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Abstract

The aim of this paper is to introduce a system of dynamic deontic logic in which the
main problems related to the definition of deontic concepts, especially those emerging
from a standard analysis of permission in terms of possibility of doing an action
without incurring in a violation of the law, are solved. The basic idea is to introduce
two crucial distinctions allowing us to differentiate (i) what is ideal with respect to a
given code, which fixes the types of action that are abstractly prescribed, and what
is ideal with respect to the specific situation in which the agent acts, and (ii) the
transitions associated with actions and the results of actions, which can obtain even
without the action being performed.

Keywords: dynamic deontic logic; deontic paradoxes; ought-to-be logic; ought-to-do
logic.

1 Introduction

Systems of deontic logic aim at modeling our intuitions concerning prescrip-
tive concepts, such as prohibition, permission, and obligation, so as to provide
appropriate formal frameworks for analyzing deontic problems, conceiving de-
ontically constrained procedures, and assessing existing deontic systems. It is
well-known that different kinds of deontic systems can be introduced in the
light of the position one assumes with respect to the following non-exclusive
options:
(i) developing a deontic logic of states [1,7,14] (ought-to-be logic, sein-sollen
logic) or carrying the analysis to a deontic logic of actions [5,9,12] (ought-
to-do logic, tun-sollen logic);
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(ii) developing a static logic of actions [4,9,10] (where what is crucial is to
characterize the structure of a system of actions and their basic properties)
or carrying the analysis to a dynamic logic of actions [6,8,11] (where it is
also crucial to characterize the sequential composition of actions and the
properties of such sequences).

It is also well-known that, while the descriptive power of systems of dynamic
logic of actions allows us both to solve some traditional paradoxes and to high-
light important distinctions which would be otherwise neglected, these systems
are still subject to difficulties [2,11], thus appearing inadequate to account for
our basic deontic judgements.

The aim of this paper is to introduce a system of dynamic deontic logic in
which the main problems related to the definition of deontic concepts, especially
those emerging from a standard analysis of permission in terms of possibility
of doing an action without incurring in a violation of the law, are solved. Our
proposal is based on the idea that, in order to account for the intuitions which
generate the paradoxes, more distinctions than those which can be drawn within
a standard dynamic deontic system are to be made. In particular, we think
that it is crucial to consider (i) a distinction between what is ideal with respect
to a given code, i.e., the abstract ideal allowing us to determine the types of
action which are permitted or prohibited, and what is ideal with respect to a
specific situation, i.e., the concrete ideal determined by the context of the agent
[3,7]; and (ii) a distinction between the transitions associated with an action
and the result of the action, which possibly obtains without the action being
performed. Accordingly, we propose a system constituted of

e an ontic part, which includes both a logic of states and a logic of actions,
where states are represented, as usual, by sets of possible worlds, and actions,
more precisely action types, are represented by relations between worlds;

e a deontic part, which includes both a logic of an abstract deontic ideal,
represented by a set of worlds satisfying the prescriptions of a code, and an
actual deontic ideal, represented by an ordering of the worlds accessible by
performing some action.

In this way, we hope to provide a deeper perspective on what is prescribed in
a certain context, by constructing a very general modal system for handling
traditional problems. The plan of the paper is then as follows. In the next
section, we briefly discuss the basic intuitions that our system aims at capturing
as they emerge from a discussion of the main deontic paradoxes derivable in a
dynamic logic of action. In section 3 we introduce our system of deontic logic of
states and actions. Finally, in the last section, we define four groups of deontic
concepts and provide solutions to the problems discussed in section 2.

2 Difficulties in defining deontic concepts

In a dynamic deontic logic, where action terms can be combined by using
suitable operators, like negation (-), alternative execution (L), simultaneous
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execution (M), and sequential execution (;), the deontic operators of prohibition,
permission, and obligation can be defined in terms of a propositional constant
I, representing an ideal state of law satisfaction, and of the dynamic operator
[-], which takes an action term « and a formula ¢ and returns a new formula
[a]p, stating that all ways of doing « lead to a p-state. In fact, an action is

(i) prohibited iff it necessarily results in a violation of the law (F(a) := [a]—1)
(ii) permitted iff it is not prohibited (P(«) := —[a]—I)
(iii) obligatory iff not doing it is prohibited (O(«) := [a]—I)

Although these definitions seem to be unproblematic, together with some
intuitive principles on the action operators, they imply several counter-intuitive
conclusions. We especially focus on three groups.

Group 1: standard paradoxes of obligation and permission.
- Ross’s paradox: O(a) — O(aU B) (if it is obligatory to mail a letter, then
it is obligatory to mail-the-letter-or-burn-it).
- Permission paradox: P(a) — P(aU ) (if it is permitted to mail a letter,
then it is permitted to mail-the-letter-or-burn-it).

Group 2: paradoxes of permission and prohibition of sequential actions.

- van der Mayden’s paradox: —[a]-P(8) — P(a; ) (if there is a way of
shooting the president after which it is permitted to remain silent, then it
is permitted to shoot-the-president-and-then-remain-silent)

- Anglberger’s paradox: F(a) — [o]F(B) (if it is forbidden to shoot the
president, then shooting the president necessarily leads to a state in which
remaining silent is forbidden).

Group 3: contrary to duties obligations [3].

Paradoxes of group 1 can be avoided by introducing strong notions of obli-
gation and permission, according to which, for an action to be obliged or per-
mitted, it is necessary both that no way of performing it leads to a state of
violation and that there is at least a way to perform it which does not lead to a
state of violation. Paradoxes of group 2 are more difficult to solve. If we think
of an action as characterized by a starting state, a final state, and a transition
leading from the first to the second state, then these paradoxes can be seen as
the result of disregarding the deontic relevance of the starting state and the
process of an action. To be sure, van der Mayden’s paradox follows from ne-
glecting the difference between the fact that the final state is safe and the fact
that the transition which leads to this state is safe, in the sense that no step in
the transition infringes the law, or fails to be the best the agent can do from a
deontic perspective, given the initial conditions. Similarly, Anglberger’s para-
dox follows from neglecting the difference between the absolutely ideal states,
in which no norm is violated, and the relatively ideal states, in which the best
conditions realizable by the agent in the actual conditions are in fact realized.
Interestingly, once these distinctions are taken into account, also paradoxes of
group 3 turn out to find a solution (but more on this below).
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3 Action deontic logic

The language L of the system ADL of action deontic logic contains a set T'm(L)
of terms and a set Fm(L) of formulas. Assuming a standard distinction between
action types and individual actions, let A be a countable set of action types
variables. Then T'm(L) is defined according to the following grammar:

az=a;|l|alaUpf|anp]|a;f wherea;, € A

Intuitively, 1 is the action type instantiated by any action whatsoever; & is
the action type instantiated by any action which does not instantiate the type
«; a Ll B is the action type instantiated by any action which instantiates either
the type « or the type 8 or both; a3 is the action type instantiated by any
action which instantiates the types a and S in parallel; «; 8 is the action type
instantiated by any action which instantiates the types a and 8 in sequence.
We assume that an individual action can instantiate different action types.
Accordingly, when we say that an action is a token of a; we do not exclude the
possibility that it is also a token of a different type a;.

Turning to the set of formulas of £, let P be a countable set of propositional
variables. Then F'm(L) is defined according to the following grammar:

o:=p|—¢|ene| Do lale | R(a) | [l | I wherep € P, and a € Tm(L).

The other connectives and the dual modal operators, Go, (@) ¢, (1) @, are
defined as usual. The intended interpretation of the modal formulas is as
follows: “Oe” says that ¢ holds in any possible world; “[c]e” says that ¢
holds in any world that can be accessed by performing action «, i.e., that ¢
holds as a consequence of «; “R(«a)” says that the state which is the result of
action « is realized 2; “[f]¢” says that ¢ holds in all the best worlds that can
be accessed by performing some action; and, finally, “I” says that the ideal
of deontic perfection is realized. It is worth noting that, since 1 is the action
type instantiated by any action, “(1)¢” says that ¢ can be realized by doing
an action. Hence, the crucial distinction between what is possible and what is
realizable is captured by the distinction between Gy and (1) ¢.

3.1 Semantics
The conceptual framework we adopt is based on the following notion of frame.
Definition 3.1 frame for L(ADL).

A frame for L(ADL) is a tuple F' = (W, R,{R,, | w € W} ,r, S, Ideal)
As mentioned above, frames for L{(ADL) can be subdivided into two parts.
Ontic part: (W,R,{R,, | w € W},r), where

(i) R:W — p(W)

(ii) Ry : Tm(L) — p(W), for all w € W
(iii) r: Tm(L) — p(W)

2 Hence, the formulas R(a) and [a]¢ allow us to capture von Wright’s distinction between
the result and the consequences of an action [13].
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We assume that an agent is endowed with a set of primitive actions and
think of these actions as ways of obtaining specific resulting states, represented
as subsets of a set of possible worlds W. Since the same result can be obtained
in different ways, every primitive action corresponds to a set of transitions
between worlds in W 3. More specifically, R, R,, and r are characterized by
the following conditions.

Conditions on R
(a) w € R(w)
(b) v € R(w) = R(v) = R(w)

Hence, R models a standard S5 notion of ontic modality *

Conditions on R,:

(a) Ru(aUB) = Ruw(a)U Ruw(B)
(b) Ru(a; B) = UuERw(a) R, (B)
(¢) Ru(a) € R(w)

Here, R, is a function that, for each action term, returns the outcomes
of the transitions associated with the action performed at w, so that R, () is
the set of worlds that are accessible by doing « at w. While conditions (a) and
(b) characterize the notions of alternative and sequential actions, (c¢) captures
the intuition that every realizable state is a possible state. Hence, R and R,
allow us to account for the distinction between what is possible and what is
realizable by acting at a world. In fact, it might be the case that reaching a
world is beyond the power of the agent, even if that world is possible.

Conditions on 7:

(a) r(@) =W —r(a) (e) (e B) € r(B)

(b) r(anp)=r(@)Nr(B) (f) Ru(a) Cr(a)

() r(aUB)=r(e)Ur(B) (g Rw)Nnr(a) Cr(B) = Ruw(a) C Rw(B)
(d) r(a) C (1) (h) w € r(a) = Ruw(1) Nr(B) Cr(es )

Here, r is a function that, for each action term, returns the state corre-
sponding to the result of the action, so that r(«) is the result of a. The
conditions connect the intuitive algebra of action results to a corresponding
algebra on sets and connect actions with their results. Intuitively:

(a) realizing & coincides with not realizing «;

(b) realizing oM § coincides with realizing both « and 3;

(c) realizing oo U § coincides with realizing either « or f;

(d) realizing any action « is a way of realizing action 1;

3 Notice that we use the terms “world” and “state” for expressing different concepts, while
in the literature about transition systems they are interchangeable with each other. In
particular, we use “world” for the complete state which can be reached by performing an
action (hence, a world w is an element of W), and “state” for the state of affairs that is the
result of an action, as in [13] (hence, a state is in general a subset of W, i.e. a set of worlds).
4 Using a universal modality would simplify the semantics, but the use of an S5 modality
gives us a more flexible framework, since the stock of necessary states of affairs can change
across the worlds.
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(e) realizing any sequence «; 8 is a way of realizing the last action £.

Finally, every realized action realizes its result, by (f); every action whose
result involves the result of another action counts as a realization of the latter
action, by (g); and, if the result of S is realized after the result of «, then the
result of a; (3 is realized as well, by (h).

It is important to note that r(a) does not coincide with J, ey Ruw(a),
since we allow for the possibility that a state of affairs, which is the result of an
action, obtains even if no action has brought it about. Indeed, it is possible for
a door to be open, even if it was not opened by an agent. As a consequence,
(1), which is W, does not coincide with |J,,cy Rw(1), which is the set of
worlds the agent can reach by performing some actions. In addition, we do not
assume that R(w) coincides with R,,(1), since, as mentioned above, we allow
for a difference between what is possible at a world and what is achievable by
acting at it. This is crucial to account for cases where the ideal of perfection,
although possible, is not realizable by performing any action.

Deontic part: (W, R, S, Ideal), where

(i) S: W — p(W)

(ii) Ideal CW

We introduce a deontic function S on W, so that S(w) is the set of the
best accessible worlds relative to w, which are the worlds where the conditional
ideal that can be achieved in w is realized. In contrast, Ideal is the subset of
W containing the best possible worlds from a deontic point of view, which are
the worlds where the ideal of deontic perfection is realized.

Conditions on S: Conditions on Ideal:
(a) @ # S(w) (a) R(w) N Ideal # 0
(b) S(w) € Rw(1) (b) Rw(1) N Ideal C S(w)

(c) v e S(w) = S(w) CS(w) (c) Rw(l)NIdeal # 0= S(w) C Ideal

According to the conditions on S, the set of worlds that can be accessed
by the agent always contains a non-empty subset of realizable best options,
such that the best options that are accessible by acting in a world that can
be reached by w are accessible by w itself. According to the conditions on
Ideal, the set of accessible worlds always contains a non-empty subset of best
possible options. In addition, no accessible world is strictly better, according
to S, than any world in Ideal, which coincides with the set of the best options
if some ideal world is accessible. It is worth noting that a conditional ideal
is achievable even if the ideal of perfection cannot be possibly achieved, since
R,(1) N S(w) = S(w) is non-empty even if R, (1) N Ideal is empty.

Definition 3.2 model for L(ADL).
A model for L(ADL) is a pair M = (F, V), where (i) F is a frame for L(ADL)
and (ii) V' is a function that maps propositional variables in ().

Definition 3.3 truth in a model for L(ADL). The definition of truth is as
follows:
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M,w = p; < weV(p)

M,wkE—-p & Mwle

MwlEepAYy & M,wkEpand M,w =9
MwEOp & Yve W e R(w) = M,v )
M,wE ol & Yve W e Ry(a) = M,v E @)
M,wkER(a) & wer(a)

M,wkE[tle & Yve W e S(w) = M,v E )
M,wkE1I< we Ideal

3.2 Axiomatization

The system ADL is defined by the following axioms and rules. The first three
groups of axioms take into account the pure modal part of the system, while
groups 4, 5 and 6 characterize actions and their results. On the way, we define
deontic operators in the Andersonian style.

Group 1: axioms for [J Group 2: axioms for [1]

OK: O(p = ¢) = (Op — O¢) - [IK: [1(e = ¢) = (Te = 1Y)

OT: Oy — ¢ [11D: [t — (D ¢
05: Op — OO [114: [t]e — [M[Me
OR: ¢ / Op ML [y — [
Group 3: axioms for I 12: e = [ — »)
I: oI 13: (1)1 — [T

Definition 3.4 Deontic operators on states based on I.
[Ie =0 — ¢) and (I) ¢ := (I A ).

[I] is a standard concept of obligation for states®, as proposed in [1]. Tt
is not difficult to see that [I] is a K D45 modality, since we can derive:

(i) [I](¢%¢)> (M — [I]9)

(i) [ — (1

(iii) [[e — [I][I]e
(iv) () = [I](I) ¢
(v) /e

The fundamental distinction we want to highlight here concerns (I) ¢ and
(1) ¢. While (I) ¢ states that ¢ holds in some ideal world, (1) ¢ states that
© holds in some of the best accessible worlds. As we will see, this distinction
gives rise to two different operators of permission.

Let us now introduce the axioms concerning actions and their results.

5 Letting O¢p be [I]¢ and Py be (I) ¢, the choice of an S5 modal logic gives us theorems like
Oy — OOy¢ and Py — OPy. In our setting, these principles are justified by the intended
interpretation of a formula like [I]p. I is an ideal state determined by a specific legal code,
and we assume that the distinction between what is prescribed and what is not prescribed
is also fixed by that same code. Hence, given that “O¢” is interpreted as ¢ is prescribed by
the code that fixes I, the previous principles turn out to be intuitive, since it is impossible
to change what is prescribed according to the code without changing that code as well.
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Group 4: axioms for [¢]
[aK: [a](p = ) = ([edp = [ady)  [a]2: [o; Bl < [d][Ble
[a1: [de A [Ble = [a U Ble [a]3: O — [a]e

Group 5: axioms for R

R1: R(a) < -R(a) R5 R(o;8) = R(B)

R2: R(aMp) + R(a) AR(p) [a]R )

RS R(aLf) o R VRS KT DR - R(5) = (5l = ele)
R4: R(a) = R(1) R8: R(a) = [1J(R(B) — R(; B))

These groups of axioms take into account the operations on actions and results
and the connections between actions and results, which is further clarified by
the following facts.

V [@z]e = [an Uazle
Al = (o) ¢
— (@) R(a)

1) [alp < [ale (5
2) [aa]e V [az]p = [a1 Maz]e (6
3) [aU Blp = [ado A [Ble (7
4) a1 Maz]p < [ai]o Afaa]e (8
f. Let us prove (4).

3) <+ R(a) V R(B), by R3

+ —R(a) vV -R(f), by R1
& —R(ar8), by R2

& R(anf), by Rl

< [@u Ble, by R7

a N Ble < [ale A [B)e, by (3), and [a]l a

Since (1-5) are derivable, our system is powerful enough to interpret the sys-
tem proposed by Meyer in [8], except for the axiom on the negation of sequential
actions. In addition, since (7) is derivable, within ADL the performability of
an action, expressed by (a) T, is to be distinguished from the possibility of
the result of the action, i.e., OR(«a). In fact, while (o) T — (o) R(«), and,
hence, (o) T — OR(«), it is possible that OR(a) even if « is not performable.
Finally, in this system two intuitive concepts of inclusion between actions or
action results are definable.

Q1 Qi

QI

Maa% S

Ql
CCCC
AN E\E|E|E

Q]
-
=

Definition 3.5 inclusions.

(i) B C a:=[a]R(B).

(i) B Cg o :=0OR(a) = R(B)).
As it is easy to check, both C and Cg are preorders. As it will become clear
below, the introduction of these preorders allows us to represent actions that,
while being optimal in their results, are not permitted, due to the fact that
they also realize what is prohibited during their course.
3.3 Characterization

The system ADL is sound and strongly complete with respect to the class
of models introduced above. Soundness is straightforward. Completeness is
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proved by a canonicity argument. Let us first define w/0 := {¢ | Op € w};
w/[]==A{e | [tle € wh w/la] = {¢| [y € w}.

Definition 3.6 canonical model for £L(ADL). The canonical model for
L(ADL) is the tuple

Me = (W, R, S, Ideal,{Ry, | w € W} ,r,V), where

(1) W is the set of maximal consistent sets of formulas

(2) R: W — p(W) is such that v € R(w) < w/O0 Cw

(3) S: W — (W) is such that v € S(w) < w/[1] Cwv

(4) Ideal ={w | I e w} CW

(5) Rw : Tm(L) — (W) is such that v € Ry (a) & w/[a] Cw

(6) r: Tm(L) — p(W) is such that v € r(a) & R(a) € v

)V :P — p(W)issuch that v e V(p) & pev

For reason of space, we omit the proofs of the following lemmas.
Lemma 3.7 (Truth Lemma): Mo, w = p & ¢ € w.
Lemma 3.8 (Model Lemma): M¢ is a model for L(ADL).
They essentially follow from the definitions of R, S, Ideal, R, r and from

the correspondence between axioms of ADL and conditions on models for
L(ADL).
4 Deontic concepts and paradoxes

At this point, we can introduce the definition of four different kinds of deontic
concepts 6

Definition 4.1 deontic concepts on states and actions.

Group 1: ideal on states. Group 2: ideal on results.

L Pp):=(D)¢ P(R(a)) := (I) R()

2. Fp) := ]~y F(R(a)) := [[]-R(a)

3. O(p) =g O(R(a)) := [[]R(a)

4. P9(p) == O AO(p — I) 4 P%(R(a)) := OR(a) AOR(a) — 1)
Group 3: ideal on actions. Group 4: conditional on results.

1. Pl(a) :=(a) I 1. P(a) := (1) R(a)

2. Fli(a) === (o) ] 2. F(a) := = (1) R(w)

3. Ola) ==~ (@) I 3. 0(a) == ~ (1) R(@)

4. P¥5(a) := () I A [T 4. P%(a) := (P R(a) A [TR(a)

The definition of the conditional deontic concepts can be justified by con-
sidering the following equivalences.

M,w = F(a) & M,wkE - (1) R(a)

M,wkEF(a) & Yve W e S(w) = M,v~ER(a))

6 Concepts in Group 2 are specific instances of concepts in Group 1. They characterize
deontic concepts on actions in terms of action results and are of interest when compared
with concepts in Group 3 and Group 4.
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M,wkEF(a) & YveW(v e S(w) = v ¢r(a))

M,wEF(a) e r(a)nS(w) =92

Hence, an action is conditionally prohibited provided that its result only
holds in worlds that are worse than the best accessible worlds. Similarly, an
action is conditionally permitted (obliged) when its result holds is some (all)
of the best accessible worlds.

Fact 4.2 Relations between different deontic concepts.
(1) Pl(a) = P(a)
(2) Pl(a) A la]e = P(p), and so Pl(a) —» P(R(«))
(3)(DIAN{TYe— (I)p, by 13, and so (1) I AP(a) — P(R(«))

As expected, (1) all ideally permitted actions are conditionally permitted
and (2) both the result and all the consequences of ideally permitted actions
are ideally permitted states. In addition, (3) provided that the ideal can be
accessed, the result of conditionally permitted actions are ideally permitted. By
contrast, it can be proved that not all actions that are conditionally permitted
are ideally permitted. Thus, conditional prescription can be effective even in
cases where no action is ideally permitted.

Fact 4.3 Permission and inclusion.
(1) Pl(a) ABC a=P(S)
(2) P(a) N\BER a=P(f)

Accordingly, actions including conditionally prohibited actions are prohibited.

Now, our claim is that the best way for capturing the intuitions discussed
in section 2 is to use conditional deontic concepts. Thus, we assume them to
provide a solution to the three groups of paradoxes mentioned above.

4.1 Paradoxes on standard prescriptions

Within ADL standard paradoxes concerning the conditional notions of obli-
gation and permission can be solved in two different ways. Firstly, we can opt
for using notions of strong permission and obligation as in [6]. Secondly, and
more interestingly, we can define two specific notions of choice permission and
choice obligation:

— choice permission: P(a + 8) := (1) R(a) A (1) R(B)
— choice obligation: O(a+ 8) := O(aU S) AP(a+ )

It is then not difficult to see that:

FADL P(O{ + ﬂ) — P(Oé) AN P(ﬁ), |7[ADL P(Oé) — P(a + B)
FADL O(OtJrﬂ) *)P(Oé+ﬂ); FaADL O(a) *)O(O[Jrﬂ)

The present solution seems to be more intuitive insofar as both strong per-
mission and strong obligation require that there is no way we can violate the
law if we act according to what is strongly permitted or obliged, while ordinary
choices can be risky: we are ordinarily allowed to choose between alternative
actions even if there are ways of performing such actions that lead to a violation
of the law.
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4.2 Paradoxes on prescriptions on sequential actions

Within ADL paradoxes concerning obligation and permission of sequential
actions, when these concepts are fixed according to the conditional definition,
find an insightful solution.

As to van der Mayden’s paradox, note that both (o) P(8) — P(«;8) and
the stronger P(a) A (a) P(8) — P(«; 8) can fail. Consider the following model:

1) W = R(w) = R(v) = R(u) = R(z) = {w,v,u,x}
(@) = {v}; Ry(a) = Ry(a) = Re(a) = @

2) R
3)R (1) ={v,u,z}; Ry(1) = Ru(1) = {u}; Re(1) = {x}
4) S(w) = S(z) = {z} = Ideal; S(v) = S(u) = {u}
5) r(a) =A{v,z}; 7(B) = r(a; B) = {u}
1,8
s ()
w ’ z: R(a), I
1,8
v: R(a) TS u: R(B), R(a; B)

In this model, w = (1) R(a) and w E {(a) (1) R(8), but w (= (1) R(«a; B),

whence the conclusion. The failure of these principles is due to the fact that,
even when « is permitted, (o) P(3) is not sufficient for P(«; ), since the world
we land on by performing « at w may not be one of best options of w. In the
previous model, § is permitted in v because the R(S)-world v is among the
best options achievable from v. Still, since this is not sufficient to obtain that
u is also among the best options achievable from w, «;f is not permitted in
w. In addition, note that the converse of the first principle also fails, since
u = (1) R(a; B), but u [~ (1) R(a).

As to Anglberger s paradox, note that both F(a) — F(«; 8) and F(a) —
[]F(B) can fail. Consider the following model:

W = R(w) = R(v) = R(u) =
Ry(a) = {v}; Ry(a) = Ru()
R, (1) ={v,u,z}; R,(1) =R,
S(w) = S(v) = S(u) = {u} =
r(a) ={v}; r(8) = r(a; B) =

xX (6]
1,8
1, 1,8

u:R(B), R(e; §), I

R(z) = {w,v,u,z}

= Ry(a) = 2;
(1) = {u}; Ro(1) = {«}
Ideal; S(z) = {z}
{u}

1.5

In this model, w £ (1) R(«), but w | (a) (1) R(8) and w = (1) R(«a; B),

and the conclusion follows. The failure of these principles is due to the fact
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that, for a to be prohibited, it is sufficient that o makes the deontic condition
of the reference world worse than any of the best accessible worlds. Still, this
is not sufficient to exclude that doing «; 8 leads to one of these best accessible
worlds.

4.3 Contrary to duty obligations

As a final application, let us consider cases of contrary to duty obligations
instantiating these classical schemas:

It ought to be that ¢, but —¢ It ought to be that ¢, but —¢
It ought to be that if ¢ then ~R(a) It ought to be that if ¢ then ~R(«)
If =, then it ought to be that R(a) It ought to be that if - then R(«)

In our framework, the most intuitive analysis is:

e A= e A=
[](¢ = =R(a)) [](¢ = —R(a))
O(=¢ — [t1]R(a)) [1(=¢ = R(a))

In both cases, we obtain that [I]-R(«) and [f]R(«). Still, no contradiction
follows, since in any situation in which the result of « is prohibited, according
to the law, the obligation to do « is only conditional. Finally, note that the
present interpretation of the conditional leading to a contrary to duty obligation
validates both

FD: factual detachment and DD: deontic detachment

O(p — [19) O(p — [19)
@ [Ty
[ [y

which is one of the desiderata proposed in [3].

5 Conclusion

In this paper, we have presented a general system of deontic logic of actions
in which the main problems related to the definition of deontic concepts in
a dynamic framework can be overcome. The solutions we have proposed are
based on the introduction of a group of conditional deontic concepts, according
to which what is permitted, prohibited and obligatory depends on the best
states that the agent can realize, given the conditions in which she is acting.
The conceptual apparatus encoded in our system, which allows us to capture
these new concepts, includes a twofold distinction on the ontic level. First, a
distinction between what is possible and what is realizable by performing an
action; and, second, a distinction between the result associated with an action
and the consequences of that action. Being based on this conceptually rich
framework, our system gives us the possibility of systematically bringing to-
gether and comparing in an innovative way Andersonian deontic concepts on
states as well as on results of actions, ideal deontic concepts on actions a la



Giordani and Canavotto 13

Meyer, and conditional deontic concepts on actions. We have shown that the
availability of both ideal deontic concepts on states and conditional deontic
concepts on actions provides us with a natural solution to the paradoxes of
contrary to duty obligations. What is more, the introduction of conditional
deontic concepts allows us to define original notions of choice permission and
choice obligation that, while not being subject to standard paradoxes, take
into account the riskiness of choices. Finally, besides not incurring in para-
doxes concerning the sequential execution of actions, the new deontic concepts
provides us with a way of making sure that, even in states in which the ideal of
deontic perfection is not realizable, the actions of the agent can be deontically
qualified in a non-trivial way.
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