
Goodbye, Kolmogorov!

Silvère Gangloff

During the course of the XXth century, the idea of deterministic chaos, that
the evolution of a system which is completely determined by certain fixed rules
can exhibit behaviors which would intuitively qualified as random, has been
central for the study of dynamical systems. Together with the idea of a world
in which living organisms are the result of adaptation through time of initially
simple ones, themselves randomly generated collections of elementary particles,
this led straightforwardly to the question: by which mechanisms precisely can
this increase in complexity be made possible ? It has been natural to search
for a quantification of the notion of complexity in order to study this question
mathematically. Let me notice here another strategy which is and has been the
definition of hierarchies of dynamical systems defined by the quantification of a
natural property satisfied by some dynamical systems, along which systems get
intuitively more and more complex, and find in the description of these systems
a definition for complexity in the specified framework.

Several quantities have been constructed in order to define complexity. How-
ever I believe that they fail the initial explanatory purpose. In this text, I would
like to come back to the intuitive roots of one particular definition which I think
is the closest to the concept of complexity and relied on the definition of com-
puting machines, Kolmogorov complexity1, in order, on this ground, to propose
other ways to think about complexity in ultimately mathematical terms.

——– The definition of algorithmic complexity ——–

In a nutshell, the idea behind this definition is that an object in general is
complex when it is difficult to describe2. While it would be difficult to build
a definition for all possible mental object, this is possible for a particular class
of objects that I shall call data displays. In this setting, it is an interpretation
of the terms ’diffult ’ and ’description’ which allowed a certain formalization of
complexity.

1. Data displays. — By ’data display ’ I mean the result of a collection:
first of a space, which can correspond to a space ’out-there’, an area occupied

1The concept was defined by A.Kolmogorov, not in order to formalize the notion of com-
plexity, but rather randomness (as I discuss later in this text). I am referring here to the later
interpretation as a formalization of complexity.

2In this sense, the idea of chaos mentioned in the introduction is related to complexity, in
the sense that the chaoticity of a dynamical systems is intuitively related to the difficulty of
describing the state of the system at ulterior time.

1



by an object (say a blackboard for instance) or can be thought as a mental
space, including in particular mathematical objects which can be conceived as
a space - especially mental when it is four dimensional for instance - such as an
empty matrix; second, a set of fixed identifiable positions in this space which
can be conceived as separate units; third, identifiable objects which occupy one
position each and can be conceived as the ’state’ of the corresponding unit, and
are ’simple’ in the sense that they are not thought as decomposed into other
objects.

Typically the objects considered theoretically are 0 or 1, or the absence or
presence of a certain stimulus. The simplicity of these objects makes possible a
systematic non ambiguous identification - we may say ’objective’ - of what are
the objects (distinguishing one from the others) and which object is ’this object ’
in the set of possible ones. This allows one to consider, for the verification
of a certain statement on these objects, or in order to collect ’information’
on the these objects, to consider each one separately (inhibiting the stimuli
generated by the others) in order to remove the influence during this process of
the conceptualization of the display as a whole. The properties of this kind of
this object characterize what we call ’data’ and explain the interest (sometimes
obsession) that we culturally put in them. The properties of data often lead us
to believe that the conceptualization of the data is straightforward, implying
that they way it is done does not need to be thought through. But this is
another story.

2. Description. — A description of a data display is the process of repro-
ducing this data display in another similar space and positions, first by placing
the positions in a certain order and then objects in each of these positions one
by one, following the same order. It is also possible to change the space and
the configuration of positions if a one-to-one correspondence between positions
in the two spaces is agreed upon beforehand. With such a correspondence in
mind, the relative difficulty of describing a data display in the first space and
provided a set of positions is similar to the relative difficulty of corresponding
data displays in the second space and set of positions. Hence, in order to define
this relative difficulty, it is sufficient to consider only one simple space and po-
sitions. For the example, we consider the space constituted by the paper and
positions placed in a line with constant distance between two consecutive of
them. We will consider also that the objects to be displayed in these positions
are simply 0 and 1.

3. Difficulty of describing a data display. — Let us assume I have a par-
ticular data display in mind, or in a document that the reader does not have
access to. After we agreed that the data display that I have in mind consists
in 0s and 1s displayed on seven positions in a row, I could describe this display
by saying: ’first is displayed 1, then 0, then 0, then 1, then 1, then 0, then 1’.
Then the reader has also in mind the data display 1001101. Let us consider an-
other example. If the data display was 0000000, I could have repeated the same
procedure in order to describe it. However I could also have simply said ’all the
objects displayed are 0’, ultimately providing the reader with the representation
of 0000000 in mind. Such a simplification is not possible in the case of the data
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display 1001101, which makes it more difficult to describe in the sense that it
takes more effort to me in order to describe it.

4. Quantification. — In this context, the complexity of a data display
quantifies this effort, and its mathematical definition is based on the observation
that a description is an algorithm. The more time I have to use in order to
formulate this algorithm, the more effort the description requires. This difficulty,
however, is not intrinsic to the data display itself, for the reason that I have
a choice between various possible algorithms. In the example 0000000, I could
also have chosen to describe it by saying ’first is displayed 0, then 0, then 0,
then 0, then 0, then 0, then 0’. In order to define the intrinsic complexity of a
data display, I need to consider the algorithm which requires the shortest time
to formulate.

5. Universal interpreter of programs. — This provides a quantification of
complexity, but it is relative to a subject taking a data display as an object, as
well as another subject to which it provides a description. If we like to have a
quantification which is not dependent upon subjects, in particular leaving open
the possibility to replace subjects with machines, there is more precaution to
take, for it is in principle possible to find, for any data display, two communicat-
ing machines for which the ’description’ of the data display by the first one to
the second can be done in ’instant time’. If we were about to define complexity
intrinsically to the object by replacing descriptive effort between two human
subjects by the least effort taken by two communicating machines, we would
loose any relativity of this complexity. This problem disappears when consider-
ing the first subject to be reduced to a universal interpreter of programs, and the
second one to be reduced to any ’observer ’, receiving the result of a description
done by the universal interpreter. By this universal interpreter of programs, I
mean a machine which, provided a way to signify any algorithm by a data dis-
play of a fixed set of objects (called program), interpret this program, execute
the algorithm, display the data which result from the executing of the algorithm
and then stops. The theoretical existence of such a universal interpreter was
provided by A.Turing.

——– Algorithmic complexity and randomness ——–

1. Randomness as absence of structure. — As a matter of fact, the ex-
position of the last section corresponds to an interpretation of some ideas of
A.Kolmogorov that he exposed in his article On tables of random numbers3,
whose purpose was to describe a way to apply the rigorous mathematical frame-
work which had been developed for probability theory to ’real random phenom-
ena’. As he had argued, the concept of probability is intrinsically related to
some frequency computation. While in the developed mathematical framework
the computations of frequency are done on infinite series of trials, only finite
series are possible in the reality.

3A.N.Kolmogorov, On Tables of Random Numbers,Sankhyā: The Indian Journal of
Statistics, Series A, Vol. 25, No. 4 (Dec. 1963), pp. 369-376
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It is for this purpose that A.Kolmogorov defined his notion of complexity.
He himself did not use the term complexity as a property of the data display,
but rather of any program which describes it4.

It is not needed to compute Kolmogorov complexity to foresee that it is lower
on a sequence such as 0000000000000000 than on the sequence 0100101001000111,
for the first one can be described as ’the sequence of length sixteen containing
only zeros’ while the second one could be described by ’zero, then one, then zero,
...’, possibly grouping the last three ones for instance, without changing much
the length of the description though. A sequence such as 1010101010101010 has
an intermediate Kolmogorov complexity, for it consists in the repetition of the
pattern 10, eight times. We could think that this complexity simply measures
the ’periodicity ’ of a sequence, the minimal length of a pattern such as 10 out of
which repetition it can be obtained. However, the sequence 1011101010111010
is not obtained by the repetition of a small length pattern but can still be
described by ’one every other position, zero on every other remaining posi-
tion, then one on every remaining position, and then zero on the remaining
positions’, obtained by the superposition of the patterns 1010101010101010,
1011101010111010, 1011101010111010 and 1011101010111010. In a sense, the
complexity is lower when it is possible to find ’structures’ in the sequence on
which the description can rely in order to simplify. A sequence with high com-
plexity is random in the sense that it is far from having any internal structure -
rather than being the result of a sequence of pickings according to a probability
law, reflecting frequencies over infinite sequences of trials.

2. Negative definition of meaning. — Of course it is not clear what should
count as ’pattern’ or ’structure’. As a matter of fact, what we call pattern
or structure is usually the result of a purpose and a design for, an intention
towards, a meaning, which are all relative to a subject. In a sense, Kolmogorov
complexity defines them negatively, by pointing at data displays do not appear
as the result of an intention, a design, etc. The search for a positive definition
could seem hopeless. Not if we understand what in the subject makes meaning
specific to it. For me, this is the world of the subject in the sense of the set of
experiences it holds as possible. In such a world, what makes possible patterns
significant is their relation to the causal structure of the world.

——– Descriptions of the subject’s experience ——–

Let us take a step back. We have seen in the first section how it is possible to
construct a notion of complexity for data displays - in the sense that complexity
is the difficulty to describe such a data display - which constitute a particular
model of experiencing. By experience, we know that descriptions are possible
for more general forms of experiencing.

4Let us notice that what Kolmogorov called complexity of a program is simply its length.
Of course the more complex an algorithm, the longer it is; however the converse is not true.
One could take the algorithm as an object, and then try to define its complexity, but the
problem would thus be left intact.
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1. Objects of description in general. — I distinguish at least three types
of descriptions of experience: (i) descriptions of worlds as sets of possible ex-
periences, extracted from the subject’s experience and grouped together; (ii)
descriptions of singular experiences relatively to a world they are in; (iii) de-
scriptions of worlds as extracted from experiences of another world.

The second type is relatively close to descriptions of data displays, although
an understanding of the other types shall shed a different light on it.

In order to illustrate what I call ’description of a world as sets of possible
experiences’, I like the example of ’screen snow ’. Sometimes on old television
screens - at least - we could observe pictures as the following one:

What we refer to as ’screen snow ’ is in fact the set of experiences corre-
sponding to these pictures. How is it constructed as a concept ? In order to
answer this question, let me notice first that even the concept of ’image on the
screen’ is not so simple: why is the image ’on’ the screen ?; why do we conceive
such an image as separated from the remainder of the vision field ? I would say
that what we call ’screen’ refers first to the experience of it when it is turned
off, and here the word ’on’ inherits its meaning from the same word used in
a situation in which I look at an object resting on another one. Let us say a
lemon on a table for instance. I can always take the lemon in my hand and
move it away, thus observing again the part of the table that it has hidden, and
then move it back, hiding it again, at will. In the same way the image hides
the screen, and can be ’moved away ’ by turning off the screen. Of course the
image is not ’really ’ on the screen: for instance I can look at the screen from
the side, and will not observe any image which could be on the screen. However
this meaning of the word ’on’ is relative to the typical situation in which I look
at the screen, which is determined by its ’function’. The reason why I conceive
separately the images on the screen from the background is that in the typical
situation in which I am looking at the screen, I can act on what appears on
the screen in ways which are different from the ways I can act on what I see in
the background. While I can always hide parts of my visual field with my hand
for instance, I can also act on what appears on the screen by pressing a button
on the remote control. Among the pictures which can appear on the screen, the
’screen snow ’ pictures are separated and grouped together as a consequence of
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a common property: the absence of any meaningful pattern which can also be
seen in the world outside of the screen.

The words ’screen snow ’ are a designation of this set of experiences. The
same con-cept could be designated by another string of symbols such as ′rty ∗
phg ∗ 1a2x′ for instance, if we decided to adopt this convention. On the other
hand, while the designation ’screen snow ’ is not completely determined by the
con-cept itself, it is partially because it acts as a description. In the above
typology, it is mainly of type (iii) because it indicates what it is relatively to
the subject’s world: ’screen’ because it can be observed on a screen, and ’snow ’
for the absence of meaningful pattern.

The reason why I am writing about snow screen is that we are naturally
driven to qualify it as ’simple’, by opposition to a computer, or a living organism
for instance, in a similar way as air or water, a simplicity which is relative to
description of type (i). The difference of complexity between two worlds as
sets of experiences is related to the number of meaningful patterns and their
different possible (causal) interactions, or equivalently the logical layouts of
worlds as sets of experiences which can be extracted from them - corresponding,
for machines or living organisms, to parts serving a certain ’function’, such as
memory or computing unit. This complexity corresponds to the idea of ’objectal
complexity ’ that I proposed in my other text5. If we have a definition of what
counts as meaningful pattern, we should be able to construct a proper definition
for this form of complexity. I believe that these patterns are related to the causal
structure of the corresponding world.

Provided a description of a world based on its meaningful patterns, a de-
scription of type (ii) is the description of an experience in this world which
informs how these meaningful patterns are displayed in this experience. For
instance such a description tells about the states of the various components in
the case of a machine. A priori it is not clear that all descriptions of type (ii)
are descriptions of states.

Overall, while a concept similar to Kolmogorov complexity could be defined
in principle for descriptions of type (iii), which would rely on the length ’al-
gorithms’ by which I come to isolate sets of experiences from my world, the
natural concept of complexity relates to descriptions of type (i).

2. Description for oneself. — The description of the subject’s experience
in general depends on the subjects involved - in particular the possibility to
describe a certain experience or the possible ways to describe it. It also depends
on whether the subject who describes and the one who listens are different or
one and the same, for the means by which a description is possible are depen-
dent upon this fact. The nature of the description also seems to differ. When
on subject described an experience to itself, such a description consists first into
the identification of patterns. Let us notice that there is no possible description
without this identification, and that in the case of data displays, it is encom-
passed into the model of experiencing that this term refers to, whose purpose

5S.Gangloff, A formal window on phenomenal objectness
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is in fact to systematize this identification. Possible patterns in data displays
come after a construction, a synthesis, while in the experience of a subject,
elementary, or simple objects are constructed out of identification. Describing
an experience to oneself is actually making present to one’s mind the various
patterns which compose together this experience. The nature of the description
consists in a transformation of this experience which makes parts of it appear
which are connected mentally to other mental objects that we may call names,
and through this connection are also connected to a set of transcendental op-
erations which can be performed on the patterns - out of which, for instance,
one can make a decision to act in a certain way. As a matter of fact, when I
say that the patterns ’compose’ the experience, what I really mean is that they
compose the experience constructed out of the identification of these patterns,
precisely because the constructed experience is so out of composition, faithful
to the initial experience, of the identified patterns.

3. Description for another person. — The description of an experience to
another person consists in the description of the experience which is the result
of description to oneself. Practically speaking, when I describe an experience to
another person, I name patterns present in this experience and relative positions
in which these patterns are displayed, in such a way that the other person
can re-construct an experience - externally or by imagination - an experience
which is equivalent to the one I have, in the sense that the other can operate
on the reconstructed experience in a way that is faithful to the original one.
Let’s say for instance that I have planed to visit an apartment with someone
who unfortunately cannot be here with me. I will probably describe my visual
experience of the apartment and out of a reconstructed experience this other
person can add mentally some furniture, personal items, etc., in order to answer
the question ’would I like to live in this apartment ? ’ and communicate to me
the answer.

When two persons do not share the same language, descriptions becomes dif-
ficult, for the reason that in different languages, patterns are named in distinct
ways. Of course for natural languages and when the description is about an
experience of the material world, translation dissolves this difficulty. However
the term ’language’ can be thought in a more abstract way as referring to a
conventional correspondence between mental patterns and names. Two persons
who do not live in the same world may have experiences of different nature,
and one of them may not have a name for some patterns in the other’s experi-
ence. When considering visual experience, there is a possible strategy in order
to counter this phenomenon which relies on the general structure of visual expe-
rience: one can transform in principle any visual experience into a data display
which consists in a grid of positions on which are uniformly colored squares are
placed, such that the color corresponds to the one of the corresponding position
in the visual experience I am having. Such a data display can be communicated
using a code for colors with a simple algorithm. For a large picture it is im-
possible for the other to reconstructed it purely mentally when it is described
this way, however it can be reconstructed externally. This allows in particular
the designation and definition of a name for a pattern contained in the picture.
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This way of describing is of course not optimal when two persons share the same
language, or at least segments of the language which relate to the experience to
be described.

4. Aside: mathematization of experience. — In the terms I have used above,
the mathematization of the world that we know, concerned mainly with visual
experience, has consisted in a descriptive enrichment of experience via some
transformation rather than a reduction of experience, as usually thought, to its
’structure’, in such a way that the experience can be recovered from the con-
structed experience - this recovery implies in particular to ’forget ’ intermediate
constructions. In principle, a method for recovering the initial experience from
the transformed one makes possible to reason on the former one via the last one
and operations on it - which are specific to this one. A secondary interest of this
mathematization is that the product of the construction - mathematical objects
- is simple enough to be described to others in a way that is not affected by
the subject of culture, and for this reason the mathematization makes possible
a systematization of intersubjective operability on mathematical experiences in
the synthesis of a collective conceptualization of the world.

In the field of mathematics, only mathematical experiences are studied, with-
out necessarily considering how these experiences were constructed initially out
of natural experiencing - in particular without thinking about the subject of
this experience. The will to model the collective discourse on the mathematical
field comes from the efficiency of intersubjective operability coming itself from
the nature of mathematical description of the world. However, it implies loosing
the sense of how mathematical objects are meaningfully related to natural ex-
periencing. Although we do know that the constitution of mathematical objects
is based upon this natural experiencing, we tend, in order to understand real
phenomena, to extract mathematical structures then considered in themselves
without considering if the reasoning operated on these mathematical structures
actually informs about the real world.

There is no principle which prevents the mathematization of consciousness
as such - despite the fact that the current form that the mathematical field
has taken -, in particular when considering it through the spectrum of tran-
scendental operations which constitute the relation of a subject to its world.
However it matters for this mathematization to be possible to generate mathe-
matical objects which faithfully describe the reality they refer to. The analysis
of descriptions done above reveals one criterion for this is the following: that
the possible operations on the mathematical object reflect the possible opera-
tions naturally done on what it is meant to represent. This mode of generation
of mathematical objects is purely subjectively objective in principle, although
this does not prevent intersubjective operability between subjects qua subjects,
provided a sensibility to the conditions under which mathematical objects can
meaningfully represent real phenomena.

5. Difficulty relative to mental effort. — The complexity of an object is
related to the difficulty of describing it to oneself - whereas the difficulty of
describing it to another person comes from constraints of language. Provided
this, the mental effort that describing an object takes is in principle a quan-
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tification of the complexity of this object, although it has no evident formal
counterpart. Considering the reasons for the mental effort may lead to such
a formal counterpart in particular cases. I see at least two possible reasons:
the quantity of meaningful patterns which are necessary to form a description
- for instance in the case of a machine which has many distinct components-,
and the indistinctness of the patterns - mental contents for instance. In any
case, the mental effort is taken by transcendental operations by which a de-
scription to oneself is constructed, and its quantity is related to the allocation
of resources - spatial, and material (the structure of mechanisms which realize
these transcendental operations - that the subject has. Defining complexity in
the sense presented here requires overall to answer the question: what exactly
can be computed purely mentally ?, and why ?. I begin exploring this question
in the next section.

Let me only notice here that complexity of an object is sensitive to the
description, in particular if it is a description for oneself or for another person.
For instance, while spatial locations in the visual field necessitate an encoding of
the space in the description to another person, they are immediately accessible
to oneself, thus the description in this case requires less effort. Also, the proof
of a mathematical theorem can sometimes be difficult to reconstitute mentally
from the way it is written, and thus to describe to another person, while it is
ultimately simple in itself, once this reconstitution is done.

——– What can be computed purely mentally ?6——–

The purpose of this section is not to propose an answer to this question, but
rather to define it more precisely and to propose some threads of thoughts that
the question motivate.

By ’purely mentally ’ I mean that the computation is done using only mental
resources, in particular not using a mechanical computer or using the hand to
write symbols on a piece of paper or board - the purpose being to understand
better what these mental resources are in general and how they are constrained.
Furthermore, by ’computation’ I mean any mental process by which a human
subject transforms an experience into a mental content. This can be the truth
of a mathematical statement or the difference of color of two uniformly colored
areas in the vision field. This makes this notion of computation different from
the one of informatics, because a computer can recognize colors only if it is fed
with a code which makes colors correspond to symbols of these colors - which
in order to be constituted necessitates a subject of visual experience7

6From the point of view of philosophy of mathematics, and in particular the philosophy
of mathematical practice, I believe that this question is of major technical interest, in order
to separate - and conceptualize this separation - between what in the practice is relative to
experience qua experience, and what is not.

7One simple observation, which might be interested in order to analyze purely mental
computation: the operation by which two colors are compared purely mentally is intuitively
irreducible to other more elementary operations, contrary to forms for instances. It is possible
that the intuitive irreducibility of an element of experience corresponds to the irreducibibility
of operations about them, and through this could be ultimately formalized mathematically in
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There is a natural objection to the possibility of answering the question what
can be computed purely mentally ? because computational capacity varies across
subjects, in particular this is obviously influence by training. However there are
limits to what training can do. Furthermore, the point is not really to search for
a precise answer to the question, but rather to build a clear conceptualization
of related intuitions, and to study subsequently the mind through a set of forms
conceived this way rather than as a unique fixed form.

1. Vanishing information, locality. — As a mathematician, I sometimes
don’t need to use a board or piece of paper in order to construct a mathemat-
ical reasoning. While computation without visual support is thus possible in
principle, this context provides immediate limitations of purely mental comput-
ing. For instance, I can draw some triangle on my ’mental board ’ by positioning
three points and connecting them with straight segments. While I focus on this
constructed triangle, it stays present, ’accessible’. However, if I construct an-
other triangle aside of it, and another one, I will forget where I placed the points
defining the triangle, although I remember the relative position of a restricted
area surrounding it. On the other hand, it is possible in certain cases to hold
two objects relatively far from one another when I ’maintain’ this presence by
considering them alternatively and continuously. It is not immediate to charac-
terize sets of objects which can be ’co-present ’ on this mental board, thus there
is more exploration left to be done.

2. Classes of objects and construction schemata. — The possibility of math-
ematical reasoning without visual support proves that visual phenomenal expe-
rience does not participate to the nature of mathematical objects, even though
mathematics are in general learned using visual experience. Classes of objects
are identified a posteriori - in a learning process which may be similar to the
one implemented in machines - but they are a priori in nature - once they are
identified, they are not simply probability distributions, but plain mental ob-
jects. I distinguish fundamental classes as the ones which are characterized by
a construction schemata and derived classes as the ones characterized by an
identification process over objects of a fundamental class.

For instance, a triangle is constructed by a sequence of mental operations:
placing three non-aligned points and connecting them by straight segments. I
think that the information that two operations are similar results from a non-
voluntary process which derives mechanically from the operations themselves.
The fact that a triangle in a plane - of the vision field for instance - can be
constructed out of the data of six real numbers which satisfy some condition
corresponding to non-alignment derives from a construction derives from the
construction schema of triangles. From a purely mental point of view, the
complexity of objects of the triangle category corresponds to the construction
schema of this category. This is also the number of elementary objects which
compose them, themselves results of elementary operations which compose the
construction schema.

a more phenomenologically faithful way than in Integrated information theory.
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The class of equilateral triangles is derived from the one of triangles: con-
sidering a triangle, one can identify it as equilateral by rotating twice, in such a
way that extreme points are permuted, and each time checking if the segments
departing from any point of the initial triangle coincide with one of the rotated
triangle and departing from the same point. Let us also notice that it is as well
a fundamental class, as there is a construction schema for equilateral triangles,
which is more complex than the one of triangles in general. However it is in-
tuitive that an object of this class in itself is as complex as any triangle, which
indicates that the number of elementary objects which compose it characterizes
more precisely the notion of complexity.

3. How are classes of objects stored ? — When I recognize an instance of
a class of objects, I am usually not thinking about the process by which it is
recognized. I only use the mental image that is the result of the construction
process of objects in this class in order to compare it with the identified object,
unless I doubt that the object I identify indeed corresponds to this class. I sus-
pect that what is present in my mind when I instanciate an object of a certain
class corresponds to ’neurons’ - or a certain mechanism - which are currently
’active’. When I am considering mentally the object, I constantly maintain this
activity - countering vanishing of information. Probably, I am better used to
maintain this activity for objects related to vision, which would explain why it
is difficult to maintain the activity of neurons underlying construction opera-
tions. However, a residual activity of these neurons right at the moment of the
construction may well allow me to ’train’ this capacity, and subsequently make
present in my mind the construction operations themselves and ’observe’ them.
The term ’observing ’ may not seem to be adapted, however I believe that it
is possible to extend its meaning from objects which we usually think as ’ob-
servable’ to mental operations. Whenever an object appears in my vision field,
observing it means letting it appear, without acting upon its presence. I still do
actively participate in the way the object, or parts of it alternatively, appears,
in particular isolating it from the background in which it appears. However the
initial presence of such object is not actually caused be me. This is how mental
operations differ from visual objects: I cannot just ’let it appear ’ - precisely
because it is an operation, but also because it does not appear, in the same
way as visual objects do. Observing it consists on the other hand in the causal
relations in which it is involved.

I think that describing how classes of objects are ’stored ’ - where storing
makes possible to instanciate any object of a class at will - can only be done
by understanding how operations are realized. It is reasonable to think that
only classes of objects are stored and not instances themselves, for the reason
that there too many different possible such instances. Furthermore, a class is
likely to be stored under the form of its construction scheme. Each of the op-
erations in this scheme can be in principle realized by a mechanism - whether
it is composed only of neurons or also other types of components - which, in
order for me to apply it, has to be activated - by ’visiting ’ it. It is left to un-
derstand where each of these mechanism may be located in the brain and how
they are assembled in order to instanciate an object. Operations composing a
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construction scheme are involved in a variable number of different other con-
struction schemes. The location of a mechanism should reflect this number -
which corresponds to the degree of universality or specialization of an opera-
tion. For instance, the ’placement of point ’ operation is specifically related to
visual processing and the corresponding mechanism is likely to be closer to areas
specialized in this, contrary to the mechanisms underlying the instanciation of
integers. While singular concepts which contain essentially a certain number -
such as for instance the one of triangle or square - may be realized by a collection
of information, including a material encoding of this number, not all possible
number can be encoded in this way. Furthermore it is for me unlikely that the
information of the integer is ’wired ’ directly to the visual processing area when
instanciating a triangle or a square for instance. This suggests the existence of
a universal counter constantly communicating with this visual processing area,
through which transits the integer information in specific concepts. Through
this universal counter can also be constructed locally any integer - for instance
when I want to construct a regular polygon with 28 sides. Now, how could this
universal counter be materially implemented, and how can it communicate to
the visual processing area ?

With the observation of purely mental counting of large numbers, I come
to think that only few ’natural ’ numbers - three, four - are stored as such, and
that large numbers are processed in general in a different way - although they
are all called numbers. When I use the number three in the construction of a
triangle, I do not need to consider it as integer which is algebraically related to
other integers: it is only and simply three. On the other hand, integers form a
class of objects which are the initialization result of a counter, itself an instance
of the class counters, and what I designated as universal counter is rather the
construction scheme for the class of counters. This construction scheme is the
following: a finite set of symbols - for instance 0 to 9-, the placement of some
symbols in this set on fixed positions, the designation of a nihil symbol - usually
0 - and sequences of operations and rules for applying them sequentially. A
number is the result of the placement on positions, while the object counter
consists in the sequential application of rules which ’decreases’ the number: for
instance from 128, to 127, to 126, etc.. until 000. Again, only the construction
scheme of the counter class is stored.

I leave for further reflection the question of how precisely a counter is instan-
ciated and connected to other construction processes. Let us only make some
observations. In principle, other forms of counters are possible besides the one
which correspond to decimal representation of numbers, for instance displaying
a series of points in line which are suppressed one by one. Purely mentally
though, because of information vanishing, it is easier to use counters corre-
sponding to decimal representation. The number of symbols involved, contrary
to the encoding of counters in machines - in which the binary representation
is the simplest to use -, seem to realize a trade-off between the area occupied
by the representation of usual large numbers - which subjects it to information
vanishing - and the number of symbols involved - a large such number makes it
more difficult to implement the counter purely mentally. A second observation
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is that because counting with large numbers uses visual processing, it is difficult
to construct purely mentally visual objects which involve large numbers. When
I use a visual support on which I can write in order to construct a regular
polygon with 28 sides, I can use visual processing in order to count, because
information contains in the visual support does not vanish. Third observation:
although a counter is systematically instanciated in order to count, it is made
easier by uttering the words which correspond to each symbol, for instance 128
by one hundred and eight, because the association between symbols and words
make these symbols more present to the mind, and thus easier to manipulate.

4. Visual proofs and generality. — How is it possible to grasp the generality
of a mathematical truth by looking at a unique drawing ? An example of visual
proof of a theorem is the following one, for pythagorean theorem:

c2

b

a
c

b2

a2

The drawing itself does not contain a proof. Rather, it suggests it, in such
a way that the sentiment of truth of the theorem relies plainly on arguments
suggested by the drawing. A rough description of the suggested proof goes like
this: (i) I can always display four copies of any right-angled triangle in such
a way that the longest side of each copy form a square, and the other sides
form another square, such that the first is included in the area delimited by the
second. (ii) After I copy the exterior square elsewhere, I can assemble the four
triangles by pairs to form two rectangles, and display these rectangles in order
to cut the square into two smaller squares. (ii) In the two constructions, the
exterior square has the same area, because each one is a copy of the other. In
the first construction, the area of the inner square is c2, where c is the length
of the largest side of each triangle copy. Furthermore, the difference of area
between these two squares is four times the area occupied by a triangle. In the
second construction, the area of the exterior square differs by four times the
area occupied by a triangle from the sum of areas of the squares into which the
rectangles cut this exterior square. The area of the smallest one is a2 and the
one of the largest one is b2. We deduce that c2 = a2 + b2.

Visual proofs - proofs which rely on a visual support - are often considered
as less rigorous than purely formal proofs for the same statement - which rely,
for the pythagorean theorem, on inner product. However, ultimately, every
mathematical reasoning relies on space relies on the sense of space, grasped
through vision or touch for instance: the fact that one can encode points in a
two-dimensional space with two real numbers does not even make sense without
a sense of space. Therefore the use of senses cannot be what makes visual proofs
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less rigorous. In a purely formal proof, spatial objects - such as triangles, points
or segments - are put in correspondence with formal objects in such a way that
any spatial object can be identified, in the context, with its formal counterpart.
The point of this correspondence is ultimately to make possible the consideration
of these objects separately : in particular the perception (or conception ?) of
such an object is not affected by the presence of other ones. This applies also to
operations which combine objects, in the sense that is only present to the mind
the collection of objects to be combined, as a collection, the operation itself,
or the result of this operation. The reason why this separation is important
comes from the existence of visual illusions, which consist in the distortion of
the visual experience under the action of certain operations, distortion which is
due to the influence of the presence of other objects.8 It is in principle possible
to conceive that a visual proof can be as rigorous as a purely formal proof as
long as the visual experience keeps outside of the domain of illusion.

This comparison between visual proofs and purely formal proofs leaves some
invariant visible: the fact that a proof consists ultimately in a series of mental
operations of which mathematical languages and pictures are only a tool in
order to talk about them. It is possible to grasp the truth of a mathematical
statement in a single drawing when all the operations necessary for a proof
and the sequence in which they are done are represented in the drawing. Is a
meta-mathematical truth that every mathematical statement can be formulated
as a causal relation. A proof of a statement relies on simple causal relations
whose truth comes from a pure sentiment of truth which can be considered as
data - axioms - and logic rules which are concerned with properties of causal
relations - in particular the parallelization or composition of causal relations.9

The sentiment of truth results from of a statement is caused by the sequence
of operations which are concerned with elementary causal relations. On the
other hand, even if the truth of a statement is graspable through a drawing,
a visual proof leaves some ghost doubt which is not supported positively but
comes from the non-purity of the sentiment of truth (it is co-present with the
visual support). Through a rigorous proof, it is the pure sentiment of truth
which of the statement is computed.

8For instance, in E.H.Adelson’s checker-shadow illusion, if one considers successively each
of the squares together with its neighborhood, the colors appear to be different. When isolating
the pair of squares before comparing them, the colors appear to be the same.

9This interpretation of mathematical reasoning in terms of causal relation leads to two
threads of thoughts: first, that meaningful mathematical concept are tied, and could be
formally tied, with the notion of causal structure; second, a practice of mathematical nature
can be developed in order to understand experiential concepts such as the form of the space
we live in, by relating the formation of such concepts out of the causal structure of experience
qua experience of the world - contrary to the mathematical field which is concerned with
causal relation between objects and operations on them abstracted from experience. This
search is not concerned with the truth of causal relation, but rather how concepts derive from
them. Here the generalization of mathematical practice is not about the form of the discourse
(which I have criticized in On faith in the mathematical practice), or its properties (which I
have explored in A formal window on phenomenal objectness), but rather the generalization
of purely mental computation which root the cognitive practice of mathematics and explain
the form of mathematical discourse and its properties.
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Let me notice further that in visual proofs, the operations which are involved
in a purely formal proof are collected into global operations - such as for instance
the equality of the area delimited by two triangles such that one obtained by
translation and rotation of the other, which is verified by actually translating
and rotating one triangle in order to superimpose it to the other10 - which add
to the influence of present objects - here in particular an operation - over the
perception of other ones.

——– Complexity as behavioral capacity ——–

I would like to end this text with the proposition that the reflection I led
above may shed some light on the question of the complexity of the living, as
well as the complexity of consciousness: how is it possible, from a set of data,
to detect the presence of life - for instance in data collected on other planets -
or the presence of consciousness - for instance by measuring the activity of the
brain of a patient in coma state ? Intuitively both phenomena imply complexity,
and it is and has been natural to search for a quantity, in principle computable
from the data, which measures how much complex this set of data is, in a sense
of complexity which is tightly related to the phenomenon in question: a ’high’
(what does determine what high should mean ?) of this quantity would reveal
its presence.

What being tightly related to the phenomenon in question for a sense of
complexity is to agree with the judgment of complexity, from the point of view
of a subject. As I have discussed above, it is possible to think of complexity
from this point of view as difficulty of description. Hence the question: in what
sense is the living, or the phenomenon of consciousness, difficult to describe ?

As I have exposed it above, the concept of complexity applies to worlds as
a sets of experiences. In particular a living being is such set of experiences and
it is to this being as such that the concept of complexity applies - whereas the
organism is similar to a ’screen’ which supports these experiences, the place
where they appear and the matter which supports them, and group them to-
gether. The complexity of such living being lies in the fact that in order to
describe its behavior, one has to rely on several meaningful distinct patterns -
organs, cells, hormones, etc - as well as several relative displays. In the same
way as for describing the possible behaviors of a machine, I can transform in
principle in faithful way the experiences I have of a living being into a set of
data displays - property that I would like to call displayability - in order to
understand it.

10This brings the question: how do precisely do we ’move’ purely mentally an object onto
another, and exactly what is so ? I leave this question for further reflection. Let me only notice
that two examples to consider are: the experiential ’verification’ that two straight segments
are parallel, which consists in a ’projection’ of one segment onto the other (more precisely, a
segment is first reduced to its extremities which are projected on the extremities of the other
segment, and because they are respectively at the same distance, these parallelized projections
are perceived as identical, then the projected is reconstructed from the projected extremities
and perceived to coincide with the second segment); the comparison of the length of two
such segments. Each of the examples corresponds to a well-known form of visual illusion:
respectively the Hering and Muller-Lyer illusions.
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On the other hand, the complexity of the phenomenon of consciousness
comes from the difficulty to identify mental contents - what I judge as con-
scious is what is subject of experience and therefore mental contents - which
in general can only be sensed and designated, conceived in another person as a
best explanation of a behavior similar to one I may have. In particular mental
contents are actually not displayable altogether. While consciousness is complex
in this sense, this complexity is not essential to consciousness it should not be
identified with it.

A.Turing’s definition of computing machines - in particular the idea of uni-
versal computing machine - had several known consequences; despite this, I be-
lieve that important philosophical consequences of his work have been missed11.
One of them is the efficiency, in defining meaningful mathematical concepts, of
the method through which A.Turing arrived at his definition - considering the
mathematician’s mind in the process of computing. Another one is the possibil-
ity of characterizing the human mind with its computational universality. There
are two objections to this conception, which I shall counter. The first one is that
it is possible to implement universal computation in machines. However in such
a machine, the causal relations which constitute any process simulated by all
derive from an initial action of a human being. What differenciates universality
of the human mind from universality in machines is autonomy12 - processes are
caused partially from within; on the other hand, autonomy alone is not sufficient
to characterize the singularity of the human mind. The second one would ques-
tion the identification of consciousness in another subject: how is universality
recognizable ? As a matter of fact, I think that it possible to grasp intuitively
and purely - although not explicitly - the mechanics of thoughts which underlies
- allows - this universality in the same way as mathematical truth is grasp, in
oneself and in the other as a best explanation of the other’s behavior - in partic-
ular the possibility to agree on any particular algorithm to execute collectively.

Complexity of the human mind as a form of behavioral capacity - precisely,
universality - does not correspond mathematically to a quantity: should it ?
This idea has however the following practical implications: in order to determine
a way to detect consciousness, one possibility is to understand the conditions of
possibility of an autonomous form of universality in a physical system; in relation

11Sometimes it is believed that the purpose of mathematical practice is to prove theorems.
Other times it is thought that theorems have an epistemological role of confirming defini-
tions which proposed out of intuition but reveal to be naturally involved in complex proofs,
meaning in particular that the concept which underlies the definition has a reality beyond the
mathematician who proposes the definition. In the sense, theorems are the sign of an episte-
mological fertility of the definition. However, I believe that definitions themselves are not the
purpose of mathematical practice; they are only a useful tool in order to grasp the structure
of the world, to understand it. Whenever the definition of a concept can be mathematical,
this makes possible to grasp it in a systematical way, through simple, defined, controlled op-
erations. Sometimes, however, there is no natural mathematical formulation of the concept;
this should not forbid the search for an understanding of it through non mathematical means,
for precisely it is this understanding which is the point of mathematical practice.

12In a sense, universality in machines is only the reflect of human mind’s universality.
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with the idea of an increasing complexity through evolution, this leads to the
question: how can a physical system evolve into one which is autonomously
universal ?
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