

Consistency Maintenance of Group/Ungroup Operations in
Object-based Collaborative Graphical Editing Systems

Liping Gao, Fangyu Yu
School of Optical-Electrical and Computer Engineering, University of Shanghai for

Science and Technology, Shanghai, 200093, China.
Email: lipinggao@usst.edu.cn; fangyuyu@st.usst.edu.cn

Abstract

In real-time collaborative graphical editing systems, Object-based Group/Ungroup

operations are frequently accessible and practically useful. However, the existing research

on these operations of the graphical editing is rare and defective. In this paper, based on

Multi-Version strategy and Address Space Transformation method, a new MVSDR

algorithm, which is not only applied to simple operations (such as Create, Delete,

ChangeATT, etc.), but also suitable for Group/Ungroup ones, is proposed to solve the

consistency maintenance problem. The proposed algorithm abandons previous attempts to

divide conflict operations into Real-Conflict operations and Resolvable-Conflict ones and to

deal with them separately, thus making the algorithm more simple and effective. In addition,

an example analysis is also given in this paper to prove the algorithm’s correctness and

effectiveness.

Keywords: Real-time Collaboration, Graphical Editing System, Object-based,

Group/Ungroup, Multi-Version Strategy, Address Space Transformation, Consistency

Maintenance.

1. Introduction

Real-time collaborative graphical editing system allows multiple users to view and edit

the shared graphics at the same time from geographically different sites via network

connections, which has higher editing efficiency and more conforms to the trend of the

modern collaborative thoughts, compared with previous single-user editing system.

Collaborative editing system can be classified into three types: Object-based, bitmap-based

and hybrid [5]. Wherein, Object-based editing system is a special collaborative editing

system, whose operation targets are objects such as points, lines, circles, triangles, etc., and

each object has attributes such as color, coordinate, size, etc. Users can create, update and

delete objects, and the attributes of objects can be also updated. Lots of research has been

developed in this field, including Co-PowerPoint, Co-AutoCAD, Co-Visio, etc. However,

existing studies are mostly aimed at simple operations such as Create, Delete, ChangeAtt,

etc., by comparison, rarely at complex operations of Group/Ungroup, which are

indispensable common operations in graphical editing system, thus making the research on

this field of great significance.

For the sake of operations’ consistence maintenance, existing collaborative graphical

editing system usually adopts the following three strategies: Locking, Serialization and

Operation Transformation (OT).

Locking [3] allows only one user to edit the shared documents at one time, and

collaborative editing is allowed only if different users are locking and editing different

objects. Locking is divided into Pessimistic Locking and Optimistic Locking. Wherein,

Pessimistic Locking causes the operation’s delay when obtaining the Lock, while Optimistic

Locking avoids the delay, but the system is not clear what to do when the Lock is denied. In

addition, the target objects by users must be stored in their initial states.

Serialization guarantees that the effects of all concurrent operations are just like their

execution orders are the same at all sites. When there are conflicts between concurrent

operations, the last operation is allowed to be executed only. Wherein, the applications in [1]

[2] [3] belong to this method. The main problem with Serialization is the operational delay,

thus making the response time too slow and reaching the requirement of real-time

collaborative editing too difficult.

OT strategy transforms the to-be-executed operation against all executed concurrent

operations before it being executed. OT ensures the operation to be executed correctly and

the convergence and intention-preservation to be satisfied successfully. Some celebrated

studies by this method include GOT/GOTO [6] and COT [7] [11] algorithm. The main

limitation of OT is that the complex relationship between operations has to be considered,

especially while dealing with Group/Ungroup, the transformation method will become

completely complicated.

This paper adopts a novel approach named AST (Address Space Transformation) [8],

which utilizes Mark-Retrace strategy. AST retraces the document state to that when the

operation is generated, and retraces the document back to the current state after executing

the operation. Without considering the complex relationship between operations, this

method thus has higher algorithm efficiency and is also suitable for Group/Ungroup

operations.

The following paper is organized as follows. In section 2, some previous works on

graphical editing and the AST method are introduced briefly. An object-based document

model is established and definitions of related operations are presented in section 3. In

section 4, a new MVSDR algorithm is proposed to resolve Group/Ungroup operation’s

consistency maintenance problem, and an example analysis is also given to verify the

correctness and effectiveness of the algorithm, which is the focus of the paper. Finally, the

paper is concluded with a brief summary of major contributions and future work.

2. Related Work

2.1. Preparatory Work

In graphical editing system, Group/Ungroup are all-important operations. In short, Group

intends to combine a series of objects (including group) into a group, while Ungroup

attempts to divide a group into a series of objects (including group). However, existing

objet-based graphical editing is mainly focused on simple operations [5], the research on

Group/Ungroup is quite scanty.

In previous works, Ignat [1] [2] [3] classifies conflict operations into two types:

Real-Conflict operations and Resolvable-Conflict operations. Real-Conflict operations refer

to the situation that executing one operation will make it impossible to execute the other

operation or will mask the execution effect of the other one. In this case, a priority-based

policy is adopted in which only the operation with the highest priority will be executed.

Resolvable-Conflict operations are the situation that conflict operations can be executed

correctly by changing their execution orders. On this occasion, Ignat adopts Serialization

method, which ensures all conflict operations being executed in the same order at each site.

Obviously, the way of categorizing conflict operations is not only cumbersome but also may

omit some cases. Besides, the adopted priority-based policy makes it impossible to preserve

the effects of any other operation whose priority is not the highest, which goes against the

collaborative idea of maintaining all users’ intentions. Note that the priority is an artificial

rule and it will become meaningless if any one user does not comply with the rule. Moreover,

in order to ensure operational order consistency, Serialization has to undo and redo certain

operations repeatedly, thus leading to low efficiency of the algorithm.

Related to these studies, Xia [4] proposes Multi-Version Single-Display (MVSD) strategy,

i.e., all operations’ effects are preserved, but one version is displayed on the user interface

only. Meanwhile, combined with an Operation Transformation (OT) technique, the remote

operation is guaranteed to be executed aright by transforming against all executed

concurrent operations before its execution. However, although the MVSD strategy preserves

all operations’ intentions, users have to pause and then to choose which one version to be

displayed once multiple versions are generated, which cause higher overhead and lower

efficiency for executing operations. Besides, due to the addition of Group/Ungroup, the

process of operational transformation will be surprisingly complicated, accordingly

increasing greatly the complexity of the algorithm.

In this paper, the attempt of classifying operations into Real-Conflict and

Resolvable-Conflict operations is discarded. Combined with the AST method, the

Multi-Version strategy is adopted, which maintains all users’ intentions without considering

complex relationships between operations, thereby improving the algorithm’s efficiency.

Details will be described in the following parts.

2.2. Overview of the AST Method

Different with OT which transforms the operation itself, AST [8] retraces the document

state to that at the time of the operation’s generation so as to conceal the effects of executed

concurrent operations without considering complex relations among operations. AST is

originally applied in text document environments [10] supporting users to insert, delete and

update characters, by contrast, little research has been done on graphical editing systems.

Here, we continue to use Timestamp scheme and status Mark technique. Each operation is

attached with its generating site’s current state vector and then broadcast to other sites, and

the target object or group of every operation is added with an Effective/Ineffective Mark

which indicates whether it is visible or not on the user interface. Each object or group may

have several operations targeting itself and each operation may target several objects or

groups equally. As shown in Fig.1, given three operations O1, O2 and O3, generated at sites 1,

2 and 3 separately. Wherein, O1=Group([G1, Obj3], G2), O2=Ungroup(G1) and

O3=Group([G1, Obj4], G3). Execution orders are different at different sites, assuming that the

order is: O2, O1 and O3 at site 2. O1 cannot be executed directly after O2’s execution, because

the current document state has been changed. To execute O1 correctly, we should retrace the

document state to that when O1 is generated, and execute O1 in this new document state,

then retrace back to the current document state and finally execute subsequent operation O3.

At this moment, the state of G1 is Ineffective, Obj3 and Obj4’s are Effective. Fig.1 also

shows the result of the execution of O2 and O1 on user’s view.

Obj2

G1

Obj3

G2

O1=Group([G1, Obj3], G2)
<1,0,0>

Obj4

IneffectiveEffective Effective

Obj3 G1 Obj4

Obj1

O3=Group([G1, Obj4], G3)
<0,0,1>

O2=Ungroup(G1)
<0,1,0>

Fig.1 the AST Strategy and the User Interface View

3. Document Model and Basic Operations

3.1. Document Model

Here, an address tree is used to store the target objects. In the tree, Object is the basic unit

as a leaf node, and Group can be represented both as a parent node and leaf node, which

means that Group can contain Objects and Group at the same time. If one Group both has a

parent and children, it is called an intermediate node, as G3 shown in Fig.2, and if one Group

has only children, it is the root node, as G5 in Fig.2. The parent and children information,

together with the state for each Object or Group shall be recorded, i.e., Obj/G :=(<Parent,

Children>, State). Wherein, Obj denotes a simple object, and G is a group. Parent denotes

one object or group’s parent node of which has only a parent. Children, expressed with an

unordered list (Child1, Child2,…, Childn), denote the leaf nodes of one group which may

have several children. State denotes one object or group’s state, which has two states:

Effective and Ineffective. As shown in Fig.2, G5 :=(<Null, (G4, Obj7, Obj8)>, Effective),

G3 :=(<G4, (Obj4, Obj5, Obj6)>, Effective) and Obj3 :=(<G2, Null>, Effective).

Obj2 Obj3

G2 Obj1

G1 G3

G5

G4

Obj4 Obj5 Obj6

Obj7 Obj8

……

Fig.2 an Instance Diagram of Document Model

3.2. Basic Operations

In this part, five types of basic operations are introduced, including Create, Delete,

ChangeAtt, Group and Ungroup. In addition, Conflict and Compatible Relations are also

defined in detail.

Definition 1: Graphical Operations

Create(Obj): an object Obj is created.

Delete(ObjList): an ObjList is deleted.

ChangeAtt(ObjList, Attribute): the attribute of an ObjList is updated, wherein, the type of

Attribute can be Position, Color, Size, Text, etc. For example, ChangePosition(ObjList, (dx0,

dy0), (dx1, dy1)) moves ObjList from the initial coordinate position (dx0, dy0) to (dx1, dy1),

ChangeColor(ObjList, Color) changes the color of ObjList to color Color (such as Red,

Green, Blue, etc.), ChangeSize(ObjList, (dx0, dy0), (Δdx, Δdy)) changes the size of ObjList

by the ratio Δdx and Δdy, with (dx0, dy0) as the center.

Group(ObjList, G): an ObjList is grouped into a group G.

Ungroup(G): a group G is ungrouped, and the objects or groups contained in G still exist

but no longer belong to the G.

Note that the ObjList mentioned above can be either an object or a group which includes

objects or groups with an unordered list [Ojb1, Obj2, …, Objn].

Definition 2: Conflict Relations “” [9]

Given two operations O1 and O2, they conflict with each other, denoted as O1 O2, iff:

(1) O1 || O2;

(2) Target(O1) ∩ Target(O2) ≠{};

(3) Att.Type(O1) = Att.Type(O2);

(4) Att.Value(O1) ≠ Att.Value(O2).

Note that Target(O) denotes the target object or group of operation O, Att.Type(O)

denotes the attribute type of O, and Att.Value(O) denotes O’s attribute value.

Definition 3: Compatible Relations “⊙” [9]

Given two operations O1 and O2, if they are not conflict with each other, they are

compatible relations, denoted as O1⊙ O2.

4. Consistency Maintenance Strategy of Group/Ungroup Operations

4.1. Description of the Algorithm

The main idea of the algorithm is that the local operation can be executed

immediately, and then attached with its generating site’s state vector, broadcast to

other sites. As for the remote operation, it cannot be executed at once. First of all, it is

checked to find whether it is a causally ready operation or not. If not, it has to be

queued since the sending site has executed operations which have not been executed at

this site. If so, steps are as follows: if the operation desires to Delete/Ungroup one

object or group that has been deleted/ungrouped, it is cancelled. If not, firstly, retrace

the document state to that when the operation is generated, and then find all executed

conflict operations, if there is no such operation, execute the operation directly in this

new document state, if there does exist such operations, retain the effects of the

operation and all other conflict ones to create multiple versions with Multi-Version

Strategy. Finally, retrace back to the current document state and add the operation into

the history buffer (HB).

The MVSDR (Multi-Version Strategy based Double Retracing) algorithm reveals the

execution process of remote operation Oi at one site, assuming that Oi is a

causally-ready operation. Wherein, Docs denotes the current document state, SVoi is

the state vector at the time of O i’s generation, and SVc is the state vector of current

document state. Besides, all executed operations are stored in HB.

Algorithm: MVSDR(Docs, Oi, HB):

Note: Given executed operations O1, O2,…, Oi-1, and Oi is the operation to be executed.

Begin:

1. HB ={ O1, O2,…, Oi-1};

2. If Oi is a Delete/Ungroup Operation whose target object/group has been

Deleted/Ungrouped

3. Oi is refused to be executed;

4. else

5. Retracing(Docs, SVoi); //call Retracing function

6. If there is any executed operation Oj (1≤j≤i-1), such that Oj Oi then

7. FindConflict (Oset, Oi); //call FindConflict function

8. Multi-Version(Oset, Oi, VSi); //call Multi-Version function

9. else

10. execute Oi directly;

11. end if

12. end if

13. SVc =SVc+1;

14. Retracing(Docs, SVc); //call Retracing function again

15. HB =HB+{Oi};

End

The Retracing function specifies the procedure of retracing the document state to

that at a given timestamp SVo i, wherein, SVoi is the state vector when Oi is generated,

and ON is the object or group node in the tree structure of the document Docs.

Function 1: Retracing(Docs, SVoi): Docs

Note: Before executing Oi, retrace the document’s state to the time when Oi is generated.

Wherein, ON is the Object (including group) Node, in the tree structure of the document

Docs.

Begin:

1. For any Ungroup/Delete Operation Ougr/Odel of ON

2. If the Ougr is timestamped by SVugr, and SVugr < SVoi then

3. Set ON Ineffective;

4. ON.children ←ON.parent;

5. else if the Odel is timestamped by SVdel, and SVdel < SVoi then

6. Set ON Ineffective;

7. else

8. Set ON Effective;

9. end if

10. end for

11. For any other Operation Oany of ON

12. Set ON Effective;

13. end for

End

The FindConflict function specifies that all executed operations which are conflict

with Oi are stored in Oset.

Function 2: FindConflict (Oset, Oi): Oset

Note: Given executed operations O1, O2,…, Oi-1, and Oi is the operation to be executed.

Begin:

1. Oset ={};

2. Remove Oj from HB and repeat until HB ={};

3. If Oj Oi then

4. Oset =Oset+{Oj};

5. else

6. do nothing;

7. end if

8. Return Oset;

End

The Multi-Version function specifies the process of preserving the effects of O i and

all executed conflict operations that are stored in Oset to generate multiple versions.

Mainly four cases are listed in the function, and other cases can be accomplished based

on the Multi-Version idea.

Function 3: Multi-Version(Oset, Oi, VSi): VSi

Note: Oi is the operation to be executed, Oset is the set of all executed operations that conflict

with Oi, and VSi is the new generating versions set.

Begin:

Case 1: Oi and Oset are Group Operations // Case 1: Group Operations

1. Pre: Oi =Group(ObjList1, G1) and Oset =Group(ObjList2, G2) and ObjList1 ∩ ObjList2≠{ }

2. VSi←{Vii (ObjList1, G1); Vij(ObjList2, G2)}; //j is the number of the operation in Oset

Case 2: Oi and Oset are ChangePosition Operations // Case 2: ChangePosition Operations

3. Pre: Oi =ChangePosition(ObjList, (dx0, dy0), (dx1, dy1)) and Oset =ChangePosition

(ObjList, (dx0, dy0), (dx2, dy2))

4. VSi←{Vii (ObjList1, (dx1, dy1)); Vij(ObjList2, (dx2, dy2))};

Case 3: Oi and Oset are ChangeColor Operations // Case 3: ChangeColor Operations

5. Pre: Oi =ChangeColor(ObjList1, Color1) and Oset =ChangeColor(ObjList2, Color2) and

ObjList1 ∩ ObjList2 ≠{ }

6. VSi←{Vii (ObjList1 ∩ ObjList2, Color1; Vij(ObjList1 ∩ ObjList2, Color2; };

7. Put {ObjList1 - ObjList2, Color1} on VSi;

8. Put {(ObjList2 - ObjList1, Color2} on VSi;

Case 4: Oi and Oset are ChangeSize Operations // Case 4: ChangeSize Operations

9. Pre: Oi =ChangeSize(ObjList, (dx0, dy0), (Δdx1, Δdy1)) and Oset =ChangeSize(ObjList,

(dx0, dy0), (Δdx2, Δdy2))

10. VSi←{Vii (ObjList1, (Δdx1, Δdy1)); Vij(ObjList2, (Δdx2, Δdy2))};

Case 5: Oi and Oset are other types of Operations //Other Situations

11. Do something accordingly based on the Multi-Version idea;

12. end Case

13. CheckVersion(VSi); //Check and Delete the redundant versions

14. Return VSi;

End

The CheckVersion function checks whether there are duplicate versions or not, and

if so, those redundant versions will be deleted.

Function 4: CheckVersion(VSi): VSi

Note: VSi is the new generating versions set.

Begin:

1. For each Vi in VSi {

2. For each Vj in VSi{

3. If i≠j and Vi=Vj

4. Delete Vj;

5. end if

6. }

7. }

End

4.2. Example Analysis

Assume that the shared editing area for users is a square, and the graphical initial

state on the user interface view is shown in Fig.3. Wherein, group G1 includes two

objects Obj1 and Obj2, Obj3 and Obj4 are the other objects.

Obj2

G1Obj1

Obj4

Obj3

 Site1 Site3
O1=Group([G1, Obj3], G2)

<1, 0, 0>
O4=Group([G1, Obj4], G3)

<0, 0, 1>

Site2

O2=ChangeColor(G2, Green)
<2, 0, 0>

O5=ChangeColor(Obj2, Red)
<0, 0, 2>

O3=Ungroup(G1)
<0, 1, 0>

Fig.3 the Initial State Fig.4 Example Analysis

As shown in Fig.4, O1 and O2 are generated at site 1, O2 at site 2, O3 and O4 at site 3,

and their relations are: (O1→O2) || O3 || (O4→O5).

Now, the process of executing operations will be analyzed detailedly at all sites, and

the execution result is shown in Fig.5.

Site 1: Site 2:

Obj2

G1Obj1

Obj4

Obj3

V1

O1, O2: O4:

O5:

G2

Obj2

G1Obj1

Obj4

Obj3

G2
O3:

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V2

V3

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V1 V4

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V2

A B

Obj2

G1Obj1

Obj4

Obj3

V2

O4, O5: O1:

O2:

G2

O3:

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V1

V4

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V2 V3

Obj2

G1Obj1

Obj4

Obj3

G2

Obj2

G1Obj1

Obj4

Obj3

G3

V1

Obj2

G1Obj1

Obj4

Obj3

G3

A B

 Fig.5 Execution Result of Operation Process

At site 1: (the execution order: O1, O2, O3, O4, O5)

1. O1 and O2 are executed immediately at the local site 1, generating the version A.

2. With the arrival of O3, HB ={O1, O2} at the moment. Firstly, retrace the document

state to that when O3 is generated, whose state vector is SVo3<0, 1, 0>. Then for

executed operations O1 and O2, the state of their target object or groups G1, Obj3 and

G2 shall be set Effective. Due to both O1 and O2 do not conflict with O3, so O3 is

executed directly in this document state. Secondly, retrace back to the current

document state whose state vector is SVc<2, 1, 0>. Since O3 is an Ungroup operation

and SVo3 < SVc, set the state of O3’s targeting group G1 Ineffective, and G1’s parent

node G2 is given to Obj1 and Obj2. Finally, add O3 into the HB, and the version B is

generated finally.

3. When O4 arrives at site 1, HB ={O1, O2, O3}. Firstly, retrace the document state to

that at the time of O4’s generation, whose state vector is SVo4<0, 0, 1>. Then, put the

state of target group G1 Effective since SVo3≥SVo4, Obj3 and G2 are set Effective. And

then, there is found executed operation O1 are conflict with O4, meeting the case 1 in

Multi-Version function, thus generating two versions V1 and V2. Secondly, retrace

back to the current document state whose state vector is SV c<2, 1, 1>. Since O3 is

Ungroup and SVo3 < SVc, set the state of O3’s targeting group G1 Ineffective. And G1’s

parent node is given to Obj1 and Obj2, thus making their parent node become G3 in V1

and the parent node is G2 in V2. Finally, O4 is added into the HB.

4. At the time of O5’s arrival, HB ={O1, O2, O3, O4}. Firstly, retrace the document

state to that at the time of O5’s generation, whose state vector is SVo5<0, 0, 2>. Then,

put the state of target group G1 Ineffective since SVo3 < SVo5, Obj3, G2 and Obj4 are

set Effective. And then, it is found executed operation O2 conflicts with O5, meeting

the case 3 in Multi-Version function, thus generating four versions V1, V2, V3 and V4.

Secondly, retrace back to the current document state whose state vector is SV c<2, 1, 2>.

Since O3 is Ungroup and SVo3 < SVc, still set the state of its targeting group G1

Ineffective. And G1’s parent node is given to Obj1 and Obj2, thus making their parent

node become G3 in V1 and V2 and the parent node is G2 in V3 and V4. Finally, add O5

into the HB so that HB ={ O1, O2, O3, O4, O5}.

The process at site 3 is not described in this paper because of its similar to that at

site 1, and site 2’s process is omitted here due to this paper’s length limitation, with

their same results as at site 1.

As we can see, the final result is always the same even though the execution orders

are diverse at diverse sites, thus proving the algorithm’s correctness and effectiveness.

5. Conclusions and Future Work

In this paper, based on the AST method and the Multi-Version Strategy, we propose

a novel approach to resolve the Group/Ungroup consistency maintenance problem in

graphical editing systems. Since abandoning the attempt to classify conflict operations

into Real-Conflict and Resolvable-Conflict operations, the algorithm adopted becomes

simpler and easier to achieve. This paper’s main contribution includes that it is the first

time to adopt AST method to solve Group/Ungroup questions in graphical

environments, which does not have to consider complex relations among operations

and reduces delay greatly, with comparison to previous approaches such as

Serialization and OT. In addition, the Multi-Version Strategy is proposed to resolve

conflict operations’ problem, which reflects the effects of all users and satisfies the

users’ intentions better than the priority-based policy.

However, there are other operations such as Undo/Redo of Group/Ungroup and the

version identification in practical graphical editing systems, which is the next focus on

these issues in the future work.

Acknowledgements

The work is supported by the National Natural Science Foundation of China(NSFC) under

Grant No. 61202376, Shanghai Natural Science Foundation under Grant No. 15ZR1429100,

Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ075 ,

Shanghai Key Science and Technology Project in Information Technology Field under Grant

No. 14511107902, Shanghai Leading Academic Discipline Project under Grant No. XTKX2012,

and Shanghai Engineering Research Center Project under Grant No. GCZX14014 and C14001.

References

[1] Claudia-Lavinia Ignat, Moira C. Norrie. Grouping/ungrouping in graphical collaborative editing

systems[C]. In: Proceeding of the 5th Int. Workshop on Collaborative Editing Systems, (2003),

Helsinki, Finland.

[2] Claudia-Lavinia Ignat, Moira C. Norrie. Grouping in collaborative graphical editors[C]. In:

Proceedings of the 2004 ACM conference on Computer supported cooperative work. ACM, (2004),

pp: 447-456.

[3] Claudia-Lavinia Ignat, Moira C. Norrie. Draw-Together: Graphical editor for collaborative

drawing[C]. In: Proceedings of the 2006 20th anniversary conference on Computer supported

cooperative work. ACM, (2006), pp: 269-278.

[4] Xia S, Sun D, C Sun, Chen D. Collaborative object grouping in graphics editing systems[C].

Collaborative Computing: Networking, Applications and Worksharing, (2005), 2005 International

Conference on. IEEE.

[5] Xueyi Wang, Jiajun Bu, and Chun Chen. Achieving Undo in Bitmap-based Collaborative

Graphics Editing Systems. In: Proceeding of the Conference on Computer Supported Cooperative

Work, (2002), pp: 68-76.

[6] Sun C, Ellis C. Operational transformation in real-time group editors: issues, algorithms, and

achievements[C]. In: Proceedings of the 1998 ACM conference on Computer supported cooperative

work. ACM, (1998), pp: 59-68.

[7] David Sun and Chengzheng Sun. Operation Context and Context-based Operational

Transformation [A]. In: Proceeding of the Conference on Computer Supported Cooperative Work,

(2006), pp: 279-288.

[8] Ning Gu, Jiangming Yang and Qiwei Zhang. Consistency Maintenance Based on Address Space

Transformation Technique in Group Editor [J]. Chinese Journal of Computers, 30(5): 763-774 (2007).

[9] Y Cheng, F He, B Xu, S Han, X Cai and Y Chen. A multi-user selective undo/redo approach for

collaborative CAD systems. Journal of Computational Design and Engineering, 103-115 (2014).

[10] Hansu Gu, Haojie Hang, Qin Lv and Dirk Grunwald. Fusing Text and Frienships for Location

Inference in Online Social Networks. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2012 IEEE/WIC/ACM International Conferences on, vol.1, (2012), pp. 158-165. IEEE.

[11] Hansu Gu, Mike Gartrell, Liang Zhang, Qin Lv and Dirk Grunwald. AnchorMF: towards

effective event context identification. In Proceedings of the 22nd ACM international conference on

Conference on information & knowledge management, (2013), pp. 629-638. ACM.

Authors
Liping Gao(1980-) graduated from Fudan University, China with a PhD

in 2009 in Computer Science. She received her BSc and master degree in

Computer Science from Shandong Normal University, China in 2002 and

2005 respectively. She is doing her research work in University of

Shanghai for Science and Technology as an assistant professor. Her

current research interests include CSCW, heterogeneous collaboration,

consistency maintenance and collaborative engineering.

Fangyu Yu(1989-) is a postgraduate student in University of Shanghai for

Science and Technology. She obtained her BSc degree in Electronic

Information Engineering from Henan University of Science and Technology,

China. Her current research interests include CSCW, collaborative design

and collaborative computer.

