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A B S T R A C T

The objective of this article is to take into account the functioning of representational cognitive tools, and in
particular of notations and visualizations in mathematics. In order to explain their functioning, formulas
in algebra and logic and diagrams in topology will be presented as case studies and the notion of
manipulative imagination as proposed in previous work will be discussed. To better characterize the
analysis, the notions of material anchor and representational affordance will be introduced.
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Introduction: (Representational) Cognitive Tools

The distinction between image and word is commonplace in the
human sciences. Both images and words are representations;
however, the philosophical literature on depiction generally
distinguishes between images, which resemble the objects they
depict, and words, which have meaning thanks to conventions.
Much of the philosophical discussion either takes this distinction
for granted or argues in its favor. One of the aims of the present
article will be to go beyond this distinction and to introduce the
category of representational cognitive tools.

The notion of representational cognitive tools refers to specific
cases where external and material representations are used as
inferential tools, that is, as tools for thinking about what they
represent. To quote Sybille Krämer, there exists “a sizable class of
representational tools” such as writing, tables, graphs, diagrams, or
maps that arises at the conjunction of word and image; she defines
this class “the diagrammatic.”1 Following her suggestion, in the
remainder of the paper I will focus on a number of representations
that belong to the diagrammatic. As Krämer claims, an important
feature characterizing these objects is that they make “showing”
and “saying” work together so as to create an “operative iconicity”:
as representations, they have an iconic nature; however, they are
meant to be changed, transformed, put into use to the aim of
learning something new about what they represent.

To give an example, a map is of course assumed to represent
some environment—let us say the Stanford University campus—
E-mail address: valeria.giardino@univ-lorraine.fr (V. Giardino).
1 Sybille Krämer, “Trace, Writing, Diagram: Reflections on Spatiality, Intuition,

Graphical Practices and Thinking,” in The Power of the Image. Emotion, Expression,
Explanation, ed. András Benedek and Kristóf Nyiri, 3–22 (Frankfurt am Main: Peter
Lang, 2014), 3.
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but it is also intended to be oriented by its users in the appropriate
way depending both on their position in physical space and on
their purpose, for instance if they want to figure out how to go from
the entrance of the campus to the library. People must rely on
several different capacities in order to use the map: they have to
perceive and select its relevant visual features, make the
appropriate connections between what is sketched on the map
and what is physically in their vicinity, locate themselves in the
map right where they are physically standing, read the labels,
correctly interpret the colors in the map, and so on. As a
consequence, the map simultaneously shows them the campus
and, in metaphorical terms that need to be accounted for, “tells”
them where to go if they want to reach the library. In Krämer’s
words, the external and material representations belonging to the
diagrammatic “are not only a medium for the representation of the
objects of knowledge, but also at the same time an instrument
through which those very objects can be generated and explored.”2 I
will assume this as the main characterizing feature of representa-
tional cognitive tools: they are intended both as representations
and as instruments to think about what they represent; their dual
nature transcends the distinction between image and word.

Representational cognitive tools are a subcategory of cognitive
tools, that is, of external and material objects that humans have
manufactured and produced in their cultural evolution. Think, for
example, of the abacus: despite not being in any way straightfor-
wardly representational, it has been introduced as an instrument
to perform arithmetic calculations. The manufacture and the
production of such tools may have had an influence on human
thinking. Jack Goody’s work on writing is revealing in this regard:
according to the anthropologist, the externalization of thought that
2 Krämer, “Trace, Writing, Diagram” (ref. 1), 3.
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6 Paolo Mancosu, ed. The Philosophy of Mathematical Practice (Oxford: Oxford
University Press, 2008).

7 José Ferreirós, Mathematical Knowledge and the Interplay of Practices (Princeton:
Princeton University Press, 2015).
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has happened with writing has changed forever the very structure
of our thinking.3 Goody argues that it is wrong to think of oral
cultures as totally analogous to written cultures minus writing,
because the two are qualitatively distinct cultures, where memory
and narrative forms are structurally different. In his view, the
literate activity transforms human life, for example by allowing the
accumulation of knowledge about the surrounding world. Writing
is intended here in a wide sense. For example, a mathematical table
is for Goody a product of writing despite the fact that, thanks to the
spatial arrangement of its entries, people who can neither read nor
write can easily use it. However, this is of course conditional on the
kind of information contained in the table: for example, a minimal
literacy level would be required to recognize numerical entries.
The use of a street map presupposes writing but may also imply
literacy: someone who is familiar with the arbitrary order of letters
of the Latin alphabet will have no problem in finding the address of
a friend in an unknown town. The important point here is that for
Goody these external and material objects provide us with “a
special cognitive tool, a technology for the intellect.”4

The third point to stress about cognitive tools concerns the
conditions for their use. I have proposed elsewhere that humans
possess some kind of ability that I call “diagramming.”5 Thanks to
diagramming, humans were able to create and employ cognitive
tools as a medium in which an external connection is obtained
between several different systems already available in other
contexts, in view of a totally novel cognitive task: enhancing
inference and reasoning. In other words, cognitive tools are multi-
recruiting systems: they constitute an “interface” with which to
integrate information coming from perception or action, already
functioning in pragmatic contexts, and other more cognitive
resources such as conceptual knowledge. The cognitive tool is
perceived, changed, manipulated in view of getting some new
information: the simultaneous activation of all these systems
becomes relevant for a particular epistemic purpose. To go back to
the map example, it is thanks to the map and, more importantly, on
the map that users combine pieces of information coming from
their visuo-spatial system with others obtained from their
conceptual system and to some extent from their motor system,
for example by reorienting the map in space; the result is an
inference about the direction to take to reach the desired
destination. It is important to note that such an inference would
not have been accessible to the visuo-spatial, the conceptual, or the
motor system alone.

To sum up, I characterize cognitive tools as follows: (i) they are
external and material objects that constitute a technology for the
intellect, since they are the product of our cultural evolution and
have structured our thought; (ii) their use triggers a form of
diagramming; that is, they are a medium to recruit multiple
systems in view of a novel cognitive objective. Moreover, some
cognitive tools are also representational and correspond to
Krämer’s class of the diagrammatic, transcending the distinction
between image and word. Compared to other cognitive tools, they
present an additional feature: (iii) they are representations and at
the same time instruments to study what they represent. In the case
of representational cognitive tools, the triggering of diagramming
corresponds to what Krämer labels “operative iconicity.” In the
remainder of the article, I will give some examples of the use of
representational cognitive tools in mathematics and analyze them
in relation to the characterization just given.
3 Jack Goody, The Power of the Written Tradition (Washington, DC: Smithsonian
Institution Press, 2000).

4 Goody, Written Tradition (ref. 3), 148. Emphasis added.
5 Valeria Giardino, “Diagramming: Connecting Cognitive Systems to Improve

Reasoning,” in Benedek and Nyiri, eds., Power of the Image (ref. 1), 23–34.
Two Case Studies from Mathematics

Ten years ago, Paolo Mancosu, in his introduction to a
pioneering collection of essays on the philosophy of mathemat-
ical practice, claimed that attention to mathematical practice
was a necessary condition for a renewal of the philosophy of
mathematics.6 One of the main features of the practice of
mathematics is the use of many heterogeneous cognitive tools,
ranging from formal languages to figures and illustrations, to the
aim of experimenting, discovering new results, and explaining
already established ones. As José Ferreirós argues in a recent book,
mathematical practices typically involve writing, in particular
complex semiotic systems of written symbols.7 My proposal is
then to look at the practice of mathematics by focusing on some of
the representational cognitive tools it involves. First, I will
consider the role of notation in algebra and logic; second, I will
present part of my work in collaboration with Silvia De Toffoli on
the practice of topology.8

Formulas in Algebra and Propositional Logic

As discussed above, the notion of representational cognitive
tool as characterized in the introduction allows going beyond the
opposition of image and word. For example, algebraic formulas
and geometric figures do not belong to different categories when
considered as representational cognitive tools: first, they are both
the product of cultural evolution and they both structure our
thought; second, they are both representations and at the same
time instruments for thought. However, a third feature charac-
terizing representational cognitive tools is that they trigger
diagramming; that is, they happen to be multi-recruiting systems.
In this section, the question will be the following: is it also the
case for formulas? Geometric figures will be taken into account
later.

In an interesting study, David Landy and Robert Goldstone
considered simple equations and their physical layout to the aim of
evaluating whether it may affect their segmentation.9 As everyone
with minimal competence in algebra knows, when reading a
notational form, one has to segment it into its formal components;
for example, in the simplest cases, a formula displaying additions
and multiplications has to be parsed in such a way that
multiplication is performed before addition (see Figure 1, fourth
line, for an example). Hence, one may conclude that mathematics
concerns only abstract reasoning and is totally disconnected from
its (visual) written form: segmentation would be cognitively
executed through the mere application of formal rules to
individual notational symbols. However, this would bring to the
“appealing and tempting assumption” that it is trivial for the
cognitive agent—the parser—to extract abstract symbol sequences
from physical notations.10 To challenge this claim, the two
researchers asked the participants in one of their experiments
to judge the validity of equations containing both multiplication
and addition, to which they added visual cues such as spacing,
8 Silvia De Toffoli and Valeria Giardino, “Forms and Roles of Diagrams in Knot
Theory,” Erkenntnis 79, no. 4 (2014): 829–42; “An Inquiry into the Practice of
Proving in Low-Dimensional Topology,” Boston Studies in the Philosophy and History
of Science 308 (2015): 315–36.

9 David Landy and Robert L. Goldstone, “How Abstract is Symbolic Thought?,”
Journal of Experimental Psychology: Learning, Memory, and Cognition 33, no. 4 (2007):
720–33.
10 Landy and Goldstone, “Symbolic Thought” (ref. 9), 721.



Figure 1. Some of the formats employed by Landy and Goldstone (2007). In the
formula on the first line, spaces are added between the two factors to multiply, so as
to encourage a visual grouping that is not in line with the correct order of the
operators. The figure is taken from David Landy, Colin Allen, and Carlos Zednik, “A
Perceptual Account of Symbolic Reasoning,” Frontiers in Psychology 5, no. 275
(2014).

12 Sybille Krämer, “Writing, Notational Iconicity, Calculus: On Writing as a Cultural
Technique,” Modern Languages Notes 118, no. 3 (2003): 518–37.
13
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lines, or circles. The hypothesis was that such cues would have an
influence on the application of perceptual grouping mechanisms
and consequently on the participants’ capacity for symbolic
reasoning (see Figure 1). The results of the experiment show that
validity judgments are more likely to be correct if visual groupings
are in line with valid operator precedence (multiplication comes
before addition); the physical layout of the equation seems thus to
have an influence on performance.

Of course, there is a trivial sense in which the physical layout
of a formula clearly has an influence on performance: for
example, people would have difficulties in segmenting a
formula that is written in very small type or in which the
addition signs are tilted in such a way that they look like
multiplication signs. However, the case at stake here is more
interesting because the experimenters’ manipulations, despite
the fact that the formula is perfectly readable, still interfere with
perception by activating groupings that are here not relevant for
the segmentation task. If this is true, then it shows that formulas
trigger diagramming and the activation of perceptual systems,
such as groupings mechanisms, and this may have an influence
on cognitive performance.

Based on these and similar results, in a more recent paper,
David Landy, Colin Allen, and Carlos Zednik put forward the
Perceptual Manipulations Theory, according to which most of
symbolic reasoning emerges from the ways in which notational
formalisms are perceived and manipulated; in their view,
notations serve as targets for powerful perceptual and sensorimo-
tor systems.11 It should be noted that there is a sense in which the
fact that these systems are triggered by the use of these cognitive
tools might have its advantages in facilitating inference, for
example by liberating the user from semantic processing in symbol
manipulations. For example, in the task of dividing 3/4 by 7/8,
thinking semantically would be particularly unhelpful, since our
normal understanding of division makes divisions by a fraction
difficult to grasp. However, the material transformation that
allows us to invert the divisor and then multiply rather than divide
is very easy to apply: 3/4 � 7/8 = 3/4 � 8/7 = 6/7. Once the users
learn how to correctly group the numbers—that is, to switch
11 David Landy, Colin Allen, and Carlos Zednik, “A Perceptual Account of Symbolic
Reasoning,” Frontiers in Psychology 5, no. 275 (2014): 1–10.
numerator and denominator of the second fraction and change the
sign from division to multiplication—they can easily proceed
thanks to “de-semantification” (another term that is introduced by
Krämer to define “operative writing”).12

Other scholars have underlined the importance of perception
and action in the use of mathematical notations. For example,
Philip Kellman, Christine Massey, and Ji Son, explicitly write about
perceptual learning in mathematics, that is, the improvements that
are produced by the familiarity with a cognitive tool.13 In their
reconstruction, except for occasionally mentioning pattern recog-
nition, the literature on education dismisses perceptual learning as
irrelevant. For example, studies involving sensory discriminations
among a small set of fixed stimuli are considered to have little
connection to learning tasks in the real world, in particular when it
comes to high-level, explicit and symbolic domains such as
mathematics. On the contrary, according to the authors, improve-
ments in information extraction are motivated by perceptual
learning as a result of practice and are shown to be very relevant for
acquiring the appropriate expertise in almost any domain. There is
no reason to exclude mathematics from these dynamics. This
would pave the way toward new strategies for teaching
mathematics: students should be trained in recognizing symbolic
expressions by using standard perceptual learning techniques and
this might lead to lasting gains both in equation reading and
comprehension and in algebraic problem-solving. An important
point would be to focus on the selection of relevant information
and on the fluent extraction of structure.

Of course, considering notation as a cognitive tool does not
amount to claiming that mathematical reasoning only involves
perception, or that the possible actions on the notation are driven
by perceptual groupings alone. On the contrary, cognitive tools
trigger diagramming; that is, they recruit multiple systems, one of
which can certainly be the conceptual system. The important point
is that the influence of perception and action on mathematical
reasoning is a further aspect of mathematical practice that has
been commonly neglected and adds up to more complex cognitive
processes.

In line with these observations, and from within the philosophy
of mathematical practice, a trend that we might call philosophy of
notation has emerged with the objective of defining the design
principles that can be found behind the introduction of specific
notations with a particular intended aim, and the trade-offs that
these principles imply. In a very recent study, Dirk Schlimm
analyzed the physical features of the notation that Gottlob Frege
developed in his Begriffsschrift by focusing in particular on
propositional logic.14 Schlimm’s conclusion is that Frege’s two-
dimensional notation was intended to be effective, in particular to
encourage groupings according to some specific perceptual chunks
and thus to make the statements more easily readable so as to
facilitate further transformations.

In Frege’s notation, each line corresponds to an individual
proposition that is logically linked to the ones above and
underneath (see Figure 2). As Frege himself explains, “the
Begriffsschrift makes the most of the two-dimensionality of the
writing surface by allowing the assertible contents to follow one
below the other while each of these extends [separately] from left to
right. Thus, the separate contents are clearly separated from each
Philip J. Kellman, Christine M. Massey, and Ji Y. Son, “Perceptual Learning
Modules in Mathematics: Enhancing Students’ Pattern Recognition, Structure
Extraction, and Fluency,” Topics in Cognitive Science 2, no. 2 (2010): 285–305.
14 Dirk Schlimm, “On Frege’s Begriffsschrift Notation for Propositional Logic:
Design Principles and Trade-Offs,” History and Philosophy of Logic, 39, no. 1 (2018):
53–79.



Figure 3. An example of a syntax tree, starting from the main connective and
constructing other trees as branches.

Figure 4. A rotation of 90� degrees of Frege’s notation makes it “look like” a syntax
tree.

Figure 2. An example of Frege’s two-dimensional notation: the segment on the left
is used to express implication between the implication underneath and the one
above. The small vertical segment is used to express negation.
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other, and yet their logical relations are easily visible at a glance.”15

He thus designed his notation by following these principles: he
wanted “contents” to be to be organized along both the vertical and
horizontal axes, to be clearly separated from each other, and their
“logical relations” to be easy visible at a glance.

To give an example, compare different notations that express
the same logical proposition.16 The statement (A → : B) → (B → :
A), as displayed by the standard notation, becomes A � �B. � .
B � �A in Russell and Whitehead’s notation, where points are used
instead of parentheses, or CCANBCBNA in the Polish notation, or
the schema in Figure 2 in Frege’s notation. Alternatively, another
possible notation is based on syntax trees and is shown in Figure 3.

Schlimm’s point is that syntax trees should be considered the
canonical notation for the reason that, thanks to their physical
features, they make all relevant structural relations explicit. In a
syntax tree, it is very easy to find the main connective: it suffices to
look at the top node, regardless of the complexity of the entire
formula. Moreover, subformulas are very easy to individuate
because they are simply subtrees to the left and to the right of the
top node. This task becomes cumbersome in the case of very long
propositions as expressed by one of the linear notations, in which
parentheses and points are required.
15 Gottlob Frege, “Über den Zweck der Begriffsschrift,” Jenaische Zeitschrift für
Naturwissenschaft 16, Neue Folge 9, suppl. (1882–1883): 1–10, on 7–8. English
translation: “On the Aim of the ‘Conceptual Notation,”’ in Gottlob Frege, Conceptual
Notation and Related Articles, 90–100 (Oxford: Oxford University Press, 1972).
Emphasis added.
16 Of course, more complex and mathematically relevant examples might be
given, which would be closer to the challenge Frege wanted to respond to. However,
for the sake of clarity, I will refer to a very simple one.
Surprisingly, Frege’s notation happens to be very close to syntax
trees (which were introduced in linguistics long after Frege). In
fact, it suffices to rotate Frege’s notation 90� to the left as displayed
in Figure 4, and then to insert the appropriate label nodes, to obtain
the corresponding syntax tree in Figure 3.

Detailsabout this sortof transformation can be found in Schlimm,
where the correspondences between the geometrical features of
Frege’s Begriffschrift and the logical operators are thoroughly
presented.17 However, part of my aim in this section is precisely
to point out at the fact that without giving these correspondences
explicitly, the reader should be able to extract them from the visual
features of the two-dimensional notations, supposedly with no
particular cognitive effort. A different but related point is that it is an
empirical question todecide which notationwould be more suitable
for which set of further transformations and as a consequence for a
particular epistemic use, on the basis of the way we spontaneously
perceive and spontaneously act on them.

An explanation is needed for the reasons why Frege’s notation,
despite its alleged cognitive advantages, was in the end unsuccessful.
In Schlimm’s reconstruction, anybody familiar with logical systems
in the nineteenth century (when no syntax trees were available)
would have recognized Frege’s notation as quite odd. Frege himself
seemed to be aware of that, since he mentions in the preface of his
work that readers might be “frightened off by the first impression of
unfamiliarity.”18 The main reason for the failure of Frege’s attempt
might then be found in the profound unfamiliarity of his two-
dimensional notation for Frege’s contemporaries, and not in some
intrinsic cognitive inconvenience. This case suggests that the
designers of new innovative cognitive tools should worry about
them to be “familiar enough,” if they want them to be adopted by a
particular community of practitioners.

I will come back to formulas later in the discussion.

Diagrams in Topology

My second example of representational cognitive tools in
mathematics relates to some figures that are used in the practice of
topology, which were the target of some previous work with De
Toffoli.19 Topology is a branch of geometry that deals with those
17 Schlimm, “On Frege’s Begriffsschrift Notation” (ref. 14).
18 Gottlob Frege, Begriffsschrift. Eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens (Halle an der Salle: Louis Nebert, 1879), 7. English
translation: “Begriffsschrift, A Formula Language, Modeled upon that for Arithme-
tic,” in From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, in Jean
van Heijenoort, ed., 1–82 (Cambridge, MA: Harvard University Press, 1967).
19 De Toffoli and Giardino, “Forms and Roles of Diagrams”; “Inquiry into the
Practice” (ref. 8).



Figure 5. A knot diagram of the trefoil knot.

Figure 6. A representation of the torus as constructed from a square with its sides
identified. Reproduced with permission from Silvia De Toffoli.

Figure 7. A representation of a cylinder as obtained by identifying two sides of a
square in the same direction. Reproduced with permission from Silvia De Toffoli.

Figure 8. A representation of the torus; the two marked curves indicate where the
gluings (the identifications) were made. Reproduced with permission from Silvia De
Toffoli.

22 David Kirsh and Paul Maglio, “On Distinguishing Epistemic from Pragmatic
Action,” Cognitive Science 18 (1994): 513–49. Kirsh and Maglio’s study is on the
performance of Tetris players. Tetris is a popular videogame from the 1980s, where
some pieces that are shaped as geometric figures and composed of four squared
blocks fall one after the other down onto the playing field. The objective of the game
is to move the pieces down so as to create a horizontal line below, composed of ten
blocks presenting no gaps. Once a whole line is created, it disappears, and any block
that is above the deleted line falls down. The game is over if the stack of pieces
reaches the top of the playing field; however, if a certain number of lines is cleared,
then the game enters a new level (in which the pieces will go down faster). In order
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properties of geometric configurations that remain unchanged
under continuous deformations such as stretching or twisting, that
is, up to homeomorphisms; in other words, one can think of
topology as “rubber sheet” geometry.

In a first article devoted to knot theory, which studies
topological knots, we focused on the use of knot diagrams, like
the one depicted in Figure 5. We argued that knot diagrams are not
only visual projections of a knot but also dynamic tools: when
looking at a knot diagram, experts envisage possible moves on it, in
order to infer new information about the properties of the
corresponding knot. Knot diagrams are representational cognitive
tools because they are external and material representations
produced by the practice of topology on which an expert can
carefully arrange the pattern of inferences. Moreover, they trigger a
specific form of diagramming that is manipulative imagination:
experts know how to perform or how to imagine performing some
inferential actions on the diagrams. Finally, they are representa-
tional cognitive tools because they are at the same time
representations of knots and tools supporting mathematical
operations on them.

To give an example of how manipulative imagination works,
consider the construction of the torus as a square with its sides
identified (see Figure 6). This example is taken from some further
work on the practice of low-dimensional topology.20

Given a square with boundary, that is, a surface homeomorphic
to a disk D2, it is possible to identify or, in manipulative terms, “to
glue,” two of its opposite sides in order to obtain another surface. If
the two sides are glued in the same direction, as indicated by the
black arrows, then a cylinder is obtained (see Figure 7). Then, the
other two sides of the square in the direction of the white double
arrows are glued,21 thus obtaining the torus (see Figure 8).

The square diagram in Figure 6 is a cognitive tool because: (i) it
is an external and material object that can be shared among
practitioners and structure their thoughts; (ii) it triggers
20 De Toffoli and Giardino, “Inquiry into the Practice” (ref. 8).
21 The particular appearance of the two couples of arrows—here, black and white
double arrows—is arbitrary; they simply have to be different so as to visually allow
distinguishing easily the couple to glue and the direction in which to glue.
manipulative imagination and therefore it is a multi-recruiting
system: one has to imagine bending and gluing back the sides of
the square; finally, it is representational because (iii) it represents
the torus but it also displays the information on how to manipulate
the square in order to construct it.

A first important point to make here is that not all the
conceivable transformations that might be applied to this diagram
are legitimate; that is, only some of them are recognized as
meaningful in relation to the specific mathematical context. These
actions are also epistemic: they allow obtaining new mathematical
results. To clarify, the term “epistemic action” is taken from the
experimental study presented years ago by David Kirsh and Paul
Maglio, where they distinguish between pragmatic actions, which
aim to bring the agent closer to a physical goal, and epistemic
actions, which use the external world to improve cognition.22 In
their definition, epistemic actions are “physical actions that make
mental computation easier” and are performed outside the mind
on the physical objects that are available, with the result of
enhancing inference and reasoning.23 De Cruz and De Smedt claim
that this might be the case also for the actions that are applied to
notations in mathematics, since mathematical symbols “enable us
to perform mathematical operations that we would not be able to
do in the mind alone, they are epistemic actions.”24
to create the line below to the aim of having it cleared, the player can move the
pieces sideways and rotate them by 90-degree units. In their observations, the
authors noticed that players act on the pieces of the game not only to directly
achieve the final goal but also to understand what the best move to create a line
down onto the playing field is.
23 Kirsh and Maglio, “On Distinguishing” (ref. 22), 514.
24 Helen De Cruz and Johan De Smedt, “Mathematical Symbols as Epistemic
Actions,” Synthese 190, no. 1 (2013): 3–19, on 4.
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A second important point is made by Mark Colyvan, who mentions
as well the case of square diagrams in topology and claim that they
are “both notation and a kind of blueprint for construction of the
objects in question,” and for this reason they simultaneously
present features belonging to algebra and to geometry.25 This is in
line with our characterization of representational cognitive tools:
his suggestion is that “whichever way you look at it, we have a
powerful piece of notation here that does some genuine mathe-
matical work for us.”26 Later, I will consider again this claim.

Good Design and Mathematical Practices

In the previous sections, we saw that formulas in algebra and
logic and knot diagrams and square diagrams in topology are
cognitive tools because they are (i) external material objects that
are the product of the culture of mathematics and that structure
our thinking and (ii) they are subject to conceptual but also to
sensorimotor considerations: they are targets for perception and
action to be redeployed for more cognitive and abstract uses.
Moreover, they are representational because (iii) they serve as
representations and at the same time as instruments to study what
they represent.

Cognitive tools are the product of cultural evolution and they
are intended to fulfill some specific cognitive or conceptual aim.
For this reason, ideally cognitive tools should be designed and
selected by the community of practitioners as having the
appropriate physical features so as to trigger diagramming and
thus enhance reasoning. Consider Frege’s notation or square
diagrams again. Thanks to their physical features, their content
gets structured in a way that makes it easily graspable and allows
for applying particular physical transformations that correspond to
meaningful operations, in line with the designer’s intentions.
However, Frege’s notation was not successful because it was too
unfamiliar at the time, whereas square diagrams are commonly
adopted today for teaching topology.27 In some cases, cognitive
tools are configured very carefully to respect our organizational
perceptual skills. For example, it is easy to interpret two
interrupted lines in a knot diagram as a single thread going below
another, which aligns with the Gestalt law of continuity; thanks to
manipulative imagination, we can even imagine grasping one of
these threads, pulling it off and inferring the consequences of our
move.

By acknowledging all these elements, the practice of mathe-
matics does not seem to correspond entirely to the disembodied
process of obtaining more and more theorems by carrying out long
chains of deductions based on a limited number of mathematical
elementary propositions—the axioms. Evidence is given in favor of
the claim that in the everyday activity of doing mathematics, the
physical features of the tools that are used—and their interpreta-
tion in line with the transformations allowed by the practice and
depending on the level of expertise of the agent—may have an
influence on mathematical reasoning.

In the next and final section, I will try to better characterize the
functioning of representational cognitive tools, by focusing on
their material structure and on the epistemic actions that they
make accessible.
25 Mark Colyvan, An Introduction to the Philosophy of Mathematics (Cambridge:
Cambridge University Press, 2012), 139. Emphasis added.
26 Colyvan, Philosophy of Mathematics (ref. 25), 139.
27 The introduction of these diagrams from an historical point of view is partly
reconstructed in Christophe Eckes and Valeria Giardino, “The Classificatory
Function of Diagrams: Two Examples from Mathematics,” Lectures Notes on
Computer Science, 10871, 120–136.
The Functioning of Representational Cognitive Tools

Leaving metaphors aside, how could it be that a map “tells” its
user where the library is, or that square diagrams “do some
genuine mathematical work” for the topologist? In order to clarify
these claims, I will draw on the notion of material anchor as defined
in cognitive anthropology by Edwin Hutchins and I will add some
elements coming from psychology, in particular by referring to
James Gibson’s notion of affordance.28

Representational Cognitive Tools as Material Anchors

As Hutchins explains, one of the principal findings of studies of
situated cognition is that humans make “opportunistic use of
structure.”29 To give an example, in the method of loci the orator
who has to memorize a speech associates elements of speech with
architectural features of the place where the speech is delivered.
Designed physical objects can also serve as structures to enhance
or support cognition. Of course, cognitive artifacts are always
embedded in the larger cultural system of practices in which they
are used. According to Hutchins, in most cases, cognitive processes
are distributed in several ways: across the members of a social
group, through time, and, more importantly for the present
purpose, by the coordination between internal and external and
material structure; in his words, “distributed cognition looks for a
broader class of cognitive events and does not expect all such
events to be encompassed by the skin or skull of an individual.”30

In particular, Hutchins introduces the notion of “material
anchor” by presenting a continuum of cases ranging from those in
which external and material objects provide little or no structure
to a conceptual model to those in which virtually all aspects of the
conceptual model are embodied in the structure of the external and
material objects. In all examples, “the cognitive operations
performed on the model are implemented as physical manipula-
tion of material structure.”31

Hutchins’ idea is that we refer to some particular conceptual
model to build the constraints of the task into the structure of the
cognitive tool. For example, a visualization technique used by
Japanese students allow them to compute the day of the week of
any day in the year by looking at a set of regions on the first three
fingers of their left hand. Another example is the ancient schema of
the wind rose, which allows making correspondences between
direction and time; as Hutchins explains, “by blending the
conceptual structure of time with the material structure of the
compass rose, the navigator can experience direction as an
expression of time.”32

Both memory and processing load can be reduced if the
constraints of the task can be built into the physical structure of a
material device. This is a result of a cultural practice: a physical
structure is not a material anchor because of some intrinsic quality,
but because it is used as such.

Representational cognitive tools, as characterized in the
introduction, can be considered to be material anchors for
conceptual blends, enhancing and supporting reasoning by
28 Edwin Hutchins, “Material Anchors for Conceptual Blends,” Journal of
Pragmatics 37, no. 10 (2005): 1555–77; James J. Gibson, The Ecological Approach
to Visual Perception (Boston: Houghton Mifflin, 1979).
29 Edwin Hutchins, “Cognitive Artifacts,” in The MIT Encyclopedia of the Cognitive
Sciences, ed. Frank C. Keil and Robert A. Wilson,126–128 (Cambridge, MA: MIT Press,
1999), 126.
30 Edwin Hutchins, “Cognition, Distributed,” in The International Encyclopedia of
the Social and Behavioral Sciences, ed. Neil J. Smelser and Paul B. Baltes, 2068–2072
(Oxford: Elsevier, 2001), 2068.
31 Hutchins, “Material Anchors” (ref. 28), 1574.
32 Hutchins, “Material Anchors” (ref. 28), 1569.
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relieving cognitive load and structuring thought. A great part of
thinking depends on the many physical structures that are
available for us as the result of the cultural process of
“crystallization” of conceptual models into external and material
objects. These objects can be manipulated meaningfully relative to
some conceptual context and they serve as material anchors for
cognitive tasks. In our particular case, their physical manipulations
correspond to mathematical operations and reduce memory and
processing loads. Moreover, the structure of the tool embodies the
structure of the represented mathematical content in such a way
that in some cases it may have an influence on understanding or
conceptualization; questions about what constitute good and bad
design in mathematics arise. In the continuum of cases discussed
by Hutchins, representational cognitive tools are in the vicinity of
those in which virtually all aspects of the conceptual model get
embodied in their structure.

However, if thinking processes involve complex manipulations
of conceptual structure in some cases, and cognitive operations
performed on the model are implemented as physical manipu-
lations of material structure, how are these transformations
defined? How do the users know at each time which actions to
perform on the cognitive tool in order to enhance or support their
reasoning? How do perception and action get involved? In the case
of representational cognitive tools in mathematics, these actions
depend both on the physical features of the tools and on the
properties of the mathematical content that gets represented. To
address these questions, I will refer in particular on an extension of
the notion of affordance, as originally introduced by Gibson.33

Representational Affordances

In his proposal to revise experimental psychology, Gibson
pointed out that the real research target in the empirical research
on vision should not be the physical world, which is the object of
other scientific disciplines—physics for example—but rather the
environment humans with vision live and move in. Once the
environment is considered, it is possible to recognize affordances in
it.34

An “affordance,” a term derived by the verb “to afford” but
invented by Gibson, refers at the same time to the environment
and to the subject, since it relates to both, and thus implies the
complementarity between the two. In Gibson’s words, “the
affordances of the environment are what it offers the animal, what
it provides or furnishes, either for good or ill.”35 To give an
example, take a surface with some physical properties: it is
horizontal, flat, extended, and rigid. However, what is relevant to us
is not that it possesses the aforementioned physical properties, but
that thanks to them it affords support.

Affordances are not only important for the natural environ-
ment, but they are also crucial for designed objects. Consider a
hammer, which is conceived with a particular function coupling
with some particular affordance; for example, a good hammer
affords good grasping. However, there may be cases in which the
designed affordances do not align with the function of the designed
object. A simple example is the following: a door, with a handle,
which has to be pushed to open, is badly designed: it affords
pulling but it requires the opposite action to fulfill its function.

Natural things afford specific actions in the environment, and
designed objects are conceived to afford some particular action in
view of some intended pragmatic aim. What about representa-
tional cognitive tools? In this case, the objects in question are
33 Gibson, Ecological Approach (ref. 28).
34 Gibson, Ecological Approach (ref. 28).
35 Gibson, Ecological Approach (ref. 28), 127.
external and material but serve as representations and at the same
time as instruments for some epistemic aim.

My proposal is that representational cognitive tools also afford
some actions on them, and some of them may correspond to
epistemic actions. Since they are material objects but also
representational objects, I will call these affordances representa-
tional. Further distinctions have to be made. Analogously to other
concrete objects in the environment, representational cognitive
tools present a first layer of affordances that simply depend on our
perceptual system. For example, the formulas described in the
previous sections triggered perceptual grouping mechanisms;
tables or graphs may afford other kinds of transformations
depending on the symmetries they display, to which we attend
very spontaneously. At this first level, the nature of the cognitive
tool as external and material object brings about competences
originating in our relationship with concrete objects in the
environment.

However, another important feature of representational
affordances is that some of them are highly context dependent:
they are conditional on interpretation and on the function of the
cognitive tool. The same notation or diagram might afford different
actions and transformations when having different functions or
across different disciplines. For example, a triangle in Euclidean
geometry affords among other things translation but only an
expert knows that it cannot afford, for example, stretch; however,
this affordance may well be available in other geometrical
practices. It is at this level that the conceptual system gives more
clearly its contribution to diagramming by recognizing the
constraints imposed to the material anchor by the conceptual
model.

As a consequence, I will distinguish between perceptual
representational affordances and context-dependent representa-
tional affordances. On the one hand, cognitive tools spontaneously
afford some actions because they are part of our material
environment: it is thanks to good continuation, which applies to
other percept as well, that the threads in a knot diagram are seen as
uninterrupted lines despite the fact that they are interrupted in the
diagram (see Fig. 1). On the other hand, cognitive tools also afford
actions that are only “for the expert”: this second kind of
affordances determines at each time what is correct and what is
not, depending on the mathematical context.

If this is the case, then two general consequences can be drawn.
First, a design principle can be defined, according to which it is
commendable to prevent perceptual representational affordances
from being sources of errors. This is the case of the manipulations
applied to the equations by Landy and Goldstone: adding spaces or
lines triggers features of our cognitive systems, such as perceptual
groupings, and this may lead to hindering effects of sensorimotor
considerations on mathematical reasoning. On the contrary, it is
convenient to exploit perceptual representational affordances to
facilitate the relevant and correct transformations and make them
correspond to legitimate actions that are also meaningful in the
mathematical context. This is the case of flipping upside-down
fractions when changing a division into a multiplication, or of
displaying a long logical proposition by a syntax tree to identify the
main connector, or of using a square diagram to define the path of a
point on a torus. Second, the context dependence of some
representational affordances has to be recognized and seriously
taken into account: different contexts or functions can make
different context-dependent representational affordances emerge,
but these affordances will still be conditional on the physical
features of the material anchor and will keep interacting with the
perceptual representational ones. One might also envisage cases
where a perceptual representational affordance provided by a
particular tool is so forceful that it contributes to the definition of
new meaningful and epistemic actions.
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To sum up, my proposal is that representational cognitive tools
in mathematics are material anchors that are well designed when
they spontaneously afford the meaningful transformations that
lead experts to inferential and epistemic actions. The hypothesis is
that a cognitive tool is well designed when context-dependent
representational affordances are in line with perceptual represen-
tational affordances; in other words, a representational cognitive
tool serves as a good material anchor when diagramming is at its
best, that is, when our perception and our action are spontaneously
driven towards conceptually meaningful manipulations, thus
facilitating inference.

Conclusions: Representational Cognitive Tools in Mathematics

I have shown the value of considering representations such as
formulas or diagrams in mathematics as representational cognitive
tools, thus bypassing the standard dichotomy between image and
word. Cognitive tools are external material objects that are the
product of our culture and structure our thinking and are shared and
used in view of some inferential aim. They can be inspected and
manipulated thanks to diagramming: as multi-recruiting systems,
they are aimed at enhancing reasoning. Moreover, representational
cognitive tools are at the same time representations and instru-
ments to study the objects they represent. The introduction and the
use of cognitive tools in mathematics are crucial for the develop-
ment and the advancement of mathematical thinking.

Moreover, following Hutchins, I hypothesized that these tools
are material anchors to support and enhance reasoning about
some conceptual model, and they allow users to act on them by
performing epistemic and inferential actions. Such actions
correspond to the representational affordances provided by the
tool, which are based both on our cognitive system and on
expertise. The affordances that are recognized by the experts are
context dependent and correspond to meaningful manipulations
by respecting the constraints that are determined by the larger
mathematical context. Thanks to diagramming, different systems
already available for other more pragmatic tasks such as the visuo-
spatial system and the motor system, work together with the
conceptual system on the material anchor in view of some
inferential objective.

This framework might be relevant for possible applications.
First, educators might consider whether the present strategies for
teaching mathematics take into account the dynamic use of
representational cognitive tools; for example, it might be
important for students to familiarize with the functioning of
cognitive tools by learning how to recognize their affordances and
to perform appropriate epistemic actions on them. Second,
developers might be interested in exploring a further extension
of affordances, for example when cognitive tools are presented on
touch screens that allow users to transform and change them on
line even more dynamically. What happens to representational
affordances when they meet these new technologies? Do the
constraints on the structure depending on the epistemic context
get mixed up with the affordances of the new screens? The answer
to these questions is matter of future research.
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