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ABSTRACT. Larry Moss and Rohit Parikh used subset semantics to characterize a family of logics
for reasoning about knowledge. An important feature of their framework is that subsets always
decrease based on the assumption that knowledge always increases. We drop this assumption
and modify the semantics to account for logics of knowledge that handle arbitrary changes,
that is, changes that do not necessarily result in knowledge increase, such as the update of our
knowledge due to an action. We present a system which is complete for subset spaces and prove
its decidability.
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1. Introduction

Subset logic is a bimodal logic that combines two modal operators, one corre-
sponding to knowledge, and one corresponding to effort, and models the increase of
knowledge after a larger amount of resources has been spent in acquiring it. Subset
logic has been introduced by Moss and Parikh who also established the basic results
(Moss & Parikh, 1992; Dabrowski et al., 1996). A great deal of further research has
been devoted to characterizing the underlying structure of subsets using axioms of this
logic. For example, the system “topologic” has been found complete with respect to
topological spaces (Georgatos, 1993). Variants of this logic have also been developed
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to address knowledge after program termination and time passing (Heinemann, 1999;
Heinemann, 2007).

The main novelty of subset logic is its semantics, where, after fixing a space of
subsets of a set of worlds, sentences are interpreted over a pair (x, U), where x is
the actual world the agent resides in, and U is the view the agent has. The agent’s
view consists of those worlds the agent considers possible. We can represent effort
by restricting the agent’s view. Restricting the view means that the agent cancels out
some of the alternatives, and, as a result, increase of knowledge occurs. In this paper,
we would like to explore the possibility of using subsets of worlds to model any kind
of change, rather than change that corresponds to increase of knowledge. Consider the
following example.

EXAMPLE 1. — Imagine a room with a table and two cubes: a red one and a blue
one. The agent is outside the room but knows that one of the cubes is on the table and
one is on the floor. Now, suppose that the agent instructs a robot to enter the room and
place the red cube on the floor. The update of the agent’s knowledge base after the
robot’s action can be modeled as follows. Denote the sentence “the red cube is on the
floor” with r, and similarly with b for the blue cube. The initial view is U = {w1, w2}
where w1 = {r ∧ ¬b} and w2 = {¬r ∧ b}. After the robot is instructed to place the
red cube on the floor the first possibility persists while the second possibility turns into
w′2 = {r ∧ b}. The resulting view of the agent is U ′ = {w1, w

′
2}. �

Note that, in the above example, U ′ is not a subset of U and change does not
result in an increase but rather in an update of knowledge (in the sense of (Katsuno &
Mendelzon, 1991)). In particular, the sentence

K(r ↔ ¬b)

is true at U but false in U ′. Further, the resulting subset is determined by the transfor-
mation of its components. Before instructing the robot we do not know whether the
red cube is on the floor:

¬K¬r
but after instructing the robot (call this action a) the following holds:

[a]Kr.

Our modification is threefold:

– We consider subsets that do not necessarily form a topological space but rather
they are determined by the accessibility relations. This is not contrary to the basic
intuition behind the Moss-Parikh logics but rather complementary. We do not want
to express the structure of subsets but rather the structure of actions that restrict the
agent’s view to those subsets.

– We consider changes that do not necessarily result in a smaller subset. Fre-
quently, we reason with defeasible knowledge or we jump to conclusions as in non-
monotonic reasoning. Other times, we need to revise our beliefs. In such cases, the
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resulting epistemic state is not a refinement but rather a transformation of the original
one.

– We make explicit the accessibility relations that bring about different forms of
change. Such actions can be the result of a program, a game move, pieces of informa-
tion about a changing world, or, simply, the passage of time.

We view this logic as a tool for studying the transformations of knowledge in a
more general setting much like dynamic epistemic logic (van Ditmarsch et al., 2007),
although we restrict our attention to a single agent (for a multiple agent approach using
subset logic see (Heinemann, 2008)). Systems that combine two or more modal logics
are nothing new (Kracht & Wolter, 1991; Gabbay & Shehtman, 1998). Their theory, in
the simple cases, is straightforward. Similarly, basic results such as completeness for
Kripke models and decidability are straightforward once those have been obtained for
the individual logics separately (see (Gabbay et al., 2003)). However, our complete-
ness and decidability results refer not to the usual frame models with accessibility
relations but, instead, we use subset models.

In the next section, we define the subset logic SC for reasoning about change
and prove completeness for subset semantics via an appropriate translation to/from
Kripke models. Then, we prove a normal form theorem and use it to sketch a proof of
completeness in Section 3 and a proof of decidability in Section 4. We conclude with
a sketch of a logic that incorporates actions.

2. Syntax and semantics

We follow the notation of (Moss & Parikh, 1992).

Our language is bimodal and propositional. We start with a countable set Atom of
atomic formulas containing two distinguished elements > and ⊥. Then the language
L is the least set such that Atom ⊆ L and closed under the following rules:

φ, ψ ∈ L
φ ∧ ψ ∈ L

φ ∈ L
¬φ,�φ,Kφ ∈ L

Notice that, in contrast to example 1, the language does not contain actions. We
make use of a single � modality but all results extend to a multi-modal setting (see
Section 5). The intended interpretation of the � modality is that of necessity, meaning,
what is true in all worlds which are possible outcomes of the change of the current
world. However, in the bimodal setting, � acquires a second dimension. Change of
the current world can be indeterminate, that is, it can be described with several worlds
accessible from the current one, and we make no assumption on the properties of this
change (e.g. symmetry, transitivity, etc). Therefore, � is a just a modality obeying
normality. What turns the � modality in to necessity during update is not change
of truth, but change of knowledge. All possible changes (to talk about a particular
change one needs a richer language, e.g. actions) of the knowledge base K is a priori
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specified, in the sense that it it described with a formula φ, and results to a unique
knowledge base K ◦ φ, the update of K with φ. So change at the knowledge level is
deterministic. The update part of � will be described, semantically, with subsets and,
syntactically, with combination axioms (axioms involving both � and K).

The interpretation of the language using subsets follows:

DEFINITION 2. — Let X be a set, R a binary relation on X , i.e., R ⊆ X ×X called
accessibility, and O a subset of the powerset of X , i.e. O ⊆ P(X) such that X ∈ O.
We denote the set {(x, U) : x ∈ X,U ∈ O, and x ∈ U} ⊆ X × O by X×̇O. For
each U ∈ O, let UR be the set of the elements accessible from U , that is, the set
{y : (x, y) ∈ R, x ∈ U}. The set O will be called R-closed if whenever U ∈ O then
UR ∈ O.

Let O be R-closed, then the triple 〈X,R,O〉 will be called a subset frame. A
model is a quadruple 〈X,R,O, i〉, where 〈X,R,O〉 is a subset frame and i a map
from Atom to P(X) with i(>) = X and i(⊥) = ∅ called initial interpretation.

DEFINITION 3. — The satisfaction relation |=M, whereM is the model 〈X,O, R, i〉,
is a subset of (X×̇O) × L defined recursively by (we write x, U |=M φ instead of
((x, U), φ) ∈|=M):

x, U |=M A iff x ∈ i(A), where A ∈ Atom
x, U |=M φ ∧ ψ iff x, U |=M φ and x, U |=M ψ

x,U |=M ¬φ iff x, U 6|=M φ

x,U |=M Kφ iff for all y ∈ U, y, U |=M φ

x,U |=M �φ iff for all y ∈ X such that (x, y) ∈ R, y, UR |=M φ.

If x, U |=M φ for all (x, U) belonging to X×̇O then φ is valid in M, denoted by
M |= φ.

We abbreviate ¬�¬φ and ¬K¬φ by ♦φ and Lφ respectively. We have that

x, U |=M Lφ if there exists y ∈ U such that y, U |=M φ
x,U |=M ♦φ if there exists y ∈ X such that (x, y) ∈ R and y, UR |=M φ.

The axiom system SC consists of axiom schemes 1 through 8 and rules of table 1
(see page 431). We will write `SC φ iff φ is a theorem of SC.

Observe that we require that � satisfies the K (normality) axiom and K satisfies
the S5 axioms. We have two interaction axioms:

Axiom 7 is the cross axiom, a standard axiom for subset logic, a propositional
analogue of the Barcan formula and the “perfect recall” of (Schmidt & Tishkovsky,
2008) for a single modality.

Axiom 8 together with Axiom 7 implies that the accessibility relation of � is a
function (deterministic) on subsets, that is, from the epistemic point of view, it implies
that possible knowledge is necessary.
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Observe that the cornerstone axiom of subset logic:

(A→ �A) ∧ (¬A→ �¬A), for A ∈ Atom

is not valid in SC. It stipulates that the non-epistemic facts true in the world of an
agent will remain true as the only change we allow is epistemic. The actual state of an
agent remains always the same although the agent’s view may change. In contrast, the
logic we axiomatize allows arbitrary changes including changes to the agent’s actual
state and this axiom is no longer valid.

Table 1. Axioms and Rules of SC

Axioms
1) All propositional tautologies
2) �(φ→ ψ)→ (�φ→ �ψ)
3) K(φ→ ψ)→ (Kφ→ Kψ)

4) Kφ→ φ

5) Kφ→ KKφ

6) φ→ KLφ

7) K�φ→ �Kφ

8) ♦Kφ→ K�φ
Rules

φ→ ψ, φ

ψ
MP

φ

Kφ
K-Necessitation

φ

�φ
�-Necessitation

The following holds:

THEOREM 4. — The axioms and rules of SC are sound with respect to subset
frames.

PROOF 5. — The proof is straightforward and we show only soundness for Axiom 8.
Suppose x, U |= ♦Kφ. This implies that there is aw such that xRw andw,UR |= Kφ.
Now, let y ∈ U and yRz. We need to show that z, UR |= φ which follows from
w,UR |= Kφ. �

We may choose to interpret SC on Kripke frames. Let (W,R�, RK) be a frame,
where W is a set of worlds with two binary accessibility relations R� and RK on W .
Then the above axiom system corresponds to the following first order properties:

1) RK is an equivalence relation,
2) ∀x, y, w(xR�w ∧ wRKy → ∃w′(xRKw

′ ∧ w′R�y))(see Fig. 1), and
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Figure 1. First-order property corresponding to Axiom 7
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Figure 2. First-order property corresponding to Axiom 8

3) ∀x, y, w,w′(xRKw
′ ∧ w′R�y ∧ xR�w → wRKy) (see Fig. 2).

Property 1 corresponds to the S5 set of axioms for K, Property 2 corresponds to
Axiom 7, and Property 3 corresponds to Axiom 8. We will show the last correspon-
dence (Axiom 8 is the least known). Suppose Property 3 does not hold, i.e. there exist
x, y, w,w′ with xRKw, wR�y, xR�w

′ but ¬w′RKw. Consider a valuation i such
that i(A) = {y}, for some atomic A. In a model based on i, we have z |= ¬A for all
z 6= y. So, by our initial assumption, we have w′ |= K¬A. Therefore, x |= ♦K¬A but
x 6|= K�¬A. So Axiom 8 fails. The other direction is straightforward.

To prove (strong) completeness of the logic for Kripke models is straightforward
because SC is the fusion of T and K augmented by Axioms 7 and 8 which are
Sahlqvist formulas (Sahlqvist, 1975; Blackburn et al., 2002).

We can show completeness for subset models by translating any Kripke model
based on a frame as above in to an equivalent subset model. Let (W,R�, RK, i) be
a Kripke model whose underlying frame satisfies Properties 1-3 as above, then let
(W,O, R�, i) be the subset model, where O consists of the equivalence classes of
RK, that is, the set of subsets O is a partition of W 1. We have the following

1. This translation, due to one of the reviewers, resulted in a considerable simplification of the
completeness proof over the original one sketched in the next section.
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LEMMA 6. — The partition O is R�-closed.

PROOF 7. — Let U ∈ O. We will show that UR� is a RK-equivalence class. Let
x, y ∈ UR� and assume that x′, y′ ∈ U are such that x′R�x and y′R�y . By Prop-
erty 3, we have xRKy. To show that UR� is maximal, let xRKy with x ∈ UR� . Let
x′ ∈ U such that x′R�x. By Property 2, x′RK ◦R�y, and, therefore, y ∈ UR� . �

Furthermore, the subset model defined by this translation is equivalent to the start-
ing Kripke model in the following sense:

LEMMA 8. — For all w ∈W and φ ∈ L, we have that

w |= φ iff w,U |= φ,

where U is the RK-equivalence class of w.

PROOF 9. — By induction on φ. The atomic and boolean cases are straightforward.
Suppose w |= �φ. Let wR�w

′. We have that w′ |= φ so w′, UR� |= φ, by induction
hypothesis, and therefore w,U |= �φ. The converse is similar as is the Kφ case. �

Further, there is a simple reduction of a subset space model (X,O, R, i) to an
equivalent Kripke model (see for example Section 4.1 in (Georgatos, 1993))

(X×̇O, R�, RK, i
′),

where

– (x, U)R�(y,W ) iff xRy and W = UR,
– (x, U)RK(y,W ) iff W = U , and
– i′(A) = {(x, U) : x ∈ i(A)}.

Similarly, we have that
x, U |= φ iff (x, U) |= φ.

The above two translations are not, in general, inverses of each other. The translation
from a Kripke model to a subset model always produces a partition on the worlds.
Those translations combine to show the following

THEOREM 10. — The axiom system SC is strongly complete with the class of R-
closed subset models.

3. Normal form

In this section, we will show that SC possesses a normal form (Theorem 15). We
will sketch a translation of the canonical model to a subset model based using the
normal form and, in the next section, we will employ the normal form again to prove
the finite model property. We will need the following

LEMMA 11. — The following are theorems of SC.
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1) ♦(φ ∧ Kψ)↔ ♦φ ∧ ♦Kψ
2) �(φ ∨ Kψ)↔ �φ ∨�Kψ

3) �Kφ↔ ♦⊥ ∨ K�φ
4) �Lφ↔ ♦⊥ ∨ L♦φ

PROOF 12. — For Case 1, the one implication is straightforward. For the other

1. ♦φ ∧ ♦Kψ → ♦φ ∧�Kψ by Axioms 7 and 8
2. ♦φ ∧�Kψ → ♦(φ ∧ Kψ) in a normal system.

Similarly for Case 2.

Both Cases 3 and 4 follow from normality, Axiom 7, in one direction, and Axiom
8, in the opposite direction. �

DEFINITION 13. — Let L� ⊆ L be the set of formulas generated by the following
rules:

Atom ⊆ L� φ, ψ ∈ L�

φ ∧ ψ ∈ L�

φ ∈ L�

¬φ,�φ ∈ L�

Let LK be the set {Kφ, Lφ|φ ∈ L�}.

DEFINITION 14. — We say that φ ∈ L is in prime normal form (PNF) if it has the
form

ψ ∧ Kψ′ ∧
n∧
i=1

Lψi

where ψ,ψ′, ψi ∈ L� and n is finite. φ is in disjunctive normal form (DNF) if it has
the form

∨m
i=1 φi, where each φi is in PNF and m is finite.

We shall omit the cardinality of (finite) conjunctions and disjunctions, writing, e.g.,∨
i φi instead of

∨n
i=1 φi. Suppose that φ is a formula in the following form

∧
i

ψi ∨ Lψ′i ∨
∨
j

Kψji

 ,

where ψi, ψ′i, ψ
j
i ∈ L�. We shall call such a form conjunctive normal form (CNF).

Using the distributive laws, we may show that DNF and CNF are effectively inter-
changeable up to equivalence.

THEOREM 15 (DNF). — For every φ ∈ L, there is (effectively) a ψ in DNF such
that

`SC φ↔ ψ.

PROOF 16. — By induction on the logical structure of φ.
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– If φ = A, where A is atomic, the result is immediate because the set of atomic
formulas belongs to L� so A is equivalent to a formula in PNF.

– Suppose that φ = ¬ψ. Then, by induction hypothesis, ψ is equivalent to a
formula in DNF, which implies that φ is equivalent to a formula in CNF which is
equivalent to a formula in DNF, as noted just above.

– If φ = ψ ∨ χ then φ is equivalent to a disjunction of two formulas in DNF, i.e.
is itself in DNF.

– If φ = Kψ then ψ is equivalent to a formula in CNF, and hence φ is equivalent
to a formula of the following form

∧
i

K

χi ∨ Lχ′i ∨
∨
j

Kχji

 ,

since K distributes over conjunctions. Now, since K(φ∨Kψ)↔ Kφ∨Kψ and KLχ↔
Lχ are theorems of S5, the above formula is equivalent to

∧
i

Lχ′i ∨

Kχi ∨
∨
j

Kχji

 ,

which is equivalent to a formula in CNF.
– If φ = �ψ then, by induction hypothesis, ψ is equivalent to a formula in CNF,

and hence φ is equivalent to a formula of the following form

∧
i

�

χi ∨ Lχ′i ∨
∨
j

Kχji

 ,

since � distributes over conjunctions. By repeated applications of Lemma 11.2, the
above formula is equivalent to

∧
i

�χi ∨�Lχ′i ∨
∨
j

�Kχji

 . (1)

Using Lemmas 11.4 and 11.3, (1) is equivalent to

∧
i

�χi ∨ ♦⊥ ∨ L♦χ′i ∨
∨
j

K�χji

 , (2)

which is in CNF. �

We will show how one can construct a subset model equivalent to the canonical
model. This syntactic construction is more nuanced from the one in the previous
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section as it identifies those sets of maximal consistent theories that correspond to a
single point. All proofs for the rest of this section are omitted.

The canonical model of SC is the structure

C =
(
S, { ♦→, L→}, v

)
,

where
S = {s ⊆ L : s is SC-maximal consistent},
s
♦→t iff {φ ∈ L : �φ ∈ s} ⊆ t,

s
L→ t iff {φ ∈ L : Kφ ∈ s} ⊆ t,

v(A) = {s ∈ S : A ∈ s},

along with the usual satisfaction relation (defined inductively):

s |=C A iff s ∈ v(A)
s 6|=C ⊥
s |=C ¬φ iff s 6|=C φ
s |=C φ ∧ ψ iff s |=C φ and s |=C ψ
s |=C �φ iff for all t ∈ S, s ♦→t implies t |=C φ
s |=C Kφ iff for all t ∈ S, s L→ t implies t |=C φ.

We write C |= φ, if s |=C φ for all s ∈ S.

A canonical model exists for all consistent bimodal systems with the normal-
ity axiom scheme for each modality. We have the following well known theorems
(see (Chellas, 1980), or (Goldblatt, 1992).)

THEOREM 17 (TRUTH THEOREM). — For all s ∈ S and φ ∈ L,

s |=C φ iff φ ∈ s.

THEOREM 18 (COMPLETENESS THEOREM). — For all φ ∈ L,

C |= φ iff `SC φ.

We will make use of the following sets:

DEFINITION 19. — For all elements s of the canonical model S, let

s� = s ∩ L� sK = s ∩ LK

and
S� = {s� : s ∈ S} SK = {sK : s ∈ S}.
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Let T ⊆ L�(LK). We say T is an L�(LK)-theory if T ∈ S� (T ∈ SK).

Let f be a map from S to S�×̇SK defined by f(s) = (s�, sK). It is straightforward
to show that the map f is 1-1 and onto. So, f has an inverse defined by f−1(T, T ′) =
s(T, T ′), where s(T, T ′) ∈ S is the unique maximal consistent extension of T ∪ T ′.
Therefore, the worlds of the canonical model may be split in two components that will
be used to construct a point and a subset in the following definition.

DEFINITION 20. — Let C =
(
S, { ♦→, L→}, v

)
be the canonical model of SC and let

S�, SK be as in Definition 19. The standard subset model is defined with

(X,O, R, v),

where
X = {xT : T ∈ S�},

i.e., there is a point xT for each L�-theory T ,

O = {UT ′ : T ′ ∈ SK},

i.e., there is a subset UT ′ for each LK-theory T ′, with membership relation defined by

UT ′ = {xT : T ∪ T ′ consistent},

xT1
RxT2

iff T1
♦→T2,

and
v(A) = {xT : A ∈ T}.

Given UT ∈ O, we need to show that URT ∈ O. For each T ∈ SK, let

TR = {Kφ : K�φ ∈ T} ∪ {Lψ : L♦ψ ∈ T}.

It is easy to show that if TR is consistent then TR ∈ SK. We have the following

LEMMA 21. — For all UT ∈ O, we have

URT = UTR .

As a corollary, O is R-closed and so the canonical subset model is well defined.
We can show the following (using induction)

THEOREM 22. — For all (xT , UT ′) ∈ X×̇O, we have

xT , UT ′ |= φ iff φ ∈ s(T, T ′).
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4. Decidability

In this section, we will show that the logic SC is decidable by showing that it
possesses the finite model property: if a formula is satisfiable then it is satisfiable in a
finite subset model, i.e., a subset model that has a finite number of points and therefore
a finite number of subsets.

The proof relies upon both the normal form theorem of the previous section as well
as a filtration.

To this end, let φ be a formula and (X,O, R, i) a subset model in which φ is
satisfied, that is, there exist x ∈ X and U ∈ O such that x, U |= φ. The Normal form
theorem allows us to assume that φ is in DNF, i.e. a has the form

∨
i

χi ∧ Kχ′i ∧
∧
j

Lχji

 ,

where χi, χ′i, χ
j
i ∈ L�. Denote the set {χ : χ is a subformula of χi, χ′i, χ

j
i : i =

1, . . . , n} with L�
φ and {Lχji : i = 1, . . . , n} with LK

φ .

We will now define a filtration on (X,O, i) as follows. Let ∼φ be an equivalence
relation on X defined by x ∼φ y, for x, y ∈ X , when x, U |= χ iff y, U |= χ for all
χ ∈ L�

φ and some U ∈ O. Note here that a straightforward induction shows that the
satisfaction of a formula χ in L� is independent of the subset, that is, x, V |= χ for
some V ∈ X iff x, U |= χ for all U ∈ X . Denote the equivalence class of x under
∼φ with xφ, the set {xφ : x ∈ U} with Uφ, and the set of all equivalence classes with
Xφ. Now consider the subset model (Xφ,P(Xφ), Rφ, iφ), where, for all atomic A in
L�
φ ,

iφ(A) = {xφ : x ∈ i(A)}

and, for all �b ∈ L�
φ and some U, V ∈ O,

xφRφyφ iff x, U |= �b then y, V |= b.

Observe that “for some U, V ∈ O” above implies “for all U, V ∈ O”, as �b ∈ L�
φ ,

and that the powerset P(Xφ) is Rφ-closed.

We have the following

LEMMA 23. — For all ψ ∈ L�
φ , we have

x, U |= ψ iff xφ, Uφ |= ψ.

PROOF 24. — The atomic case follows from the definition of iφ. The boolean cases
are straightforward. Now, suppose ψ is of the form �χ. Let x, U |= �χ. To show that
xφ, Uφ |= �χ. Let xφRφyφ. By definition ofRφ, we have y, V |= χ for some V ∈ O.
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By induction hypothesis, we have yφ, Vφ |= χ. As mentioned above yφ,W |= χ for
all W ⊆ Xφ since χ ∈ L�

φ . In particular, yφ, U
Rφ
φ |= χ. For the other direction,

suppose xφ, Uφ |= �χ and let xRy. We have xφRφyφ, and so yφ, U
Rφ
φ |= χ. As

χ ∈ L�
φ , we have yφ, (UR)φ |= χ (yφ ∈ (UR)φ because y ∈ UR). By induction

hypothesis, y, UR |= χ. �

This extends to all subformulas of φ by the following

LEMMA 25. — For all ψ, where ψ is a subformula of φ, we have

x, U |= ψ iff xφ, Uφ |= ψ.

PROOF 26. — If ψ ∈ L�
φ , the lemma follows from the previous lemma. The boolean

cases are straightforward. Now, suppose ψ belongs to LK
φ , i.e. is of the form Lχ where

χ ∈ L�
φ . Let x, U |= Lχ. We must show that xφ, Uφ |= Lχ. There exists y ∈ U such

that y, U |= χ. By induction hypothesis we have yφ, Uφ |= χ, so xφ, Uφ |= Lχ. For
the other direction, suppose xφ, Uφ |= Lχ. There exists yφ ∈ Uφ such that yφ, Uφ |= χ

so, by induction hypothesis, y, U |= χ and therefore x, U |= Lχ. �

As a consequence, the logic SC satisfies the finite model property with respect to
the class of SC-models. The main result of this section follows.

COROLLARY 27. — The logic SC is decidable.

5. Conclusion

We have presented a variant of the Moss-Parikh Subset Logic that handles arbitrary
changes along with a completeness and decidability result. Our presentation has made
use of a single update (�) modality but extending the language, semantics, and subse-
quent results to a multi-modal setting is straightforward. For the sake of completeness
we will briefly mention how this can be done but we will omit all details.

First, the language will be augmented with a set Act of symbols corresponding
to sorts of changes. A change can be a result of an action but not necessarily so (for
example, time passing). As a result, we need to include in the language formulas of the
form [a]φ. On the semantics side, models will be equipped with the set {Ra : a ∈ Act}
of binary relations on X . For each U ∈ O and a ∈ Act, let URa be the set of the
elements accessible from U , that is, the set {y : (x, y) ∈ Ra, x ∈ U}. The set O will
be called Ra-closed if whenever U ∈ O then URa ∈ O. If O is Ra-closed for each
a ∈ Act, then the triple 〈X, {Ra}a∈Act,O〉 will be called a action subset frame and
proceed similarly for the definition of the model. Satisfaction now will include the
case

x, U |=M [a]φ if for all y ∈ X such that (x, y) ∈ Ra, y, URa |=M φ.
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Now, all results including decidability and the normal form theorem lift to the
extended language in a straightforward way as actions do not interact with each other.
This extended language allow us to express the original Moss-Parikh modality using
a modality [U ] for each U ∈ O, whose semantics are given by the relation

RU = {(x, x) : x ∈ U}.

The update operator we introduced in this paper is an interesting addition to the al-
ready extensive arsenal of subset logic. We believe that such an addition is very useful
as a building block to an epistemic logic that handles change in various forms. As an
example, update can be combined with the public announcement operator of dynamic
epistemic logic, and/or with a family of knowledge operators corresponding to knowl-
edge of multiple agents (see (Heinemann, 2008) for a proposal within the framework
of subset logic).

The combination PDL+K5 of propositional dynamic logic with a logic of knowl-
edge has been extensively studied in (Schmidt & Tishkovsky, 2008). These results do
not carry over in our system because of the interaction axiom

〈a〉Kφ→ K[a]φ

which is stronger than the ones (NL and CR) considered in (Schmidt & Tishkovsky,
2008). Adding a calculus of action in the manner of dynamic logic, or interpreting the
modalities in a temporal context is perhaps the most promising extension of this logic.
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