ` a ≈ b 7→ (t → A(b))
is obtained by deleting every ◦t in the proof of Lem. 7 above. To obtain a proof
using A(a) ` a ≈ b→ A(b), delete additionally every ∧t. ut

Theorem 15 P trivializes if closed under the rules R8 and a e= b ` a i= b in any
logic extending ∀BB, and so S `=

∀BB[R8]
⊥.

Proof i= satisfies conditions (I) and (III) in Cor. 2: That (I) holds was shown in
Thm. 14. Since a i= b → (A(a) → A(b)) holds and P is assumed closed under R8
it follows that it is closed under the rule A(a) ` a i= b→ A(b). Thus also (III) in
Cor. 2 holds. ut
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In [11, p. 242] Brady stated that it is unknown whether ∀x∀y(x e=y → x i= y)
or a e= b ` a i= b can consistently be added to P formulated in the logic ∀RW.
The above theorem settles this in the negative.23

Furthermore, Weber raised the question whether
→
LL3 suffices for a triviality

proof ([53, fn. 12]). I showed in Lem. 6 that
→
LL3 entails

7→
LL1` (provided t is

present), and so Cor. 2 settles his question in the negative.24

Brady’s results in [10] and [11] show that S is non-trivial in
=
∀DRdt[

7→→
LL2],

=
∀TJ[

→→
LL2, R11, R16] and

=
∀TJX[

→→
LL2]. The non-triviality of S in the following log-

ics is as of yet unknown:25

Strongly paraconsistent


=
∀TIdt[

7→→
LL2]

=
∀TRdt[

7→→
LL2]

=
∀DLdt

=
∀BXdt[

7→→
LL2, R11, Ax9, Ax10]

Strongly paracomplete
{

=
∀TJKd[

→→
LL2]

10 The prospects of näıve set theory

The results in the above two sections show that the cost of upholding näıve set
theory is immensely higher than of upholding näıve truth theory; it was shown in
[23, sec. 10] that the addition of the rules A ` ¬(A→ ¬A) and A ` B → A to

=
∀BB

is sufficient for trivializing S.26. The above corollaries show that this is so also with
R8 and ◦ together with t. This in comparison with T which is non-trivial in

=
∀  Lℵ

([29]), a logic in which all these rules and connectives are derivable/definable, and
P which is non-trivial in ∀BBK[R11, Ax8] ([18]).

Furthermore, Cor. 2 above shows that the committed näıve set theorist needs
to take great care when stating Leibniz’s law—the relevantist can at best hope for
7→→
LL2 and the irrelevantist for

→→
LL2.

Näıve set theorists of the relevant branch have typically wanted to do some
mathematics within näıve set theory and in order to do so one typically needs to
deal with functions which are normally taken to be sets of ordered pairs. Thus
one would expect that it would be possible to find a way to define ordered pairs

23 In addtion to Bacon’s paper [3], Grǐsin’s paper [26] should be mentioned in connection with
Thm. 14 and Thm. 15. Grǐsin shows ([26, §4.5]) that contraction is derivable if P is extended by
the extensionality axiom ∀u∀v(∀x((x ∈ u→ x ∈ v) ◦ (x ∈ v → x ∈ u))→ ∀x(u ∈ x→ v ∈ x))
in the linear fragment of ∀RWK (∀RWK minus Ax5, Q2 and Q5) formulated substructurally.
24 The presence of t is not required for trivializing S using

→
LL3: use N to obtain the sentence

C ↔ pC = p⊥ and then derive C → (pC = p⊥ ∧ pC ∈ pC) and, using
→
LL3, (pC = p⊥ ∧ pC ∈

pC)→ p⊥ ∈ p⊥. From these sentences it is evident that C → ⊥ follows. The rest of the proof
is then similar to the proof given above.
25 This is of course not to say that these logics are the only logics of interest for näıve set

theory. For instance, the logic
=
∀DLdt[

7→→
LL2] may also treat S non-trivially. However,

7→→
LL2 entails

(A↔ B) 7→ ((C ↔ A)→ (C ↔ B)) and (A↔ B) 7→ ((B ↔ C)→ (A↔ C)) for sentences A,
B and C in the case of S, and so S is propositionally non-conservative in these logics. These
formulas are generally not logical theorems of logics without the pre- and suffixing axioms Ax9

and Ax10, and so
7→→
LL2 seems in S only to be appropriate for logics with Ax9 and Ax10.

26 In fact it can be shown that the addition of the single sentence (t→ ⊥)→ ⊥ will suffice.
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and derive unrestricted abstraction for such objects. It seems however that one
needs either permutation principles at least as strong as R8, both t and ◦, or some
version of Leibniz’s too strong for näıve set theory in order to do this. Appendix B
shows one proof of unrestricted pair-abstraction which makes use of both t and
◦. Thus it seems the logics presented so far fall in one of two categories: either it
trivializes näıve set theory, or it doesn’t, but renders the theory too weak to do
basic mathematics. In order to have a useful set theory one seems therefore forced
to add to S the theory of ordered objects and näıve abstraction for them.27

In light of this one might be tempted to try to find other logics altogether. The
proofs so far have all been assuming that the usual structural rules hold and in
particular that the structural rule of contraction—that if A,A ` B, then A ` B—
holds unrestrictedly. Contraction-free substructural logics banish even this form of
contraction, and so the question arises whether such logics can do better by S than
structural logics can. Within a substructural framework it is customary to define
two notions of consequence—external and internal. Mares and Paoli have recently
argued that the paradoxes of näıve truth and set theory stem from not properly
distinguishing between these two notions of consequence. They furthermore claim
([32, §5.2]) that the rules

(Ext∈)
Γ, x ∈ a ` x ∈ b,∆ Γ, x ∈ b ` x ∈ a,∆

Γ ` a = b,∆

Γ, φ(a) ` ∆
Γ, a = b, φ(b) ` ∆

(=Ll)

are both sound for näıve set theory formulated in a linear logic provided ` is
in (Ext∈) taken to be the internal consequence relation of the logic whereas in
(=Ll) the external consequence relation. These rules however entail that both

a e= b ` a = b and (
→
LL2`) hold for the external consequence relation, which

amounts to the multiple conclusion version of the relation `=
∀LRWt◦ where ∀LRW

is ∀RW minus the distribution axioms Ax5, Q2 and Q5. Distribution was not
used in Thm. 14 and Thm. 15 which therefore show that (Ext∈) and (=Ll) cannot
both be sound in their logic. It is shown in appendix A that any substructural logic
which has both ◦ and t, and thus are able to interpret the antecedent structure
of their sequents, trivialize näıve set theory. The only option seems therefore to
be to opt for a substructural logic in which cut, i.e. transitivity of entailment, is
restricted. Such an approach to the paradoxes of näıve truth, properties and sets
is however beyond the scope of this paper. The interested reader should consult
David Ripley’s papers [42] and [43].

I end this section by noting that even though S is trivial in
=
∀BBt◦ and

=
∀BB[R8], it is still an open question whether P suffices for triviality or not—

the non-triviality of P in even
=
∀IMTL[

→
LL3] remains to be settled.

11 Summary

This paper has shown a variety of new triviality proofs for näıve theories. Section 4
showed that excluded middle and permutation principles make for a bad mix.
Section 5 focused on conjunctive syllogism and section 6 showed that the addition
of the fusion connective and the Ackermann constant significantly reduces the

27 This is the approach taken by Brady in [11] although he gives a different reason for doing
so.
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options for the strong paraconsistentist. Lastly, section 9 showed that both the
fusion connective together with the Ackermann constant and the weak permutation
rule A→ (B → C), B ` A→ C (R8) trivialize näıve set theory.

The purpose of this paper has been to narrow the gap between the logics which
have been shown to be fit for näıve theories and the logics which has been shown
to be unfit for such theories. This paper goes a long way toward narrowing this
gap, but a gap still remains. Given this it seems only fitting to end this article with
the same sentence Slaney ended his RWX is not Curry Paraconsistent, namely:

Meanwhile it seems some more investigation would be appropriate, and of
course some more theorems would be absolutely splendid.

Acknowledgements I am very grateful to Zach Weber for his comments on an early version
of this paper and for encouraging conversations with him and Ross Brady. I would also very
much like to thank Sam Roberts and the anonymous referees for their comments. The results
in sections 4–6 have been aided by William McCune’s automated theorem prover Prover9 and
model generator Mace4 and by John Slaney’s model generator MaGIC.

References

1. Bacon, A.: Curry’s paradox and ω-inconsistency. Studia Logica 101(1), 1–9 (2013)
2. Bacon, A.: A new conditional for naive truth theory. Notre Dame Journal of Formal Logic

54(1), 87–104 (2013)
3. Bacon, A.: Paradoxes of logical equivalence and identity. Topoi (2013), doi: 10.1007/

s11245-013-9193-8
4. Beall, JC.: Spandrels of Truth. Oxford University Press (2009)
5. Beall, JC.: Adding to relevant restricted quantification. Australasian Journal of Logic 10,

36–44 (2011)
6. Beall, JC, Brady, R.T. Hazen, A.P., Priest, G. and Restall, G.: Relevant restricted quan-

tification. Journal of Philosophical Logic 35(6), 587–598 (2006)
7. Belnap, N.D.: Entailment and relevance. Journal of Symbolic Logic 25(2), 144–146 (1960)
8. Brady, R.T.: The consistency of the axioms of abstraction and extensionality in a three-

valued logic. Notre Dame Journal of Formal Logic 12(4), 447–453 (1971)
9. Brady, R.T.: The simple consistency of a set theory based on the logic CSQ. Notre Dame

Journal of Formal Logic 24(4), 431–449 (1983)
10. Brady, R.T.: The non-triviality of dialectical set theory. In : G. Priest, R. Routley, J.

Norman (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 437–470. Philosophia
Verlag (1989)

11. Brady, R.: Universal Logic. CSLI Lecture Notes. CSLI Publications (2006)
12. Brady, R.T.: The simple consistency of naive set theory using metavaluations. Journal of

Philosophical Logic 43(2–3), 261–281 (2014)
13. Brady, R.T., Øgaard, T.F.: A correction to “The simple consistency of naive set theory

using metavaluations”. Manuscript
14. Brady, R. (ed.): Relevant Logics and their Rivals II. Ashgate Publishing company (2003)
15. Curry, H.B.: The inconsistency of certain formal logics. Journal of Symbolic Logic 7(3),

115–117 (1942)
16. Field, H.: Saving the truth schema from paradox. Journal of Philosophical Logic 31(1),

1–27 (2002)
17. Field, H.: A revenge-immune solution to the semantic paradoxes. Journal of Philosophical

Logic 32(2), 139–177 (2003)
18. Field, H.: The consistency of the naive theory of properties. The Philosophical Quarterly

54(214), 78–104 (2004)
19. Field, H.: Solving the paradoxes, escaping revenge. In Beall, JC Revenge of the Liar pp.

78–144. Oxford University Press (2007)
20. Field, H.: Saving Truth from Paradox. Oxford University Press (2008)



Paths to Triviality 27

21. Field, H.: Comments on Martin’s and Welch’s comments. The Review of Symbolic Logic
4(3), 360–366 (2011)

22. Field, H.: Naive truth and restricted quantification: saving truth a whole lot better. The
Review of Symbolic Logic 7(1), 147–191 (2014)

23. Field, H., Lederman, H., Øgaard, T.F.: Prospects for a naive theory of classes. Notre
Dame Journal of Formal Logic (forthcoming)

24. Gilmore, P.C.: The consistency of partial set theory without extensionality. (1967) In:
Jech, T. (ed.) Axiomatic Set Theory, pp. 147–153. American Mathematical Society (1974)

25. Girard, J.: Light linear logic. In Leivant, D. (ed.) Logic and Computational Complexity,
Lecture Notes in Computer Science vol. 960, pp. 145–176, Springer (1995)
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Appendices

A Näıve set theory and substructural logics

The goal of this appendix is to show that cutting structural contraction while retaining ◦ and
t, is not sufficient to avoid trivializing näıve set theory. The structural rule of contraction is
the rule that A ` B follows from A,A ` B. Structural contraction holds in Hilbertian proof
systems since such systems take the antecentent of ` to be sets. So in order to restrict this
rule, we need a new notion of antecedent structure.

In order to make the transition as smooth as possible I have kept the notion of a proof
intact. However, it is now sequents and not formulas which are the objects of proofs. 
 will in
the following be the sequent symbol. The proof system will (by and large) be that of Restall’s
An Introduction to Substructural Logics ([39]).

Definition 13 (Structure)

– 0 is a structure (but not a formula)

– If A is a formula, then A is a structure

– If X and Y are structures, then so is (X;Y )

– If X is a structure, and A is a formula, then X 
 A is a sequent.

Substructure is defined in the obvious way.

– X(Y ) indicates that Y is a substructure of X.

– X(Y/Z) is the structure got by replacing every substructure Y in X with Z.

The system S consists of the following rules:

Operational
rules



(ID)
A 
 A

X;A 
 B
(→I)

X 
 A→ B

X 
 A→ B Y 
 A
(→E)

X;Y 
 B

X 
 A Y 
 B
(◦I)

X;Y 
 A ◦B
X 
 A ◦B Y (A;B) 
 C

(◦E)
Y (A;B/X) 
 C

(tI)
0 
 t

X 
 t Y (0) 
 A
(tE)

Y (0/X) 
 A

X 
 ⊥
(⊥E)

X 
 A

X 
 A(x/y)
(∀I)

X 
 ∀xA
X;A(x/a) 
 B

(∀E)
X; ∀xA 
 B

(y not free in X 
 ∀xA) (a is any term free for x in A)
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Structural
rules



X 
 A Y (A) 
 B
(cut)

Y (A/X) 
 B

0;X 
 A
(Left Pop)

X 
 A
X 
 A

(Left Push)
0;X 
 A

Set-theoretic
rules


X;A(x/a) 
 B

(∈L)
X; a ∈ {x|A} 
 B

X 
 A(x/a)
(∈R)

X 
 a ∈ {x|A}

x ∈ a 
 x ∈ b x ∈ b 
 x ∈ a
(=∈)

0 
 a = b

Identity
rules

{
(=ID)

0 
 a = a
0 
 a = b 0 
 A(a)

(subLL)
0 
 A(b)

Definition 14 (Proof) A proof of a sequent X 
 A from a set of sequents Γ in the system
S is defined to be a finite list α1, α2, . . . , αn such that αn is X 
 A and every αm≤n is either
a member of Γ , or there is a set ∆ ⊆ {αi | i < m} such that αm follows from ∆ by one of the
rules of S. The existential claim that there is such a proof will be written

Γ �S (X 
 A).

I will now show that the sequent 0 
 ⊥ is derivable in the system S. The proof will mimic
the proof of Lemma 7.

Definition 15
pA =df {x|A}

a . b =df ∀x(a ∈ x→ b ∈ x)
c =df {y|(py∈y . p⊥ ◦ t) ◦ t}
C =df c ∈ c

The following two lemmas are easily proven and are therefore left for the reader.

Lemma 8 For sentences A and B, {A 
 B,B 
 A} �S (0 
 pA . pB)

Lemma 9 {0 
 A(a)} �S (a . b; t 
 A(b))

Theorem 16 ∅ �S (0 
 ⊥)

Proof
(1) C 
 (pC . p⊥ ◦ t) ◦ t (∈L)
(2) (pC . p⊥ ◦ t) ◦ t 
 C (∈R)
(3) 0 
 {x|(pC . p⊥ ◦ t) ◦ t} . pC 1, 2, Lem. 8
(4) pC . p⊥; t 
 {x|(p⊥ . p⊥ ◦ t) ◦ t} . p⊥ 3, Lem. 9
(5) 0 
 p⊥ ∈ {x|(p⊥ . p⊥ ◦ t) ◦ t} fiddling
(6) {x|(p⊥ . p⊥ ◦ t) ◦ t} . p⊥; t 
 p⊥ ∈ p⊥ 5, Lem. 9
(7) (pC . p⊥; t); t 
 p⊥ ∈ p⊥ 4, 6, (cut)
(8) (pC . p⊥; t); t 
 ⊥ 7, fiddling
(9) (pC . p⊥ ◦ t) ◦ t 
 ⊥ 8, (◦E) + fiddling

(10) C 
 ⊥ 1, 9, (cut)
(11) ⊥ 
 C ID + (⊥E)
(12) 0 
 pC . p⊥ 10, 11, Lem. 8
(13) 0 
 (pC . p⊥ ◦ t) ◦ t 12, fiddling
(14) 0 
 C 2, 13, (cut)
(15) 0 
 ⊥ 10, 14, (cut)

ut

One could, just as in the structural setting, dispense with t and ◦ provided one adds a
substructural counterpart of R8, namely the rule

X; 0 
 A
(Right Pop).

X 
 A
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I leave the proof to the reader. However, doing away with t and ◦ seems quite a drastic measure
for the substructuralist. After all, these connectives in a sense represent the basic building
blocks of a structure, namely 0 and ; respectively. Eliminating them would be comparable to
removing ∧ in the structural setting.

I mentioned in section 10 that Mares and Paoli differentiated between the external and
internal consequence relation of their logic. The following defines these relations for the system
S.

Definition 16 External vs. internal consequence

– (Internal consequence) X `IS A is defined for any structure X and formula A to hold just
in case ∅ �S (X 
 A).

– (External consequence) Θ `ES A is defined for any set of formulas Θ and formula A to
hold just in case {0 
 θ|θ ∈ Θ} �S (0 
 A).

Thus A is an internal consequence of X just in case the sequent X 
 A is derivable without
assumptions. That A is a logical truth (according to S) is recorded as 0 
 A. Furthermore, A
is an external consequence of the Θ’s if it is provable that A is a logical truth upon assuming
the Θ’s to be logical truths.

Mares and Paoli wanted the rule

(Ext∈)
Γ, x ∈ a ` x ∈ b,∆ Γ, x ∈ b ` x ∈ a,∆

Γ ` a = b,∆

to hold provided ` was interpreted as the internal consequence relation of their logic. In their
system Γ and ∆ are multiset. For empty Γ and ∆ this then amounts to validating the inference
that if the sequents x ∈ a 
 x ∈ b and x ∈ b 
 x ∈ a are derivable without using assumptions,
then so is 0 
 a = b which is precisely what the rule (=∈) above does. To avoid irrelevant
formulas such as a = b→ (A→ A), Mares and Paoli restricted the use of the rule

φ(a) ` ∆
Γ, a = b, φ(b) ` ∆

(=Ll)

to context where ` is the external consequence relation. It would therefore license the inference
of 0 
 B from the assumptions 0 
 a = b and 0 
 A(b), provided one has inferred 0 
 B from
0 
 A(a). This is however easily seen to be equivalent to what the rule (subLL) licenses.

Substructural approaches to the paradoxes are sometimes deemed more radical than the
structural. Restricting structural contraction is arguably a radical approach if the internal
consequence relation is used to interpret what logical entailment amounts to. With regards to
which logic does or does not trivialize the näıve theories of truth, properties and sets, the two
approaches are however equivalent—all the logics set forth in section 2 can be formulated as
substructural logics in such a way that if L is the set of “substructural rules” for L, then for
any set of formulas Θ,

Θ `L A⇔ Θ `EL A.28

From this it is easy to see that by adding rules for the näıve theory M to L instead of adding
its axioms, one obtains that

M `L ⊥ ⇔ ∅ �L (0 
 ⊥).

For instance, let T, in addition to (ID), (→I), (→E), (⊥E) and (cut), consist of the rules of
structural permutation and weak reductio

X;Y 
 C
[R10](Permutation rule)

Y ;X 
 C
A 
 ¬A

(Weak reductio)[Ax13]
0 
 ¬A

and the rules for a simple negation satisfying double negation elimination, that is ¬ satisfies
the rules

A 
 ¬B X 
 B
[R5](¬I/¬E)

X 
 ¬A
X 
 ¬¬A

(¬¬E)[Ax4]
X 
 A

.

T is the substructural version of the implication-negation fragment of the logic BBX[R10], and
it is easy to show that the sequent 0 
 ⊥ is derivable from the sequents ¬(C → ⊥)→ ⊥ 
 C
and C 
 ¬(C → ⊥)→ ⊥ in it. Thus also substructural BBX[R10] trivializes any näıve theory
(cf. Thm. 3).

28 See [39, ch. 4] for some ideas on how to prove this.
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B Unrestricted pair-abstraction and the fixed-point theorem

Unrestricted abstraction is sometimes generalized so as to allow for impredicative definitions
as it were—by generalizing the notion of an abstract to {x; y|A}, the schema of generalized
unrestricted abstraction may be stated as the universal closure of

∀x(x ∈ {x; y|A} ↔ A(y/{x;y|A})

where {x; y|A} is free for y in A. This schema guarantees the existence of fixed-point terms
modulo e=; for every formula A there is a term tA such that tA

e= A(tA). That every formula has
such a fixed-point term is however easily derived from P alone provided the logic is sufficiently
strong:

Theorem 17 (Fixed-point theorem) If ∀x∀y(〈x, y〉 ∈ {〈x, y〉|A} ↔ A) holds for some defini-
tion of 〈x, y〉 and {〈x, y〉|A}, then P suffices for the the existence of fixed-points modulo e=;
for every formula A there is a term tA such that tA

e= {x|A(y/tA)}.29

Proof Let
rA =df {〈u, v〉|A(x/u, y/{w|〈w,v〉∈v})}
tA =df {w|〈w, rA〉 ∈ rA}.

(1) x ∈ tA ↔ 〈x, rA〉 ∈ rA P + def. of tA
(2) ↔ A(x/x, y/{w|〈w,rA〉∈rA}) 1, assumption
(3) ↔ A(y/tA) 2, def. of tA
(4) ↔ x ∈ {x|A(y/tA)} 3, P
(5) tA

e= {x|A(y/tA)} 1–4, RQ

ut

The purpose of this appendix is to show that the logic ∀Bt◦ is sufficiently strong to provide
a definition of both 〈x, y〉 and {〈x, y〉|A} so that unrestricted pair-abstraction,

∀x∀y(〈x, y〉 ∈ {〈x, y〉|A} ↔ A),

is derivable. Since ∀Bt◦ is a rather weak logic the definitions and proofs will however be quite
baroque. After presenting the proofs I will give some quick comments on the prospects of
finding other definitions suitable for logics which might treat näıve set theory as a non-trivial
theory.

Definition 17

a i= b =df ∀x(a ∈ x↔ b ∈ x)

{a} =df {x|x i= a}
{a, b} =df {x|x i= a ∨ x i= b}
〈a, b〉 =df {{a}, {a, b}}

∂(A) =df
[
(A ◦ t) ◦ t

]
◦
(((([

(A ◦ t) ◦ t
]
◦
[
(A ◦ t) ◦ t

])
◦ t
)
◦
[
(A ◦ t) ◦ t

])
◦ t

)
{〈x, y〉|A} =df {z|∃x∃y(∂(〈x, y〉 i= z) ◦A)}

Lemma 10
A `BBt◦ ∂(A)

Proof This holds essentially because A,B `BBt◦ A ◦B holds. That this is so is easily seen by
noting that A→ (B → A ◦B) is derivable using Ax1 and R13. ut

Lemma 11 Assuming a and b to be free for x in A, then

(1) P `∀BB a i= b→ (A(x/a)→ A(x/b))

(2)
P `∀BBt A(x/a)

P `∀BBt a
i= b→ (t→ A(x/b))

29 This result was to my knowledge first proven by Jean-Yves Girard in [25, Prop. 4]. Girard
remarks that the result goes back to the fixed-point theorem of λ-calculus.
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Proof Obvious. ut

Lemma 12
P `∀BBt◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= c

Proof

(1) {a} ∈ 〈a, b〉 def. of ord. pair + P
(2) 〈a, b〉 i= 〈c, d〉 → (t→ {a} ∈ 〈c, d〉) 1, Lem. 11(2)

(3) {a} ∈ 〈c, d〉 → ({a} i= {c} ∨ {a} i= {c, d}) def. of ord. pair + P
(4) a ∈ {a} def. of singleton + P
(5) {a} i= {c} → (t→ a ∈ {c}) 4, Lem. 11(2)

(6) a ∈ {c} → a i= c def. of singleton + P
(7) {a} i= {c} → (t→ a i= c) 5, 6, rightER

(8) {a} i= {c, d} → (t→ a i= c) similar to (7)

(9) ({a} i= {c} ∨ {a} i= {c, d})→ (t→ a i= c) 7, 8, R7

(10) 〈a, b〉 i= 〈c, d〉 → (t→ (t→ a i= c)) 2, 3, 9, rightER & transitivity

(11)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= c 10, R13

ut

Lemma 13
(1) P `∀BBt◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ b i= c ∨ b i= d

(2) P `∀BBt◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= d ∨ b i= d

Proof The proof of (2) is similar to that of (1).

(1) {a, b} ∈ 〈a, b〉 def. of ord. pair + P
(2) 〈a, b〉 i= 〈c, d〉 → (t→ {a, b} ∈ 〈c, d〉) 1, Lem. 11(2)

(3) {a, b} ∈ 〈c, d〉 → {a, b} i= {c} ∨ {a, b} i= {c, d} def. of ord. pair + P
(4) b ∈ {a, b} def. of ord. pair + P
(5) {a, b} i= {c} → (t→ b ∈ {c}) 4, Lem. 11(2)

(6) b ∈ {c} → b i= c ∨ b i= d def. of singleton, P & Ax2

(7) {a, b} i= {c} → (t→ b i= c ∨ b i= d) 5, 6, rightER

(8) {a, b} i= {c, d} → (t→ b i= c ∨ b i= d) similar to (7)

(9) {a, b} i= {c} ∨ {a, b} i= {c, d} → (t→ b i= c ∨ b i= d) 4, 5, R7

(10) 〈a, b〉 i= 〈c, d〉 → (t→ (t→ b i= c ∨ b i= d)) 2, 3, 6, rightER & transitivity

(11)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ b i= c ∨ b i= d 10, R13

ut

Lemma 14

P `∀Bt a
i= c→ (a i= d ∨ b i= d→ (t→ (b i= c ∨ b i= d→ (t→ b i= d))))

Proof

(1) b i= b theorem

(2) b i= c→ (t→ b i= b) 1, Lem. 11(2)

(3) b i= d→ (t→ (b i= c→ (t→ b i= d))) 2, Lem. 11(2)

(4) a i= c→ (b i= d→ b i= d) Lem. 11(1)

(5) a i= c→ (b i= d→ (t→ (b i= c→ (t→ b i= d)))) 3, 4, rightER

(6) b i= c→ (t→ b i= c) 1, Lem. 11(2)

(7) c i= d→ (t→ (b i= c→ (t→ b i= d))) 6, Lem. 11(2)

(8) a i= c→ (a i= d→ c i= d) Lem. 11(1)

(9) a i= c→ (a i= d→ (t→ (b i= c→ (t→ b i= d)))) 7, 8, rightER

(10) a i= c→ (a i= d ∨ b i= d→ (t→ (b i= c→ (t→ b i= d)))) 5, 9, R6 & Ax7

(11) a i= c→ (a i= d ∨ b i= d→ (t→ (b i= d→ (t→ b i= d)))) similar to (10)

(12) a i= c→ (a i= d ∨ b i= d→ (t→ (b i= c ∨ b i= d→ (t→ b i= d)))) 10, 11, Ax6 & Ax7

ut
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Lemma 15

A→ (B → (C → (D → E))), F → D `BB A→ (B → (C → (F → E)))

Proof Use R3, R4 and rightER. ut
Lemma 16

P `∀Bt◦

(((([
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t
)
◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t

)
→ b i= d

Proof

(1) a i= c→ ((a i= d ∨ b i= d)→ (t→ (b i= c ∨ b i= d→ (t→ b i= d))) Lem. 14

(2)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= d ∨ b i= d Lem. 13

(3) a i= c→ (
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ (t→ (b i= c ∨ b i= d→ (t→ b i= d))) 1, 2, leftER

(4)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ b i= c ∨ b i= d Lem. 13

(5) a i= c→ (
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→

(t→ (
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ (t→ b i= d))) 3, 4, Lem. 15

(7)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= c Lem. 12

(8)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ (

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→

(t→ (
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ (t→ b i= d))) 6, 7, trans.

(9)

(((([
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t
)
◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t

)
→ b i= d 8, R13

ut
Lemma 17

P `∀Bt◦ ∂
(
〈a, b〉 i= 〈c, d〉

)
◦A(a, b)→ A(c, d), i.e.

P `∀Bt◦

([[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
◦(((([

(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t
]
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t
)
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t

)]
◦

A(a, b)
)
→ A(c, d)

Proof

(1) b i= d→ (A(a, b)→ A(a, d)) Lem. 11(1)

(2) a i= c→ ((A(a, b)→ A(a, d))→ (A(a, b)→ A(c, d))) Lem. 11(1)

(3) a i= c→ (b i= d→ (A(a, b)→ A(c, d))) 1, 2, leftER

(4)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→ a i= c Lem. 12

(5)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→
[
b i= d→ (A(a, b)→ A(c, d))

]
3, 4, trans.

(6)

(((([
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t
)
◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t

)
→ b i= d Lem. 16

(7)
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

]
→[(((([

(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t
]
◦
[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t
)
◦

[
(〈a, b〉 i= 〈c, d〉 ◦ t) ◦ t

])
◦ t

)
→ (A(a, b)→ A(c, d))

]
5, 6, leftER

(8) ∂
(
〈a, b〉 i= 〈c, d〉〉

)
◦A(a, b)→ A(c, d) 7, R13
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ut

Theorem 18 P `∀Bt◦ 〈a, b〉 ∈ {〈x, y〉|A} ↔ A(a, b)

Proof

(1) ∂
(
〈x, y〉 i= 〈a, b〉

)
◦A(x, y)→ A(a, b) Lem. 17

(2) ∃x∃y(∂
(
〈x, y〉 i= 〈a, b〉

)
◦A(x, y))→ A(a, b) 1, RQ & Q8

(3) 〈a, b〉 ∈ {〈x, y〉|A} → A(a, b) 2, P + def. of {〈x, y〉|A}
(4) ∂

(
〈a, b〉 i= 〈a, b〉

)
→ (A(a, b)→ ∂

(
〈a, b〉 i= 〈a, b〉

)
◦A(a, b)) Ax1 & R13

(5) ∂
(
〈a, b〉 i= 〈a, b〉

)
Lem. 10

(6) A(a, b)→ ∂
(
〈a, b〉 i= 〈a, b〉

)
◦A(a, b) 4, 5, R2

(7) A(a, b)→ ∃x∃y(∂
(
〈x, y〉 i= 〈a, b〉

)
◦A(x, y)) 6, Q4

(8) A(a, b)→ 〈a, b〉 ∈ {〈x, y〉|A} 7, P + def. of {〈x, y〉|A}
(9) 〈a, b〉 ∈ {〈x, y〉|A} ↔ A(a, b) 3, 8, R1

ut

Corollary 3 ∀Bt◦ suffices for the fixed-point theorem.

Proof This follows from Thm. 17 and Thm. 18.

∀Bt◦ trivializes näıve set theory (Thm. 14). The question then is if there are logics weak
enough not to trivialize näıve set theory, yet strong enough so as to make unrestricted pair-
abstraction derivable. As the definition of {〈x, y〉|A} above should make clear, there are count-
less non-equivalent ways of defining sets of ordered pairs provided the logic is weak enough.
What should also be clear is that defining {〈x, y〉|A} as {z|∀x∀y(∂′

(
〈x, y〉 = z

)
→ A)}

for some variant ∂′ of ∂, would not improve the situation: P in
=
∀BB suffices for deriving

〈a, b〉 ∈ {〈x, y〉|A} → (∂′
(
〈a, b〉 = 〈a, b〉

)
→ A(a, b)). To get 〈a, b〉 ∈ {〈x, y〉|A} → A(a, b) from

this one would then most certainly require the weak permutation rule R8 which trivializes
näıve set theory (Thm. 15). The only option left as I see it would be to use {〈x, y〉|A} =df
{z|∃x∃y(∂′(〈x, y〉 = z) ∧ A)}. However, this is not an option for the näıve set theoriest ei-
ther: in order to have that A(a, b) ` 〈a, b〉 ∈ {〈x, y〉|A}, one would need a function ∂′ such
that A ` ∂′(A). Furthermore, in order to prove 〈a, b〉 ∈ {〈x, y〉|A} → A(a, b), one would need
∂′(〈a, b〉 = 〈c, d〉) ∧A(a, b)→ A(c, d). These two assumptions suffice for a triviality proof:

(1) C ↔ ∂′(〈pC , pC〉 = 〈p⊥, p⊥〉) N
(2) C → ∂′(〈pC , pC〉 = 〈p⊥, p⊥〉) ∧ pC ∈ pC 1, fiddling
(3) ∂′(〈pC , pC〉 = 〈p⊥, p⊥〉) ∧ pC ∈ pC → p⊥ ∈ p⊥ assumed theorem
(4) C → ⊥ 2, 3, fiddling
(5) pC = p⊥ 4, extensionality + fiddling
(6) 〈pC , pC〉 = 〈p⊥, p⊥〉 5, LL2``
(7) ∂′(〈pC , pC〉 = 〈p⊥, p⊥〉) 6, assumed rule
(8) ⊥ 1, 4, 7, R2

I therefore conclude that the prospects of finding a logic and a way of defining {〈x, y〉|A} so
that the logic does not trivialize näıve set theory, yet is strong enough to make unrestricted
pair-abstraction a theorem thereof, are dim, at best.
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