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A prominent version of mathematical structuralism holds that mathematical objects 
are at bottom nothing but “positions in structures,” purely relational entities without 
any sort of nature independent of the structure to which they belong. Such an ontol-
ogy is often presented as a response to Benacerraf’s “multiple reductions” problem, or 
motivated on hermeneutic grounds, as a faithful representation of the discourse and 
practice of mathematics. In this paper I argue that there are serious difficulties with 
this kind of view: its proponents rely on a distinction between “essential” and “nones-
sential” features of mathematical objects, and there’s no good way to articulate this 
distinction which is compatible with basic structuralist commitments. But all is not 
lost. For I further argue that the insights motivating structuralism (or at least those 
worth preserving) can be preserved without formulating the view in ontologically com-
mittal terms.

Mathematical structuralists think that mathematics is fundamentally con- 
  cerned with structures, or with the relations mathematical objects bear 

to each other in virtue of belonging to some structure. This thought is often devel-
oped as an ontological claim: mathematical objects are said to be mere “positions 
in structures,” fundamentally relational entities without any internal composition 
or any sort of nature independent of the structure to which they belong.1

Structuralists typically motivate such an ontology on philosophical and her-
meneutic grounds. On the philosophical side, the structuralist ontology is often 
presented as a response to the “multiple reductions” problem raised in Benacerraf 
(1965).2 On the hermeneutic side, the structuralist ontology is said to be faithful 
to the discourse and practice of mathematics—mathematical discourse seems to 

1.  Major proponents of structuralism as an ontological view include Resnik (1981; 1997), Par-
sons (1990; 1995), and Shapiro (1997). I’ll briefly discuss other forms of structuralism in what fol-
lows.

2. S ee for instance Parsons (1990: 306–11), Resnik (1997: 91, 267), and Shapiro (1997: 5–6, 
78–80).



2  •  Marc Gasser

Ergo • vol. 2, no. 1 • 2015

refer to mathematical objects, and mathematicians only seem to care about the 
structural relations these objects bear to one another.3

I’m going to argue for two claims in this paper. The first is that there are 
serious difficulties with the structuralist ontology. In particular, I’ll argue that 
any precise articulation of such an ontology rests on a distinction between “es-
sential” and “nonessential” features of mathematical objects, and that there’s 
no satisfying way to spell out this distinction which is compatible with basic 
structuralist commitments. The second claim is that the insights motivating 
structuralism are either not worth preserving, or are such that they can be 
preserved without formulating the view in ontologically committal terms. My 
argument here will have two parts. First I’ll try to show that Benacerraf’s prob-
lem is, upon closer inspection, poor motivation for a structuralist ontology 
(and indeed for any kind of mathematical ontology). Then I’ll argue that the 
hermeneutic insights mentioned above can be preserved on an ontologically 
neutral version of structuralism that avoids the difficulties faced by its onto-
logically committal counterparts.

If this is correct, structuralism will emerge a more modest view than many of 
its current proponents suggest.

1. Structuralist Insights

Mathematical structuralism, as I’ll be discussing it in this paper, is a view con-
cerning the subject matter of mathematics. At first approximation, the view states 
that mathematics is the investigation of certain structures, and that mathematical 
objects can be characterized by the structural relations they bear to each other. A 
contrast is often drawn with commonplace physical entities: we might expect an 
analysis of some physical entity to reveal its composition, or molecular structure, 
or mass, but (on the structuralist view) it would be a mistake to expect a deeper 
analysis of numbers or sets to reveal anything important beyond the relations they 
bear to other numbers or sets.

This basic idea has been developed in two ways in the recent literature.4 The 
first approach, eliminative structuralism, is motivated by the thought that ob-

3. S ee for instance Parsons (2004: §2) and Shapiro (2008: 289, 300–301).
4.  The following distinction between eliminative and noneliminative structuralism follows Par-

sons (see for instance 1990; or 2004: 57–59). It corresponds roughly to Shapiro’s distinction between 
in re and ante rem structuralism (1997: 149–50), Hale’s distinction between pure-structuralism and 
abstract-structuralism (1996: 125), and Dummett’s distinction between hard-headed and mystical 
structuralism (1991: 295–96). There are subtle differences in each case, but they won’t matter for the 
purposes of this paper.
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jects with a purely structural nature are deeply problematic, and that they really 
shouldn’t count as objects at all. Eliminative structuralists seek to paraphrase state-
ments referring to mathematical objects into general statements about what holds 
in any collection of objects satisfying certain conditions.5 Such paraphrase saves 
the eliminative structuralist from referring to mathematical objects—and indeed 
from referring to any particular structure to which these objects might belong—
and thereby frees her from ontological commitments she deems problematic.

Noneliminative structuralism, by contrast, doesn’t shy away from an essen-
tially relational conception of mathematical objects. Ordinary mathematical state-
ments are taken at face-value, as statements with singular terms denoting objects 
like triangles, numbers, sets, and so on—it’s just that the nature of these objects is 
constituted by the structural relations they bear to one another, and nothing more. 
If these objects seem metaphysically queer, so be it.

My argument in what follows will only concern structuralism of the non
eliminative variety—the kind of structuralism which officially endorses a certain 
conception of mathematical objects. I’ll also focus my attention on comprehen-
sive structuralist views, that is, structuralist views applying to all mathematical 
objects. This is partly because most recent proponents of structuralism endorse 
it in its comprehensive form,6 and partly because more limited forms of structur-
alism are much less interesting. Indeed, it seems uncontroversial that in certain 
subfields mathematicians define objects purely for the sake of their structural fea-
tures (group theory being a paradigmatic example). But such definitions typically 
involve an appeal to set theory as a background theory. As I see it, structuralism 
gets its bite precisely by applying the view taken in such “algebraic” subfields to 
disciplines like set theory itself, where objects aren’t usually introduced by con-
struction from some further background theory.

From now on, then, I’ll use “structuralism” to denote noneliminative, compre-
hensive structuralism.

5. S o a statement like “5 + 2 = 7” might be read as elliptical for “in any N, 0, 1, +, × satisfying 
Peano’s axioms, 5 + 2 = 7,” or, on a more sophisticated eliminativist reading, for the conjunction stat-
ing that it is logically possible that there be a structure satisfying Peano’s axioms, and that “5 + 2 = 
7” holds in any possible structure of this type (where the interpretation of the terms in the equation 
depends on the structure). I believe the latest efforts in this direction are in Hellman (2005).

6.  This hasn’t always been the case. In Dedekind (1888), for instance, statements of arithmetic 
are characterized as implicitly general statements about all simply infinite systems satisfying certain 
structural conditions, but these systems are not further explained in structuralist terms. The Bourbaki 
group can also be seen as trying to develop a structuralist account of mathematics from within (non-
structuralist) set theory, and it has been suggested that category theory might play a similar role (cf. 
Bell 1981; 1986). For a more recent defense of a restricted form of structuralism, see Linnebo (2008).
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2. Why Be a Structuralist?

Structuralism is often motivated on philosophical grounds, as a response to the 
“multiple reductions” problem raised in Benacerraf (1965).7 The problem arises 
in the context of set theoretic developments (or “reductions”) of arithmetic: as is 
well-known, we can interpret arithmetic in set theoretic terms by identifying the 
natural number sequence with certain sets. But in fact many such interpretations 
are possible, and there seems to be no good reason to choose one over the other. 
One might, for instance, use von Neumann ordinals and identify the number 2 
with {∅, {∅}}, or use Zermelo numerals and identify the number 2 with {{∅}}. Bena-
cerraf argues that since numbers can’t be identified with particular sets, they aren’t 
sets at all. He further argues, along similar lines, that numbers aren’t objects: given 
any system of objects which might be identified with the natural number sequence, 
other systems exist that do the job equally well—for as Benacerraf observes, all 
that matters for the purposes of reduction is the preservation of the structural rela-
tions between members of the natural number sequence.

The structuralist response is to accept Benacerraf’s observation but deny his 
conclusion: it’s true that only the structural relations between natural numbers 
matter, and yet it’s a mistake to conclude that natural numbers aren’t objects.8 On 
the structuralist view, natural numbers are positions in an abstract structure (the 
structure of an ω-sequence) which various systems of objects might instantiate. 
Such positions are objects, even if their identity only really depends on the rela-
tions they bear to each other. The structuralist ontology is thus meant to provide a 
response to Benacerraf’s problem—or perhaps a dissolution of the problem, since 
on the structuralist view there’s really no problem to begin with.

Structuralism has also been motivated on hermeneutic grounds. Indeed, math-
ematical discourse is (on the face of it) about mathematical objects, and working 
mathematicians typically seem indifferent to questions concerning these objects’ 
nonstructural features: they rest content having described natural numbers as 
members of an ω-sequence; real numbers as members of a complete ordered field; 
or planes, points, and lines as members of a structure satisfying the basic axioms of 
geometry. In other words, the issue never arises whether natural numbers are really 
to be identified with von Neumann ordinals or Zermelo numerals, or whether real 
numbers are really to be identified with equivalence classes of Cauchy sequences or 
Dedekind cuts—what matters is only that some structure with the right properties 

7.  Benacerraf’s article has become something of a locus classicus for the problem, but as Par-
sons notes the existence of such reductions was already well-known to structuralists at the turn of 
the twentieth century (1990: 304). Though Benacerraf focuses on numbers, the difficulty is easily 
extended to any mathematical object

8.  This is not the response of eliminative structuralists, who do endorse Benacerraf’s conclusion 
(not always for the same reasons).
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has been shown to exist.9 The structuralist has a good explanation for this indif-
ference: questions concerning the nonstructural identity of mathematical objects 
are irrelevant because there is, at bottom, no nonstructural identity to be found.

3. Defining Structuralism

I’ve so far presented the structuralist view in rather informal terms, invoking vari-
ous slogans concerning “essentially relational” objects, whose natures or identities 
are given by the structural relations they bear to each other. But what exactly are 
these structural relations? In what sense do they “determine the nature” of math-
ematical objects, and is it really necessary to invoke any robust distinction between 
“essential” and “nonessential” features to articulate this kind of view?

The first of these questions is usually answered as follows. Suppose we have 
some system of objects related to each other in certain ways. A structure is what 
remains once we abstract away any features these objects might have outside their 
relations to each other. So for instance, we might abstract the structure of an ω-
sequence from the system of finite von Neumann ordinals 〈ω, ∅, SV(x) = x ∪ {x}〉, 
or from the system of Zermelo numerals 〈ω, ∅, SZ(x) = {x}〉, or from the system of 
even positive integers 〈2ℕ, 0, SE (n) = n + 2〉, or indeed from any system of objects 
with a distinguished first element closed under an inductive successor relation.10 
In this case, the resulting structure will just be a collection of positions related to 
each other by an abstract successor relation.11 Relations of this sort—that is, rela-
tions we find instantiated in various systems of some isomorphism-type—count 
as structural relations, and any feature definable from these relations counts as 
a structural property. So for instance “being odd” and “being positive” count as 
structural properties of the natural numbers, while properties like “being the num-
ber of fingers on my hand” or “being mind-independent” do not.

Now, one might well wonder what sorts of objects these abstracted structures 
are supposed to be. And as far as I can tell there’s no consensus on this point. 
Resnik only invokes structures as an analogy, stating that in arithmetic we treat 
numbers “as if they were positions in patterns” (1997: 250). Shapiro develops a 

  9. A  common way of putting this point is to say that mathematicians only care about things 
“up to isomorphism.”

10.  We need not specify here exactly how this abstraction procedure is meant to happen, for 
structuralists typically don’t claim that their theory holds any epistemological advantage over more 
classical forms of Platonism.

11. S tructuralists say structures are exemplified by or realized by or instantiated in various 
systems of objects. For instance, the successor relation belonging to the structure of an ω-sequence 
is exemplified by SV(x) in the finite von Neumann ordinals, and by SZ(x) in the Zermelo numerals. 
The number 0 is exemplified by ∅ in both of these systems, and by 0 in the system of even positive 
integers.
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full-blown, axiomatized ontology of structures, designed on the model of ante 
rem universals, while Parsons seeks to avoid such an axiomatic development by 
semantic ascent, that is, by introducing certain predicates and functors to talk of 
“structures” at a metalinguistic level, rather than introducing structures as new 
objects in our ontology.12 For my purposes it won’t matter which option is chosen, 
as long as structures are taken to exhibit the relations instantiated in any system of 
objects of some type, and these relations are taken to determine the nature of the 
structure’s objects. All the above structuralists should agree on this point.

But in what sense do these structural properties “determine the nature” of 
mathematical objects? One flatfooted response would be that they exhaust the 
properties one can meaningfully ascribe to mathematical objects.13 But as many 
structuralists have noted, this is clearly false—whatever one might wish to say 
about the applications of mathematics, assertions like “2 is the number of extant 
alligator species” or “67 is the number of moons of Jupiter” surely aren’t nonsense, 
even though the relevant properties aren’t structural. So a more subtle distinction 
between essential and nonessential properties of mathematical objects is necessary 
to spell out the structuralist view: it won’t do to claim mathematical objects only 
have structural properties, or that these are the only properties they could coher-
ently be said to possess.

In what other sense could an object’s structural features be essential, or nature-
determining? Structuralists have very little to say on this point. It’s sometimes 
claimed that mathematical objects are fundamentally incomplete—that they “have 
no more of a ‘nature’ than is given by the basic relations of a structure to which 
they belong” (Parsons 2004: 57), or that “the essence of a natural number,” for 
instance, “is its relations to other natural numbers” (Shapiro 1997: 72, emphasis 
in the original), or that “every property that 2 enjoys comes in virtue of its being 
[the second] place in the natural number structure [. . .] because that is what 2 is” 
(Shapiro 2006: 121). But this isn’t much help, because it’s never made clear how 
we’re meant to understand the talk of “natures” and “essences” in such slogans.

12. S o for instance where Shapiro seeks to introduce an ω-sequence structure meeting certain 
formal requirements, Parsons will merely describe the ways we use a predicate “N” and some func-
tors like “+” or “×” (assuming here that “0” and “S” are defined in terms of these functors). The idea 
behind Parsons’ approach is that we can describe the way such functors and predicates operate at an 
informal metalinguistic level, without introducing any of the entities to which they might refer. (The 
aim here is to avoid an axiomatic system in which structures are essentially treated like sets, and so 
seem like they should themselves be subject to further structuralist treatment, making the view rather 
circular.) Shapiro’s ontology is developed in (1997: 90–97). Parsons raises some difficulties for Shap-
iro’s approach and defends semantic ascent in (2004: 64–66) and (2008: 111–14).

13.  This line is suggested by some remarks of Parsons (“there is only a certain specific range of 
predicates such that there is a fact of the matter as to whether they are true of the object in question”) 
(1990: 334) and Shapiro (“The number 2, for example, is no more and no less than the second posi-
tion in the natural-number structure; 6 is the sixth position”) (1997: 72). But in fact both authors 
reject such a flatfooted response (cf. Parsons 2004: 57; Shapiro 2008: 286).
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Most prominent structuralists have been reluctant to advance any positive 
view concerning essences, and their reluctance makes structuralism a somewhat 
elusive target. Critics will deny that mathematical objects are “essentially” or “fun-
damentally” relational by assuming some interpretation of essentialist talk and 
presenting examples of nonstructural properties that count as “essential” on this 
interpretation (see for instance Hellman 2001: 192–94; or Linnebo 2008), and 
structuralists then respond by denying some of their critics’ assumptions about es-
sences (cf. Parsons 2004: 72–74; and Shapiro 2008: 303–04).

I won’t be dwelling too much on these past criticisms. As I see it, they all fail to 
touch the strongest formulation of the structuralist view, which I’ll be presenting 
below. But it will be worthwhile to review them before moving on, if only to re-
mind ourselves why common interpretations of essentialist talk don’t sit well with 
structuralism’s basic commitments.

3.1. The Counterfactual Path

One might think structuralist claims about essences can be explained in counter-
factual terms, for instance by saying that an object’s essential properties are those it 
has in all possible worlds.14 The structuralist view would then be that all and only 
the structural properties of mathematical objects are constant across all possible 
worlds. For instance, 2 is the successor of 1 (and 1 + 1, and positive, and so on) in 
every world, but there are worlds where it fails to be the number of extant alligator 
species. So far so good.

But this approach is too permissive for the structuralist’s purposes. For as many 
critics of structuralism were quick to note, there’s no world in which mathematical 
objects fail to be abstract, though “being abstract” is not a structural property.15 
Even with basic counting applications of the natural numbers, the case may not be 
as clear as it seems: 2 might indeed fail to count extant alligator species in some 
world, but it will always bear certain nonstructural relations to other mathemati-
cal objects—for instance 2 has, at every world, the property of being the number 
of objects in {ω, ω + 1}. But this property, necessary though it is, isn’t definable 
using the successor relation alone, and therefore shouldn’t count as essential on a 
structuralist account of the natural numbers.

Now structuralists may well insist that properties like abstractness, while not 
structural stricto sensu, nonetheless follow from the structural character of math-

14.  Or in all possible worlds in which it exists—I take it these amount to the same thing in the 
case of mathematical objects.

15. S ee for instance Linnebo (2008: 65). As Shapiro notes, even if one denies that mathematical 
objects are necessarily abstract, it seems right to say that they need not have a concrete instantiation, 
and if this is indeed right the (nonstructural) property “being possibly abstract” would serve as a 
counterexample (2006: 120).
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ematical objects in some straightforward way (and likewise for properties stem-
ming from the counting applications of numbers). That is, maybe abstractness is 
a feature mathematical objects possess in virtue of their structural natures, and 
one which should qualify as “essential” on that account, even if it isn’t definable 
in structural terms.16 But this is just to say that structural properties are “basic” or 
“fundamental” in some other, non-counterfactual sense, and leads us back to our 
initial problem: how exactly are structural properties fundamental, and properties 
like abstractness derivative? If we want to claim that an object’s abstractness “fol-
lows” from its structural properties, we should have some story to tell about the 
sense in which certain attributes of mathematical objects might “follow from” or 
hold “in virtue of” other, more basic ones.

3.2. The Fundamentalist Path

Or should we? Maybe the right move is to not seek an account for our talk of 
essences or priority, and simply take these notions as primitives. The structural-
ist view could then be stated in a number of ways—one might say numbers, sets, 
and so on are all the objects they are in virtue of their structural properties, or one 
might say that structural properties ground, or are fundamental to, or explain (in a 
metaphysical sense) their identity, where these formulations would all be taken to 
express a primitive notion of essence.17

But this response leaves structuralism open to another well-known line of criti-
cism. For if the fundamental identity of individual mathematical objects is given 
by their structural relations, it’s very natural to think that these structural relations 
would also be sufficient to distinguish mathematical objects from each other. It’s 
natural to think this because a complete account of some individual’s fundamental 
identity is supposed to tell us what it is to be that individual, that is, to answer 
a Socratic “What is X?” question.18 And if the answer to the Socratic questions 
“What is X?” and “What is Y?” is the same, then X and Y can plausibly be taken to 
be the same thing. To take a simple example, if the fundamental identity of physi-
cal objects is given by certain arrangements of particles, then it seems plausible 
that objects constituted by the exact same particles arranged in exactly the same 

16. S hapiro says something along these lines (2006: 121).
17.  It’s beyond the scope of this paper to examine notions of grounding or essence in any sort of 

detail. I have in mind here a notion similar to the one defended in Fine (1994; 2001). In what follows 
I’ll use its various formulations interchangeably—for my purposes, all that matters is that we agree 
that an object’s essence (or the features which ground, or are fundamental to, or explain its identity) 
is what makes it the object it is. I take it this is part of the standard understanding of metaphysical 
essence.

18.  For the connection between grounding notions and Socratic questions of this sort, see Rosen 
(2010: 122).
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manner are the same. So in the mathematical case we’d also expect that all objects 
sharing the same essential features be identical.19

But as Burgess and Keränen pointed out, structural relations are insufficient 
to distinguish conjugate elements of nonrigid structures.20 The complex numbers 
i and −i, for instance, share all their relations in ℂ, as do 1 and −1 in the additive 
group (ℤ, +) and any two points in the Euclidean plane. Thus they will share all 
their relations in the abstracted structures of which these are instances. But then 
it’s not clear how structuralists distinguish i from −i if these objects share all their 
structural features, and these features are the only ones grounding their identity.

This isn’t a knock-down objection, since structuralists can deny the natural 
thought I voiced above, which links the essence of mathematical objects to the 
identity conditions for these objects. For instance, one might argue that the dis-
tinctness of mathematical objects isn’t really based on anything, and that it, too, 
should be taken as an unanalyzed primitive rather than subject to metaphysical 
treatment. Or one might simply give up on some of structuralism’s explanatory 
burdens: if one doesn’t expect an ontology of mathematics to explain facts about 
individuation, then the Burgess-Keränen objection will, of course, sound hollow.21

19.  I’m only claiming here that we’d expect this without any further discussion of essences. In 
what follows I’ll be considering the response that this natural thought must simply be false in the 
mathematical case (and perhaps also in the case of physical objects).

20. S tructures are nonrigid if they have nontrivial automorphisms. By conjugate elements I 
mean the elements exchanged by some nontrivial automorphism. The objection was initially voiced 
in Burgess (1999: 287–88), and developed in detail in Keränen (2001). See also Keränen (2006).

21.  You might think a less radical response is possible, for rejecting the natural thought only 
requires that distinct mathematical objects have some non-essential property that would allow us to 
distinguish them. For instance, there is an irreflexive relation holding between i and −i in ℂ, namely 
the relation “x is a nonzero additive inverse of y,” and if we think the existence of such an irreflexive 
relation is sufficient to establish nonidentity, we will be in a position to distinguish all the problematic 
pairs of conjugates mentioned above (this is the suggestion advanced in Ladyman 2005). But in fact 
this more subtle response doesn’t generalize: in the following three directed graphs, for instance, the 
a and b nodes share all their properties:

In the first case, a and b are pointed to by everything, in the second they’re both pointed to only by 
c, and in the third they’re pointed to by nothing at all. In all these cases they should count as distinct 
nodes of the graph, yet in none do we have any irreflexive relation (outside nonidentity, of course) 
which would serve to distinguish the two (similar graphs are invoked in Keränen 2001: 321; Button 



10  •  Marc Gasser

Ergo • vol. 2, no. 1 • 2015

I won’t dwell on the particular merits of these responses—my point here is only 
that the structuralist has to reject the natural thought I presented above, and that 
this runs against our basic intuitions concerning a primitive notion of essence. So 
it won’t do to appeal to some intuitive notion of essence, or to invoke the notion 
of essence which is often used in metaphysical accounts of other, nonmathemati-
cal domains, and leave things at that. Structuralists have to say more about their 
interpretation of essentialist talk.

I see two options. The structuralist can simply dig her heels: if some math-
ematical cases don’t sit well with our broader conception of essence, then maybe 
that conception needs to be revised, or maybe a different notion of essence is at 
play in the mathematical cases. This was, after all, supposed to be a primitive no-
tion of essence, so why not stipulate that mathematical essences are quite different 
from those that show up in other domains? Yet without any positive account of 
mathematical essences, this sort of stipulation seems purely ad hoc. It’s not clear 
how one could argue against it, except to point out that the structuralist’s primi-
tive notion of essence should earn its keep, and that so far it hasn’t been motivated 
except as a response to the sort of objection voiced in this section.22

The better answer, I think, is to claim that the structuralist’s notion of essence 
explains certain key features of mathematical practice, and that its use is war-
ranted by its explanatory fruitfulness. But on such a view our interpretation of 
essentialist talk would be determined by the practice and discourse of working 
mathematicians. And if that’s the case it’s hard to see what would be gained by 
taking the notion of essence as a metaphysical primitive rather than formulating 
structuralism as more of an empirically-grounded hypothesis.

In fact, thinking of structuralism this way quickly leads to what I take to be 

2006: 218; Ketland 2006: 309; and Leitgeb and Ladyman 2008: 391–92). The moral is that we can’t 
dismiss the Burgess-Keränen objection by claiming that it rests on an overly strong version of the 
Identity of Indiscernibles. So the more radical response I’ve presented above (identity facts are not 
grounded in anything, or at least not explained by the ontology of mathematics) is necessary. (This 
more radical response is presented in Ketland 2006, and Leitgeb and Ladyman 2008, though the idea 
behind it was already in Parsons 2004: 75, where it’s attributed to Linnebo. Shapiro endorses it in 
2008: 287–89.)

22.  One might object that there has been an attempt to motivate a very thin, non-individuating 
notion of mathematical essence—for it has been pointed out that a similarly thin notion of essence 
is sometimes thought to apply to physical objects (cf. for instance Ladyman 2005; Leitgeb and Lady-
man 2008: 395–96). But in fact it’s a contentious question whether or not physical entities should 
count as objects when they can’t be individuated on the basis of some irreflexive relation (and recall 
that in the mathematical case, distinct objects need not satisfy any irreflexive relation, as noted in 
fn.21). So it’s not as though the structuralist’s notion of essence can be motivated on the basis of some 
well-accepted claims about physical objects. In fact, the argument advanced by Leitgeb and Lady-
man goes the other way around: claims about the individuation of physical entities are motivated by 
claims about the distinctness of structural mathematical objects, and these latter claims are supposed 
to be motivated by mathematical practice (2008: 391–92). This is precisely the “better answer” I’ll 
be investigating section 3.3.
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the strongest formulation of the view, which I’ll be presenting more fully in this 
next section.

3.3. The Path Less Metaphysical

I’ve argued so far that structuralists are committed to some distinction between 
essential and nonessential properties of mathematical objects, and that two com-
mon ways of interpreting this distinction leave them open to familiar lines of criti-
cism. A common response to the criticism I discussed rests on a primitive notion of 
mathematical essence, but the strongest motivation for introducing such a primi-
tive stems from its ability to explain key features of mathematical practice. If this is 
right, then it seems preferable to draw the distinction between essential and nones-
sential properties on the basis of mathematical practice alone, rather than arguing 
about competing intuitions concerning metaphysical essences.

To my knowledge this deflationary option hasn’t been explicitly advocated 
by any prominent structuralist,23 but it seems to me the best way to defend the 
structuralist view. Recall that one source of motivation for structuralism is that it 
captures a certain indifference exhibited by working mathematicians—so confor-
mity with mathematical practice is taken as a desideratum from the start. More-
over, structuralists often portray themselves as defending a sober, clear-headed un-
derstanding of mathematical discourse against dubious metaphysical criticism. I 
take it this would go hand-in-hand with a similar understanding of mathematical 
essences, as stemming from nothing more than the role certain features of math-
ematical objects play in the practice of working mathematicians.

One might argue, then, that structural properties are essential merely in the 
sense that they’re the ones mathematicians care about in their work. So nonstruc-
tural properties like “being abstract” or “being the atomic number of boron” 
would be inessential merely because they don’t reflect any mathematically signifi-
cant fact. Aside from clarifying the structuralist view, such a deflationary approach 
might serve to manage expectations concerning discernibility. For if mathematical 
objects have structural “essences” only in the sense that their structural properties 
are those mathematicians care about, it isn’t clear we should expect any identity 
conditions to follow from their essential properties. One might think, for instance, 
that identity conditions are simply presupposed by mathematical practice, and 
that it would therefore be a mistake to expect them to follow from the properties 
mathematicians focus on in their work.24

One final advantage: the deflationary approach makes structuralism some-
thing of an empirical thesis. If mathematicians really only care about the structural 

23.  Though see below for some suggestive remarks Parsons makes in this direction (cf. also 
Resnik 1997: 268–70).

24. A s does Shapiro (2008: 293).
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properties of the objects they study, then such is the nature of these objects—no 
metaphysics or Leibnizian insight necessary. And if things turn out otherwise, so 
much the worse for structuralism.

In what follows I’m going to argue that things do in fact turn out otherwise. 
But a bit of clarification is needed beforehand. The hypothesis under consider-
ation is that structural properties are essential because they’re mathematically 
significant. Clearly, how plausible this is will depend on what we mean by “math-
ematically significant.” Consider for instance basic arithmetic. It’s true, of course, 
that arithmetic can be studied with complete disregard for any of its applications 
in counting objects, and that in this sense nonstructural properties like “being the 
number of moons of Jupiter” are dispensable from arithmetic. But that doesn’t 
mean that such applications are completely insignificant. For one thing, they 
might be thought to motivate the axioms of arithmetic, at least if one thinks that 
these axioms are partly assessed based on their deductive consequences, and that 
part of the consequences we wish them to have stem from the use of numbers in 
counting. In any case, it’s hard to imagine not using natural numbers to count 
things—even once we’ve agreed on our axioms and engage in pure mathemat-
ics, we’ll want to talk about an equation having three solutions, or a function 
taking on some value five times, or a number having seven factors. In all such 
cases we rely on numbers regarded as cardinal numbers, not just as positions in 
an ω-sequence.25

Now, structuralists might reply that these applications are all well and good, 
and that cardinal numbers may indeed play some mathematical role, yet insist that 
they remain insignificant from a foundational perspective—that is, that their car-
dinal use doesn’t reflect any feature one would have to preserve when developing 
arithmetic. Parsons seems to endorse a position similar to this one in the following 
passage:

[The] structuralist understanding of arithmetic belongs to sophisticated 
mathematics; it is not part of the layman’s understanding of arithmetic or 
even the mathematician’s before a certain amount of foundational reflec-
tion has been undertaken. (2008: 77)

So a more careful version of our hypothesis might be that structural properties are 
those which play a significant role in sophisticated, foundationally-informed math-
ematics. This would rule out not only properties like “being the number of moons 
of Jupiter” or “being the atomic number of boron,” which play no mathematical 
role whatsoever, but also any nonstructural feature playing a dispensable role from 

25.  This is a point Dummett forcefully presses against structuralists (1991: 52–54).
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foundationally-informed mathematics. Numbers might help us count factors and 
equations, for instance, but no mathematician’s research would really be doomed 
if their use as cardinals had to be given up. By contrast, any mathematician invok-
ing “natural numbers” in her research which fail to instantiate the structure of an 
ω-sequence would fare rather poorly—for she would be mistaken about a key fea-
ture (the key feature, structuralists insist) that any proper foundational treatment 
of arithmetic must aim to secure. And it’s in this sense that structural properties are 
mathematically significant, while counting applications are not.26

Yet even if we restrict ourselves to the practice of mathematics informed by 
foundational considerations—to sophisticated mathematics—it doesn’t seem to be 
the case that mathematicians always disregard nonstructural properties. I’ll now 
turn to two cases where nonstructural properties of mathematical objects seem to 
have played a significant foundational role.27

3.3.1. Weyl

During the course of the nineteenth century it was discovered that problems about 
elliptic functions could be approached by defining these functions on Riemann sur-
faces, rather than the standard complex plane.28 The elliptic functions in question 
are the same on either definition, and picking one or the other wouldn’t make any 
difference to what we can prove about them. Thus from a structuralist point of view, 
it’s an idle matter which definition you pick—the choice just amounts to different 
ways of looking at the same structural relations, as embedded in different systems.

Still, Riemann surfaces are widely considered to be the “right setting” for the 
investigation of such functions. A natural thought here is that these surfaces are 
the “right setting” because of their heuristic value, or simply because they provide 
a more convenient setting to study certain functions (which is what Shapiro 1997: 

26.  Understanding mathematical significance this way might serve to defend the deflationary 
structuralist against the sort of criticism raised by Weaver (1998), who points out that mathemati-
cians are often interested in non-structural properties of certain “concrete” representations of iso-
morphic abstract systems. For one might agree that these properties are interesting and useful heuris-
tics, but deny that mathematicians ever thought they played an interesting foundational role.

27.  My aim in bringing up these cases isn’t just to argue by counterexample: I think they illus-
trate a relatively widespread concern for nonstructural features of mathematical objects, though this 
concern is often obscured by the difficulties involved in describing the nonstructural features which 
matter to mathematics, and explaining how they might matter. I’ll be arguing below (in section 4.2) 
that this kind of concern is compatible with the indifference working mathematicians often display 
towards the nonstructural features of the objects they study. For now my aim is only to cast some 
doubt on the idea that the distinction between essential, structural features and their inessential, non-
structural counterparts is simply something afforded by mathematical practice.

28. R iemann surfaces can be seen as a generalization of the complex plane. For more on this 
historical development, see Wilson (1992: 150–51).
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81 suggests), or that they only matter in the context of unsophisticated, founda-
tionally uninformed mathematics. But this is clearly not how Weyl saw the matter:

Every now and then one still hears the opinion that the Riemann surface 
is nothing more than a “metaphor,” nothing more than a tool employed to 
visualize and illustrate the ambiguity of functions (a very useful and sug-
gestive tool, it is usually conceded).29 But this is getting things completely 
wrong. The Riemann surface is an indispensable, objective component of 
the theory [of analytic functions]—it serves, in fact, as the foundation for 
the theory. Moreover, it is not something we might somehow extract from 
the analytic functions a posteriori; it must be regarded from the start as 
the native soil in which the functions can grow and thrive. (1913: vi–vii, 
emphasis in the original, translation mine)

Weyl’s remarks seem to me to provide some evidence against our empirical hy-
pothesis. Elliptical functions have exactly the same structural properties when em-
bedded in Riemann surfaces as they do when embedded in the complex plane, 
but presenting them on a Riemann surface isn’t just some insignificant matter—if 
we’re to believe Weyl, the embedding is of central foundational importance.

Now, one might object that Weyl’s remarks shouldn’t be taken too seriously. 
Perhaps Weyl was simply mistaken about the role played by Riemann surfaces, or 
perhaps he was overstating their significance. But I don’t think this response is open 
to our deflationary structuralist—one can’t claim to be defending a sober reading 
of mathematical practice and ignore cases where the practice doesn’t conform with 
one’s hypothesis. At the very least the deflationary structuralist owes us an account 
about the parts of mathematical practice she takes to be significant, and why it might 
be safe to ignore Weyl’s foundationally-informed treatment of Riemann surfaces, 
where nonstructural properties do seem to play an indispensable role.

One possible argument in this direction would be that Weyl was concerned 
with the “conceptual” foundations of complex analysis, in the tradition of Rie-
mann and Poincaré, rather than its logical foundations—that is, that Weyl was 
concerned with providing a setting in which the behavior of certain functions 
might be understood and fruitfully studied, rather than simply trying to establish 
their existence and secure the truth of theorems about them. This may be the case, 
but one would still want to know why logical foundations are the ones relevant 
to the essence of mathematical objects.30 Anyway I now turn to a case where non-
structural properties do seem to have played a significant justificatory role.

29.  The ambiguity in question stems from the formulas describing ellipticals, which suggest 
ambiguous, one-to-many “functions.”

30.  The view that “fruitfulness” and “understanding” are purely subjective or psychological 
notions which only matter in the “context of discovery” doesn’t seem generally compelling—at least 
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3.3.2. Gödel

Set theory is usually introduced by talking about the iterative conception of sets. 
On the iterative conception, sets are formed in progressive stages, as totalities 
“built up” from elements introduced at an earlier stage. This account is usually 
presented informally and used to motivate the axioms of ZFC, at least in the 
sense that it offers an intuitive picture of the universe of sets V that these axioms 
are meant to describe, and maybe gives us some reason to think this universe is 
coherent.

Now note that there is more to the sets suggested by the iterative conception 
than to the sets construed by a structuralist. For instance, the notion that sets are 
“built up” from certain elements suggests a form of dependence absent from a 
purely structuralist point of view—on the iterative conception, a set’s elements 
must somehow “already be there” for the set to be formed, while the structural-
ist view says nothing at all about the dependence of sets on their elements.31 So a 
committed structuralist should resist the idea that the dependence in question is at 
all essential to a foundationally-informed conception of set.32 And this is indeed 
the view taken by Parsons, who thinks that the iterative conception is just “part 
of an explanation by analogies, and not necessarily part of the literal truth about 
sets” (1995: 79).

But I think there’s good evidence that the iterative conception is not only used 
as an analogy, or at least that it wasn’t always used as such. Gödel, for instance, 
invokes it to motivate axioms which, he claims, “only unfold the content of the 
concept of set” (1964: 261). The following passage nicely illustrates his view:

[T]he axioms of set theory by no means form a system closed in itself, but, 
quite on the contrary, the very concept of set [i.e. the iterative conception 
of the universe of sets] on which they are based suggests their extension 

not as these terms are used in mathematical practice. For an illuminating discussion of these notions, 
see Tappenden (2005; 2012).

31. A  similar point is made in Linnebo (2008: 72). It’s been argued by Incurvati (2012) that 
this notion of dependence isn’t a necessary component of the iterative conception. I won’t dispute 
this—for my purposes it will be enough that some notion of dependence mattered to Gödel’s take on 
the iterative conception. And though Incurvati denies it, I think there is good evidence it did. For in-
stance, Gödel remarks that the iterated powerset operation “is to be understood so as to include also 
transfinite iteration, the totality of sets obtained by finite iteration forming again a set and a basis for 
a further application of the operation” (1964: 259n13, emphasis mine). Gödel may not have had any 
robust notion of dependence in mind here, but this is nonetheless more than a structuralist can allow.

32. S tructuralists might agree that the identity of sets is determined by the membership relation 
they bear to each other, but on their view this membership relation is itself only given formally, by de-
scribing which objects it relates to which. The resulting kind of membership relation is very thin, and 
wouldn’t account for the kind of dependence suggested by the iterative picture (even if one doesn’t 
understand it in metaphysical terms).
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by new axioms which assert the existence of still further iterations of the 
operation “set of.” (1964: 260)

So for Gödel, ZFC doesn’t exhaust the conception of the universe of sets pro-
vided by the iterative account, and the conception itself suggests axioms which 
would complement ZFC in a natural manner. And it seems that he viewed the kind 
of justification provided by such an account as especially robust, referring as he 
does to the “intrinsic necessity” of the resulting axioms (1964: 261). Whatever one 
makes of Gödel’s intrinsic necessity, it seems clear that the iterative conception is 
not merely being used as an analogy or heuristic device—the conception actually 
describes the universe of sets, and provides a richer conception of it than what’s 
codified in ZFC.

But on the structuralist view of sets, it’s not clear what this richer conception 
could possibly tell us. For a structuralist, sets are essentially just positions in the 
structure of the set-theoretic universe—that is, as Parsons puts it, positions in the 
structure common to any “domain of ‘objects’ related in a relation called ‘member-
ship’ satisfying conditions that can then be stated in the language of set theory,” for 
instance the conditions stated by the ZFC axioms (1995: 75).33 So, on the reading 
of “essentially just” under consideration, all the foundationally-relevant information 
concerning sets should be exhausted by describing their role in this structure. What 
then are we to make of a conception of the universe of sets richer than the one af-
forded by ZFC? For a structuralist this conception shouldn’t play any serious math-
ematical role, but this is clearly at odds with the use to which Gödel puts it.

This is another case, then, where mathematical practice doesn’t seem to conform 
with the structuralist hypothesis. For Gödel invokes the iterative conception for jus-
tificatory purposes in a foundational context, and this conception goes beyond a 
purely structural characterization of sets. Here too, one might deny that Gödel truly 
isolated any essential features of sets, or one might deny that his remarks should 
be taken too seriously, or deny that he was really speaking from a “sophisticated” 
foundational standpoint. But without further argument about what qualifies as a 
sophisticated foundational standpoint, I take it this is just to give up on a deflation-
ary interpretation of essentialist talk, which seeks to identify essential mathematical 
features as those which matter to the practice of mathematics.34

33.  There’s an additional difficulty here, since we have no second-order categorical character-
ization of ZFC at our disposal on par with the second-order Peano axioms for arithmetic, and so it 
may not be clear what the structure in question might be. Presumably the structuralist will invoke 
second-order ZFC, and invoke the quasi-categoricity of ZFC models, that is, the fact that for any two 
models of ZFC, either these models are isomorphic or one is isomorphic to an initial segment of the 
other. See Martin (2001) for an argument that quasi-categoricity of this sort is sufficient to rule out 
any damaging indeterminacy about the set theoretic universe.

34.  In fact I think Gödel’s case suggests a broader worry than this. For it’s well known that 
ZFC is unable to settle a range of questions concerning sets (the most famous example being the 
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4. Saving Structuralism

I’ve argued so far that there are serious difficulties involved in spelling out the 
structuralist position. It’s crucial to this position that structural properties be sin-
gled out as the ones essential to mathematical objects, but there’s no good way to 
articulate an adequate notion of essence, refusing to articulate it won’t do, and 
more modest solutions aren’t as well supported by mathematical practice as its 
proponents seem to assume.

But if the structuralist ontology is so problematic, how are we to respond to 
Benacerraf’s problem? And what are we to make of the indifference mathemati-
cians typically display towards questions concerning the nonstructural identity of 
the objects they study? In what follows I’m going argue that Benacerraf’s problem 
was in fact rather poor motivation for a structuralist ontology. Then I’m going to 
sketch a form of structuralism which might do justice to the indifference in ques-
tion without incurring the difficulties surveyed thus far.35

4.1. Benacerraf Revisited

Recall the structuralist’s dissolution of Benacerraf’s problem: it’s true that there’s noth-
ing more to mathematical objects than the structural relations they bear to each other. 
But they should count as objects nonetheless, for positions in abstract structures are 
objects. So the fact that numbers can’t be identified with any particular system of ob-
jects ordered in a successor-like fashion is no problem at all: they can be identified with 
a position in the abstract structure exemplified by all these systems of objects.

One might object to this response by pressing the Benacerrafian thought one 
step further. For given any structure which preserves the abstract form of a system 
of objects related to each other by a successor-like relation, other structures will 
exist which can do the job equally well. Hellman puts the point nicely:

continuum hypothesis), and it’s a much-debated question which axioms one should add in order 
to supply this deficiency. It isn’t clear what a structuralist would have to say about such debates. If 
there’s nothing more to sets (or nothing more of foundational relevance) apart from the properties 
they possess in virtue of being the sorts of objects that satisfy the constraints of ZFC, what consider-
ations could a principled argument for new set-theoretic axioms beyond ZFC possibly invoke? The 
structuralist position makes it hard to see how one might rationally decide on any new structure, 
given that the nature of sets is meant to be exhausted by describing the old. Burgess seems to share 
this concern (2009: 25).

35.  This sketch will follow a suggestion mentioned in Burgess (2009: 20–21). I won’t engage 
here with other alternatives to the structuralist ontology, like the sort of eliminative structuralism I 
set aside at the beginning of this paper. This is because I’ve been convinced by the main line of criti-
cism voiced against such alternatives, which is (roughly) that they require substantial metaphysical 
assumptions, that these assumptions get more substantial the more mathematics one attempts to re-
cover, and that this casts some doubt on the gains achieved by avoiding reference to purely structural 
objects. A precise expression of this criticism can be found in Parsons (2008: ch. 3).
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[I]f we suppose, for the sake of argument, that an ante rem progression, 
〈N, ϕ, 1〉 [i.e. the structure of an ω-sequence] is somehow attained, we im-
mediately see that indefinitely many others, explicitly definable in terms of 
this one, qualify equally well as candidates to serve as the referents of our 
numerals. We need only permute, say, a finite number of elements of N, for 
example, the first two items, defining ϕ∗ from ϕ in the obvious way. (2001: 
195)

As Hellman notes, the resulting structure will work just as well as the first (after all, it 
will itself be the structure of an ω-sequence). So, one might press on, which structure 
is it in which we find the number 2? There seems to be no particular structure whose 
position we can point to, which leads us back to the initial difficulty.

The structuralist response at this point is somewhat mad: the two structures 
in question are the same.36 In other words, there is no question of identifying a 
position in one particular structure rather than any of its isomorphic counterparts, 
for there really are no isomorphic counterparts to begin with—only one structure 
has the form of an ω-sequence. Now, it’s worth noting that the structures in ques-
tion are certainly not identical if we regard them as mathematical objects—that 
is, permuting the first two items in a mathematical ω-sequence would yield two 
distinct sequences, just as Hellman points out in his objection. So the claim that 
isomorphic structures are identical is not something which follows from our usual 
understanding of structures, but rather from a stipulation of identity conditions 
proper to the structuralist view.

But if we’re prepared to make stipulations like these there’s a much quicker 
solution to Benacerraf’s problem. For if we aren’t troubled by the thought that 
isomorphic structures are identical, it’s hard to see what would be troubling about 
the fact that 2 = {∅, {∅}} under some set-theoretic interpretation of the natural 
numbers, while 2 = {{∅}} under another. After all, one could simply stipulate that 
both of these interpretations are identical, and furthermore that any interpreta-
tion of the natural numbers as an ω-sequence of sets is one and the same. On this 
rival stipulation two interpretations would be the same even when the specific ω-
sequences of sets assigned to numbers are not, much as, on the structuralist sugges-
tion, two structures are the same even though their specific positions may not be.

36. S hapiro, for instance, claims we should simply “stipulate that two structures are identical if 
they are isomorphic” (1997: 93), and Resnik suggests a similar line, though he’s generally reluctant 
to speak of identity relations between structures (1997: 209–11). Parsons (to his credit, I think) does 
not suggest structuralism as a response to Benacerrafian worries of this sort. Shapiro seems to have 
backed off from his stipulation in later writings—for instance, in Shapiro (2006: 143) he claims 
that he “cannot rule out the hypothesis that there is more than one ante rem structure isomorphic 
to the natural numbers.” If this is right, however, structuralism simply hasn’t answered Benacerraf’s 
challenge, since it hasn’t told us which of these structures contains the positions our numerals are 
supposed to denote.
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Now, it’s surely odd to claim that such interpretations are identical, given that 
they assign different sets to each natural number. But I submit that this is no more 
odd than stipulating that isomorphic structures are identical: in both cases, the 
demand for some specific system of objects to associate with the natural numbers 
is dismissed by deciding that, at some level, isomorphism is identity—in the struc-
turalist case we stipulate that structures are identical when isomorphic, while on 
the view I’m presenting here we stipulate that interpretations are identical when 
they invoke isomorphic systems of sets. Benacerraf’s problem stems from the ex-
istence of multiple interpretations of the natural numbers, with no principled way 
to choose between them. But if the structuralist is prepared to stipulate identity 
conditions to escape this problem at the level of structures, I don’t see why she 
wouldn’t introduce such conditions from the start, for the very interpretations 
which are supposed to motivate the structuralist ontology.37

In fact there’s a more sensible response to Benacerraf’s worry than this. For the 
existence of multiple interpretations of various mathematical domains to set the-
ory only becomes a problem if one takes these interpretations to reveal something 
important about the nature of the objects in that domain. But it’s not clear why we 
should think this, nor did mathematicians ever take themselves to be producing a 
final mathematical ontology by identifying numbers or groups with various sets. 
So it’s hard to see why one would be warranted in drawing any ontological conclu-
sion on the basis of set theoretic interpretations of some mathematical domain—
whether the conclusion be that there are no mathematical objects, or that the 
nature of these objects is structural.

In what follows I’ll be spelling out what I think these equivalent interpretations do 
reveal, if we deny them any special ontological significance. My point for now is that 
even if one does feel the pull of Benacerraf’s problem, the structuralist ontology only 
provides an answer to it by stipulating that, for structures, isomorphism is identity. 
And if one is prepared to accept mad stipulations of this sort, Benacerraf’s problem 
can be dissolved without invoking any kind of mathematical ontology—simply stipu-
lating the right identity conditions on interpretations would suffice. If this is right, the 
philosophical benefits of structuralism identified at the start of this paper are illusory.

4.2. Structuralism Without Ontology

Yet even once we set aside the Benacerrafian motivation for structuralism, it might 
seem that the view provides a good explanation for certain key features of mathe-

37.  How is the solution any different? The structuralist escapes the problem because the ques-
tion “in which structure do we really find the number 2?” turns out to be misguided (by fiat, there 
is only one structure with the right form). On the alternative stipulation, we escape the problem 
because the question “on which interpretation do we really find the number 2?” is misguided (by fiat, 
there is only one interpretation with the right form).



20  •  Marc Gasser

Ergo • vol. 2, no. 1 • 2015

matical practice. For mathematicians are, by and large, indifferent to nonstructural 
features of the objects they study, and the structuralist claim that mathematical 
objects are fundamentally structural entities seems to provide a good explanation 
for their indifference.

I think this insight is worth preserving, but I also think it can be preserved 
without making any problematic ontological claims. Here’s what I want to sug-
gest: questions concerning the nonstructural features of mathematical objects are 
typically dismissed, and often sound misguided, because their resolution rests on 
considerations too vague or too contentious to be accepted as part of ordinary 
mathematics. This doesn’t reflect any deep fact about the nature of mathemati-
cal objects—at best it reflects facts about the scope and ambitions of ordinary 
mathematics, and perhaps about the manner in which various intellectual tasks 
are divided among mathematicians. Structural features are significant not because 
they constitute the nature of mathematical objects, but because they characterize 
objects in a manner acceptable to mathematicians working with potentially differ-
ent conceptions of their nature.

Before spelling out the view a bit further, I want to clarify a few points. For you 
might wonder what counts as “ordinary” mathematics here, and how the “con-
tentiousness” at stake differs from the contentiousness of mathematical questions 
ordinary mathematicians do care about resolving.

By “ordinary” mathematics, I mean the kind of research most mathematicians 
engage in every day—research that primarily involves proving theorems about math-
ematical objects of some kind or another from an accepted background theory (ZFC 
being the current standard).38 This is to be distinguished from the kind of founda-
tional mathematics which focuses on the background theory itself, and in particular 
with its adequacy as a background theory.39 One key feature of ordinary math-
ematics is the universality of its results: a mathematician who proves some theo-
rem proves it for everyone, and establishes it once and for all. There may be some 
disagreement about which theorems are worthwhile or interesting, but the theorems 
themselves are not up for debate. Of course foundational arguments often invoke the 
theorems we can derive from a suggested set of axioms, and their status as theorems 
is no more up for grabs than it is in ordinary mathematics. In the foundational case, 
however, the axioms themselves might be disputed, as might be the criteria used 
to assess them—and there’s no well-accepted arena to resolve these disputes which 
might play a role analogous to that of ZFC for ordinary mathematics.40

38.  This is not to say that mathematicians work or think in set theoretic terms, only that “hav-
ing a proof from ZFC” is an agreed upon criterion for being an acceptable mathematical result.

39.  I think Weyl and Gödel provide a good example of this sort of foundational mathematics in 
the passages cited above (sections 3.3.1 and 3.3.2).

40.  Not anything goes, of course—the point is only that it’s much harder to say what counts as 
resolving a foundational question than it is to say what counts as resolving a strictly mathematical 
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In ordinary mathematics of this sort, then, though there might be propositions 
whose truth-values are vehemently disputed, it’s always clear what it would take to 
resolve a dispute. Questions concerning the nonstructural nature of mathematical 
objects, by contrast, are contentious in a much less tractable way. It’s hardly clear 
what it would take to resolve them, and the assumptions behind any strategy to 
do so are unlikely to meet with universal assent. So it’s no surprise ordinary math-
ematicians would ignore these questions: the universality of their theorems would 
be lost if they were taken to be contingent on some position concerning the non-
structural nature of the objects they refer to. Still, none of this implies that there is 
no such nature to be investigated.41

Now, one might object that there being no such nature remains the most plau-
sible explanation for the disregard of ordinary mathematicians. For it’s not im-
mediately clear what else would explain their disregard—unless of course we’re 
meant to think that ordinary mathematicians are blithely setting aside contentious 
questions to preserve the universality of their results. If they can’t be said to have 
isolated the nature of their objects, how might ordinary mathematicians be justi-
fied in setting aside questions concerning their nonstructural features?

To this I reply that there is no reason to think that the focus of ordinary math-
ematicians is arbitrary, and that refusing to take a stance on ontological matters 
does not commit us to the view that structural characterizations are mere dog-
matism on their part. The account I’ve sketched so far is ontologically noncom-
mittal: it allows for the possibility that mathematical objects be fundamentally 
structural, and for the possibility that they have a richer, nonstructural nature. I’ve 
raised some difficulties with the first of these possibilities in this paper, but having 
no concrete ontological counterproposal I won’t advocate the second. This is all 
consistent with the view that the features of an ω-sequence somehow reflect a deep 
truth about the nature of the natural numbers, and that in general the features of 
interest to ordinary mathematicians are among those which constitute part of the 
essence of the objects they study. It’s only once we identify them with these objects’ 
essences that we encounter the problems surveyed above.42

one. I’m only claiming here that questions concerning the nonstructural features of mathematical 
objects are too contentious for ordinary mathematics—I won’t take a stand in this paper on whether 
they are too contentious for the purposes of foundational mathematics, or indeed what their relation-
ship is to such mathematics. A similar take on the role of mathematical axioms is developed in more 
detail in Easwaran (2008).

41.  In particular, it doesn’t imply that nonstructural features are never mathematically signifi-
cant, or that “nothing mathematics countenances would fix [facts about nonstructural features]” 
(Resnik 1997: 270). This would only be the case if we thought mathematics was nothing but ordi-
nary mathematics, in the sense outlined above—and this is surely taking too narrow a view of the 
discipline.

42.  The fact that mathematical objects don’t have merely structural natures need not imply the 
stronger claim that mathematical objects have extrastructural natures: it might be a mistake to think 
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In any case, I take it the main reason ordinary mathematicians feel confident in 
ignoring certain questions about mathematical objects is the same as in any other 
science, namely, that they trust the judgment of the mathematical community when 
it assents to purely structural characterizations and leaves further questions for 
specialists to work out. A parallel might be drawn with the status of fundamental 
concepts like mass, time, or space in modern physics. For the most part working 
physicists will be indifferent to questions concerning what mass really is—issues 
concerning the nature of mass rarely make their way into the work of nonspecial-
ists, and physicists will typically rest content with a characterization of mass that 
focuses on its role in physical theories, for example as it appears in equivalences 
like F = ma, or E = mc2. It seems to me they’re perfectly justified in doing so, but 
that it would be a mistake to conclude that there’s nothing more to say about mass 
once we’ve described the relations it bears to certain other physical concepts like 
force, energy, and so on, or that the nature of mass is only determined by the role 
it plays in the equations of physicists.43

In fact, to end on a historical note, I think such an outlook is faithful to the 
spirit in which structural characterizations were initially conceived. Consider for 
instance what Dedekind has to say about his arithmetized characterization of the 
continuum (using what we now call “Dedekind cuts”):

The above comparison of the domain R of rational numbers with a straight 
line has led to the recognition of the existence of gaps, of a certain incom-
pleteness or discontinuity of the former, while we ascribe to the straight 
line completeness, absence of gaps, or continuity. In what then does this 
continuity consist? Everything must depend on the answer to this question, 
and only through it shall we obtain a scientific basis for the investigation of 
all continuous domains. By vague remarks upon the unbroken connection 
in the smallest parts obviously nothing is gained; the problem is to indicate 
a precise characteristic of continuity that can serve as the basis for valid 
deductions. For a long time I pondered over this in vain, but finally I found 
what I was seeking. This discovery will, perhaps, be differently estimated 
by different people; the majority may find its substance very commonplace. 
(1901: 10–11, emphasis in the original)

So Dedekind took himself to be searching for a “scientific basis” for the study of 

of mathematical objects as having “natures” to begin with. My argument here leaves open this more 
radical suggestion.

43.  One might still hold such an “operational” view of mass for other reasons—my claim here 
is only that it’s a mistake to hold it merely because we think ordinary physicists are right to adopt 
an operationalist outlook in their work. A good overview of recent debates about the nature of mass 
can be found in Jammer (2000).
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real numbers, whose primary purpose would be to provide “a precise character-
istic of continuity that can serve as the basis for valid deductions.” His primary 
purpose wasn’t to characterize the nature of continuity, but rather to set aside 
“vague remarks” on the topic and focus on the features necessary to its mathemati-
cal investigation.

Note, moreover, that Dedekind takes his characterization of the continuum to 
be commonplace—an attitude well illustrated by the passage following his descrip-
tion of Dedekind cuts:

As already said I think I shall not err in assuming that every one will at 
once grant the truth of this statement; the majority of my readers will be 
very much disappointed in learning that by this commonplace remark the 
secret of continuity is to be revealed. (1901: 11)

I take it this is good evidence that Dedekind was not seeking here to supplant 
existing conceptions of the nature of the continuum with his own. Rather, he was 
seeking an arithmetized characterization of the continuum because it would serve 
as an acceptable starting point regardless of one’s conception of infinitesimals, and 
would therefore allow for a development of analysis unfettered by disputes con-
cerning the nature of space.

My view is basically that Dedekind had it right. If we want to engage in ordi-
nary, effective theorem-proving activities, which is what interests most mathemati-
cians, it seems necessary to set aside questions having to do with the nonstructural 
aspects of mathematical objects. But this doesn’t imply that these objects are essen-
tially structural. All it reveals is that mathematicians working with various concep-
tions of the objects they study—or with no view at all about what mathematical 
objects are essentially—can agree on a structural characterization for their every-
day work, and leave further issues (if any) for others to work out. This is sufficient 
to explain the key structuralist insights, or at least the key structuralist insights 
that are worth preserving.

5. Conclusion

I’ve argued in this paper against a common ontological version of structuralism, 
and I’ve attempted to present an ontologically neutral alternative. On this alterna-
tive view, the hermeneutic structuralist insights are not explained by the nature of 
mathematical objects, but rather by the manner in which mathematical research 
is organized: questions concerning the nonstructural features of mathematical ob-
jects are often dismissed because they are too contentious or vague to be consid-
ered part of ordinary mathematics. One philosophical benefit of the structuralist 
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ontology, namely the solution it offered to Benacerraf’s problem, was lost. But I’ve 
tried to cast some doubt on the merits of the solution structuralism was meant to 
provide.

The view I’ve defended leaves open a number of questions concerning the rela-
tionship between the nature of mathematical objects and the structural character-
izations most mathematicians are happy to work with. What exactly is the status 
of nonstructural features? In what sense, for instance, did Weyl consider it a crucial 
part of the foundation of the theory of elliptical functions that they be embedded 
in Riemann surfaces? And what is it that makes structural characterizations so 
effective—why is there not more disagreement among working mathematicians 
about which of two structural equivalents is superior?

A position that leaves such questions unanswered might seem too feeble to 
merit the title of structuralism. I am happy to give up the title. My claim is only 
that the insights motivating common structuralist views can be satisfyingly ex-
plained without any contentious ontology.
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