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SUMMARY

While many different mechanisms contribute to the generation of spatial order
in the development of an organism, the formation of morphogenetic fields within
initially near- uniform cells and tissues which in turn direct cell responses giving
rise to pattern and form are of major importance and an essential part of the bio-
logical generation cycle. The chemical nature of such fields is not yet known, but
it is most likely that they represent spatial concentration patterns of substances
(or states of substances) produced by molecular kinetics. Short-range autocat-
alytic activation in conjunction with longer range inhibition or depletion effects
suffice to generate such patterns. These conditions are necessary for the simplest
two-factor case and are likely to be fair approximations in multi-component sys-
tems in which activation and inhibition may be system parameters, subsuming
the action of several agents. The conditions of autocatalysis and lateral inhi-
bition can be shown to be closely related to the analytical results obtained by
general stability analysis, although this correspondence is not trivial and not im-
mediately obvious. Very different molecular mechanisms are consistent with the
concept, but fairly simple mechanisms known in molecular biology, in suitable



combination, would be sufficient. Gradients, symmetric and periodic patterns in
one or several dimensions, stable or pulsing in time can be generated in this way.

The pattern-forming systems account for striking self-regulatory features of-
ten observed in biological systems, including the reproducible formation of struc-
tures from near- uniform initial conditions, polarity, size-regulation and symmetry
changes; quantitative aspects of biological systems, such as regenerating hydra
and developing insects have been modelled on this basis. The theory is applicable
to intercellular as well as intracellular patterns.

Generalization to more than two components, with activation and inhibi-
tion representing system features, shows that ”lateral activationm-mutual ac-
tivation of two locally exclusive states in adjacent regions, mediated by diffusible
substrates-can be subsumed under a generaliza-tion of the condition of lateral
inhibition in conjunction with autocatalysis. Chains of induction as they seem
to occur in intercalary regeneration can be modelled by further generalizations
along these lines.

In multicellular tissues, cells may respond to morphogenetic fields by cell de-
termination and differentiation, changes of cell form and interaction, and the
regulation of growth and proliferation. Cell determination occurs in development
as a sequence of decisions between relatively few alternatives at each stage. There
are indications that determination may be combinatorial, with a combination of
control circuits turned ”on” defining each state of determination. Morphogenetic
fields are expected to contribute to control these decisions. In this way, areas may
become subdivided into discrete subareas. Combinatorial regulation would imply
that there could be an area code in morphogenesis (not necessarily for all tissues,
cell layers, and cell types), each area being defined by a different combination of
control circuits turned “on” to define the regulatory state of the cells.

Real form of an organ or organism can often be traced back to the curvature
of cell sheets resulting from evagination or invagination of initially nearly flat
sheets in the course of development, the position of evagination being determined
by morphogenetic fields. Experimental evidence indicates that often bending
moments rather than tangential forces govern the process and that evagination
is self-regulating, reversible and sometimes re- peatable. This in turn suggests
that the process is not time-controlled but rather describable as approach to a
stable steady state maintained some time (though not indefinitely) in the course
of development and depending on the local value of the morphogenetic field. The
form assumed upon evagination may then be describable as minimizing a formal
generalized potential. Intracellular mechanisms, e.g. involving intracellular fibres,
and contact-mediated cell interaction with other cells, and with medium may
contribute to potential in a complex manner. It can be shown that linear relations
between potential and (idealized) surface areas of a cell are inconsistent with a
freely evaginating stable cell sheet, but simple non-linear features (e.g. due to
capping of surface components) are consistent with stability. Local activation of
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cell sheets leads to bending moments, curvature and the generation of form if
the sheets are anisotropic in the inside-outside dimension (as many cell sheets
obviously are). Shell theory as developed by architects and engineers is useful for
calculating form of cell sheets. Elongated structures can be modelled on this basis.
It is not claimed that the concept of minimal potential is always applicable-there
will be cases requiring explicit treatment of friction, shear and pressures arising
from growth; but in the cases where the self-regulatory properties mentioned
are experimentally observed it is likely that the concept of minimal potentials is
adequate.

The essential requirement for non-linear effects of cell form and contact areas
for under- standing stability, curvature and structure of cell sheets suggests that
these parameters may also contribute in a subtle non-linear manner to the regula-
tion of cell proliferation and tissue growth. This notion might have consequences
for the understanding of malignant growth as well.

The theoretical treatment of morphogenetic fields discussed in this paper in-
dicates that relatively simple molecular kinetics (consistent with conventional
molecular biology) suffice to explain basic empirical features of biological pattern
formation and regulation. Pattern formation based on autocatalysis and lateral
inhibition is formally analogous in some respects to the generation of structures
in inorganic physics and economics. However, biological pattern formation has
the distinct feature of leading to highly complex re-producible structures, un-
der the control of genes, by the invariance of the pattern formed with respect to
many details and fluctuations of initial conditions, and by the defined localization
and orientation of patterns, subpatterns, sub-subpatterns etc. in the course of
development.

Clearly the concepts used in the theories proposed and discussed have to be
substantiated and confirmed by biochemical evidence; however, if the mechanism
is within the scope of general kinetics on which the theory is based, even a
complete list of bio- chemical structures involved would not in itself lead to an
explanation of biological patterns. Rather, the mathematics linking molecular
kinetics with developmental regulation con-stitutes, by itself, a necessary aspect
for the understanding of spatial order in biological development.
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I. GENERATION AND REGULATION OF BIOLOGICAL PATTERNS:
BASIC TYPES
One of the most impressive features of higher organisms is their highly specific form,
reproducible through virtually unlimited numbers of generations. In each generation,
starting from an egg cell, a complex multicellular animal is produced under the instruction
of the genes. Many different mechanisms are involved in this process, including proliferation,
determination, differentiation, interaction, movement and death of cells with defined order

in space and time.
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Though patterns are essentially determined by genes, it is obvious that nucleotide
sequences cannot affect directly the pattern of the organism to be formed. Rather, this
determination is mediated by general metabolism; how can biochemistry impose spatial
order on developing organisms? It is true that spatial order does not start from scratch
upon fertilization. Oocytes may be internally structured to a considerable extent, but the
specificity of internal structure is lower by several orders of magnitude as compared with
that of a complete animal, and oocytes themselves develop from almost unstructured
ooblasts. Though some spatial cues may be derived from preexisting structures (such as
cues to orientation), the spatial order in an organism is essentially generated de novo by
internal mechanisms in the course of embryogenesis. How can this occur under the direction
of the genes on the basis of molecular and cellular biology ?

We may distinguish a few basic types of mechanisms which can generate order in space:
Self-assembly, order in time, and internal generation of structure within initially near-
uniform areas. If different components, such as molecules or cells, are produced at random
positions, they may nevertheless move and interact, forming various contacts until they
assume a well defined, energetically favoured configuration. An example is crystallization.
Subcellular structures such as ribosomes, chromatin, membranes and fibres are probably
formed by self-assembly. At the cellular level, different cell types mixed at random can often
form defined configurations by sorting out, leading for instance to a structure with one cell
type in the center, the other at the periphery, or to multiple-layered structures. Probably
such processes also occur in the course of embryogenesis, but the major events in forming
multicellular organisms are not based on self-assembly of preexisting randomly distributed
cell types. It appears that self-assembly of cells reflects more the property of stabilizing
certain (e.g. layered) structures and of expressing specific chemical markers on the surface
of different cell types, rather than an important embryological mechanism itself.

Order in time is essential to understand development in general. Many different cell types
are produced by subsequent steps of determination of precursor cells; each step can be
considered as a decision between alternative pathways in cell lineage. Development of spatial
order depends on a defined sequence of the formation of structures, substructures, sub-
substructures etc. Moreover, mechanisms are conceivable that convert order in time
directly into order in space: if a structure grows out with growth proceeding predominantly
near a marginal (say distal) zone, different parts are laid down at different times, the most
distal part being made last. If the growth zone changes in time (for instance, as a function
of the number of cell divisions) different chemical regulatory substances may be active at
different stages of outgrowth leading to different properties in proximo-distal order
(Summerbell ez al., 1973). There is not yet a specific proof for such mechanisms, but they are
highly likely to be involved somehow in embryology.

On the other hand, most primary structures of the early embryo as well as early rudiments
of substructures are neither made by self-assembly nor by sequential marginal growth;
rather, small initially near-uniform areas of embryonic tissue generate strikingly different
parts by internal mechanisms, be it with or without growth. This process appears to be an
important part of the generation cycle and is noteworthy for its striking self-regulatory
properties. The conventional explanation which is most likely to be correct is that in a first
stage a morphogenetic field is formed, made up of a spatial distribution of some physical
properties. In the simplest case it may be a gradient of a morphogenetic substance (Child,
1929) giving rise to a one-to-one correlation between substance concentration and position
to specify “positional information” (Wolpert, 1971) in the tissue. Symmetric, periodic and
other distributions can also be envisaged, forming an abstract, invisible “prepattern” of the
structure to be formed. (We will use the notion of morphogenetic field and prepattern
synonymously for any morphogen distribution affecting patterns, because a distinction is
somewhat ambiguous and intuitive, the term “prepattern” suggesting a relatively high
degree of isomorphy with the real patterns eventually formed.) Cells are assumed to respond
to local values of the morphogenetic fields by differentiation, proliferation, movement,
interaction, death etc. giving rise to visible structure and form.

Candidates for morphogenetic substances have been found (e.g. Tiedemann, 1968),
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and it has been established that very low levels of organic substances occurring naturally
in animals suffice to influence morphogenesis (Schaller, 1973; Berking, 1977). However, it is
still difficult to prove beyond doubt that a given substance is involved in the establishment
of the primary morphogenetic fields and not, for instance, in mediating and regulating their
effect on cells, because there is not yet a direct assay for such primary morphogens. There-
fore, at present, the chemical substrate of morphogenetic fields is still unknown.

On the other hand, there is much and most impressive empirical evidence on biological
properties, especially the self-regulatory capacities of morphogenetic fields. Structure
forms from near-uniform initial conditions and must be insensitive to details and fluc-
tuations of such conditions. A striking feature is size-regulation: A part often forms a
whole at reduced size, with correct proportions of the sub-structures; for instance, certain
early embryos cut in halves produce two complete animals. An important regulatory
feature is response to cues to orientation, called polarity. Many structures and sub-
structures (e.g. the legs) are asymmetric, and develop with predictable orientation within
the animal. Therefore, they cannot arise by random symmetry breaking, but must be
oriented by some cue from the preexisting structures.

A further regulatory feature is induction: Certain transplants can induce a secondary
structure; in the gastrula, a secondary embryo can be induced (Spemann and Mangold,
1924). The host tissue surrounding the transplant forms, or at least participates in forming,
the secondary structure. Aside from the activating effects of induction there is evidence for
inhibitory effects in pattern formation: Existing structures are often surrounded by in-
hibitory fields preventing a similar structure from being formed in their immediate en-
vironment. On this basis regular spacings of structures, such as leaf rudiments in plants, can
be explained.

One of the biological systems that shows all these basic self-regulatory properties in a
relatively simple fashion is Hydra (Fig. 1), which was one of the earliest experimental
systems in the history of developmental biology (second only to the chick embryo), and has
long been known for its striking regenerative capacities (Trembley, 1744). Any tissue cut out
from the body column regenerates a new animal with head and foot and does so without
excessive growth and even in the absence of growth (Clarkson, 1969), essentially re-
modelling existing tissue of the body column into head and foot. Pieces of future head areas
of early regenerates can induce secondary heads if transplanted into the body column of
another host, showing that morphogenetic fields activating future head areas are actually
involved in determining head structures, and develop newly and rapidly in the process of
regeneration (Webster and Wolpert, 1966; MacWilliams, 1981). Depending on the section
cut, the same area of the body column can produce a head or a foot upon regeneration of the
section. Therefore, the decision where to form a head does not depend on a local cell
property or the occurrance of a cut, but results from cell communication across the re-
generating section which leads to the formation of the morphogenetic field that activates
the future head. Hydra tissue shows proximo-distal polarity: In sections of the gastric
column the head develops in most cases in the part of the regenerate which has been
closest to the original head. Experiments in which animals have been reconstructed and
regenerated from aggregates of previously isolated cells have shown that this tissue polarity
is due to a graded scalar property, probably the concentration of cell constituents, cell types,
or both (Gierer et al., 1972). Polarity determines the orientation of the morphogenetic field,
but the polarity-defining gradient cannot be the morphogenetic field itself, which is newly
formed after the onset of regeneration. Size regulation occurs, small tissues giving rise to small
heads, big pieces of tissue to big heads (Bode and Bode, 1980). Induction is observed as the
capacity of certain transplants to induce secondary heads, and inhibition by the effect of
preexisting heads inhibiting certain transplants from inducing second heads in their im-
mediate environment (Webster and Wolpert, 1966; MacWilliams, 1981).

Hydra is an example of another effect of pattern regulation, a striking all-or-none change
affecting symmetry. Certain chemicals can upset the asymmetry of the regenerate altogether,
leading for instance to a coelenterate with feet at both ends of a regenerate and a head in
the middle (Hicklin et al., 1969).
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FiG. 1. Pattern regulation exemplified by hydra (regulatory properties are summarized in a
schematized and simplified representation). a~c. Any section of the hydra column regenerates
an animal; regeneration is polar, the head pointing toward the original head. d-h. Polarity is
due to a graded property, probably a substance gradient, and not to cell orientation: animals
regenerate from aggregates of previously disaggregated cells; if cells are derived from parts of
the gastric column more close (A), or more distant (B) from the head (d, ¢), and aggregates
(f) are grafted in serial order A-B-A (g) or B-A-B (h), heads regenerate predominantly in the A
region. i. Certain chemical treatments can induce regeneration of symmetric animals with
feet at the ends and a head in the middle. j—p. Morphogenetic fields determine future head areas.
They are formed rapidly upon regeneration: a transplant including the future head area of a
regenerate (1) can induce head formation after 6 hours of regeneration at a position of the host
animal (o) where a 0-hour transplant is ineffective (k, n). Transplants are ineffective in
positions too close to the preexisting head (p), demonstrating an inhibitory field surrounding
the latter. The range of mutual inhibition of centers of activation determines bud spacing at
alternate sites of the column (q).

The self-regulatory properties of developing systems have been a challenge for attempts
to account for biological structures on the basis of physics. They do in fact demonstrate
that the pattern to be formed is rather unrelated to preexisting spatial order, however
hidden. Though its orientation can be determined by preexisting spatial cues determining
polarity, the pattern itself must be made anew, involving spatial communication across
the entire area in which the pattern is produced.

II. PATTERN FORMATION BY AUTOCATALYSIS AND
LATERAL INHIBITION

1. Spatial Concentration Patterns and General Chemical Kinetics

How can we account for these internally generated patterns on the basis of physics?
Since we do not yet know the biochemical or physical nature of the fields, we have to
introduce an assumption as to the general class of physics the mechanism belongs to. If
we assumed that the basic phenomenon were magnetism, we would then try to understand
it in terms of Maxwell’s equations. The realistic assumption seems to be that morpho-
genetic fields have the same basis as other biological phenomena which have physical
explanations thus far; namely that they are primarily due to the interaction and movement
of molecular compounds in plasma, on subcellular structures, on membranes or in extra-
cellular space. The laws of physics applicable to this domain are such that the concentration
of any compound ¢(x, ¢) changes in time as function f; of the concentration of the various
compounds, to account for interaction, whereas movement due to diffusion, convection,
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conduction and other processes can be described by redlstrlbutlon operators 9 (c;) (in the
simplest case by diffusion terms D;-0%c;/0x?

Fc;=fi(c1...cN)+@i(c,.), i=1...N W

Such equations are not the most general description of anything molecular, and should not
be postulated in a dogmatic way. There may be directed, vectorial processes (e.g. co-
operative orientation of cells or fibres or directed pumping mechanisms) and processes with
an involved interaction of space as well as time parameters (e.g. involving autocorrelation,
or a rapid change of distribution parameters—such as diffusion constants—in time) which
may not be easily reducible to sets of equations of type (1). Moreover, to account for the
self-regulatory properties of fields, emphasis is placed on near-steady state solutions of a
system of type (1), and this emphasis may not be adequate in all cases; but this being said,
eqn. (1) represents a vast domain of general kinetics, and it is highly likely that it covers
elementary phenomena of the generation of morphogenetic fields based on molecular
biology.

Equations of type (1) are rather non-committing with respect to details of molecular
mechanisms. They represent an attempt to “demystify”” morphogenetic fields proposing that
they are due to conventional molecular biology and nothing else; and yet, they impose
stringent constraints on the construction of theories and models. Many explanations that
sound convincing if expressed in words, prove awkward or even inconsistent if expressed in
terms of eqn. (1). One may go as far as ask whether spatial pattern can be generated on this
basis at all. That this is the case was shown by Rashevsky (1940) and Turing (1952): If there
are at least two components interacting auto- and crosscatalytically and if there is re-
distribution by diffusion, then, under certain conditions, spatial concentration patterns can
be generated. The mathematical features of such systems, especially with respect to stability
analysis, have been elucidated by Gmitro and Scriven (1966), Glansdorff and Prigogine
(1971), Prigogine and Nicolis (1971), Segel and Jackson (1972) and others.

2. Pattern Formation by Autocatalysis and Lateral Inhibition: Outline of Theory

To explain biological phenomena, general kinetics of the type eqn. (1) are too complex and
varied. Aiming at a more specific theory, we have asked the following question: Can we
define a set of basic conditions required to generate patterns on the basis of molecular
kinetics eqn. (1), which are interpretable by features of biological molecules or systems of
such molecules; and which at the same time permit us to derive and model for the self-
regulatory features of morphogenetic fields described above which are the testing ground
for any physical explanation? In analysing this question, we have found the condition of
“lateral inhibition” in conjunction with autocatalytic activation (Gierer and Meinhardt,
1972, 1974): a requirement is a self-enhancing feature, coupled to the generation of inhi-
bitory effects which extend into a wider area as compared to activation. Then local acti-
vation is self-enhancing, so that some slight local initial advantage can develop into a
striking activation, but the production and spreading of inhibitory effects prevents an overall
autocatalytic explosion, causing activation in part of the area to proceed only at the
expense of deactivation elsewhere until a stable pattern is formed. The forms of patterns are
essentially determined by the ranges of activation and inhibition, the range being the mean
distance between production and decay or removal of respective compounds. These
conditions are necessary for the simplest two-factor case; as will be discussed further below,
they may be generalized to more complex systems.

For two factors, a, and, b, equations of type (1) read

% fa b + 9, (a)

2 = gla, 0) + 2,0) (2b)
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2., 9, are redistribution operators, giving rise, in the simplest case, to diffusion terms
D,(8%a)|ox?, D,+(0b)[/0x*. Patterns are to be generated from near-uniform initial conditions
by autocatalytic mechanisms, but the form of the pattern should be relatively insensitive to
details of initial conditions, activation is to be localized, and an overall autocatalytic en-
hancement is to be prevented. This requires that there is a uniform solution for /=0 and
g = 0 (Eqn. 2) at some values a, and b,,. The solution is to be stable for uniform distributions
(and thus for the spatial average @ and b in case of small deviations from the uniform
distribution) and labile for local deviations. In formal terms, this leads to the following
conditions for pattern formation:

(A) One of the components (say a) has to be activating in the sense of sclf-enhancement.

of
<—a_a)ao,bo >0 (3)

(B) The other component (b) must be cross-inhibiting to prevent an overall autocatalytic
explosion and to render the average values a, b, near the uniform distribution stable
despite the autocatalytic term. Inhibition can be substituted by depletion of a com-
pound required for activation.

(O) The inhibitory effect must be sufficiently strong to ensure stability of the uniform sol-
ution and thus of average values of activation in case of small deviations from this
solution.

This stability can easily be assessed in various ways. We may assume that two requirements
for pattern formation discussed below are met: fast and wide redistribution of 4. For the
asymptotic case of extremely fast and wide redistribution, the solution of g =0 implies,
according to eqn. (2b), that 4 is a function of some spatial average of a.

b = b(a) 4)

After insertion of eqn. (4) in eqn. (2a) the condition for stability of the uniform solution
a=ay, b=>b, reads

i@ b@)N (o or\ (b
( da >a=ﬂo - (a—a>ao,bo + <%>ao,bo <aa>au <0 (5)

(D) The inhibitory reaction must be relatively fast as compared to the activating one.

It is evident that, if the inhibitory reaction were extremely slow, it would not be able to
prevent an autocatalytic explosion. At intermediate levels inhibition may follow activation
with a lag phase leading to patterns pulsing in time.

Further conditions refer to ranges, defined as mean distances between production and
decay of compounds; for a diffusion constant D and decay rate 3, range is of the order of
J(D/P). It is not surprising that such space parameters essentially determine the spatial
characteristics of the pattern to be generated. In terms of ranges, the conditions read:

(E) Range of activation must be below a limiting value of the order of total field size.

(F) Range of inhibition must be sufficiently large in comparison to range of activation.

If range of activation were larger than total field size, any activating effect would be re-
distributed within the field, preventing the formation of a pattern. If the range of inhibition
were too small as compared with the range of activation, the inhibitory effect would not be
redistributed sufficiently to permit the local activation to proceed under conditions where
average activation is stable. This aspect, which has been called “lateral inhibition” in analogy
with the use of this term in neurophysiology and visual perception is basic to an under-
standing of such self-generating patterns.
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3. Generating Principle for Models of Pattern Formation: Power Laws

For the generation of equations and models of the type eqn. (2), and their assessment with
respect to pattern formation it is useful to give them more detailed and specific forms. In
particular, we may distinguish production terms P and removal terms Q:

% Pia, b~ Qe b) + 2a) (6a)
ob
B Pia, 1)~ 0a, B + 94D) (60)

If production and removal follow power laws,
P, ~a'b; Q,~a®b'*; P,~a"b'; Q,~a'b® @)
then with
n=_(iz— i) (is — i))/(ig — ig); m=1iy—is (8a)

conditions for pattern formation equivalent to condition 4 and C are, near the uniform
solution P, = Q,; P, = O,
n>m>0 (8b)

m > 0 is the condition for destabilization eqn. (3), and n > m the condition for stability of
the uniform solution eqn. (5). Cross- stabilization corresponding to condition B by inhibition
or depletion requires ig — i, > 0. Inhibition implies i, < iy, i5 > i; depletion corresponds to
[y >l4,05<Iq.

Models combining short-range activation, long-range inhibition, and auto- and cross-
catalysis can be generated and assessed for stability on the basis of conditions A-F,
especially with the help of the simple form of eqn. (8). It allows the assessment of orders of
reactions (representing, e.g. types of allosterism for enzymes or receptors) leading to a non-
trivial classification of models that do or do not lead to patterns. If removal kinetics of
activator is linear, autocatalysis must be “‘overlinear”, e.g. of second order. Two examples
meeting conditions eqn. (8) are a model with activator a(x, ) and inhibitor /(x,t)

da a? d%a

7~ “(7 - ) +Daas 2
oh 0*h

'a—t' = v(a - h) + Dh 'axz (9b)

and a depletion model where autocatalysis is counteracted by depletion of a substrate
s(x, t) required for activation

da o0%a

X ars — e 10
Py u(a’s —a) + D, o (10a)
B 1 = as) + D, (10b)
ot ) as S ox2

In eqn. (9) and (10) scales for concentrations have been arbitrarily chosen so that the
uniform solution for eqn. (9) is a =4 =1, and for eqn. (10) a = s = 1. Pattern formation
requires that inhibition or depletion is a relatively fast process (v > p), and is redistributed
widely (D, > D, in eqn. (9); D;> D, in eqn. (10)).

Further, conversion models have been proposed which introduce a simplification of the
two-factor mechanism of pattern formation, assuming that they are not produced inde-
pendently, but one is the degradation product of the other (Meinhardt and Gierer, 1974).
In depletion models, the depleted substrate may be the precursor of the activator; in inhibi-
tion models, the inhibitor may be the product of activator degradation. We have shown that
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such models lead to pattern formation by autocatalysis and lateral inhibition. An example
is described by the equations

da a? 0%a
i u( a) + D

o “ox?
oh 0%h
Ezﬂa_"}H‘Dha"i (v>p

The inhibitor 4 produced by activator degradationis assumed to have a larger diffusion rate
as compared with activator, for example because of a reduction in size of the molecule or
because of removal of charged groups that may interfere with passage from cell to cell.

4. Models Based on Asymptotic Validity of the Power Laws

In assessing mechanisms and models it is particularly useful to apply the principle of
asymptotic validity of the power laws outlined in the preceding section. Any equations with
any number of terms lead to patterns for finite ranges in parameter space if they can be
approximated by equations with power terms as described above. Additional terms should
be small if they are additive, and vary only slightly in space if they are multiplicative. Thus
an extension of eqn. (9) reads:

g_f o cp(;lf)a2 _ua+D, % (i1a)
%?— =c'p'(x)-a* — vh + D, % (11b
and further extensions lead to
-;%a = po(x) + cp(x).l——_fzaz . y_-i_fz —upa+ D, g'; (12a)
% = po(x) + ¢". p'(x).a* — vh + D,,g—;—g (12b)

By comparison with eqn. (9) it is evident that patterns will be formed if p,, po, x and
y are small, p(x) and p’(x) do not vary strongly in space. Equations (11, 12) have the
following molecular implications: activation is bimolecular, inhibition corresponds to
Michaelis-Menten kinetics. Often, the approximation 1/4 (Eqn. 1la) instead of 1/(y + )
(Eqn. 12a) is adequate since the range of 2 — 0 is never approached because of eqn. (11b).
All extensions incorporated in eq. (11, 12) relate to biological phenomena, in particular to
induction, polarity and size regulation. Inclusion of terms pg andjor y (Eqn. 12) above a
certain threshold leads to a simple model for induction: pattern formation does not occur
spontaneously but proceeds under the influence of a stimulus of sufficient strength, say a
local pulse of a. py, pg, p, p’ describe small variations, e.g. random fluctuations, or shallow
gradients of sources of activation and inhibition, such as concentrations of enzymes
producing or receptors releasing a or h, respectively. Such gradients, however shallow, can
define and explain polarity in the context of the theory by specifying the orientation of the
emerging pattern.

The basic term py(x) for activator production can give rise to fast initiation and regular
spacing of activation.

The function of a saturating term for a described by the factor 1/(1 + xa?) is also of general
interest: Such saturation leads to size regulation. The area of activation can adapt in
proportion to total size of the field. For small or zero x, maximal a is limited indirectly by
the diffusion term D, and the range r, = /(D,/u) determines the size of the activated area.
If the area increases, the maximal value of « in the field increases as long as total field is
within the range of inhibition, r, = (/(D,/v). If, on the other hand, « is larger, it leads to a
limitation of a to a saturating value. If total area is increased, but is still not much in excess
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of the range of inhibitor, inhibition can spread into a wider area, permitting the activated
area to extend into a wider area, too. The mechanism is such that a reaches near maximal
values in an area nearly proportional to total size as long as total size is within the range of
inhibition.

Equations (11, 12) based on the asymptotic equation (9) have proved to be particularly
suitable to model for biological systems, especially with regard to regulating properties,
such as tissue polarity, size regulation, induction and regular spacing of structures (Gierer
and Meinhardt, 1972; Meinhardt and Gierer, 1974).

5. Models Based on General Conditions of Destabilization

Asymptotic validity of the power laws eqn. (8) does not always lead to a straightforward
assessment of equations for pattern formation. An example for the application of the more
general laws eqn. (3, 5) is given by the following problem. In the example eqn. (9, 11, 12),
inhibitor is produced by a second-order reaction with respect to activation. Can one obtain
patterns based on eqn. (9a) or (12a), in a simple manner with monomolecular catalysis of
inhibitor production by activator, so that inhibitor distribution differs from activator
distribution only by a more extensive spreading effect in space? Then

oh ' 8%h

The power rules eqn. (8) show that eqn. (9a) is almost sufficient to ensure stability of the
uniform solution (m = n instead of m > n). Eqn. (9a) extended by a saturating term x as in
eqn. (12a) reads

da 21 1 d%a
_a(l+x) ! a+p

o4 _prera g 13
FYE 14+xa* ' h K ¢ ox? (132)

(with the uniform solution aq = 1, A, = 1). Eqn. (13a) is easily shown, in conjunction with
(13b), to meet the inequalities (eqn. 3, 5) for 0 < x < 1. Eqn. (13a, b) represents a pattern
forming mechanism with bimolecular autocatalytic activation and first-order cross-
inhibition in conjunction with a linear relation between activation and inhibitor production.
A computer demonstration of the formation of such patterns will be given below (Fig.3).

6. Pattern Regulation

The main body of experimental evidence to test and support a theory of biological
pattern formation is the set of self-regulatory properties described in Section IL.1 related
not only to the form of patterns generated, but to the response of the pattern-forming system
to distortions and interferences, such as excisions and transplantations. The theory based on
autocatalysis and lateral inhibition can account for these properties. This has been demon-
strated by computer calculations (see Gierer and Meinhardt, 1972, 1974). Some computer
simulations are given in Figs. 2-4.

(a) Self-generation and polarity of patterns. The model accounts for pattern formation
starting from near-uniform distributions. Initiation requires either random fluctuations or
some initial asymmetric distributions (such as a shallow gradient or a small local stimulus).
The simplest form of the pattern to be generated is a gradient. The form of the gradient is
near-independent of the mode of initiation (Fig. 2a—c).

While the orientation of an asymmetric pattern may be due to symmetry breaking caused
by random fluctuations, many biological structures formed in the course of embryogenesis
show a predictable orientation with respect to the tissues generating them. There must be a
preexisting cue to orientation called polarity. In the context of the theory any initial asym-
metry however slight can orient a pattern. This asymmetry is introduced as a slightlyasym-
metric distribution, for instance a shallow gradient of some sources pq, pg p, £ In €qn.
(11, 12)) of activators and inhibitors. Polarity-defining source distributions may occur in
the tissue forming the pattern or underlying the pattern-forming tissue; slightly asymmetric
boundary conditions by effects extending from tissues bordering the pattern-forming area

JPB 37-1B
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Fi1G. 2. Pattern regulation based on autocatalysis and lateral inhibition (computer simulations
for patterns in one dimension according to eq. (11); (——) activator distribution; dimension
left to right describes position within the tissue; development of the pattern in the course of
time is plotted front to rear in each subpicture.) a. A monotonic gradient is generated starting
from near-uniform initial distributions; a slight fluctuation (left) suffices for initiation. Acti-
vation (left) proceeds at the expense of deactivation (right) leading to a stable gradient. Its
form is nearly independent of initial conditions: A shallow gradient (— A— A—) of sources
(p and p’, eq. 11), (b), or a more bizarre asymmetric source distribution (c), gives rise to
essentially the same pattern as in (a). d. A section cut from (b) regenerates a gradient, the
polarity being retained. If the field is sufficiently large compared to the range of activator,
form and symmetry of the pattern depend on the mode of initiation: a gradient is formed if
initiation is due to a shallow initial activator gradient, even in the presence of slight random
fluctuations (e), but increased fluctuations can lead to a symmetric pattern (f). g-i. Model for
induction (-—— inhibitor distribution extending from an activated area (left) at the onset of
induction): if, at some distance from the activated area a small stimulus of activation is
applied, this can lead to a secondary centre of activation (g); a still smaller stimulus, at the
same site, cannot overcome the inhibitory effect extending from the activated (“head”) area
(h), nor can the same stimulus as in (g) lead to induction at positions closer to the head (i).
j. Infields large as compared to activator range, a stimulus in one part (left margin) leads to the
subsequent formation of peaks and thus to a periodic pattern; such periodic peaks can also be
formed in a marginally growing area (k).

could also determine polarity. Polarity-defining gradients do not sensitively affect the pattern
of activator to be formed and some simple models (such as eqn. (11) with p’ proportional to
p) are nearly neutral even with respect to absolute values of source distributions (Fig. 2b, c).
In an excised section a gradient is regenerated, the polarity being retained (Fig. 2d). All
demonstrations in Fig. 2 are based on eqn. (11), but other pattern-forming equations
generated on the basis of the criteria given in sections I1.3-5 show similar properties. An
example for pattern formation with linear cross-activation of inhibitor production (Eqn. 13)
is given in Fig. 3.
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F1G. 3. Pattern formation based on a model with inhibition produced proportional to, but
with wider redistribution than activation (Eq. 13), calculated for three different field sizes a—c.
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FiG. 4. Size regulation. (a, b) Activator saturation (Eq. 12) leads to size regulation, with
activated area nearly proportional to total size. c. Sections cut from (a) after the pattern is
established regenerate a size-regulating pattern (as in (b)), even if they contain the area
(Fig. a, left) which was fully activated already. In (a), where initiation is due to a shallow
gradient, the transition towards near maximal activation extends into the field in wave-like
fashion. The effect is more striking if initiation of a pattern with activator saturation is due to
local induction at the (left) margin, as shown in (d). Lateral inhibition causes the wave of
transition to high activation to stop when the activated area has reached a certain part of the
total field, whereas a wave not coupled to lateral inhibition (e) eventually covers the entire
field. f-h. Proportion regulation by gradient formation coupled with a decrease in cell com-
munication (e.g. diffusion). Diffusion rates are assumed to decrease exponentially in time until
activation somewhere in the field exceeds a threshold; then a signal, perhars a wave of type (e)
prevents further changes in diffusion rates. The model leads to good proportion regulation
throughout the field. Since the metric of the tissue is adapted in this way, secondary patterns
formed subsequently by a second pattern-forming system, for instance periodic patterns of
type Fig. 2j, would also be proportion regulating.

(b) Symmetry changes. Experimental interference can change the symmetry of patterns to
be formed ; thus Hydra with feet at the ends and a head in the middle, or symmetric double-
abdomen configurations derived from insect embryos as well as hands with thumbs on both
sides have been described. According to the theory, minor changes in parameters can lead to
the formation of a symmetric pattern instead of a gradient if the field is sufficiently large.
This can be the result of boundary effects (such as leakage of inhibitor across the boundary),
or an increase of random fluctuations superimposed on a shallow polarity-defining gradient
as simulated in Fig. 2e, f.
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(c) Induction and inhibition. Pattern formation from near-uniform distributions may
require an external inducing signal exceeding a certain threshold. Equations of type (12)
with sufficiently large values of p,’ or y can account for this property. Further, the in-
duction of a secondary centre is possible by a stimulus of sufficient strength at distances
sufficiently out of reach of inhibition from the primary centre. A model for such a distance-
dependent induction is simulated on the basis of eqn. (11) in Fig. 2g-i.

(d) Multiple peaks. The formation of multiple peaks is closely related to the induction of
secondary centres: they can arise if the total area is sufficiently large in relation to ranges of
activators and inhibitors. Upon initiation by random fluctuations pzaks form at variable
distances but with second-order statistics avoiding distances below a certain threshold. If
initiation occurs only at one point, such as at a margin, or if the field grows marginally,
peaks develop in sequence in a recursive manner leading to regular spacing and thus to a
periodic pattern (Fig. 2j, k). (A closely related mechanism for the generation of periodic
structures was proposed independently by Wilcox, Mitcheson and Smith, 1973.)

(e) Size regulation. An important aspect of pattern regulation is size regulation. For some
organisms, part of an early embryo can form a complete embryo of reduced size; a small
section of the gastric column of Hydra will regenerate a small hydra with a correspondingly
small head etc. The simplest models based on the theory, such as eqn. (9, 11) do not auto-
matically lead to size regulation. However, if the saturating term for activation x in eqn. (12)
is introduced, the activated area adapts in proportion to total size as long as the latter is
within the range of inhibitor (Fig. 4a—c). This size regulation can explain the regulation of an
activated area. Another related model for proportion regulation is a four-component system
with mutually exclusive lateral activation discussed below in the section (IV.2) on multi-
component systems. '

As seen in Fig. 4a, initiation by a shallow gradient leads to a time course of pattern
formation in which the area of near-maximal activation extends into the field from the
(left) margin until a stable state is reached; the model may thus be described as a wave of
transition toward a state of high activation extending into the field. It is essential for pattern
formation, however, that the wave front stops moving when the wave covers part of the
total field. The wave-like effect is more pronounced if initiation occurs by induction at a
margin rather than by a shallow gradient (Fig. 4d). The self-limiting effect which causes the
wave-front to stop is due to the effect of lateral inhibition. If activation is not coupled to an
inhibitory effect of wide range a wave would not be self-limiting and would eventually cover
the entire field. This is demonstrated in Fig. 4e with uncoupling modelled by setting
h=hy = const in eq. (12a). -

The models based on activator saturation lead to proportion regulation of the activated
area, but the subarea of intermediate levels of activation does not regulate in proportion to
total size. If the gradient specifies positional information at such intermediate levels, pro-
portion regulation would not be exact. There is experimental evidence in favour of such
coarse size regulation in cellular slime molds (MacWilliams and Bonner, 1979).

Whether exact regulation of intermediate levels also exists in biology, is not yet known,
but the theory can be adapted to account for it. In embryogenesis, intercellular com-
munication is found to be reduced at the time when patterns are laid down, probably by
gradual closure or removal of intercellular junctions (Loewenstein, 1968; Hayes, 1976).
This would correspond to a gradual reduction of diffusion rates D,, D, in equations of
type (11) given, for example, by

N0 .—ot. — Nno ,—oat
D,=D%"":; D,=D%e¢

The reduction of cell communication is expected to lead from a state where no pattern is
formed to a state where a gradient is formed. (Upon further reduction of communication,
the gradient would become steeper.) When anywhere in the field the activator level exceeds a
certain threshold in the course of a gradient formation. it is assumed to trigger a signal
extending into the entire field terminating further reduction of cell communication (¢ = 0),
stabilizing the gradient formed. The process is size-regulating, leading to a nearly pro-
portional gradient in smaller fields at a stage of more reduced communication (Fig. 4f~h).



Generation of Biological Patterns and Form 13

This model requires the addition of a control mechanism to the simple version of eqn. type
(11), nametly the mechanism for stopping the closure of junctions. The corresponding signal,
however, can be relatively simple (Fig. 4¢), with a local stimulus initiating a wave of tran-
sition across the entire field.

This model has an interesting property that most other models of size regulation do not
show. It causes proportion regulation by changing the metric of the system: Intercellular
communication adapts, so that a small piece behaves as if it were large in any aspect of
pattern formation. Therefore, if, after size regulation has occurred, a secondary pattern-
forming system is initiated which generates a periodic pattern as in Fig. 2j, the periodic
pattern is also size-regulating. The small area would accommodate the same number of
peaks as the large one with reduced distances.

A biological example of a periodic pattern with size regulation is somitogenesis: Xenopus
embryos of reduced size can form the normal number of somites with reduced spacing
(Cooke, 1975). Possibly, regulation of the metric as proposed above is involved in this case.
A different though related model with size regulatory properties is sequential induction of a
defined number of elements as described in a later section (IV.3, 4).

Another type of model for size regulation is based on a source of a substance at one margin
of a field and a sink at the other, generating a linear gradient in between (Crick, 1970).
Such mechanisms require primary patterns determining sources and sinks in the first place.
They do not by themselves lead to proportion-regulating gradients; this requires additional
assumptions. Size regulation would occur if sinks were not confined to a margin but were
also distributed within the tissue (Meinhardt, 1978), or if the highest value of the gradient,
which occurs in the source region, were homeostatically regulated to a level independent of
total size.

The calculations on various aspects of pattern regulation, such as polarity, induction and
size regulation, demonstrate that the theory of pattern formation by autocatalysis and lateral
inhibition accounts for the set of striking self-regulatory properties often observed in
developing systems. Since no explanations on an essentially different physical basis are
known, the correspondence provides considerable experimental support for the theory. In
more detail, regulatory properties of specific biological systems have been modelled for,
such as pattern regulation in Hydra, early insect embryogenesis and pattern formation in
single cells (Gierer and Meinhardt, 1972; Meinhardt and Gierer, 1974; Meinhardt, 1977)
and spatial patterns in dividing bacterial cells (Meinhardt, 1978). Further, it has been shown
that pattern regulation in the slug of cellular slime molds (giving rise to stalk and spore cells)
has properties in accordance with the theory (MacWilliams and Bonner, 1979).

7. Form of Patterns

If a pattern is initiated in an area just exceeding the minimal size, the form of the pattern
is always a gradient. This has been demonstrated by computer simulations (Meinhardt and
Gierer, 1974) and can also be shown by an heuristic argument: Assume that the form of the
pattern were not a gradient; then it would have one or several maxima (and/or minima)
within the field for activator and, therefore, there should also be a maximum for inhibition at,
or close to such points. Each internal maximum would be a point of zero net flow of material,
nothing would be altered with respect to the pattern if one inserted an impermeable boun-
dary there. Thus the area could be subdivided into subareas, each capable of forming a
monotonic gradient. This, however, would contradict the assumption made that total area
is close to the minimal area capable of supporting a pattern. It follows that patterns formed
in fields of a size just beyond the minimum for pattern formation are always gradients. For
the same reason a growing field always produces a gradient when its size exceeds the
threshold for pattern formation. Decrease of diffusion rates in a field of constant size, for
instance by gradual closure of intercellular junctions, has the same effect as an increase of
field size by growth. A similar effect would result from increasing degradation rates of
activators (and inhibitors). The gradient is thus the simplest and most straightforward
pattern expected on the basis of the theory. In fields large compared with activator range
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gradients can be formed only if initiation is sufficiently asymmetric, range of inhibition is
large and basic production p, (eqn. 11, 12) is low.

Otherwise, symmetric or multiple-peak patterns are generated. Width of activated areas
is essentially determined by the range of activator and the spacing of peaks by the range of
inhibitor (see Section IIL.3).

The theory can be generalized to more than one dimension in a straightforward manner
by introducing diffusion terms for several dimensions. Isotropic as well as anisotropic dif-
fusion can be envisaged. While the most general case is the three-dimensional one, many
biological patterns arise in two-dimensional systems such as cell sheets. Figure 5 demon-
strates different types of patterns in two dimensions by computer simulation, all on the
basis of the same equation (11). In (a) a gradient is formed in one dimension within a two-
dimensional field rendering positional information (Wolpert, 1971), that is a one-to-one
correlation between value and position in this dimension. Evidently a second pattern-
forming system can specify positional information in a second dimension. In a wider field
an inducing stimulus can give rise to a peak of activity (b) and in still larger fields or in
fields with low ranges of activation and inhibition, multiple-peak patterns can arise with
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FiG. 5. Pattern formation in two dimensions, e.g. within cell sheets. All computer simulations
are based on eq. (11), diffusion terms being extended for two dimensions. Final distributions
are plotted a. monotonic gradient; b. single peak of activity; c. multiple-peak pattern initiated
at one point leading to near-regular distances; d. multiple-peak pattern initiated by random
fluctuations leading to random positions of peaks, but with a texture avoiding small distances
between peaks due to the inhibitory fields; e, f. on a uniformly growing cylinder peaks of
activity can be produced on alternating sites; g. on a sphere, a peak of activity can be produced;
the model may apply to closed shell sheets, but also to intracellular and intra-membrane
patterns generating polar cells. Their orientation can be determined by some shallow external
gradient initiating the intracellular pattern; h. Opposite peaks of activity on a sphere modelling
for a bipolar cell; i. If diffusion rates are anisotropic, e.g. if inhibitor diffusion is small in one
of the two dimensions of a cell sheet and large in the other, a pattern may form only in the
Iatter dimension; on this basis, periodic patterns in one dimension within the two-dimensional
field can be formed.
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regular distances (c). (d) shows a pattern of peaks of activity initiated by random fluc-
tuation. The pattern exhibits some irregularity, but small as well as large minimal distances
are avoided because of the effect of inhibitory fields around peaks of activation. For a
growing cylinder regularly spaced peaks appear at alternating sites (e, f) as it is observed for
instance for bud spacing in Hydra or leaf spacing in many plants. On a sphere, mono- or
bipolar activation, as simulated in Fig. 5 (g, h) can be obtained. This may model for
determination of areas within cell sheets as in the gastrula or for determination of subareas

FIG. 6. Pattern formation by lateral activation of mutually exclusive states (Eq. 37, final

distribution plotted; dimension left to right: position in an array of cells.). a. Subdivision of

the area into two subareas with high activator of a; (——) and a, (—--) respectively, mediated

by lateral activation b, (....) and b, (x-x-x). b. Larger fields and/or reduced diffusion ranges
lead to alternating areas of activation of a, ( ) and a, (~~-).

within a single cell or the membrane of a cell leading to intracellular patterns, such as mono-
or bipolar cells. Periodic patterns in one dimension in a two-dimensional field require that
either the field is narrow in one of the dimensions, or that the tissue is anisotropic (as
many tissues are): If, for instance, spreading terms D, or D, (Eqn. 11) are different in the
two dimensions, the condition for lateral inhibition—that range of activator is small as
compared to range of inhibitor—may hold in one dimension only. Then, a periodic pattern
in one dimension (i) is formed (Gierer, 1977a). However, as will be discussed below, we have
found that systems with more than two components can generate striped patterns in iso-
tropic tissues (Meinhardt and Gierer, 1980).

Combination and modulation of gradients and periodic patterns can evidently lead to
more complex fields. Moreover, the response of the cells to the fields may be highly specific;
very complex real patterns may arise on the basis of elementary field-forming mechanisms
and their combinations.

8. Molecular Interpretations

The formalism of the theory is consistent with many different molecular interpretations
and only biochemistry can decide between them. Thus production of components may be
due to synthesis or release; removal to degradation or leakage; spreading to diffusion,
convection, mechanisms involving transport along intracellular or intercellular fibres,
and/or transducing effects across membranes. It is, therefore, not adequate to limit con-
siderations to molecular diffusion. What matters is that activation and inhibition effects
spread from the place of origin in an attenuated manner. Effects may involve nuclei, plasma,
membranes or intercellular space. The autocatalysis may be directly due to a feedback of
components on allosteric enzymes or receptors involved in the generation of activators and
inhibitors or to much more complex reaction schemes, including cooperative effects in
membranes.

It is perhaps surprising that our knowledge of the molecular basis of pattern formation
is still so limited. In the thirties, when the biochemistry of induction was widely studied, it
turned out that very many different effects are capable of inducing secondary centres, such
as secondary amphibian embryos. Some researchers concluded that the effect is unspecific
in the sense that many different biochemical effects contribute to it. It is unlikely, however,
that natural induction and natural pattern formation are indeed unspecific. It appears much
more plausible that there are very few specific factors which are involved in the natural
formation of a morphogenetic field and its induction, but induction can be mimicked in the
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laboratory by many different stimuli. What are then the natural factors forming morpho-
genetic fields? There are clear cases of morphogenetic effects resulting from components
naturally occurring in the tissue interfering with pattern formation at extremely low
concentrations, at the level of hormone action (Schaller, 1973; Berking, 1977), though it is
not yet known whether these compounds are involved in forming primary morphogenetic
fields or in other functions such as mediating cell differentiation. An assessment is difficult,
because the inhibitory and especially the activating effects involved in the generation of
morphogenetic fields might require the integrity of the cytoarchitecture (for instance of
intracellular fibers and their anchorage in membranes). The homeostatic interactions in
pattern formation introduce further complications into the assessment of the action of
exogenous chemicals on cells and tissues. Such experimental difficulties have thus far
prevented an effective assay for morphogens involved in the formation of primary morpho-
genetic fields. Irrespective of these difficulties, however, the experimental findings suggest
that specific organic substances at low concentrations are involved in pattern regulation.

The models and equations describing pattern formation and the regulatory properties
require only well-known features of molecular biology. In particular, allosteric enzymes or
receptors or cooperative effects in membranes could easily provide the autocatalytic
features. On the other hand it is emphasized that a large variety of different mechanisms
are consistent with the reaction kinetics of pattern formation proposed, which are not limited
to molecular interaction in solution and spreading by molecular diffusion. Further, it is
possible that more than two components are involved in the reaction and that activation
and inhibition are system parameters which may approximately subsume the combined
action of several components each. This aspect will be discussed more explicitly in the
context of multicomponent pattern forming systems.

9. Combination of Patterns and Metric in Two Dimensions

One expects that the same biochemical pattern-forming system is used at different stages
and locations in the development of a complex organism and a few such systems would be
sufficient for development. There must be more than one—at least two for two-dimensional
pattern formation in cell sheets. Even for a single dimension there is evidence that more than
one system may be involved: In Hydra, head and foot formation appear to be under the
control of different pattern-forming systems (MacWilliams et al., 1970). Two systems may
interact: for instance, two systems may have a tendency to determine different structures
(such as head and foot) at two terminal portions of an area; a system with limited range of
inhibitor, regulating minimal distances between centres of activation, may be combined with
a system with large range of inhibition and size regulating features; or one gradient may
render the tissue anisotropic so that a second gradient forms at nearly right angles to the
first, leading to a Cartesian coordinate system for positional information in a two-
dimensional field. If a gradient in one dimension affects, in addition, diffusion or decay
rates of the morphogens that specify positional information in the other dimension, a
metric deviating from Cartesian coordinates can result. Another conceivable type of
combination of patterns is a primary gradient that activates pattern formation in the
second dimension only in part of the field, such as the edge of highest value of the primary
gradient. Further, a gradient may modulate distance and height of peaks of activation in a
periodic pattern. Generally, a single' pattern-forming system with an activator and an
inhibitor is not expected to provide for all aspects of complex biological systems. Rather,
it may be considered as a subroutine for modelling development. As long as interactions
between elementary pattern-forming systems are slight, they can be easily incorporated into
the formalism of weakly connected systems with an activator an inhibitor each. (Strong
interactions would require treating the problem as a multicomponent system from the
outset. Some such multicomponent models will be discussed below.)

After formation of a pattern, different parts may develop subareas separated by bound-
aries of cell communication. Within subareas, subpatterns can be generated followed by
formation of sub-patterns until the complete structure is laid down. Possibly the same
pattern-generating physico-chemical system is used repeatedly in such sequences.
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10. Effects of Electrical Fields

The equations for pattern formation on the basis of Jateral inhibition given above do not
inciude terms for the migration of components in electrical fields. Electrical fields arising
in the course of development have been reported and discussed (e.g. Jaffe, 1968). Mechanisms
of pattern formation involving electrical effects are conceivable which cannot be subsumed
under the general reaction kinetics (Eqn. 1) without extensions, modifications, and
specifications with respect to the distribution operators. An example would be pumping
mechanisms for ions directed “uphill” to generate concentration gradients and electrical
fields. Such mechanisms could generate asymmetric structures such as the polar fucus eggs
studied by Jaffe (1968). On the other hand, it appears unlikely that the self-regulatory
properties characterizing many biological systems (as discussed in the previous sections)
could be explained by ion pumping as primary cause of morphogenetic ficlds.

To deal with electrical terms within general reaction kinetics of type eqn. (1, 2), one may
include terms for mobility in electric fields in distribution operators Z; (Eqn. 1) to be coupled
with equations for the electric fields as function of the various ions in the cell or tissue.
While the general problem of including all conceivable types of electric field effects is
difficult, their biological relevance is doubtful except for a few simple cases.

(a) Electrical fields existing in the tissue or arising from its environment, however slight,
may define the polarity of the pattern, because any systematic deviation of the concentration
of substances interfering with pattern formation, e.g. near a margin of the field, can deter-
mine the orientation of an asymmetric pattern. Since form and strength of the electric field
would not matter much, a detailed incorporation of such electrical fields into the formalism
of pattern formation would not be essential to understand the formation of the morpho-
genetic field.

(b) When a morphogenetic field is formed, it is expected to affect cell determination and
other cell properties, and the resulting spatial order may then lead to an electric field which
may feed back on the pattern-forming system. One would expect this process to be delayed
with respect to the initial stages of formation of the morphogenetic field, but exact modelling
would require the inclusion of the electrical field as function of the distribution of dif-
ferentiated states in space. Within the formalism, this would require the inclusion of
equations for the change of pg, p, p° (eqn. 11) in time, of an electrical field as function of
a, h, po, p, p’, and of terms for movement of activator and inhibitor in the electrical field.

(c) Of more general interest is the question whether electrical terms can strongly influence
the generation of morphogenetic fields in the first place. In other words, if we start with no
electrical fields and if an electrical field is generated only in the course of pattern generation,
feeding back on the latter, does the feedback contribute to a major extent to destabilization
of uniform distributions or its prevention and to determining the general type of pattern to be
formed ? We will show that for mechanisms describable by general kinetics such as eqn. (2)
the answer to this question is most likely “no”, because effects of the morphogens are
buffered by the main ionic constituents of the medium. This will be explained by a simple
consideration on the orders of magnitudes involved. Let us consider some (intermediary or
final) stage of pattern formation. If there are concentration differences between different
parts of the field, there is an electrical potential between these parts which is given by the
theory of diffusion potentials, according to Henderson:

u
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(R Gas constant, T absolute temperature, F Faraday’s constant, u; electrical mobilities, z;
charge, c;; and ¢, concentrations of all ions, whether morphogens or not in the two areas).

ZUj.le, Zuj.CjZ
are the electrical conductivities in the two areas of the field. The y term is complicated only

because of the charges z;, and is of the order of, or lower than, 1/Z where Z is some average
over the charges of the compounds.
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The order of magnitude of the ratio of conductivities in different parts of the area is
essentially determined by the ratio of ion concentrations. We expect that the concentration
of morphogens c,, which vary in space is only a very minor fraction of the concentration of
uniformly distributed ions, ¢,. The order of magnitude of relative variations of con-
ductivity in space resulting from morphogenetic fields is thus estimated by

2UiC Gy, Cm @5s)
2UiCi ‘o
The order of magnitude for g, is given by
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This potential difference by itself would lead to an equilibrium state of unequal con-
centrations of compounds ¢,’, ¢,’ in which electrical mobility is counteracted by diffusion;
except for extreme assumptions on the charge distribution, the concentration ratio of the
compounds would be of the order of
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Electrical fields due to diffusion potentials arising during formation of concentration
patterns of morphogens are much smaller than those required to generate significant
concentration ratios. The electrical effects are “buffered” and-diluted by the ions which are
not morphogens. It thus appears likely that for mechanisms describable by general kinetics
of type eqn. (1, 2) electrical effect can be neglected in modelling for primary generation of
morphogenetic fields starting from near-uniform distributions. (except perhaps for the
determination of polarity mentioned above).

11. Cellular Response to Morphogenetic fields

The effects of morphogenetic fields on cells may include determination, differentiation,
changes of form, proliferation, movement, death and other properties. Cell responses can be
graded or all-or-none. The terms activator and inhibitor refer to the function of these
substances in the generation of morphogenetic fields; in their effect on cells, activators
could be inhibiting and inhibitors activating. A morphogenetic gradient can give rise to a
stable gradient in the density of subcellular components or cell types in the tissue. This
would occur if a relatively stable substance is produced in proportion to the value of the
morphogenetic field, or if the field determines the per cell probability for precursor cells to
differentiate in a certain direction (e.g. into nerve cells). The stable graded distribution thus
produced may in turn determine the source densities of enzymes and other sources py, p, p’
(Eqn. 11) involved in the production of morphogens, and thus feed back on the pattern-
forming system.

Such source gradients may then determine the polarity for pattern formation upon re-
generation of subsections.

The source density changes are expected to be a relatively slow process compared to the
primary formation of the morphogenetic field and can therefore be incorporated into the
equations of pattern formation (e.g. eqn. 11) by adding slow reactions of the type:

= y(a, h) (18a)

—=1'(a, h) (18b)

For some equations, such as eqn. (11) with p ~p’ this feedback does not significantly
affect the morphogenetic field at all. Growth can also be included in the formalism. An
application to Hydra has shown (Meinhardt and Gierer, 1974) that such models can account
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for the indefinite maintenance of a spatial pattern in a continuously growing and budding
animal. Not all types of feedback of sources on morphogens lead to stable patterns, but
indefinite stability is not generally required for developing systems. If the feedback is slow,
it may not significantly affect the field during the limited period in which it exerts its action
in actual biological development of an organism.

Determination and differentiation are essentially all-or-none events. Discontinuous
patterns result if cells respond to a threshold of morphogen concentrations, or to a set of
multiple thresholds for different steps of determination. A continuous (for instance graded)
distribution of morphogens will then lead to a subdivision of the tissue into subareas with
distinct boundaries. In the pure “positional information” model (Wolpert, 1971), a morpho-
genetic gradient determines the development of each part of a tissue with local values of the
graded distribution leading to defined cell responses. In this way, in principle, any complex
subdivision of an area in response to a simple gradient is logically possible. However, there is
~ the alternative possibility that the primary morphogenetic gradient determines only one or
both terminal structures within a field and that other areas are then determined by secondary
mechanisms in a recursive way, for instance by a wave of induction. Biological evidence on
pattern regulation suggests that both the pure positional information case and recursive
pattern formation are realized in developmental biology, the former, for instance, by pattern
formation in Hydra, the latter in intercalary regeneration of segments of insect appendages
(Bohn, 1970, 1971; Bryant, 1975). The recursive mechanisms require a multicomponent
approach and are discussed further below.

12. Intracellular Patterns

It is emphasized that there is no principle difference between intercellular and intra-
cellular patterns. The same type of kinetics giving rise to intercellular patterns can lead to
patterns in the plasma or on the membrane within a single cell, although the molecular
components involved are expected to be different. Cells may develop into internally pat-
terned mono- or bipolar cells, orient in response to a shallow gradient, develop processes,
or migrate chemotactically. The elementary process is postulated to be the activation of an
area of the plasma or the membrane by autocatalysis and lateral inhibition, its position in
the cell or on its membrane being defined either by random fluctuations or by any slight
polarity-defining cues from the environment, such as a shallow external gradient.

13. Steady States, Pulsing States and Order in Time

In the context of the theory, it is the steady state distribution of morphogens which is
assumed to determine the spatial order within the cell or tissue. Rapidly changing transient
states occurring in the course of the formation of a stable morphogen distribution would
not show the self-regulatory properties typically found in biological development and
modelled for by the theory described.

A variant of models leading to a steady state of morphogen distributions is to assume
that the inhibitory reaction is relatively slow, so that the spatial pattern produced is not
stable, but pulses regularly in time. Such pulsing spatial patterns can be as good in defining
positional information as stable patterns, because the time average of the morphogen
concentration may be capable of determining positional information and thus the spatial
organization of development (Meinhardt and Gierer, 1974). This example shows that
autocatalysis and lateral inhibition subsumes models in which activation and/or inhibition
are time averages of oscillating systems. Other mechanisms of this type may also be con-
sidered: It is conceivable that spreading of the inhibitory effect may be due to oscillations in
time and space, generated as a function of activation and spreading much faster than
diffusible molecules. (However, conditions for such mechanisms, their molecular feasibility
and their regulatory properties have not been studied thus far.) On the other hand, not all
conceivable mechanisms involving oscillation (such as the phase shift model of Goodwin
and Cohen, 1969) are formally related to kinetics involving lateral inhibition.
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The morphogen distribution assumed in the steady state (or the time average in the case of
oscillation) need not be stable forever, because its effect is mostly restricted to a defined
stage of development. Thereafter, further events of differentiation, growth etc. upset the
conditions for pattern formation of one stage and initiate the formation of secondary
patterns and structures in subsections of the first (such as the formation of appendages
of insects after the primary formation of the segments) until the complete organism has devel-
oped. Large-scale development is therefore mostly irreversible.

III. ANALYTICAL ASPECTS OF PATTERN FORMATION

1. Heuristic and Analytical Approaches to Pattern Generation

In outlining the theory of pattern formation based on lateral inhibition it was shown that
destabilization of a near-uniform distribution to generate a pattern requires a set of pro-
perties including short-range autocatalytic activation and longer range inhibitory effects.
It was evident from the considerations given that destabilization must occur if all conditions
are met to the extreme and cannot occur if any one of these conditions is extremely violated.
On the other hand, intermediate cases and a general quantitative assessment of parameter
space with respect to destabilization and pattern formation require an analytical treatment.

With respect to the form of patterns it is evident that ranges of activators essentially
determine areas of coherent activation and ranges of inhibitors the spacing or exclusion of
multiple peaks of activation. Again an analytical treatment of the form of patterns would be
desirable. Some aspects of stability of patterns are also of biological interest.

At present knowledge of analytical aspects of destabilization is at an advanced stage,
whereas stringent analytical treatment of the form and stability of patterns is still difficult.
In the following section it will be shown that the results of general destabilization theory are
closely related to the set of conditions heuristically introduced for pattern formation on the
basis of lateral inhibition, although this correspondence is not immediately obvious. In
relation to analytical problems of the form of patterns, biological considerations will be
discussed which bear on the relevance (or irrelevance) of some specific mathematical ap-
proaches.

2. Relation of Pattern Formation by Autocatalysis and Lateral Inhibition to General
Stability Theory

Stability characteristics of equations type (1, 2) have been analysed on the basis of
Ljapunov’s stability theory, by Glansdorff and Prigogine (1971), and Babloyantz and
Hiernaux (1975). Our equation (11) was studied in detail by Granero et al. (1977) con-
firming the conditions (A-F) described in section II.3.

Stability of uniform solutions of the two-factor equation (2) can be assessed as follows:
if @'(x, t) and b'(x, t) are small deviations from the uniform solutions a = a,, b = b, of the
equations /=0 and g = 0, linear approximations of eqn. (2) with diffusion read

da’ d*a’

E=C11a’+clzb,+Da.5—x—f (193)
ob’ o*b’
—E—=C210, +C22b’ +Db.ax—2 (lgb)

The spatially uniform, time dependent solutions @', b” of (19a, b) with D, = D, =0, are
linear combinations of terms
const. e* i=1,2

By insertion into eqn. (19a, b) the two values 4,, A, are obtained ; they are the two roots of
the determinant

1=0 (19¢)




Generation of Biological Patterns and Form 21

If one or two of the values 4, A, are positive (or have a positive real part), there are dis-
tortions deviating from equilibrium that increase further with time, and the system is thus
unstable. If both values 4,, 1, are negative (or have negative real parts), any small dis-
tortion decreases, in the long run, exponentially with time and the solution is stable. This
is the case if the sum of the roots is negative, and their product positive:

A’l +)»2=C11 +022<0 (203.)
;«1 . ).2 = Cy1C33 — C12€C21 > 0 (20b)

Redistribution by diffusion terms (D, >0, D,>0) can be assessed by a quantitative
Fourier analysis (Glansdorfl and Prigogine, 1971; Prigogine and Nicolis, 1971 ; Babloyantz
and Hiernaux, 1975). Deviations from the uniform solutions can be considered as composed
of Fourier components. For closed boundaries and an area of size L Fourier components
for a’ and b’ take the form

n
const. cos{ — x |, =1,2...
ons s(Lx> n

(terms with n=1 render a gradient). The corresponding contributions of the Fourier
components to the diffusion terms of eqn. (19a, b), are of the simple form

o*a’ A b’ m\*
H.W=—Da.<—L‘> .a; Db-a?:—Db(f) b (20C)

n=12...

This implies that positive values are to be subtracted from the diagonal terms ¢, 1, ¢, of the
determinant eqn. (19¢). Destabilization of the uniform distribution and generation of a
spatial pattern occurs if one of the roots 4,, 1, becomes positive for at least one of the
Fourier components contributing to the diffusion terms.. This is the case if, for some #,

2 2
[Cu -n? (g) Da][CZZ - "2<%> Dbjl < C12C21 (20d)

Introduced into specific equations of type (11, 12), the relations eqn. (20) can lead to quite
involved expressions, and the correlation with the conditions of pattern formation by lateral
inhibition is not immediately obvious. However, one can show that the mathematical
content of both sets of conditions is very similar. This correspondence is not too surprising,
since assessment of destabilization (eqn. 3, 5) is almost equivalent to a matrix treatment, eqn.
(20b) being closely related to eqn. (5).

To show this correspondence, we rewrite the equations (2) in terms of the concepts on
which the conditions A-F (see Section I1.2; summarized in Table 1 below) for pattern
formation by autocatalysis and lateral inhibition are based, namely, rates, ranges and orders
of reactions. Rate is defined as proportional to the reciprocal mean lifetime of a molecule
between production and decay, with the dimension sec™*. Range is defined as an average

TABLE 1. CONDITIONS FOR PATTERN FORMATION BASED ON AUTOCATALYSIS AND
LATERAL INHIBITION (SEE SECTION II.2) (FOR TWO-COMPONENT SYSTEMS)

A. One of the two components a, b (say a) must be self-enhancing.

B. The other component (b) must be cross-inhibiting; inhibition can be
substituted by depletion of a substrate required for, and consumed by
activation,

C. The inhibitory effect must be sufficiently strong to ensure stability of the
uniform solution.

D. The inhibitory effect must be relatively fast compared to the activating effect.
E. Range of activation must be below a limit of the order of total field size.

F. The range of inhibition must be sufficiently large in relation to the range of
activation.
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over the mean distances between production and decay, with the dimension cm. Orders
of reactions are defined in terms of logarithmic derivatives of production and decay
rates such that in simple cases they are given by power terms, irrespective of absolute
concentrations as in the condition eqn. (8). Near the uniform solution a,, b,, mean production
and decay rates per molecule are given as

P, Q. P, 0

Ao 4y v=b_o-=lz @b

where P,, Q,, Py, @, are production and decay rates as defined in eqn. (6).

Range, that is mean distance between production and decay or removal of a molecule,
is given, for the case of diffusion, by the rules of physical chemistry relating range r to
diffusion constant D and mean decay rate :

\/5
r =const. [ —
B

We may thus define ranges of activation and inhibition as

S P 2 22
a =75 Ty =/
PN 22)

Further, the orders of reactions may be defined as

_ 3P, 3lng, _dlnP, dlng,
“ dlna  dlna’ b dlnb  dlnb 23)
kg OMFPy OIQ, , OlnP, 4lng,
dlna dlna’ dlnb dlnb
In terms of rates, orders and ranges we may rewrite eqn. (19):
%"7' = u(k,,aa’ + Z—:k,,,,b' +r2. %;‘;) (24a)
% = v(i—jk,,aa’ + kyb' + 13 %) (24b)
and eqn. (20a, b) can be written as
Uk +v.ky <0 (25a)
koo™ kyy > kyp - Ky, (25b)

According to eqn. (20d) rewritten in terms of eqn. (21-24) destabilization occurs upon re-
distribution if, for at least one choice of n, the term

T(n) = [kaa - n2 ' (%)2][kbb - n2 ' (EL’})Z] < kabkba (ZSC)

Often orders of reactions are of the order of 1, but small values may also apply in some
biological cases. Eqn. (25) permits a direct assessment of conditions for pattern formation
in relation to rate, ranges and orders. In particular, combinations of signs of reaction orders
(Kaas kysy Koy, kp,) can be tested as to whether they are consistent with the conditions (25).
(25a) requires that k,,, or k,,, or both are negative; we therefore choose ks, to be negative
in any case. (25b, c) can hold only if

T(n) = [km —n?- (%‘)j[k,,,, - n?- (%)2] < koakps (25d)

ky» being negative, this relation requires that k,, is positive. Positive &, corresponds to the
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condition A for autocatalysis, because it is equivalent to the condition that df/da (eqn. 3)
is positive (eqn. 19a, 24a)
<(zf‘) =Cyy=Hp Kee>0 (26a)
0a /40 5o

Positive k,, and negative k,, implies that k- k;, is negative. This is consistent with condition
(25b) only if the product k,, k,, is negative, too. Negative k" k,, can result in two ways,
either from inhibition or depletion mechanism: Inhibition is defined by k,, < 0 and k,, > 0,
whereas depletion is defined by &,, > 0 ; k,, < 0. These statements correspond to condition B.

Equation (5) can be rewritten in terms of reaction orders and is then identical with egn.
(25b). This corresponds to the stability condition for the uniform solution C. The conditions
of stability theory corresponding to conditions A-C are thus expressible in terms of the
orders of the reactions only, without reference to absolute rates or other features.

With positive k,, and negative k,;, (25a) corresponds to

v> kaa
B (—ky)

This implies that the ratio of the rate constants for the inhibiting to the activating reaction
must be above a certain threshold (which will be of the order of 1 if the parameters describing
orders of reactions k,, and (— k) are of the order of 1) corresponding to condition D.

Conditions E and F can be expressed in terms of orders and ranges. According to eqn.
(25c¢), destabilization requires that 7(n) must be negative for at least one choice of #, that is at
least for n = 1. This sets an upper limit for range r, in terms of field size L, corresponding to
condition £

(26b)

%‘1 < ﬁ?ﬂ implying L > Tl - 27)
T

aa

If (27) holds, condition (25¢) can always be met if the range of inhibition r, is sufficiently
large, leading to destabilization and pattern formation (condition F). If field size L is con-
siderably above the minimal size required for pattern formation, condition F can be
expressed in terms of the ratio of ranges of inhibition and activation. It is useful for the
derivation to define positive values

p,= kaa; Py = ~"kbb; Pap = "kabkba
then, according to (25b, ¢)

Do’ Py < DPap (28a)

~T(n) = [pa —n*- (%)2][17;, +n*- <%’>2J > Pab (28b)

A necessary condition for the distribution terms to cause the change from (28a) to (28b)
is evidently, independent of n, that the ratio R defined as following is >1:

; _
R=22.-2a 1 implying 2> [P (29)
ra Ds Fa Pa

The ratio of range of inhibition to range of activation must exceed a threshold (which is
above 1 if parameters p,, p, characterizing the reaction orders are around I).
Combining inequalities (29) and (26b) leads to

Dy=v-ri>D,=p-r?

Diffusion rates of inhibition must exceed that of activation. This relation was derived
directly and independently by Segel and Jackson (1972). Conditions (29, 26b) for ranges and
rates are more stringent than conditions for diffusion constants only.

For fields of sizes just above those required for pattern formation according to eqn. (27),
strong redistribution of inhibition may be required to generate patterns. In larger fields
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(L> r,) it is only the ratio of ranges r,/r, and not the individual ranges that is decisive for
pattern generation. The wave length of the Fourier component which is most effective for
destabilization corresponds to an integer close to the value #,, for which the term —T'(n) is
maximal. n,, is easily calculated to be

n=£\/i&_£2
" aN2\2

Unless we are interested in exact numerical evaluations, we may disregard the difference
between n,, and the closest integer. Insertion into eq. (28b), using the term R eqn. (29)
essentially determined by the ratio of ranges of inhibition and activation (“lateral in-
hibition”), leads to

Pa' P 1
= ”-<2+R+§>>pab (30)
which is equivalent to the relation
R —1)?
( ) > 4( Dab _ 1> (31)
R Pa” Pp

Therefore, if the other conditions 4— E are met, destabilization occurs if R exceeds a certain
threshold; because of eqn. (28a) the threshold is > 1 in any case. Equation (29, 31) imply that
destabilization depends on the ratio of range of inhibition to the range of activation. Pattern
formation occurs if this ratio exceeds a threshold which is above 1 on simple assumption on
reaction orders (though it may be lower in extreme cases in which according to the criterion
(28a) the uniform solution is almost unstable, that is, if p,,/(p, p,) — 1 < 1). This is essentially
the condition of lateral inhibitioniF.

A numerical example for conditien (31) is the simplest asymptotic approximation, eqn.
(9), of eqn. (11) that was used for the computer demonstrations of pattern formation in the
previous sections. In this case, p, = p, = 1, p,, = 2, and one calculates as lower limit of ratio
R consistent with eqn. (30) R = 5.83. This value has been derived previously by Granero
et al. (1977) in their analysis of this particular model. Since for eqn. (9) p,=p,=1, R
represents the lower limit of r3/rZ. Range of inhibition must exceed range of activation by at
least 2.4. For areas L for which n,, is not an integer, the lower limit of R is somewhat higher.

It follows from the discussion of this section that conditions A-F introducing autocatalysis
and lateral inhibition directly (see Table 1) have a very similar mathematical content to eqn.
(20) based on general stability analysis. This correlation, though neither trivial nor obvious
can be derived by rewriting the basic dynamic equations (19) in terms of orders, ranges and
rates of reactions (Eqn. 24), combined with a casuistics of signs of the various parameters.
Therefore, we may consider conditions A-F for autocatalysis and lateral inhibition as
general requirements for the formation of patterns on the basis of eqn. (2) for the simplest
case when two factors are involved; no qualitatively different mechanism, say short-range
inhibition and long-range activation, could lead to patterns starting from near-uniform
distribution.

3. Analytical Aspects of the Form of Patterns

(a) Gradients

The simplest form of a concentration pattern to arise on the basis of the equations for
pattern formation is a gradient. In a certain size range beyond the minimum size required
for patterns to be formed at all, as defined by the range of activator (eqn. 27), and for closed
boundaries, the pattern is always a gradient. This has been demonstrated by computer
simulations and by the heuristic line of thought given in section II.7. A stringent analytical
proof has been given by Babloyantz and Hiernaux, (1975). Further it has been proven
analytically that such gradients formed on the basis of equations type (11) can reach an
absolutely stable steady state (Mimura and Nishiura, 1979).
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(b) Patterns with multiple peaks: Regularities of spacing and texture

In fields large enough to produce multiple-peak patterns, analytical solutions present a
difficult problem. Many different solutions of equations of type (2) are possible, depending
on initial and boundary conditions. Two cases already discussed in a previous section on the
form of patterns are of biological interest: Random initiation leads to irregular spacings,
but peaks of activity are distributed according to second-order statistics, avoiding small
distances. Each pattern is different from the other, depending on the details of initiation,
but the general texture of the pattern based on second-order statistics is preserved. This is
actually the case in patterns like those of the stomata in plant leaves. Any leaf on a tree is
different with respect to details in the distribution of stomata but may follow the same rule
of general distance distribution. Analytically, only the second-order statistics and not the
details of a particular pattern are then of biological interest.

Regular spacings are obtained if peaks of activity are generated in sequence, for instance
by initiation at a margin, or marginal growth; the distance between peaks of activity is
defined essentially by the range of the inhibiting effects extending from the peak that has been
formed last.

An analytical treatment of the generation of multiple-peak patterns has been given by
Haken and Olbrich (1978).

(c) Biological evidence for relative simplicity of morphogenetic fields

One may further inquire whether a complex pattern may arise within a large field as result
of complex and highly specific initial and boundary conditions. Could, for instance, the
shape of bones of a limb be determined by a bone-shaped prepattern resulting from very
subtle initial and boundary conditions, thus selecting with high fidelity, one solution among
the large variety of possible ones? Though mathematically challenging, this problem does
not appear to be significant for biological patterns: There is abundant evidence that pre-
patterns and morphogenetic fields are simple, whereas the response of cells to such patterns
is complex (and not the other way round).

The experimental support for this notion is mainly derived from genetic mosaics (Stern,
1968): In certain cases, mainly in insects, cell mosaics from mutants with different morpho-
logical properties can be constructed. The cells of different origins can be marked by colour
or other features. One can then decide experimentally whether, in mosaic embyos, cells of
both strains respond alike at the same position, or whether cells of each strain develop as
they would in a given position in embryos made up exclusively of their own cell type. The
former results would indicate that the mutation affects the morphogenetic field, the latter
that it affects the response of the cells to the local value of the morphogenetic field which
itself is not affected by the mutation. In the vast majority of cases studied, the mutants
affect cell responses, and only very few of them change the morphogenetic fields. This
indicates that fields are simple and responses of cells to values of the fields are highly
complex. Otherwise there should be many mutants affecting boundary conditions which
would, in turn lead to dramatic changes of the morphogenetic field. Simplicity suggests that
fields may be gradients, symmetric distributions, periodic distributions, and combinations
thereof (such as periods modulated by gradients), but not highly complex distributions of
morphogens. Therefore, the analytical problem of selection of specific complex patterns by
subtle boundary conditions does not appear to be of much biological significance. On the
other hand, models for cell responses based on reasonable kinetic assumptions have been
proposed showing that cell responses to simple morphogenetic fields, such as two orthogonal
gradients, can lead to a complex structure, like the bone pattern in limbs (MacWilliams and
Papageorgiou, 1978).

(d) Stability of multi-peak patterns

The conditions for stability of solutions for multi-peak patterns are not yet analytically
resolved, and are expected to depend on models, parameter choices and modes of initiation.
One may ask, for instance, whether the peaks obtained by random initiation gradually

JFB37-10
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shift, leading to a more regular spacing. Computer simulations on models of type eqn. (11)
show that such shifts, if they occur, are very slow compared with the time required to
establish the pattern in the first place. Since the time of cell response is usually restricted to
some stage of development, such slow changes need not be biologically important.

Generally, though analytical criteria for stability of solutions would be of interest,
absolute stability is no biologically acceptable criterion for the quality of mathematical
models; such criteria would make sense only if they would permit assessments of relative
stability—the maintenance of a state for a period exceeding the time required for the
formation of a pattern by some factor, say, 10.

IV. GENERALIZATION OF THE THEORY OF PATTERN
FORMATION FOR MORE THAN TWO COMPONENTS

1. A Simple Generalization of Lateral Inhibition based on distinction of Short-Range
Activation and Long-Range Inhibition

We may ask whether the principle of lateral inhibition can be generalized to systems with
more than two components. This can easily be done for systems of pairs of components, each
meeting the conditions for pattern formation, be it in one or several dimensions, if these pairs
interact with each other only weakly, or not at all; further, slow changes of various para-
meters p, p’ (Eqn. 18) (describing for instance effects of cell differentiation, enzyme syn-
thesis, etc.) in time can be introduced in a straightforward manner. On the other hand, the
case of many strongly interacting parameters is more intricate, especially with respect to the
definition of activating and inhibiting components. Nevertheless, a generalization of the
principle of lateral inhibition to multicomponent systems is possible. It is not expected,
however, that the extension discussed below is the most general one.

We assume an interacting system of parameters p,(x, ) ... py(x, f)

azpi

op;
—=f{py .- D, — i=1...
at f;(Pl pN) + i axz ! 1 N (32)

redistribution operators being exemplified by diffusion terms D;+(8%p))jox*. If there is a
uniform solution, and p; are deviations from the uniform solution, the linear approximation
for the kinetics in the vicinity of the uniform solution is of the form:

op, X o%p!
i LpL+ D, — 33
at kgl CixPx + i axz ( )

We further assume that the uniform solution p; =0 for f;=0 is stable without re-
distribution (D;=0) and ask for conditions under which the inclusion of redistribution
terms leads to destabilization and thus to patterns. In particular, we would like to demon-
strate that localized self-enhancement in conjunction with widely distributed inhibitory
effects lead to spatial patterns, thus generalizing the principles of lateral inhibition. For this
purpose it is assumed that the system of N components can be divided into two subsets:
One subset (a) with small redistribution of components, if any, and one (b) with wide
redistribution and fast reaction rates. These properties are conserved upon linear trans-
formations within the subsets so that we can always choose a linear transformation of
parameters in such a way that there are no internal (non-diagonal) interaction terms within
the subsets. After such transformations, equations for the subsets (a) and (b) take the form

0p’- N azp'.

Wi it Y cupit DL i1 34
ot Ciip k:]z'+1 Cir Py + i axz ! J ( )
op: R I o’p; .

— =cipi+ ) cubi+ Dis i=j+1...N (34b)

ot =1 x>
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and the corresponding matrix of the interaction terms c;, is of the form (exemplified for
j=4, N=T).

€11 0 0 0 C1s C16 €17
0 Caz 0 0 C2s C26 €27
0 0 C33 0 C3s C36 C37
0 0 0 Caq C4s Ca6 Ca7
Cs1 Cs2 Cs3 Csq Css 0 0

Ce1 C62 Ce3 Ce4 0 Ce6 0

€71 C72 C73 ¢74 0 0 €77

The subset of parameters (a) with small redistribution is assumed to contain at least one
autocatalytic term among the c¢;; which is positive (or has a positive real part) and thus
embodies activating properties. This can occur even if all diagonal terms of the non-
transformed set are negative; for example, inhibition of inhibition is equivalent to acti-
vation, the latter showing up after diagonalization. To meet the condition that the uniform
solution is stable, the other subset (b) must then act, via the non-diagonal terms, in a cross-
inhibiting manner on the subset (a).

We may now extend the two-factor theory of section IL.2 to the two subsets (a) and (b).
If the components of the cross-inhibitory subset (34b) reach equilibrium f; = 0 fast and their
redistribution by diffusion or other mechanisms occurs widely, leading to a near-uniform
distribution in space, we can express any pii=j+1, N) of the cross-inhibiting subset
approximately as linear combinations of spatial averages of the components of the activating
subset p,(k = 1, j).

1 4 =
pi=——" Z CaxPi
Cii k=1
Upon insertion into eqn. (34a) one obtains for the activating subset, i=1... /.

ap; N J
ﬂ=ciiP:'_ Z ZC

Cu, =
ik
ot k=j+1 I=1 Crk

I 4

Local distortions in a wide field will affect these space averages ;; only to a minor extent.
Therefore,

0 (0p;

rovi BVl BaAd)

op; \ ot

Because at least one of the ¢;; (i=1.../) was assumed to be positive, local distortions are
self-enhancing, leading to destabilization of near-uniform distributions and thus to spatial
patterns.

It follows that, if within a multi-component system, subsets with small and large re-
distribution in space can be distinguished which are characterized by self-enhancing and
cross-inhibitory properties as described above and if the system is stable in the absence of
redistribution effects, sufficient redistribution of the terms of the inhibitory subset leads to
destabilization and thus to spatial patterns as long as the redistribution of the self-enhancing
subset is sufficiently small. This is a generalization of the case of two factors, one activating
and one inhibiting, to two subsets with several components each. It is probably not the most
general version of the principle of lateral inhibition in systems with more than two com-
ponents which would require much more involved mathematical analysis, but it suggests
that the notion of pattern formation by autocatalysis and lateral inhibition is not only
applicable to the interaction of two components; it is also a fair approximation for many
more complex cases. The main problem in multi-component systems is to define activation
and inhibition without ambiguity. This is not possible for all types of general kinetics
(eqn. 1). The analysis given above requires a distinction of components with wide and little
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redistribution from the outset. Assessment of pattern formation and assignment of
activation and inhibition to subsets depends on this distinction and will lead to different
results, if, within the same reaction scheme, different subsets of components are widely
redistributed.

The notions of activation and inhibition have proved to be most useful and adequate in
analysing biological pattern regulation in phenomenological terms. The distinction of
activating and inhibiting features in its mathematical formulation is therefore biologically
meaningful. On the other hand, one has to be open-minded in considering activation and
inhibition as systems parameters, subsuming the combined action of several components,
not necessarily concentrations of individual substances. This is evident in cases with
activation resulting from inhibition of inhibition. A less obvious example of a simple model
where this notion is applicable, is given in the following section.

2. Example for a Multi-Component System: Lateral Activation and Striped Patterns

It is doubtful whether general multicomponent dynamics is of much use to understand
biological development considering the indefinite variety of models and conceivable
mathematical solutions. Systems of several differential equations of type (1) give rise to
ordered solutions only under restrictive conditions (see Smale, 1967). However, if the
components interact with each other in a systematic way, ordered patterns with specific
properties corresponding to biological features may be obtained. This will be exemplified by
a symmetric four-component system and by chained reactions to model for chains of
induction.

It is conceivable that two neighbouring states require mutual support by diffusing
substances, that is, mutual lateral activation. Then there arises an area where one type of
activation, say a,, is high, excluding locally an alternative state g, but leading to the pro-
duction of a product &, more diffusible than a, which supports activation of the neighbour-
ing area with high «,, and vice versa:

af’tl = f(ay, ay, by, by) + D, %1- (36a)
a;: = f(ag, ay, by, by) + Da‘;—l"; (36b)
%:v(al - b1)+Db%)2—l (36¢)
P2 0z —ba) + D, 22 (364)

with b, crossactivating a, and b, crossactivating a,. For certain functions f patterns are
generated (Meinhardt and Gierer, 1980). An example of a pattern-forming function f of this
general type is the following:

da, ai(l + ¢) 1 o%a,
Y p, - : —a,+D, 2% 37
ot 2 1+4ea? [a,+a,\ G+l (37a)
2 ———
0ay a1 +2) : L p L4 (37b)
—_— . . —a P
ot V1 +ea? <a1 +a2>2 ST
2

with the uniform solution a, =a, =56, =5b,=1. The b, b, terms are cross-activating,
whereas the (a, + a,)* terms take care of local mutual exclusion. Diffusion constants
D,, D, must be such that spreading of b terms is of a wider range than spreading of a terms.
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[n the simplest case, an area is divided into two parts, one with high a; and another with
high a, (Fig. 6a). In wider areas, alternating states of a, and a, are formed in space (Fig. 6b,
see page 15). In two dimensions, striped patterns can be generated.

In biology, such systems may be involved in the subdivision of an area into segments and
compartments, for instance of insect segments into anterior and posterior parts, or of
imaginal discs into quadrant compartments (Garcia-Bellido, 1975). Pattern-forming systems
with these properties can be treated by the multi-component generalization of destabilization
analysis given above (Section IV.1) and it can be demonstrated that the lateral activation
mediated by b, and b, is formally isomorphous to lateral inhibition. To show this, consider
the function £, eqn. (36a, b), which is of the type

f(x3 y’ x’ 5)—)
In the example eqn. (37a, b) f'is given by
x4

/= 1+ex?  [x+ y\?
2

S depends on the localized autocatalytic feedback of the substrate x produced and on the
locally exclusive cross-effect of the alternative substrate y, as well as on products catalysed
by these substances and spreading more widely in space, namely the cross-activating
term y, and, possibly, a self-inhibiting term X. We assume that there is a uniform
solution a, =a, =const, b; = b, =const and analyse the solution for stability to local
distortions. For small deviations a}, a3, b}, b, from the uniform solution, a lincar ap-
proximation of eqn. (36) reads, with lower indices describing partial derivatives of f near the
uniform solution,

- X (37¢)

~2 7

oaj o ay

= =+ s+ feby + by + Do (38a)

ég}’g = f,a} + f:a5 + f3by + fibh + D, %"2—2 (38b)
%l%/'— = vay — vb| + D, %% (38¢c)
6;)'2 =vay — vby + D, %2;122,3 (38d)

A parameter transformation can then be introduced, with the sum and difference between
ayand a,, b, and b, as new parameters:

A=a; —ay; A'=a,+a, (39)
szl—bz; B’:b1+b2

From eqn. (38) the following equations are easily derived for the linear approximation

0A 024

i (fe =fA+(fx—fpB+ D, o (40a)
0B B

0A’ ‘ , . 24

'_aTz(j:c +fy)A +(fi+fj7)B +Daaz— (400)
0B’ 0*B’

E = V(A’ — Bl) + Db —(,;2— (40d)

If D, is small and D, large, eqn. (40) can be assessed according to the criteria explained in the
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preceding section. Equation (40) has the form of eqn. (34), with (40a, c) as the activating, and
(40b, d) as the cross-inhibiting subset. Analysis of eqn. (40) is particularly simple because in
this case there are two completely uncoupled parameter systems (4, B, eqn. (40a, b) and
A', B', eqn. (40c, d)) assessable for stability separately on the basis of conditions outlined in
section III.2. Conditions for the uniform solution (D, = D, = 0) to be stable (Eqn. 20a, b)
are

Sy=fi+f=1z>0 (412)
fe—fy<v (41b)
it fo+fe+f<0 (41c)
fetfo<v (41d)

and the condition for destabilization of 4 or 4’, say 4 (upon wider redistribution of B), is
(26a)
fi—=f>0 (41e)

The condition for pattern formation (41b, d), fast reaction rate v, can easily be met. The
equations (41a, c) now permit an assessment of systems for pattern formation. It is easy to
demonstrate that the example given above eqn. (37) leads to patterns for small values of ¢
(0 <e < 1): In this case

2¢

fx=_1+8; fy=_l; f:‘c:O; fv=1

meeting the conditions eqn. (41a, ¢).

Several general aspects are illustrated by this example: Multi-component systems may be
reducible by parameter transformations in such a way that pattern formation is es-
sentially determined by two systems parameters, one activating and one inhibiting. The
biological implication is that activation and inhibition as defined phenomenologically in
biological systems need not be represented by the concentration of single chemical com-
ponents, but rather by features of multi-component systems.

In the example given, activation “is” the difference between two activators; the in-
hibitory effect is due to (mutually exclusive) activation mediated by diffusible cross-
activators b,, b,. It is formally represented in the linear approximation (40a, b), by the
difference B="5b, — b, of the two cross-activators. By comparison with eqn. (24a, b) it
is seen that B plays the role of an inhibitor: The interaction parameter k,, (eqn. (24a)) is
proportional to, and of the same sign as f; — f; in eqn. (40a); it must be negative because of
eqn. (41a) in conjunction with eqn. (41¢), whereas k,, = 1 is positive.

It follows that mutual exclusive lateral activation is isomorphous with lateral inhibition
rather than representing a different class of pattern-forming mechanisms. This notion is
expected to be extensible to multi-component systems with chains of induction to be
discussed below. In two-dimensional isotropic fields, the mutual support of neighbouring
states can lead to stable striped patterns (Meinhardt and Gierer, 1980), whereas stripes are
found to be unstable, in isotropic fields, for most two-component systems. Stripes occur
frequently in developmental biology, as exemplified by insect segmentation.

3. Chains of Induction and Intercalary Regeneration

There is a class of phenomena of pattern formation and regeneration which has pro-
perties differing from those of simple morphogenetic fields based on lateral inhibition,
and for which essentially different explanations have been discussed. An example is a
pattern in which one or two terminal structures in an array are produced first and the
internal parts are subsequently determined in a recursive manner by a wave of inductions
with an n'" section determining the n + 1'" section in the neighbourhood until the sequence
of structures making up the pattern is complete. Regeneration of planaria (Chandebois,
1975) and regeneration within segments of certain insect appendages (Bohn, 1970, 1971)
seem to be of this type. Within such segments, excised internal sections are regenerated, but
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transplants producing segments with excess parts lead to further regeneration, resulting in a
mirror-symmetric duplication of excess parts. Duplication is also found for certain small
sections cut from imaginal discs.

These phenomena can be formally described as regeneration leading to a distinct sequential
order. We enumerate the natural array of elements 1 ... N, a designation that may but
need not correspond to a substance gradient. Upon intercalary regeneration of parts re-
moved, missing sequences are inserted until all (or nearly all) discontinuities in the natural
sequence 1 ... N are eliminated. For instance, upon removal of an internal array 3-4-5-6
from a sequence 1-2-3-4-5-6-7-8, regeneration of 1-2-7-8 leads to the sequence 1-2-3-4-5-6-7-8
(underlined elements newly regenerated). Transplantation of excess sequences, exemplified
by the array 1-2-3-4-5-6-7-3-4-5-6-7, lead to further interpolating regeneration giving rise to
1-2-3-4-5-6-7-6-5-4-3-4-5-6-7. Simple morphogenetic gradients formed on the basis of lateral
inhibition do not easily explain the phenomenon of intercalary regeneration and do not
account for duplication in a satisfactory way. The observations rather resemble a wave of
induction: it appears that whenever an element n has neighbours different from natural
neighbours n—1 or n+ 1, this discontinuity gives rise to regeneration; the process is re-
cursive, leading to the state n — 1 (or n + 1) in the neighbourhood of #n. Upon formation of
n—1, the element »—2 can then be formed etc. until the complete sequence is re-
established.

Such chains of induction, while easily described in words, are quite difficult to formalize in
terms of general kinetics. Subtle conditions are to be met so that on¢ of the elements does not
eventually occupy the entire area, and two elements (say #, and n — 1) do not alternate in
space instead of restoring a complete sequence 1 ... N. Models appear to require spreading
(for example, diffusible) effects defining the range of induction of areas of type n—1 (or
n + 1) by areas of type n, or spatial self-limitation of clement #, or both.

The spreading effect is accounted for by products b,(x, ¢) which are catalysed by, but more
diffusible than, activators a;. 0a;/0t has to be a suitable function f of terms describing self-
activation (a;), mutual exclusion of alternative states (a,, k # i)) at the same location by a
suitable function r, lateral cross-activation by b;, , and/or b,_, and, possibly, lateral self-
inhibition by b;. Not all variables are required for chains of induction in any particular case.
We have demonstrated the pattern-forming capacity of various types of functions f. The
choice of f is dependent on the special biological properties which are to be modelled for:
for instance, whether regeneration proceeds upwards (n — n + 1), downwards (# - n — 1)
or in both directions, and whether the regenerate is derived from cells further downwards or
further upwards from che junction, or both, whether the system is size-regulating, producing
a complete array of small sections in a small field, or non-regulating, leading to in-
complete regeneration if total area is small (Meinhardt and Gierer, 1980).

An example of a model giving rise to waves of induction is the following:

da; o%a;

=@ 67hyy + 6 b — ke + D5 (6> ) (422)
ob, &%b,
i wa; — b)) + Db&i‘ (42b)
dr - + 2
a;=zci~(ai+5 bi_y+067bis) —r (43)

Fig. 7 demonstrates intercalary regeneration and duplication on the basis of eqn. (42, 43).

Such formalisms are generalizations of the four-component model of the previous section.
Two systems with lateral activation (a,, b,) and (a,, b,) are substituted by N such systems
generating an array of N states. f must contain terms that lead to chaining from n to n + 1
or #i—1, and terms that ensure that each section is limited in size. This limitation can
be due to direct lateral inhibition of each state by a self-inhibitory terms b,, or the indirect
lateral inhibition mediated by lateral crossactivation of finite range b,_;, b,., or both.
Such chains of induction are formally related to the notion of “hypercycles” introduced by
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12 6 7 8 34 5 6 7 23 4

1 2 3 7 8 34 5 6 732 3 4

12 3 4 5 678 3 4 5 65432 3 4

F1G. 7. Model for intercalary regeneration based on waves of induction eqn. (42). In each
subpicture, dimension left to right represents position in the tissue, the dimension bottom to
iz describes the activated state
for each position in the tissue, as calculated by computer simulation. The resulting spatial
sequence of states is given by the sequence of numbers on top of each subpicture. A sequence
of activated states 1 ... 8 is formed by sequential induction (not shown). After removing an
internal part (3-4-5) (a), this can be restored by sequential induction (b. intermediate, c.
final state). Transplants introducing excess sequences (d) lead to further regeneration until the
discontinuity is smoothed out. (e. intermediate state, f. final state) (Adapted from Meinhardt
and Gierer, 1980).

Eigen and Schuster (1978) for mutual stabilization of the production of macro-molecules
involved in evolution. Proliferation and growth can be introduced into such models, but
they are no logical prerequisite for intercalary regeneration. Preexisting areas of tissue may
be respecified as well.

Alternative (though somewhat analogous) possibilities for models of a chain of states
would be to postulate additive instead of exclusive states or—less likely—a sequence of
states of a single multi-stable system involving very high orders of reactions.

In molecular terms, chaining systems suggest a system of different but related control
circuits. An example involving control at the gene level would be a set of neighbouring genes
on the chromosome with chemically related products and with some facilitation of the
activation of a given gene if a neighbouring one is activated; another possibility would be
auto- and cross-catalysis of a set of related RNA or protein molecules with cross-
activation by molecules of related sequences. In each case special assumptions have to be
made on the orders of the auto- and cross-catalytic reactions involved and on the range of
molecules due to diffusion or other modes of spreading.

4. Discontinuity Sensing

A relatively simple model for recursive pattern formation presumes that the natural
sequence of states in space corresponds to a monotonic gradient of some substrate p (x).
Catalytic mechanisms can be envisaged that give rise to a local signal wherever there is a
discontinuity in the distribution of p exceeding a certain threshold (Gierer, 1977a). If one
component, say an activator a has a longer range than another component, say an in-
hibitor 4, both produced in proportion to p, then the ratio a/A is below average at the high
and above average at the low side of any discontinuity of p, whereas elsewhere the value of
a/h is constant, irrespective of the value of the gradient. The discontinuity signal (which may
be static or pulsing in time) can be envisaged as stimulating a gradual increase of p at the
low side, or a decrease of p at the high side or both until the discontinuity falls below a
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threshold of signalling, or disappears altogether. This process may, but need not, be ac-
companied by growth. It can lead to terminal as well as intercalary regeneration.

The model does not in itself lead to stable levels of p transferred to progeny cells upon cell
proliferation and further growth, whereas chains of induction, as discussed in the previous
section, lead to discrete stable states within subsections which could easily be preserved upon
proliferation. We have shown that gradient discontinuity sensing can be linked to chaining
mechanisms in such a way that the discontinuity signal drives the sequence of inductions
until the signal falls below a threshold, because the complete sequence has been formed. The
model combining discontinuity sensing and chains of induction has good size-regulatory
capacities (Meinhardt and Gierer, 1980), and allows for mechanisms transferring the
determined state to progeny upon cell proliferation.

V. READOUT AND INTERPRETATION OF MORPHOGENETIC FIELDS

1. Types of Cell Responses

Morphogenetic fields in multicellular tissues are expected to affect different processes,
such as determination, differentiation, changes of form and interaction, orientation, pro-
liferation and death of cells. In the simplest ““positional information”” model (Wolpert, 1971)
cell response occurs with respect to the local value of the morphogenetic field and can be
conceptually separated from the formation of this field. The morphogenetically active
component may be the activator or inhibitor distribution, the latter extending-farther into
the tissue from centers of activation than the former. The terms activator and inhibitor refer
to the function of components in the formation of the morphogenetic field. With respect to
its effecis on cells, activators can be inhibitory and inhibitors activating. The formation of
secondary diffusible morphogens catalysed by the primary activators and inhibitors can also
be envisaged. In the multi-component system discussed above, cell responses can occur to
any of the components (a,, b,).

2. Determination and Differentiation

In the course of development of an organism, multipotent cells undergo a sequence of
determining steps, each deciding between few (possibly, but not necessarily two) alternative
pathways to generate eventually a diversity of differentiated cells. Alternative pathways for
a cell can be determined by intracellular mechanisms, random fluctuations, or by inter-
cellular morphogenetic fields in the tissue; in the latter case the morphogenetic field can lead
to a subdivision of an area with different states of determined or differentiated cells in dif-
ferent regions. The simplest conceivable mechanism for cell determination would be to switch
a bistable system from an “off”” to an “on” state if the local morphogen concentration is
above a certain threshold (see Meinhardt, 1976; Lewis, Slack and Wolpert, 1977; Gierer,
1977a). The state remains switched “on” if the morphogen is then removed. Multiple
steps with different thresholds can be formalized along similar lines.

There are theoretical reasons suggesting that cell determination may be combinatorial,
each state of a cell being defined by a combination of control circuits at the gene level turned
either “on” or “off”. A limited set of circuits would then suffice to specify a large number of
states of cells. This suggestion is supported by analysis of the rules for transdetermination
(Kauffman, 1973), compartmentalization (Garcia-Bellido, 1975), and sequential branched
determination defining cell lineage as well as the expression of states of differentiation on the
cell surface (Gierer, 1973). The chaining rules required to obtain sequential branched
determination are somewhat analogous to those proposed for the chain of induction in the
preceding section.

According to combinatorial models, cell determination in response to a morphogenetic
field leads to the subdivision of an area into different sections; thereafter, new morpho-
genetic fields, perhaps of the same biochemical type as the preceding ones, are formed within
the sections, leading to further subdivisions into subsections. This would lead to the
specification of an “area code” in morphogenesis subdividing not only cell types but also
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areas in a combinatorial fashion: there would be a limited set of control circuits and the
combination of the circuits turned “‘on” is specific for a given subarea.

Some developmental processes can be described as a wave of differentiation extending into
a tissue (see Zeeman, 1974). In the context of the theory of morphogenetic fields and cell
response by differentiation, such waves can be modelled for on the basis of the size-
regulating versions of pattern-forming systems as described in Fig. 4a, d. If the field is
initiated by a gradient (Fig. 4a) or induced marginally (Fig. 4d), near-maximal activation
extends into the field in wave-like fashion. This may be looked upon as a transition of cells
from a state of low to a state of high activation, spreading in space from cell to cell until
lateral inhibition stops further spreading. If irreversible cell determination and differentiation
occurs above a threshold near maximal activation, differentiation also extends into the field
as a wave. A simplified version of this concept is that activation is determination or dif-
ferentiation, implying that the wave front of activation progresses irreversibly, by transition
of cells from low to high activation, induced by the activated state of neighbouring cells,
until lateral inhibition prevents further spreading. Such models are distinctively different
from concepts in which a wave of transition towards differentiation extends into the tissue
to eventually cover the entire area (“‘domino theory”) or to be stopped by an external or
internal time-controlled event. The essential point is that the spatial extent of the wave is
self-limiting by lateral inhibition originating in the activated area but spreading into the
nonactivated domains, so that the wave of transition stops at a defined extension of acti-
vation by effects arising internally within the activated area itself.

3. Generation of Tissue Curvature and Real Form

(2) Self-regulating properties in the generation of form

Morphogenesis proper is the generation of real form of cells, tissues, organs and organisms
in the course of development. This is a complex process in which various combinations of
different mechanisms are involved, and one does not expect explanations which are uni-
versally applicable. Nevertheless there is a relatively simple prototype in multicellular organ-
isms: form often originates as a pattern of curvature of cell sheets and its generation can be
traced back to processes of evagination or invagination at defined positions within originally
nearly flat cell sheets in the course of development; this applies to gastrulation, neurulation,
the development of structures in the central nervous system, the formation of rudiments of
appendages in imaginal discs of insects etc. For a physical understanding of this process the
following features are particularly relevant that have been experimentally found in various
simple model systems: (i) Excised pieces of tissue often generate a structure equal or similar
to the one that can be produced without excision; thus a piece of hydra tissue cut from the
budding region can produce a bud. This suggests that bending moments rather than
tangential forces dominate the generation of form. (ii) The inner and outer part of (single or
multiple) cell layers are often different; in many cases the inside-outside anisotropy is
obvious in the microscope. This anisotropy implies that a morphogenetic field activating a
subarea in the tissue can generate a bending moment different from that in the environment,
leading to curvature. (iii) Theoretically, evagination of a tissue could proceed in different
ways: Either cells retain their nearest neighbours, but undergo gross changes in the shape of
the cross-section tangential to the cell sheet—say from round to elongated; or cells retain
this shape, but rearrange to a considerable extent. Studies on cell forms support the latter
mechanism (Fristrom, 1976; Graf and Gierer, 1980). It requires that friction and shear are
sufficiently Jow not to inhibit evagination. (The shape of the cross-section perpendicular to
the surface changes upon evagination in any model, because curvature requires different
inner and outer surface areas.) (iv) Certain inhibitors reversibly delay the process of
evagination and others can even lead to reversion and repetition of evagination (Spooner
and Wessels, 1970; Spooner, 1975). The generation of form is thus not due to a time-
controlled all-or-none irreversible event (such as a contraction and fixation of inner or outer
cell surface areas); it rather appears that a morphogenetic field locally changes the con-
ditions for a stable steady state which is then approached by the generation of curvature. On
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this basis, distortions and delays can be corrected by self-regulation. The capacity for self-
regulation is maintained for some time during development, but usually ceases when sub-
structures are formed, so that development at large is an irreversible process.

The self-regulatory properties suggest that the curvature and form assumed by the tissue
corresponds to a state of a minimum of generalized potential. In the simplest case, potential
would be additive with respect to the cells. Potentials have been introduced into theories and
models of cell arrangements and of tissue form by D’Arcy Thompson (1952), Gustafson and
Wolpert (1963) and Steinberg (1963) with reference to the interaction between cell surfaces.
Generalized potentials as introduced by Ljapunov are a generalization of the concept of
minimal free energies to steady states and dissipative structures which require a flux of
energy. Such generalized potentials are expected to be a function not only of the interaction
of cells with other cells, with external media and with extracellular substrates, but also of
internal parameters determining cell form, e.g. in relation to anchorage, formation, elong-
ation and degradation of intracellular fibres. In the steady state, such fibres may con-
tinuously be formed and broken down. Contraction may but need not be involved; if it is,
it is not considered to be a single irreversible event, but one contribution among others to
the stable steady state.

(b) Stability of cell sheets and induction of bending moments by morphogenetic fields

The theory summarized below (Gierer 1977b) is based on generalized potentials, stability
criteria for cell sheets and the generation of bending moments to produce curvature at
positions activated by morphogenetic fields. For tissue evagination to occur in a re-
producible fashion, cell sheets must be free to undergo the movements of evagination and
must neverthesless be stable. A prototype is the free cell sheet facing different inside and
outside media, but cases in which cell sheets rest on a flexible inner cell mass instead of inner
media are formally similar. The problem of stability of such free cell sheets is an intricate
one. If the shape and contact areas of the cell (idealized as a cell model with flat surfaces)
are expressed in terms of external, internal and intercellular surfaces, f;, f, and £, (with two
values determining the third for a given cell volume), it is found that no linear relation
between potential and surfaces

P= ca.fa + beb + ccfc (44)

can lead to a stable cell sheet. Sheets would be unstable either to decay into outside or inside
medium or to clumping. In molecular terms, this implies that no stable isotropic distribution
of substances on the cell surfaces, however complex in composition, can possibly lead 1o a
free stable cell sheet. ‘

On the other hand, very simple non-linear relations, such as

CK,f, Criy/; .
Poafir o e By, 49)
suffice to ensure stability not only with respect to clumping and decay, but also with regard
to a set of further distortions of the sheet (Fig. 8). The non-linear features required may
result from a variety of molecular mechanisms, including capping of components on the
membrane, limited supply of molecules involved in cellular interaction, and effects of
anchorage and formation of intracellular fibres.

A morphogenetic field which locally changes parameters such as c., K, leads to local
changes of bending moments, and thus to curvature and form; the state of minimal potential
is a state of evagination. Bending moments and resistance to bending are derivatives of
potential with respect to curvature of the cell sheet. The state of minimal potential of the
sheet is then given by the laws of mechanics.

However, the parameters introduced into the calculations of the form of the sheet
corresponding to a state of minimal potential, need not determine the mechanical properties
of the tissues. These are influenced by stabilizing structures that may be produced sec-
ondarily. For instance, the mechanical stability of Hydra tissue is due partially to extra-
cellular mesoglea at the interface between ectoderm and entoderm, and mainly to tight
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FiG. 8. Stability conditions for cell sheets. A freely moving cell sheet should be stable against
clumping (S.), decay into inside and outside medium (S;, S), spongy states in inside or outside
medium (Sin, Sex), backfolding (Sa.), undulation (qae) and intercellular cleavage from outside or
inside (S, Sri). The set of conditions is inconsistent with linear relations between generalized
potential and cell contact areas with other cells, inside and outside medium; but simple non-
linear relations of type eqn. (45) can lead to stability according to all criteria listed in the figure.

junctions between ectodermal cells. Relaxation of such stabilizing structures may occur only
slowly, and may itself depend on morphogenetic signals and fields.

(c) Application of shell theory to tissue form

To calculate real form, shell theory developed by architects and engineers is particularly
suitable. It is based on the assumption that the thickness of the (cell-) layer is considerably
smaller than the radius of curvature. For the biological application, the equations for bending
moments are most relevant. Shell theory is easy to apply for curvature in one dimension,
and for rotationally symmetric structures. The latter include free closed shells in three
dimensions. Effects of local generation of bending moments in response to morphogenetic
fields can be simulated by computer.

A few model cases with rotational symmetry are demonstrated in Fig. 9. Figure 9a shows
that activating a single area can lead to a complex structure because of the interaction of
curvatures in the two dimensions tangential to the sheet. Figure 9b shows a simulation of
evagination starting from a spherical shell. It demonstrates the generation of form based
entirely on internal mechanisms within the cell sheet, without reference to boundary
conditions. The prepattern can be formed internally, the position of the activated area being
determined either by some unspecific polarity-defining gradient or even by random sym-
metry breaking leading to activation as modelled in Fig. 5g; the cell response then causes a
defined structure to be formed by evagination (b), or invagination (c), depending on the
effect of the morphogenetic field on potential P (eqn. 45).

Closed configurations (Fig. 9b, ¢) are models not only for morphogenesis in multi-
cellular organisms but also for the generation of form of single cells. In this case, the layer
generating cruvature is to be interpreted as a cell membrane or boundary layer rather than a
cell sheet. If the membrane shows an inside-outside anisotropy, because molecules inserted
on the inside and outside surface are different, a focus of intracellular or intramembrane
activation may affect the distribution of such molecules causing bending moments which lead
to evagination or invagination, possibly followed by detachment. It is not claimed, how-
ever, that all processes affecting cell form can be modelled in this way.

(d) Elongated structures

Most structures generated in the course of embryogenesis are elongated rather than
spherical. Elongated structures can be produced in various ways: If a cap area is activated
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FiG. 9. Rotationally symmetric structures formed by local activation of an area (centre-top of
the structures drawn) generating excess bending moments. Pictures represent sections through
(three-dimensional) cell sheets. Axis of rotation is vertical. Calculations are made on the basis
of shell theory. a. A single circular area of activation (top) can lead to a complex structure due
to interaction of curvature in two dimensions. b. Evagination, c. invagination from a closed
sphere, resulting from activation of a small area on the top. Such models can be applied to cell
sheets to model tissue form as well as to membranes and boundaries of single cells to model cell
form. If there are two degrees of activation, a strong one in a small circular area (top) and a
weaker one extending into the surrounding area, an elongated structure such as a protruding
bud can be produced (d, ). Elongated structures can also be formed if an activated area (top)
develops a strong local bending moment, and, in addition, extends a gradient into the sur-
rounding tissue giving rise to anisotropy, with bending moments preferentially in the circular
dimension; a simple model case is calculated in Fig. f.

strongly and the environment of this cap area more weakly, an elongated form results
(Fig. 9d, e). Another possibility is that a cap area is primarily activated and extends a
gradient into the environment; there the gradient causes the tissue to become anisotropic,
with bending moments predominantly in the circular dimension perpendicular to the gradi-
ent, leading to elongated structures (Fig. 9f). Coordination effects (e.g. a preference of cells
to form close-to-hexagonal arrangements) can also contribute to elongation.

Further, elongated structures can be formed if resistance to bending (flexibility) rather
than bending moments themselves is affected by morphogenetic fields. For example, if
activation of a (cap) area reduces resistance to bending there, or increases this parameter in
the region surrounding the primarily activated area, elongated structures can be produced.
This type of mechanism is capable of good proportion regulation: if activated area is
proportional to total area, length can be nearly proportional to width. Many other mech-
anisms producing elongated structures, such as those described in Fig. 9, do not by them-
selves lead to proportion regulation of real form.

An example of the generation of form with proportion regulation is the regeneration of
Hydra from excised pieces of the body column, leading to nearly constant proportions of
head to body tissue (Bode, and Bode, 1980) as well as of length to width (Sugiyama,
personal communication). Possibly, this proportion regulation results from an effect of the
morphogenetic field on resistance to bending during the generation of form, for example
by increasing flexibility in the area activated to produce a new head.

(e) Multicellular layers

Some biological structures are determined by cell sheets consisting of several layers. The
theory based on generalized potentials has been extended explicitly to two-layered structures
(for which hydra tissue consisting of entoderm and ectoderm cell layers is an example).
For sheets consisting of a small, but undefined number of cell layers, it is conceivable that
the contribution of inner and outer surface areas to generalized potentials (e.g. by providing
access to molecules of the medium) may have a finite range of several cell layers. Formally,
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one may then consider a multicellular unit extending across the sheet as one cellular element
and apply the concepts of the theory to this unit: Bending moments generated by the
morphogenetic field lead to an increase of one (say, external) surface and a decrease of the
other (say, internal) surface, and thus to curvature and form.

(f) Kinks

Tissues often show kinks in the contour of the surface; for instance, early insect embryos
and rudiments of appendages form kinks at segment borders. Generally it appears that such
kinks are easily formed at border lines separating differently determined sections of a tissue.

Such borders have properties different from that of the internal part of the different
sections. Local morphogenetic signals could arise at such borders by discontinuity sensing
based on autocatalytic mechanisms (Gierer, 1977a; Meinhardt and Gierer, 1980; see
section IV.4) or by the cooperation of substances produced in different sections (Meinhardt,
1980). Such local signals could strongly affect parameters relevant for potentials and the
generation of bending moments and in this way lead to a kink in the border region.

Within the framework of the theory based on generalized potentials, an attractive
possibility would be that differently determined parts of the tissue do not recognize each
other as “self”; cells with an intercellular contact area at the boundary, f,, may respond in
some respects to the foreign cell as if it were a medium. Such behaviour could easily result
in kinks. If for instance, in eqn. (45), f, in the non-linear term is substituted by (f, +f2)
and the interaction term c, with respect to £, is assumed to be slightly different from c,,
the resulting potential of cells at the boundary is given by

cz;Ka(fa + fé) cllybeb
ey ey

P=cfo+ teofetefe (46)

+ %o fp
Computer calculations based on an idealized geometrical model for a kink show that three
interesting types of behaviour can be obtained for different parameter ranges: The most
stable configuration can either be a kink with an angle between 0° and 180°, or a kink of
180° where the sheet folds back on itself; further, there are parameters leading to a state of
near-zero resistance to curvature resembling an ideal joint.

(g) Waves

As discussed in section V.2. on differentiation, cells in an activated area may undergo a
transition toward a differentiated state, and this transition may spread, from a centre of
initiation, into the surrounding tissue in a wave-like fashion until lateral inhibition prevents
further spreading. The same mechanism may apply to the spreading of a wave of transition
of cells with respect to form, orientation, interaction, bending moments and/or resistance
to bending, and may lead to progressive recruitment of cells participating in form-
generating processes like budding, invagination, evagination or folding. Again, as in the
case of waves of cell differentiation, 'wave mechanisms with self-limitation by lateral
inhibition are different from waves eventually covering the entire tissue, or terminated by
external or time-controlled events.

Budding Hydra may provide an example of such self-regulation of a limited area partici-
pating in tissue evagination. Budding is initiated by activation of a near-circular area of the
body column in which cells are recruited for the future bud. The cells assume a relatively
columnar shape before they participate in evagination and forming the bud. Recruitment
of cells extends into the tissue in a radial fashion (Otto and Campbell, 1976; Graf and
Gierer, 1980), but the extent of recruitment is self-limiting, possibly by effects of lateral
inhibition arising in the activated area.

The theory of tissue evagination based on generalized potentials, stability criteria for cell
sheets and the generation of form resulting from bending moments induced by morpho-
genetic fields is not proposed as generally applicable in biology. On the contrary, one
expects that there are other mechanisms primarily determined by tangential forces, press-
ure, friction and shear as well as mutual steric hindrance of structures, which cannot be
subsumed under the theory. However, in cases that show the self-regulatory properties
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mentioned, it appears likely that the theory is a fair approximation independent of details
of the molecular mechanisms affecting cell surfaces and cyto-architecture.

In the application of shell theory to engineering, emphasis is mostly placed on tangential
forces; an example is the design of thin concrete roofs capable of supporting enormous
weights while avoiding strong bending moments which would cause the roof to collapse.
In the biological applications proposed, tangential forces are considered to be small, the
emphasis being on bending moments. Logically these can be produced only because cell
sheets have a feature that most technical materials do not show: a striking inside-outside
anisotropy. It is this property which is the prerequisite for the generation of excess bending
moments in response to localized scalar signals, such as high morphogen concentrations.

4. Growth

Whereas growth per se is capable of generating order in space if different parts of a
structure grow out in sequence, embryonic structures are often preformed in small rudiments
which grow out to larger sizes only in later stages. In these cases, growth patterns affect pro-
portions of parts laid down previously, transforming rather than generating form. Morpho-
genetic fields are expected not only to cause the subdivision of the rudiment into different
parts but also to affect the growth pattern programming cells as to the occurrence (and
perhaps number) of proliferations.

The decision for a cell within the tissue to proliferate is probably influenced by a com-
bination of parameters. The theory of pattern and form discussed above does not explicitly
refer to growth, but draws attention to the possibility that the parameters which are essential
in determining patterns and form are also involved in the control of proliferation. Extra-
cellular and intracellular humoral factors, including those active in morphogenesis, feedback
mechanisms controlling and stabilizing the density of cells of certain types in the tissue,
chemical signals defining the occurrence and distance of structures within this tissue, as well
as contact areas of cells with other cells, with media and with extracellular material may be
expected to contribute to control growth.

In this context, two general experimental findings are of interest: (a) Cells isolated from
tissues (other than bone marrow) are difficult to grow in suspension. In many cases cell
cultures are possible only after rare changes, such as somatic mutations; but then, the cells
produced often differ from the original tissue cells. It appears that tissue cells are difficult
to grow in suspension not because the ideal media are not yet known, but because the cells
require contact with other cells or extracellular material. In simple cases, as for fibroblasts,
contact with a surface of a dish is sufficient for growth, but often a more complex environ-
ment appears to be necessary resembling that within tissues more closely. (b) Cancerogenesis
often appears as a multiple-step process, passing through latent and pre-cancerogenic
states. This suggests that the release of cells from growth control may be a multiple-step
process. Growth of a tissue cell may depend on the combination of several conditions to be
met. Release from all these conditions leads to uncontrolled growth.

Several lines of experimental evidence suggest effects of external factors, cell contacts,
and/or cell form on proliferation. Growth can be stimulated by soluble growth factors, and
inhibited by cell contact resulting from crowding of cells on the dish. However, the latter
inhibition can be overcome by larger amounts of growth factors (Holley, 1975). Negative
effects of cell contact could but need not be the result of reduced access of the cells to
soluble factors in the medium. Attachment to surfaces might be an independent parameter
affecting growth control (Dulbecco and Elkington, 1973).

The relation between cell form and growth is further clarified by results of Folkman and
Moscona (1978). By contact with different artificial surfaces to which fibroblast cells
adhere, cell form can be varied between flat and near-spherical. Proliferation of cells is
found to be mainly determined by cell form rather than by intercellular contact. It remains
undecided whether growth regulation is primarily due to the effect of the contact area
between cell and surface, or to cell shape and internal cytoarchitecture or to a combination
of these features. The results do not preclude that in other systems cell form and contact
with other cells codetermine the control of proliferation. In particular, effects of cell
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interaction on growth control are likely to occur in tissues made up of cells of different types.

In analogy to the conditions controlling stability and form of cell layers we expect that
the control of proliferation of tissue cells also requires a non-linear algorithm. This may
involve the concentration of external humoral factors, different cell surface areas, and
possibly other form parameters related to the internal cytoarchitecture. Such non-linearity
implies that the combined effect of factors involved in growth control cannot be inferred
from studying the effect of the individual factors by themselves.

VI. SOME GENERAL AND PHILOSOPHICAL ASPECTS OF
BIOLOGICAL PATTERN FORMATION

1. Physicalism and Biological Form

One of the aims of modern biology is to understand basic biological phenomena in terms
of physical laws. This does not imply reductionism; the features distinguishing living from
non-living entities are not to be denied but to be explained. Along these lines much progress
has been made in recent decades in the field of molecular genetics with results on the
structure, replication, mutation and primary function of genes that apply to all living
organisms. At present, much attention is directed towards the specific features characteriz-
ing higher organisms. Their most interesting and striking aspects are behaviour and form.
Behaviour is determined by the function of nervous systems which, in turn, is expected to be
understandable in terms of physical laws. This expectation is partially based on the theorem
of Pitts and McCulloch stating that any formalizable capacity can be modelled on the
basis of digital computers. Though nerve nets are not made up of digital elements, the
capacity of the nerve cell is certainly not below that of a digital unit, but may embody the
capacity of a set of digital units. Therefore, one expects physicalism to hold for neuro-
biology in that any formalizable function can be explained as a property of neural net-
works. An open question is whether all properties of brains (including those relating to
consciousness) are fully formalizable.

With respect to form, the generation of patterns starting from near-uniform states and
their striking self-regulatory features (such as the formation of two small, but complete
organisms from two halves of an early embryo) have long been considered a challenge for
physical explanations in biology.

The theory of pattern formation described which is capable of modelling these regulatory
properties, is based on very conventional physical laws—general chemical kinetics requiring
only features which are common in molecular biology, though in some special com-
binations. Even if it were necessary to amend the theory considerably in the course of
further experimental developments, it is evident already at the present stage that biological
patterns and their properties of self-regulation are within the scope of conventional present-
day physics: physicalism and biological facts are consistent.

However, one would not do justice, historically, to the vitalist branch of thinking in
describing it as “‘unscientific’” and obscure. The basic laws of physics have been discovered
and experimentally confirmed first in the non-living domain, and the extension of physical
laws beyond a given domain is always an empirical question which cannot be decided by
thinking alone. For instance, classical mechanics had to be revised and extended to quantum
mechanics to be applicable to atomic dimensions and properties; on the other hand, no
further revision was necessary to understand molecules in general and chemical bonds in
particular. It is experimental evidence, especially in the field of molecular biology that has
shown the physical laws are fully applicable and sufficient for biology. Further, at the stage
the vitalists put forward their arguments, physicalism was often associated with reduction-
ism, postulating that the basic laws of physics and chemistry would, in themselves, provide
explanations for biology. Our present notion is somewhat more liberal: though the basic
laws of physics hold in the entire biological domain, one has to take into account that a
system of components has properties that the components themselves do not have. Most of
the interesting biological properties are such systems features as are revealed only by
specific studies of biological systems. It was the merit of the vitalist school of thought to
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emphasize the holistic view, though this was mainly done on the basis of intuition. After-
wards, with the advent of systems theory, the holistic approach became fully integrated into
science, thus complementing and justifying rather than invalidating the physicalist position
that the basic laws of physics apply fully to the biological domain.

2. Common and Distinct Properties in the Formation of Biological and Non-Biological
Structures

The generation of structures by autocatalytic mechanisms in conjunction with depletion
or inhibition effects is not restricted to developmental biology; it is evidently involved in
many other processes, such as the formation of stars and galaxies, waves and clouds,
crystals and dunes in the domain of physics, and it can be recognized in social effects as
in the generation of socio-economic inequalities, urban congestion, or traffic jams. The
reason why such effects have been inferred for developmental biology only relatively late is
that most chemical reactions in solution lead to homogeneous distributions of compounds
in liquids. Only since Turing (1952) discovered that spatial concentration patterns can be
generated in solution on the basis of catalytic reaction kinetics, were conditions for such
pattern formation studied in more detail and related to biological properties. Our principle
of autocatalysis in conjunction with lateral inhibition which emerged from biological
studies provides a link to autocatalytic structure formation in the inorganic as well as
social domains. Other conceptual approaches to structure generation have been developed
which also elucidate general features common to biological and non-biological structures in
space and time. Theories emphasizing energy dissipation (Glansdorff and Prigogine, 1971),
bifurcation, catastrophes (Thom, 1972), and the understanding of synergetic processes in
terms of general “order parameters” (Haken, 1977) are particularly relevant.

However, studies of properties of biological pattern formation which are common to the
generation of physical structures, by themselves, do not adequately deal with the speci-
ficity of biological phenomena. In biology complex structures are generated in a re-
producible fashion under the instruction of genes. A structure is produced in a sequence of
patterns, subpatterns, sub-subpatterns etc. and each subpattern arises in a reproducible
location and orientation with respect to the pattern of which it is a part. In this process, the
reproducible orientation of subpatterns with respect to the initial structure, that is the
polarity effect, is of particular importance. If we look at an elephant, we realize that no
interesting structural feature is due to true symmetry breaking. The tusk always turns up,
the toes point forward etc. For asymmetric patterns formed on the basis of autocatalysis and
lateral inhibition, this polarity effect is expected: the orientation, though not the shape, is
determined by preexisting spatial order.

In the formation of many inorganic structures true symmetry breaking is essential. Random
fluctuations determine position and often other properties of the structure to be formed, say
a crystal, a cloud or a dune. In biology, formal general results on bifurcation and symmetry
breaking are also useful mathematical tools. Nevertheless, if we ask for essential distinguish-
ing properties of biological versus inorganic structure formation, it is specific for biology
that most interesting features do not arise on the basis of true, that is, random symmetry
breaking.

3. Paitern Formation and Pattern Recognition

The concept of lateral inhibition was originally introduced in the fields of neurophysiology,
visual perception and pattern recognition (Kuffler, 1952; Kirschfeld and Reichardt, 1964;
Wilson and Cowan, 1973). Short-range activation in conjunction with long-range in-
hibition leads to contrast sharpening, such as edge enhancement, emphasizing the contour
rather than the area of objects. Neural correlates, such as activating and inhibiting synapses,
have been found. The importance of short-range activation and long-range inhibition in
pattern formation suggests a formal relation between the generation and recognition of
patterns, despite the fact that the biochemical mechanisms of (mostly non-neural) cells in
one case and synaptic electrical interaction of neurons in the other are very different. The
formal relation suggests that often patterns which are easy to produce are easy to recognize;
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and that the corresponding hidden regularities are immediately experienced as ““aesthetic”,
although their formal analysis need not be easy. Combinatorial interaction of simple
patterns can be obvious, as in the case of a periodic pattern modulated in intensity or
spacing or both. A less obvious example is given by certain textures: Julesz (1962) has
studied various arrangements of objects with respect to figure-ground discrimination,
testing which arrangements are immediately (that is in fractions of a second without
conscious thought) perceived as a figure if placed on a ground with a different arrangement.
One of his resuits is that textures with different second-order statistics are directly perceived.
For instance if a field of dots in positions, which are random except for a tendency to avoid
small distances, is placed on a background of completely randomly distributed dots of the
same density, there is immediate figure-ground discrimination (Fig. 10). The “granularity”
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Fi1G. 10. The central part of the figure is distinguished by immediate perception from the

surrounding area, although dots are distributed randomly and at the same density throughout

the field. The centre is distinguished, however, by the avoidance of small distances. According

to Julesz (1962), this texture leads to immediate figure-ground discrimination. The same

feature—inhibitory fields surrounding peaks of activation—characterizes the formation of

patterns by autocatalysis and lateral inhibition upon random initiation in a two-dimensional
field, as demonstrated in Fig. 5d.

avoiding small distances, however, is just the type of spacing of peaks obtained by pattern
formation on the basis of lateral inhibition upon random initiation within a field (Fig. 5d).
It follows that this texture which can be formed in a most simple way on the basis of lateral
inhibition is also perceived easily within seconds and without conscious thinking although a
formal analysis of the properties characterizing the texture requires considerable time and
scientific training.

With respect to real form of organisms and organs given by variable curvature of contours
it is conceivable that, again, hidden regularities characterizing the formation of pattern and
form (such as relation between curvatures in two dimensions as in Fig. 9a) may play a
major role in the perception of the form, and in aesthetic experience as well.

One expects that further insights into mechanisms of pattern formation and recognition
would lead to more subtle formal relations which are anthropologically interesting. Overt
as well as hidden regularities produced by biological pattern formation can be immediately
experienced by our brain and often appeal to our aesthetic sense. The same is true if such
hidden regularities are found in works of art, or in natural or artificial landscapes. It is not
claimed, however, that the relation between pattern formation and recognition can by itself
explain aesthetic visual experience: this has many aspects, including the interrelation of
symbols, experiences and emotions; the aesthetics of hidden regularities is just one of them.
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4. Logic of the Generation Cycle

In the eighteenth century a popular theory of biological development proposed by Bonnet
and Haller was to assume that the organism to be formed is contained in a miniature, but
fully specified form within the egg cell, in analogy to the Russian “puppets in the puppet”’
(for an excellent presentation and discussion of the early history of embryology, see Jacob,
1970). Since the egg cell is much smaller than the organism from which it is derived, to
provide organisms for many generations ahead would imply that their structure is contained
in unbelievably small volumes. This point has already been made in the eighteenth century
by Buffon. While the argument was always plausible, in modern physics it can be based on a
law of nature: according to quantum mechanics structures involving chemical compounds
cannot be stable in dimensions less than an atom’s volume, that is 10~ %% cm?. Since an egg
cell has a volume several orders of magnitude below that of the organism in which it
originates, organisms cannot contain structures providing for progeny many generations
ahead.

It follows that structure is newly generated in each generation. However, as discussed in
the context of polarity, biological pattern formation is not essentially based on random
symmetry breaking in initially uniform distributions. Rather, to generate a reproducible
complex organism, the orientation of structures is to be reliably derived from preexisting
spatial cues. This is a necessary requirement for the reproducible formation of substructures
of the embryo. It would not be logically necessary for the egg cell itself, except for the
handedness (causing the heart to be on the left) which is probably determined by asymmetric
molecules and molecular compounds, though in an indirect and still non-understood
manner. However, experimental evidence shows that even the egg cell itself can develop
(as in the case of many insect eggs) in a predictable orientation with respect to the organism
from which it derives: asymmetric oriented flies can produce asymmetric oriented eggs and
they in turn can develop into asymmetric flies.

In verbal discussions explanations of orientation by orientation may sound like a
circular argument. However, the formal treatment shows that this is not the case. While the
puppet in-the-puppet theory of biological pattern formation is inconsistent with physical
laws, no such laws are violated if the orientation of structures is reliably and indefinitely
determined by preexisting structures. In the framework of the theory of pattern formation
by autocatalysis and lateral inhibition, the orienting feature is incorporated as polarity-
defining gradient which can be an unspecific gradual cue orienting a pattern; on the other
hand, the form of the pattern is not affected: this means that most of the information
contained in the polarity-defining distribution is not embodied in the pattern newly formed,
but is lost in the generation cycle. In terms of the theory of pattern formation described, this
loss of information is due to the non-linear features of the pattern-generating equations.
The partial destruction of information in the course of pattern formation is as important
in understanding the logic of the generation cycle as is the conservation of cues to orien-
tation. The logic of the generation cycle implies that structures are determined by genes in
the long run. This in turn requires that minor deviations of structures other than genes
should not matter: for instance, a deviation in the plasma of an egg cell at present is usually
not expressed in organisms a few generations from now.

5. Mathematics and Matter as Explanatory Basis of Morphogenesis

The discussion of biological pattern formation in this article presumes that the combined
consideration of material and mathematical aspects is required for a satisfactory expla-
nation. This is in contrast to those reductionalist and materialist viewpoints which consider
material aspects, especially chemical structures as facts, whereas mathematics provides
hypotheses which have only transient value, if any in the search for the structure of relevant
molecules. The idea that only molecules (or more generally, structures) are essential cannot
apply to development, because properties characterizing development are systems features.
The structure of an organism is related to the structure of molecules involved in its generation
only in a most indirect manner. Even if we were to have a complete list of all molecules
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involved in pattern formation with any structural detail, we would not be able to derive the
patterns they generate without general physical kinetics and without making use of
mathematical facts as well.

The other extreme view held by some mathematicians is that molecules are of no interest
at all; the formal principles involved in a systems approach provide the explanation.
Conceptually, such principles include catastrophes, energy dissipation, bifurcation, network
interactions, etc. This view, however, is not fully satisfactory either. The concepts men-
tioned, though valuable explanatory principles, do not explain specifically biological
phenomena, but relate to structure formation in general. But even if the formalisms could
deal adequately with features specific to biology, experimental confirmation by bio-
chemical evidence, in addition to phenomenological evidence on pattern formation and
regulation, would be much more satisfactory than support by phenomenological facts
alone. Moreover, the knowledge of molecular structures involved in pattern generation
would be a prerequisite for studying certain questions of general interest, such as the
degree of complexity of these molecular systems, their relation to molecules with other
functions, and the evolution of pattern-forming systems. Therefore, only a combination of
knowledge of mathematics and matter is expected to lead to a satisfactory understanding of
biological pattern formation. It is psychologically understandable that most biochemists and
molecular biologists prefer the materialist and most mathematicians the formal aspect of the
problem. Philosophically, it appears that the formal, mathematical aspect is more fun-
damental than the structural one for understanding, but is insufficient for experimental
confirmation. However, it is worth noticing that the relative explanatory value of mathema-
tics versus matter is the subject of an age-old controversy traceable to Pythagoras and Plato
in favour of mathematics, and Demokrit (as well as Marx) in favour of the materialist
notion, and perhaps not objectively resolvable.
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