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ABSTRACT: This paper offers a probabilistic treatment of the conditions for argument cogency as 
endorsed in informal logic: acceptability, relevance, and sufficiency (RSA). Treating a natural language 
argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on 
which the RSA conditions depend, namely: (i) change in the commitment to the reason, (ii) the reason’s 
sensitivity and selectivity to the claim, (iii) one’s prior commitment to the claim, and (iv) the contextually 
determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed 
serve to correct, the informal understanding and applications of the RSA criteria concerning their 
conceptual (in)dependence, their function as update-thresholds, and their status as obligatory rather than 
permissive norms, but also show how these formal and informal normative approaches can in fact align. 
 
KEYWORDS: acceptability; argument appraisal; Bayes Theorem; informal logic; Jeffrey 
conditionalization; relevance; sufficiency 
 
 
 
1. Introduction 
 
As John Woods (2000: 15) put it: “Formal logic is a theory of logical forms; and 
informal logic is all the rest.” Informal logicians tend to view “all the rest” as 
shouldering the real work in the analysis and evaluation of natural language 
argumentation. Indeed, many reject formal methods. In place of the proof techniques of 
the truth-functional calculus, typical resources rather include argument diagrams, 
schemes, and the fallacies. Similarly, rather than endorsing soundness (premise truth 
and deductive inferential validity) as a standard of good argument, informal logicians 
speak of cogency (premise acceptability, relevance, and inferential sufficiency). 



A PROBABILISTIC ANALYSIS OF ARGUMENT COGENCY 

 2 

In the 1960s, this anti-formalist stance arose in reaction to the only widely available 
formal apparatus, first-order deductive logic. The breadth of formal resources available 
today, however, makes a continued disenchantment with them questionable. In fact, 
their neglect deprives informal logicians of useful resources in appraising defeasible 
reasoning and argument. Our probabilistic analysis of argument cogency clarifies this 
core concept of informal logic, provides important correctives to its usual applications, 
but also yields a sense in which a formal and an informal normative approach align.1 
Building on groundwork by Oaksford and Hahn (2004) and Korb (2004), among others, 
this contributes to a burgeoning area of research that successfully applies Bayesian 
reasoning to natural language argumentation (see Section 2.3), and supplements recent 
work by Hahn and Hornikx (2016), who show how to formalize argument schemes, like 
those proposed by Walton, Reed, and Macagno (2008), using a Bayesian approach. 

Section 2 identifies the anti-formalist sentiments motivating informal logic, presents 
cogency as a normative standard for defeasible argument, and briefly surveys recent 
probabilistic treatments of argumentation. Section 3 introduces the probabilistic 
calculus, seeking to make its resources more accessible to informal logicians. Section 4 
then offers a probabilistic analysis of the informal notions acceptability, relevance, and 
sufficiency. Section 5 discusses consequences of this analysis. Our conclusions are 
offered in Section 6. 
 
 
2. Background 
 
2.1 Informal logic and formal methods 
 
The development of informal logic is motivated by the pedagogical, the internal, and the 
empirical critiques of deductive logic as an optimal, or even an apt, tool for the analysis 
and evaluation of ordinary reasoning and argument (Blair, 2011; Johnson, 2006, 
Johnson & Blair, 2002). Since commitments to reasons and claims in argumentative 
contexts typically remain retractable, informal logicians favor acceptability over truth 
as an evaluative standard for premises. Similarly, since ordinary reasoning and 
argument are typically defeasible, and since the quality of inferences typically depends 
on matters of content rather than form, informal logicians (rightly) reject deductive 
validity as a standard of inferential goodness (see Hertwig et al., 1997; Evans, 2002).  

Informal logicians have rather sought to develop non-formal tools by drawing upon 
such adjacent fields as applied logic, applied epistemology, cognitive and social 
psychology, dialogue and communication theory, linguistic pragmatics, dialectics, and 
rhetoric. As Johnson and Blair state: 
 

By ‘informal logic’, we mean to designate a branch of logic whose task is to 
develop non-formal standards, criteria, and procedures for the analysis, 

                                                
1 Similarly important are the notions of argument strengthening, rebuttal, and counter-rebuttal, which 
however fall outside the scope of this paper. 
 
2 Recent work nevertheless applies such formal methods as computer models of defeasible inference to 
reasoning and argument (e.g., Walton & Gordon, 2015). 
 
3 Following the introduction of the RSA criteria by Johnson and Blair in 1977 (Johnson & Blair, 2006: 
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interpretation, evaluation, critique and construction of argumentation in everyday 
discourse. (Johnson & Blair, 2002: 358; italics added)  

 
Insofar as ‘formal’ denotes a regulated procedure, Johnson and Blair agree—indeed 
presuppose—that reasoning and argumentation are rule-governed activities. But they 
object to formalization being the proper aim in the analysis and appraisal of natural 
language reasoning and argument (2002: 358 ff.), and had at least initially adopted a 
“wait-and-see” approach regarding the applicability of formal methods. 
 

There is nothing incompatible between the aims of informal logic, properly 
understood, and the attempt to identify formal structures [e.g.,] in the so-called 
informal fallacies. In calling for no more precision than the subject matter allows, 
we do not abandon the demand for as much precision as the subject matter 
allows. […] Informal logic is not opposed to formal analysis; it is opposed to the 
mistaken view that the [proper] subject matter of formal deductive logic is 
[natural language] argument. (Blair & Johnson, 1987: 148) 

 
As the informal logic program developed, however, it was increasingly characterized as 
a reaction to the use of formal methods in the study of reasoning and argument: 
“informal logic is informal because it abandons the notion of logical form as the key to 
understanding the structure of argument. … What we reject is the view that (with rare 
exceptions) the salient criteria for evaluating arguments are a function of their logical 
form” (Johnson & Blair, 2002: 359). Describing the eventual maturation of their 
program, Johnson (2011) states: “As these projects [of informal logic] were pursued, it 
became ever clearer that we were involved in a logic (taking the central task of logic to 
be the development of norms for reasoning) that was irretrievably informal” (2011: 29; 
emphasis added).2 
 
2.2 Cogency 
 
In place of soundness, informal logic offers cogency as the standard of good argument, 
where ‘cogent’ broadly means well-reasoned: a cogent argument meets a situationally 
appropriate standard of reason-giving that can be variously explained (e.g., 
epistemically, dialectically, virtue-theoretically, etc). Viewing arguments as abstract 
inferential objects whose instances arguers transact in acts of arguing, product-centric 
approaches treat cogency as a normative property of argument-products. Of course, 
dialectical or rhetorical considerations bear on the evaluation of such acts. Nevertheless, 
arguing well centrally involves deploying good arguments, and good arguers do this 
well. 

Informal logicians broadly agree that the goodness of an argument is a function of, 
on one hand, the adequacy of reasons (premises), and the quality of the inferential link 
between reasons and claim (conclusion), on the other. This gives rise to the relevance, 
sufficiency, acceptability (RSA) account of cogency (Johnson & Blair, 2002: 369ff.; 

                                                
2 Recent work nevertheless applies such formal methods as computer models of defeasible inference to 
reasoning and argument (e.g., Walton & Gordon, 2015). 
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Blair 2012; van Eemeren et al., 2014: 381-384), where the RSA criteria explain other 
normative qualities of argument.3 Logical validity, for example, is one among other 
possible standards of inferential sufficiency; probability-raising may serve as a standard 
of premise relevance; truth may serve as a standard for premise acceptability. Fallacies 
are often explained in terms of some characteristic failure to meet one or more of the 
RSA criteria. And, expanding the sufficiency criterion leads to including considerations 
of dialectical adequacy (e.g., successfully answering pertinent criticisms or objections). 

In defeasible arguments, of course, both evaluative factors (premise adequacy and 
inferential connection) are subject to weakening, strengthening, and defeat, upon 
introducing new information. Inductive logic is the branch of formal logic dealing with 
inferences whose validity is sensitive to such dynamics. Yet, having rejected deductive 
logic in favor of a non-formal approach to argument analysis and appraisal, informal 
logicians have typically neglected the formal tools provided by inductive logic. 

Following Spohn (2012), here we take inductive logic to include all non-deductive 
logics, including default, non-monotonic, belief-revision, auto-epistemic, agent-based, 
modal logic, etc. For all these logics concern the support relation holding, or not, 
between information states A, B, C, D, where A might provide (some) support for D, 
while A&B might fail to support D, but perhaps support not-D, and A&B&C could 
support D more, or less, than A alone did, etc. Probability theory (see Section 3) thus 
makes for a quantitative variant of inductive logic.4  
 
2.3 The probabilistic approach to argumentation 
 
Applying probability theory to natural language argument requires extending the 
notions of evidence and hypothesis to, respectively, reasons and claims, yielding a 
model of the probative impact of reasons onto claims.5 One assumes that an agent 

                                                
3 Following the introduction of the RSA criteria by Johnson and Blair in 1977 (Johnson & Blair, 2006: 
55), many informalists have adopted, modified, or augmented them (see Johnson & Blair, 2002: 370). For 
instance, Govier (2010: 87ff.) calls sufficiency good grounds; Johnson (2000: 189ff.) added premise truth 
as a fourth criterion, situating this together with adequacy at the “dialectical tier;” Vorobej (2006: 49ff.) 
replaced acceptability with truth and added compactness as a fourth criterion to stipulate the absence of 
irrelevant premises. 
 
4 Spohn’s own ranking theory (Spohn, 2012) also qualifies as an inductive logic. Pursuing a Baconian 
approach to probability, his theory is more general than the Pascalian approach we rely on. (For these 
terms, see Cohen, 1989.) Ranking theory models the differential retractability of full rather than graded 
propositions, interpreted as belief-contents. By contrast, we speak of graded commitments to reasons or 
claims. 
 
5 The more common interpretation—‘the probability of a hypothesis, H, given evidence, E’—reflects the 
role of the probability calculus for the empirical sciences when gauging the (dis-)confirmatory effect of 
evidence on hypotheses, calculation of which relies on Bayes’ theorem. Several differences arise in 
contexts of defeasible inference and argumentation: First, scientific hypotheses typically have a predictive 
or explanatory relationship to the evidence. Second, the evidence here typically accumulates through 
independent instances (e.g., observations or test results), making the reliability of evidence expressible as 
long-run frequencies. Neither feature need hold between a claim and the reasons offered in its support. 
Finally, as Strevens (2012: 23; notation adapted) writes: “a Bayesian conditionalizes on [some evidence] 
E—that is, applies Bayes’ rule to E—just when they ‘learn that E has occurred.’ In classical Bayesianism, 
to learn E is to have one’s subjective probability for E go to one [i.e., a probability value of 1, denoting 
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responds to a reason by updating her prior belief in—or as we prefer to say: commitment 
to—a claim, in order to form a posterior commitment by conditionalizing on the reason 
(see Godden, 2010). The support that a reason R offers to a claim C (see Howson & 
Urbach, 2006: 92) provides a measure of argument force. It can be expressed as the 
difference between the prior probability of C independently of the reason, P(C), and the 
posterior, or final (f), probability of C conditional on the reason, Pf(C)=P(C|R), i.e., 
Pf(C)−P(C) (see Korb, 2004: 44). Other measures remain possible (see Fitelson, 2001; 
Pfeifer, 2013: 187ff.). Moreover, the value to which Pf(C) is set upon the uptake of R 
measures argument strength, such that: 
 

Argument strength, then, on this [probabilistic] account is a function of the 
degree of prior conviction, P(C), and the relationship between the conclusion and 
the evidence, in particular how much more likely the evidence would be if the 
conclusion were true, P(R|C). (Hahn & Oaksford, 2007: 707; notation adapted) 

 
To a normative account that views argument primarily as an abstract inferential 

object, rather than as a process of dialectical exchange, the central research question is: 
“How much change in existing beliefs should new evidence [in the form of reasons] 
bring about?” (Corner & Hahn, 2013: 3586, italics added).6 Of course, one cannot 
properly assess a particular saturation of an argument scheme by considering the 
scheme’s structural properties (i.e., the argument form) alone, but must also engage 
with its semantic content. The probabilistic [0,1]-interval now provides the nuances to 
express that speakers and audiences may accept the contents of reasons, claims, and 
inferential links but to a matter of degree.  

Recent work has provided probabilistic analyses of various classical fallacies, 
including: appeal to popularity (ad populum) (Korb, 2004), arguments against the 
person (ad hominem) (Korb, 2004), the ‘causal’ fallacy (post hoc ergo propter hoc) 
(Korb, 2004), arguments from ignorance (argumentum ad ignorantiam) (Hahn & 
Oaksford, 2006a; Hahn, Oaksford, & Bayindir, 2005; Oaksford & Hahn, 2004), circular 
reasoning (petitio principii or begging the question) (Hahn, Oaksford, & Corner, 2005), 
slippery slope arguments (Corner, Hahn, & Oaksford, 2006), and denying the 
antecedent and affirming the consequent (Korb, 2004, Godden & Zenker, 2015). (For an 
overview, see Korb, 2004; Zenker, 2013.) Hahn and Oaksford (2006a; 2007) argue that 
a probabilistic approach makes significant progress towards a unified epistemic 
treatment of the fallacies (Ikuenobe, 2004). Corner and Hahn (2013) make the case for 
the general suitability of a probabilistic approach to argumentative norms. Most 
recently, Hahn and Hornikx (2016) have analyzed three argument schemes in the sense 
of Walton, Reed and Macagno (2008): the argument from sign, and two arguments from 
testimony, namely the argument from expert opinion (appeal to authority or 
                                                                                                                                          
certainty] as the result of some kind of observation.” By contrast, reasons appearing as premises of an 
argument need not be certain or unretractable (see Section 3.8). Rather defeasible reasoning and argument 
involves making judgements about the acceptability of one’s premises. Sometimes an update will occur 
when a reasoner comes to find their reasons are more (or less) acceptable than they did previously. 
 
6 As Hahn & Oaksford (2006b: 3) acknowledge, rule-based procedural accounts of argumentation are 
nonetheless required for the stronger argument (as identified) to in fact “carry through” to the discussion 
outcome. 
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argumentum ad verecundiam) and appeal to popular opinion (argumentum ad 
populum). 

The Bayesian approach to argumentation retains the insight that, independently of 
contextual considerations, defeasible arguments, including virtually all fallacies, vary in 
strength as a function of their content. Since argument evaluation pertains to whether a 
particular saturation of an argument form should be (perceived as) stronger or weaker 
than another saturation of the same form, the normative yardstick of the probabilistic 
machinery delivers the verdict sought, given assumptions. Moreover, such predictions 
have been subject to empirical parameter-estimation which demonstrate—pace the 
caveats of empirical research—that humans are sensitive to experimental manipulations 
of argument strength, and that their sensitivity can mirror what the probability calculus 
prescribes (e.g., Harris et al., 2015).  
 
 
3. The probabilistic framework 
 
3.1 Overview 
 
Largely following the introduction by Strevens (2012), this section outlines the basics 
of Pascalian probability (3.2), its interpretation (3.3), addresses dynamic considerations 
(3.4), introduces Bayes’ theorem (3.5), the notion of impact (3.6) and its interpretation 
(3.7),  and finally turns to Jeffrey conditionalization (3.8), which Section 4 applies to a 
probabilistic analysis of argument cogency. 
 
3.2 Basics of Pascalian probability 
 
Probability theory quantitatively represents the chances assigned to events in a space 
closed under union (disjunction), intersection (conjunction), and complement 
(negation). The axioms of probability—whether they are Cox’s (1946; 1961) postulates 
or Kolmogorov’s (1933), used below—also formalize how new information should 
affect the probability for these events. The rationale for ascribing normative status to 
probability theory is that “bending” to these axioms guarantees avoiding sure losses in 
betting games known as Dutch book-scenarios (Hahn, 2014; Hajek, 2008; cf. Douven & 
Schupbach, 2015). 

On the assumption that the probability of at least one event in an event space 
occurring is 1, a probability function P(φ) assigns to any other event φ a value from the 
[0,1] interval. Hence, 0≤P(φ)≤1where the initial or unconditional probability P(φ) takes 
into account all the background information available to an agent at the time. In a 
finitely additive space such as Kolmogorov presupposed, moreover, it holds for 
mutually incompatible events, A and B, that the probability of their disjunction is the 
sum of their individual probabilities:7 

 
1                     𝑃 𝐴 ∨ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵                                                                                                                       [𝐿𝑎𝑤  𝑜𝑓  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛] 

 

                                                
7 For mutually consistent events, the law is:  𝑃 𝐴 ∨ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴&𝐵 . 
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A consequence is that the probability of an event and the probability of its negation sum 
to one. For example, since (A∨~A) is a logical truth, its probability is 1. Thus, 
 
2                     𝑃 ~𝐴 = 1− 𝑃 𝐴                                                                                                                                           [𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡  𝑟𝑢𝑙𝑒] 

 
3.3 Interpreting probability in contexts of natural language argument 
For this machinery to apply to natural language argument, we rely on these definitions: 
 

C = claim, conclusion, or standpoint 
R = reason, or the set of conjoined premises {R1 & R2 & … & Rn}8 
P = probability (a measure of credence, subjective belief, or committment) 
P(C|R) = probability of claim given reason 
t = an arbitrary threshold value 

 
When interpreted subjectively, probability values represent degrees of belief, i.e., 
credences, or graded commitments in reasons and claims, rather than objective chances 
of events. It makes for a regular objection that ordinary reasoners do not experience or 
treat their own doxastic or dialectic attitudes as allocations of precise numeric values. 
How, then, shall one understand probability values? Theorists have offered a behavioral 
or dispositional explanation in terms of an agent’s practical judgements and activities. 
Ramsey (1931), for instance, explained partial commitment to a claim in terms of the 
odds at which one would accept a bet that the claim is true. 

Argumentation theorists can perhaps best interpret probability values as a measure 
of retractability. Reasons or claims to which one assigns the extremal values 1 or 0 are 
unrevisably true or false—one’s commitment here is unretractable. However, even a 
practical or moral certainty in a claim (that one would unconditionally act on) need not 
entail that one never retracts it; rather, one does not envision circumstances under which 
one would. Therefore, commitments can well approach 1, but still remain open to 
revision. Similarly, only claims categorically inconsistent with known evidence receive 
a probability of 0—commitment being again unretractable. Finally, commitment for 
exceptionally improbable claims (e.g., skeptical scenarios) can approach 0, thus failing 
to merit consideration in practical circumstances, but remain open to revision.  

Within the revisability range 0<P(φ)<1, then, probability values express 
retractability judgements for reasons or claims, and their contradictories or contraries. 
This allocation needn’t be numerically precise, only as precise as the situation calls for. 
For some purposes imprecise probabilities (Bradley, 2015) can be used, while for others 
a rough-hewn allocation in qualitative terms (e.g., highly unlikely, more likely than not, 
doubtful) may well do, particularly when natural language qualifiers are taken to 
express modifications to an unqualified commitment. In the following, however, we 
assume that a precise probability value is available. 

The above constraints and their consequences guarantee a synchronically consistent 
distribution of probability values across one’s commitments. We now turn to diachronic 
constraints, i.e., update-rules. 
 
                                                
8 We use ‘R’ and ‘the / a reason’ to indicate the conjunction of all the articulated premises of an argument 
or piece of reasoning. 
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3.4 Conditionalization 
 
Changes in subjective probability can occur inferentially or non-inferentially. Non-
inferentially, for instance, one may update one’s commitment in a claim as the result of 
an observation (verdical or not). Besides the rules in Section 3.2, however, the 
probability calculus does not provide constraints for a non-inferential update of 
probabilities. It is rather assumed that agents who learn new information set a 
probability value for it, typically updating to a final probability of nearly 1. 

When representing an inferential update via conditionalization on new information 
(gained inferentially or non-inferentially) as: 9 

 

3                   𝑃 𝐴 𝐵 =
𝑃(𝐴&𝐵)
𝑃(𝐵)                                                 [𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛  𝑜𝑓  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦] 

 
one can model the effects of reason-giving typical in contexts of natural language 
argumentation as a commitment-update on the exclusive basis of premissory 
information. Expressing the support offered by a reason R to a claim C as the 
conditional probability of C given R, i.e., P(C|R), the final, or posterior, probability of 
C, Pf(C), is then given as: 

 
4                   𝑃! 𝐶 = 𝑃 𝐶 𝑅                                                                                                                                                                             [𝐵𝑎𝑦𝑒𝑠!𝑅𝑢𝑙𝑒] 

 
which one may compare to the initial, or prior, probability of C irrespective of R, P(C). 

Whether and how accepting R at some positive credence, Pf(R)>0, should affect 
one’s commitment to C, P(C), now depends on factors discussed below. 
 
3.5 Bayes’ Theorem 
 
Equation (3) defined the posterior probability of a claim C given a reason R as the 
probability of the claim and the reason, divided by the probability of the reason 
irrespective of the claim—here repeated, with adapted notation, as (5): 
 

5                   𝑃 𝐶 𝑅 =   
𝑃(𝐶&𝑅)
𝑃(𝑅)    

 
Now the probability of two events, A and B, both occurring is the probability that one of 
them, A, occurs if the other, B, does, times the probability that B occurs, as in (6):10 
 

                                                
9 (3) says that the probability of event A occurring, given some other event B does, equals the probability 
of both events occurring, divided by the probability that event B occurs anyways. Since the probability of 
any two events occurring is never greater than the probability of either event occurring individually, 
P(A&B)≤P(B) holds. This guarantees a probability value in the range 0≤P(A|B)≤1, so long as P(B)<0. If 
P(B)=0 then P(A|B) is undefined. 
 
10 In cases where A and B are independent, such that there is no systematic positive or negative 
correlation between them, it holds that: P(A|B)=P(A) and P(B|A)=P(B). 
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6                   𝑃 𝐴&𝐵 = 𝑃 𝐴 𝐵 ×𝑃 𝐵    
 
Since conjunction is commutative (i.e., ‘A&B’ and ‘B&A’ state logically equivalent 
contents), we may now derive Bayes’ Theorem (BT) (Bayes 1763) by substituting, 
notation adapted, the right hand side of (6) into the numerator of (5):   
 

7                   𝑃 𝐶 𝑅 =
𝑃(𝑅|𝐶)×𝑃(𝐶)

𝑃(𝑅)                                                                                       [𝐵𝑎𝑦𝑒𝑠!  𝑇ℎ𝑒𝑜𝑟𝑒𝑚   𝐵𝑇 ] 

 
(8) simply separates the prior probability of the claim, P(C), from the numerator in 
(7):11 
 

8                   𝑃 𝐶 𝑅 =   𝑃 𝐶   ×   
𝑃(𝑅|𝐶)
𝑃(𝑅)                                                                                                                                                                     [𝐵𝑇]   

 
This provides a perhaps more intuitive way of understanding how, in generating the 
conditional probability, the reason has impact upon the prior probability of the claim, to 
which we now turn. 
 
3.6 The impact term in Bayes’ Theorem 
The factor by which the prior probability of a claim C is to be multiplied in order to 
yield the posterior probability of C conditional on the reason R, we call the impact of 
the reason, i:12  
 

9                   𝑖 =   
𝑃(𝑅|𝐶)
𝑃(𝑅)                                                                                                                                                                                       [𝐼𝑚𝑝𝑎𝑐𝑡  𝑡𝑒𝑟𝑚] 

 
(9) states the impact term as the ratio of how probable the reason is given the claim, to 
how probable the reason is irrespective of the claim. This “reason ratio” expresses a 
conditional expectation of the reason, namely an expectation of the reason if the claim 
holds as against a prior expectation on the reason regardless. (We return to this ratio in 
Section 4.) Thus, the posterior probability of a claim is the probability of the claim 
conditional on the reason, which is its prior probability times the impact of the reason: 
 
10                   𝑃! 𝐶 = 𝑃 𝐶 𝑅 = 𝑃 𝐶   ×  𝑖                                                                          [𝐵𝑇  𝑤𝑖𝑡ℎ  𝑖𝑚𝑝𝑎𝑐𝑡  𝑡𝑒𝑟𝑚] 

 
Applying the law of total probability:13 

                                                
11 (8) states that the posterior probability of C given R is the prior probability of C times the likelihood of 
the reason given the claim, P(R|C), over the probability of the reason, P(R). (The notion of likelihood is 
introduced in Section 3.7.) 
 
12 Joyce (2009: 5) notes that Carnap (1962: 466) identified i as the relevance quotient, or the probability 
ratio; Strevens (2012: 30) calls i the Bayes multiplier. 
 
13 (11) states the chance of event A occurring as the chance that A occurs given another event B does, 
times the chance that B occurs, plus the chance that A occurs given B fails to occur, times the chance that 
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11             𝑃 𝐴 = 𝑃 𝐴 𝐵 ×𝑃 𝐵 + 𝑃 𝐴 ~𝐵 ×𝑃 ~𝐵         [𝐿𝑎𝑤  𝑜𝑓  𝑇𝑜𝑡𝑎𝑙  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦] 

 
to the denominator of i, in (9), yields, notation adapted, the “long version” of BT:14  
 

12                   𝑃 𝐶 𝑅 = 𝑃 𝐶   ×   
𝑃(𝑅|𝐶)

𝑃(𝑅|𝐶)×𝑃(𝐶)+ 𝑃(𝑅|~𝐶)×𝑃(~𝐶)                                         [𝐵𝑇] 

 
which allows (see Howson & Urbach, 2006: 97; Korb, 2004: 44) expressing the impact 
term i as: 

 

13                   𝑖 =
𝑃(𝑅|𝐶)

𝑃 𝑅 𝐶 ×𝑃 𝐶 + 𝑃(𝑅|~𝐶)×𝑃(~𝐶)         

 
So far, we have mainly sought to make textbook-knowledge more palatable to the tastes 
of informal logicians. In (13) the priors P(C) and P(~C) report prior commitments to the 
truth or falsity of C, given background information, where P(~C)=1−P(C). However, 
suitably interpreting the remaining two terms of (13), which both express likelihoods, is 
more challenging. 
 
3.7 Interpreting the impact term  
 
Likelihoods express prior judgements about the probative value of reasons, subject to 
the constraints: P(R|C)=1−P(~R|C), and P(R|~C)=1−P(~R|~C).15 The first likelihood 
term, P(R|C), expresses the sensitivity of the reason to the claim. When evaluating the 
reliability of an empirical test, for instance, and given that ‘hypothesis (H)’ replaces 
‘claim’ and ‘evidence (E)’ replaces ‘reason’, this same term reports the true positive 
rate (i.e., the ratio of correct positive test-results over all test-results). The second 
likelihood term, P(R|~C), expresses the complement of the specificity of the reason to 
the claim.16 Also called the false positive rate of a test, it reports the ratio of incorrect 
positive test-results over all test-results. Considered together, both likelihood terms 
express how well R correlates with C. For example, if C entails R, then P(R|C)=1; if no 
correlation obtains, then P(R|C)=P(R|~C)=P(R) (see Section 4.2). 

                                                                                                                                          
B fails to occur. The law presupposes conditionalization on exhaustive alternatives, which any claim B 
and its negation ~B of course are. 
 
14 (12) says that the posterior probability of a claim C given a reason R is the prior probability of C times 
the likelihood of R given C, divided by the sum of the likelihood of R given C times the probability of C, 
and the likelihood of R given not C times the probability of not C. 
 
15 While equation (2) was a consequence of the logical truth (A∨~A), these two constraints are 
consequences of the metaphysical truth that, given event B occurs, any other event A will either occur, or 
not. 
 
16 Notice that, since P(R|~C)=1−P(~R|~C), rather than using ‘the logical complement of specificity’ in 
order to refer to P(R|~C), we use the term ‘specificity’ alone. 



DAVID GODDEN AND FRANK ZENKER 

 11 

Sensitivity and specificity are readily meaningful for long-run frequencies of event 
tokens. However, as Hahn and Oaksford (2007: 714; italics added) rightly note,  

 
much of the evidence adduced in an everyday argument will relate to singular 
events. For example, an argument over who killed Kennedy will have to appeal 
to many events that can also have happened only once, for example, what is the 
probability that Oswald was hired by the Mafia? Consequently, to provide a 
general probabilistic account of argument strength requires assigning single event 
probabilities, which only makes sense from a Bayesian subjective perspective. 
Single event probabilities cannot, by definition, be affected by the amount of 
evidence in the sense of a simple enumeration of positive instances.  
 

Of course, both likelihood terms must remain meaningful if reasons shall provide 
support for claims irrespective of frequency considerations.  

Rather than opt for frequencies, the following interpretation is more useful in 
contexts of natural language argumentation: reason R is sensitive to claim C to the 
extent that R supports C more than R supports any other claim, C*, that itself entails ~C, 
i.e., P(C|R)>0.5>P(~C|R). And R is specific to C to the extent that R rather than any 
other reason, R*, itself entailing ~R, supports C, i.e., P(C|~R)<0.5<P(~C|~R). Drawing 
considerations of sensitivity and specificity together, the support that R generates for C 
thus depends on the extent to which the C-supporting-reason R fails to support ~C, on 
one hand, and on the extent to which argumentative support for C cannot be generated 
by reasons besides R, on the other. In the extremal cases P(C|R)=1 and P(C|R)=0, 
support is thus strongest where R is an exclusive and decisive supporting reason-for-C, 
and weakest where R is a common and indecisive supporting reason-for-C.  

This should become clearer below. Presently, consider as an example of an 
exclusive and decisive supporting reason (outside the argumentative domain), a modern 
litmus test in the form of a universal pH-indicator (hydrogen ion), where the red 
coloring of the indicator paper is a causal effect of a solution’s hydrogen ion 
concentration. Assume, unrealistically, that the test is perfectly sensitive, i.e., P(R|C)=1, 
since any pH-level below 3 always causes the indicator paper to turn red, and also 
perfectly specific, i.e., P(C|~R)=0, since other pH-levels always color the paper non-red. 
Equally unrealistically, assume that no other test for the same purpose is available. Now 
the paper’s not turning red decisively indicates that the solution is not strongly acidic, so 
P(~R|~C)=1−P(R|~C)=1—and exclusively, too, since (by assumption) no other test can. 
In this case, from equation 13, i=1/P(C); and thus BT (equation 12) reports P(C|R)=1. 

As an example of a common indecisive supporting reason, consider using the results 
of a fair coin toss as as a reason—say, taking a coin’s landing heads as a reason for the 
claim that the time at which the coin lands (to the 100th of a second), is an even 
number. Assume, this time realistically, that no correlation holds, so that the “test” is 
perfectly insensitive, the coin landing heads if the time is even thus being as probable as 
it landing tails. Hence, P(R|C)=1−P(~R|C)=0.5. Likewise, the test is perfectly 
unspecific: when the number is even, then the chances are the same that the coin lands 
tails as that it lands heads. Hence, P(~R|~C)=P(R|~C)=0.5. In this case, from (13), i=1, 
and thus BT (equation 12) reports P(C|R)=P(C). 
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3.8 Jeffrey Conditionalization 
 
So far, conditional update has been explained on the assumption that the reason is 
accepted as unretractably true, i.e., Pf(R)=1. BT operationalizes conditionalization on 
the assumption that “one acquired new evidence which can be represented as becoming 
certain of an evidentiary statement E [read: reason R]” (Talbot, 2011: 3). Ordinary 
reasoning and argument can satisfy this assumption (e.g., when learning new 
information through perceptual experience, from a testimonial report, test result, or 
instrument reading). In other cases, however, arguers accept reasons—their own or 
others’—not without qualification, but place some graded measure of commitment in 
them. Hence, commitment-update should occur proportionally to partial commitment. 

Jeffrey Conditionalization (JC) (Jeffrey, 1983) allows conditionalizing on a partial 
commitment in a reason. When updating from P(R) to Pf(R), JC prescribes that one 
conditionalize as follows:17 

 
14                   𝑃! 𝐶 = 𝑃 𝐶 𝑅 ×  𝑃! 𝑅 + 𝑃 𝐶 ~𝑅 ×𝑃! ~𝑅                                                                     [𝐽𝐶] 

 
Notice that, if Pf(R)=1, then Pf (~R)=0, so that (14) reduces to its left summand, yielding 
Bayes’ Rule (see equation 4). Now substituting BT (equation 8) for the conditionalized 
probabilities P(C|R) and P(C|~R) in JC yields: 

 

15                   𝑃! 𝐶 =
𝑃(𝑅|𝐶)
𝑃(𝑅) ×𝑃 𝐶 ×𝑃! 𝑅 +   

𝑃 ~𝑅 𝐶
𝑃 ~𝑅 ×𝑃 𝐶 ×𝑃! ~𝑅  

 
Further, isolating P(C) from each summand in (15) yields: 
 

16                       𝑃! 𝐶 = 𝑃 𝐶 ×
𝑃 𝑅 𝐶
𝑃 𝑅 ×𝑃! 𝑅 +

𝑃 ~𝑅 𝐶
𝑃 ~𝑅 ×𝑃! ~𝑅  

 
which is equivalent to:18 
 

17                     𝑃! 𝐶 = 𝑃 𝐶 × 𝑃 𝑅 𝐶 ×
𝑃! 𝑅
𝑃 𝑅 + 𝑃 ~𝑅 𝐶

𝑃! ~𝑅
𝑃 ~𝑅  

 
Hence, from (16), when updating on a partial commitment, the impact term i becomes: 

 

                                                
17 (14) says that the final commitment in C, updated on a partial commitment in R, is the commitment in 
C given R, times the final commitment in R, plus the commitment in C conditional on ~R, times the final 
commitment in ~R. When conditionalizing on a partial commitment in order to update, JC thus 
recognizes that a partial commitment in R is a partial commitment in ~R, which together sum to one. 
 
18 (17) states that one’s final commitment in C conditionalized on one’s final commitment in R, where 
0<Pf(R)<1, is one’s initial commitment in C, times the sum of the likelihoods that R given C, multiplied 
by the ratio of one’s final commitment to the reason over one’s initial commitment to it, and the 
likelihood of ~R given C, multiplied by the ratio of one’s final commitment that ~R over one’s initial 
commitment to it. 
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18                   𝑖 =
𝑃(𝑅|𝐶)
𝑃(𝑅) ×𝑃! 𝑅 +

𝑃(~𝑅|𝐶)
𝑃(~𝑅) ×𝑃!(~𝑅)  

 
or, rewritten, from (17): 
 

19                   𝑖 = 𝑃(𝑅|𝐶)×
𝑃! 𝑅
𝑃 𝑅 + 𝑃(~𝑅|𝐶)

𝑃!(~𝑅)
𝑃(~𝑅)    

 
Notice, most obviously in (18), that the JC-impact term is equivalent to the impact term 
in BT if Pf(R)=1, since the right hand summand of (18) then goes to zero. 

This in place, we now apply the forgoing to give an analysis of cogency in the 
evaluation of natural language argumentation. 
 
 
4. Cogency  
 
4.1 The RSA criteria 
 
Informal logicians analyze argument cogency as three individually necessary and jointly 
sufficient conditions: acceptability, relevance, and inferential sufficiency. This section 
provides a probabilistic view upon each condition, starting with relevance (4.2), then 
treats sufficiency (4.3), comparing it with informal accounts (4.4), and finally turns to 
acceptability (4.5). 
 
4.2 Relevance 
 
Relevance standardly counts as an independent criterion of cogency.19 The basic idea is 
that a relevant reason provides some support for a claim. As Govier (2010: 148; notation 
adapted) puts it “[a] statement R is positively relevant to another statement C, if and 
only if the truth of R counts in favor of the truth of C.” Hence, C given R must be more 
probable than otherwise, i.e., P(C|R)>P(C), yielding a spectrum of relevance: 
 

20                 𝑃(𝐶|𝑅)
> 𝑃(𝐶)                                                                                                       [R  is  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦  relevant  to  C]
= 𝑃(𝐶)                                                                                                                                         [R  is  𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  to  C]
< 𝑃(𝐶)                                                                                                        R  is  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦  relevant  to  C

 

 
An equivalent measure, as we saw in equation 10, is: 
 
21                   𝑃 𝐶 𝑅 = 𝑃 𝐶   ×  𝑖 

 
                                                
19 Granted that sufficiency presupposes relevance, reasons by contrast can be relevant without being 
sufficient. Indeed, distinct relevance-based failures of arguments are identified by the fallacies of 
relevance (Johnson & Blair, 2002: 370). Johnson (2000: 200) claims that the notion of relevance it itself 
“basic” and “a ground-floor notion that a reasoner must grasp.” See Powers (1995) for the view that all 
fallacies allegedly are nothing but relevance problems. Zenker (2016) provides an overview of what 
currently does (not) count as a fallacy. 
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which expresses relevance in terms of the impact term i, where (from equation 18) we 
know that 𝑖 = !(!|!)

!(!)
×𝑃! 𝑅 + !(~!|!)

!(~!)
×𝑃!(~𝑅) , such that: 

 

22                   𝑖    
> 1                                                                                                     [R  is  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦  relevant  to  C]
= 1                                                                                                                                     [R  is  𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  to  C]
< 1                                                                                                 [R  is  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦  relevant  to  C]

 

 
Defining relevance via the impact term makes relevance a function of the priors in 

the expectation of the reason (see Section 3.6), which one may calculate prior to update. 
This operationalizes an intuitive notion of relevance: if R is just as probable whether or 
not C—for which R is putatively a reason—then R is neither positively nor negatively 
correlated to C. Hence, R is irrelevant to C. 

This explains why random information, where Pf(R)=1, (e.g., the result of a fair coin 
toss) cannot supply a relevant reason (see the example in Section 3.7). In such cases 
P(R|C)=P(R); hence i=1.20 Likewise for logically true reasons (e.g., tautologies): if 
P(R)=1, then by preservation of certainties (Joyce, 2009: 2) we have it that P(R|C)=1. 
We can similarly explain the relevance problem of ex falso quod libet (“from a 
contradiction anything follows”): while one cannot conditionalize on a reason of 
probability zero, one can recognize that a contradiction is equally improbable in cases 
where the claim at issue obtains as otherwise. In all these cases, the putative reason does 
not correlate with the claim. Hence, if i=1, then R has no impact on C, i.e., 

 
23                        𝑖 = 1 → [𝑃 𝐶 𝑅 = 𝑃 𝐶 ] 

 
4.3 Inferential sufficiency 
 
Informal logicians contend that a reason provides sufficient support to a claim C if, and 
only if, the probability of the claim meets or exceeds a threshold, tS, when one accepts C 
because of R. Initially, we can define sufficiency as:21 

 
24                   𝑃! 𝐶 =   𝑃 𝐶 𝑅 ≥ 𝑡! > 𝑃 𝐶                                                               [𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙  𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦] 

 
The latter condition, tS>P(C), is significant since sufficiency measures whether the 
claim is acceptable on the basis of the reason provided in the argument, rather than 
otherwise, e.g., when the claim is already acceptable independently. 

Though the exact value of tS ever depends on context, it nevertheless generally holds 
that 0<tS<1, for a claim certainly known to be false, i.e., Pf(C)=0, ought not to be 
accepted, while a claim certainly known to be true, i.e., Pf(C)=1, ought not to be 
rejected. Next, if a reason deductively entails a claim, i.e., R|-C, and if R is known to be 

                                                
20 In cases of irrelevance, both the impact term and the likelihood ratio, P(R|C)/P(R|~C) equals 1 (see 
Korb, 2004: 44; Hahn & Hornikx, 2016: 1838). Where i=1, it follows that P(R|C)=P(R); so by the law of 
total probability (equation 11): P(R|C)=P(R|~C). 
 
21 (24) says that the final probability of C is the posterior probability of C given R, which meets or 
exceeds the threshold, ts, and exceeds the prior probability of C. 
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true, i.e., Pf(R)=1, then Pf(C)=1 (see Joyce, 2009: 2).22 If R entails C, yet the 
commitment to R is uncertain, i.e., 0<Pf(R)<1, one might think that Pf(C)=Pf (R). But as 
JC (see equation 14) shows, this need not hold, for Pf(C) depends on both Pf(R) as well 
as on the extent to which C is supported or refuted by ~R, i.e., P(C|~R) and Pf (~R). 

One might further expect that sufficient reasons should normally make claims more 
probable than not, such that 1>Pf(C)≥tS>0.5, that is, sufficient reasons should make 
claims acceptable on balance of probabilities. On a balance of probability threshold, 
tS=0.5+ε, where ε is some arbitrarily small quantity. But it is easy to conceive of 
situations where tS exceeds 0.5+ε (e.g., ‘is highly probable’, or ‘to a moral certainty’, or 
‘beyond reasonable doubt’, etc.), or where tS falls below 0.5+ε (e.g., when a 
precautionary principle prompts considering the significant disutility of an otherwise 
improbable claim). 

In (24) inferential sufficiency is defined as a minimum acceptability threshold, tS, 
for Pf(C)=P(C|R). BT (equation 10) tells us that P(C|R) can be equivalently expressed 
as P(C)×i, such that, in cases of inferential sufficiency: 
 
25               𝑃 𝐶   ×  𝑖   ≥ 𝑡! > 𝑃 𝐶  

 
Since (25) stipulates that:  
 
26               𝑃 𝐶   ×  𝑖 > 𝑃(𝐶) 

 
sufficiency entails that: 
 
27                 𝑖 > 1 

 
Hence, sufficiency entails, and so is a logically stronger condition than, positive 
relevance.  

Furthermore, like relevance, one can define inferential sufficiency in terms of 
impact, i. Dividing each term in (25) by P(C) yields: 
 

28           𝑖 ≥
𝑡!

𝑃 𝐶 > 1                                                                    [𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  𝑑𝑒𝑓𝑖𝑛𝑒𝑑  𝑖𝑛  𝑡𝑒𝑟𝑚𝑠  𝑜𝑓  𝑖𝑚𝑝𝑎𝑐𝑡] 

 
and so gives the following spectrum of inferential sufficiency: 

 

29                   𝑖    

>
𝑡!

𝑃 𝐶 [R  is  𝑎  𝑠𝑢𝑝𝑒𝑟𝑒𝑟𝑜𝑔𝑎𝑡𝑜𝑟𝑦  reason  for  𝐶  relative  to  𝑡!]

=
𝑡!

𝑃(𝐶)                      R  is  𝑎  𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  reason  for  C  relative  to  𝑡!

<
𝑡!

𝑃(𝐶)                R  is  an  𝑖𝑛𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  reason  for  C  relative  to  𝑡!

 

 

                                                
22 After all, if R entails C, then P(C&R)=P(R), and given the definition of conditional probability 
(equation 3), we have it that P(C|R)=1. 
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As a special case of an insufficient reason, consider that R is a necessary reason-for-C 
whenever some reason-for-C, Q, in fact provides no support to C—so Pf(C|Q)=P(C)—
unless P(R)=1, that is, 1=P(R)≥Pf(C|Q&R)≥ts>Pf(C|R)≥Pf(C|Q)=P(C)≥0. Where R is a 
sine qua non reason-for-C, moreover, we also have it that Pf(C|~R)=0. (Compare 
Spohn, 2012: sect. 6.1, 104 ff.). 
 
4.4 A probabilistic corrective on threshold applications of sufficiency 
 
In (24) tS is expressed as a minimum threshold value for the acceptability of a claim. 
Since informal logicians treat inferential sufficiency as a necessary condition for 
cogency, arguments citing insufficient reasons for their conclusions are non-cogent, and 
ought not to be accepted. Yet, what ‘accepting an argument’ means or amounts to is not 
entirely clear. 

On one reading, ‘accept’ refers to the correct prescription that one ought not to 
endorse an insufficiently supported claim. By contrast, those who understand offering 
arguments as the issuing of “invitations to inference” (Pinto, 2001: 36-37) can interpret 
the sufficiency criterion as prohibiting any inferential use of reasons failing the 
threshold. On this other reading, one should not update inferentially unless the 
sufficiency condition (e.g., as given in equation 28) is satisfied. 

Call this restriction a threshold application of inferential sufficiency. Indeed, if one 
should only act inferentially on reasons if they satisfy the sufficiency condition (and, a 
fortiori, the relevance condition), then a sufficiency condition acts as an inference gate: 
what meets or exceeds the threshold should occasion inferences, but not the rest. So 
inference gates exclude information. Yet, this could be a mistake. 

To see this, consider—as Example 1—a situation where one is successively 
presented with several independent and individually insufficient reasons for a claim. 
Assume a balance-of-probability sufficiency threshold of tS=0.5+ε (see Section 4.3). 
Suppose that initial commitment to the claim is quite low, P(C)=0.17, as are 
commitments to a set R={R1, R2, R3, R4} of four logically independent reasons, such 
that P(R1)=P(R2)=P(R3)=P(R4). (Recall from Section 3.3 that ‘R’ (‘the reason’) 
indicates the set of conjoined premises of some argument.) Further, suppose each reason 
in R is equally weakly indicative of the claim, say P(Rn|C)=0.25, and that each reason’s 
false positive rate is quite low, say P(Rn|~C)=0.15. The law of total probability 
(equation 11) now yields the initial probability of any reason in R as P(Rn)=0.167.23 
Upon learning that any one of the reasons R1 to R4 (say R1) obtains, according to BT 
(equation 8) our commitment in C should change—from P(C)=0.17 to P1(C)=0.2545, 
where ‘Pn(φ)’ denotes the nth revision of P(φ). Yet, since P1(C)<0.5+ε, the updated 
commitment still fails to satisfy the sufficiency threshold. So, if equation 28 states an 
inference gate, then although each reason by itself is relevant (since iR1=1.497>1), we 
should nevertheless not act inferentially because by itself any reason Rn in R fails to 
satisfy the sufficiency condition, since i<tS/P(C)=2.942. 

According to BT, however, updating on the four reasons in succession results in a 
final credence of 0.6093, which is above the threshold. To see this, following an initial 
update on R1, the priors on each of the remaining reasons, R2 to R4, can be 

                                                
23 For all calculations in Example 1, see the Appendix. 



DAVID GODDEN AND FRANK ZENKER 

 17 

recalculated—by applying the law of total probability on the updated value of P1(C)—
to yield a new prior P1(R2)=0.1755. A second update, on R2, similarly fails to satisfy the 
sufficiency condition, since BT here yields P2(C)=0.3625, where i=1.425 and 
tS/P1(C)=1.965. Since it remains the case that i<tS/P1(C), the successive reasons R1 and 
R2 combined thus still insufficiently support the claim. Hence, the successive arguments 
‘R1, ergo C’ and ‘R2, ergo C’ are non-cogent; a threshold application of sufficiency 
would prohibit inferential action. Similarly with a third update, where the values are: 
P2(R3)=0.1875; P3(C)=0.4833; i=1.333; tS/P2(C)=1.379. Yet, by the fourth update the 
sufficiency condition is met, for the values are: P3(R4)=0.1983; P4(C)=0.6093; i=1.26; 
and tS/P3(C)=1.035. Hence, Pf(C)≥tS (where tS=0.5+ε), and i≥tS/P3(C). Notice that, on a 
threshold application of sufficiency only the fourth update is permitted—and only when 
the first three have already (but impermissibly) occurred. Yet had one withheld from 
making initial or intermediate inferential updates—on the ground that each individual 
reason fails the sufficiency condition—one would have failed to recognize that 
individually weak reasons can successively accumulate probative force, and thereby 
achieve sufficiency.24 Applying a sufficiency threshold as a necessary precondition of 
inferential update can therefore mistakenly prevent the update of one’s commitments 
even in cases where, following updates on individually insufficient reasons, a final 
commitment in the claim satisfies the sufficiency condition. 
 
 

                                                
24 As an anonymous reviewer has rightly pointed out, an informal logician might respond that a set of 
individually weakly supporting reasons-for-C can, when taken together, provide sufficient convergent 
support—i.e., individually insufficient but jointly sufficient reasons—to the claim. This might be thought 
to provide an answer to the challenge to a threshold approach to sufficiency posed by Example 1. 

Yet, on standard accounts, this requires (somehow) taking the independent reasons together all at 
once, rather than separately in succession. Example 1 shows that, on a probabilistic understanding of 
inferential sufficiency, this combining of reasons is not required. Rather, the probabilistic calculus offers 
a formal understanding of how sufficient support can incrementally accrue via a succession of 
individually insufficient arguments, and so obviously contradicts the “weakest link-principle,” also 
known as Theophrastus’ rule (see Hahn & Oaksford, 2006: 15). 

Moreover, since we operationalize inferential sufficiency as an acceptability threshold on the 
probability of the claim conditional on a reason, P(C|R), further issues arise with a similar threshold 
approach to acceptability that result from interpreting a threshold application of inferential sufficiency as 
an inference gate (see Examples 2 and 3; Section 4.5). For instance, suppose that the claim in Example 1, 
now abbreviated as C1, does itself provide a reason for another claim, C2. As Example 3 will show, even a 
small sub-threshold change in the acceptability of C1 could push C2 above a sufficiency threshold when 
C2 is subsequently conditionalized on C1. So rather than immediately update on each individually 
insufficient reason the moment the reason “comes in,” to instead collect several weakly supporting 
reasons-for-C1—as if holding these in memory until they (somehow) jointly meet a sufficiency 
threshold—could preclude a commitment-update in C2 under some conditions, although a sufficiency 
threshold would have been met if the acceptability of C1 had been updated earlier. 

Future work should provide a probabilistic analysis of the linked vs. convergent support-distinction 
in informal logic, which we cannot provide here. One possible result pertains to the identity conditions of 
reasons and premises. For some natural language material may well be discernable as a distinct premise 
but not count as a distinct reason, namely if offering (or receiving) that premise to support the claim C 
would, by itself, fail to render P(C|R)>P(C). The inferential effect of R on P(C), or the lack thereof, could 
thus become a criterion for a premise to in fact act as a reason. Hence, the identity conditions of reasons 
and premises in the probabilistic and the informal logic approach might be the same, while their 
functional properties could diverge. 
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4.5 Premise acceptability 
 
Premise acceptability appears to be the most straightforward of the cogency conditions 
to define probabilistically. The basic idea, again, is that acceptable reasons meet or 
exceed a threshold, ta, such that: 
 
30           𝑃! 𝑅 ≥ 𝑡! 

 
where ta may, though it need not, also serve as the acceptability threshold for a proper 
subset of the set of conjoined premises R.25 Similar to threshold applications of 
sufficiency, and facing similar problems, call this a threshold application of 
acceptability. As with claims, reasons certainly known to be false, i.e., Pf(R)=0, ought 
not to be accepted, and reasons certainly known to be true, i.e., Pf(R)=1, ought to be 
rejected.  
 When the acceptability of a reason falls between 0 and 1, one should of course 
consider all the evidence at hand. Moreover, one should update by conditionalizing on a 
reason so long as this has positive or negative bearing on a claim. But, again, if one 
should only act inferentially on reasons that meet a standard of acceptability, then this 
standard, too, acts as a commitment gate, for it excludes information falling below the 
threshold. For example, describing the proper application of the cogency criteria, 
Johnson (2000: 343; emphasis added) writes: 
 

Suppose, for example, that [premise] P1 is irrelevant (or untrue, or 
unacceptable)—then P1 won’t be allowed in the premise-set that I check for 
sufficiency. … [B]ecause sufficiency is a global requirement, applying to all the 
premises taken together, it should not be applied until the premise-set is 
stabilized; that is, the set will have been inspected already for acceptability, truth, 
and relevance. 
 

This, too, can be a mistake. To see this, recall JC (equation 17; see Section 3.8): 
 

31             𝑃! 𝐶 = 𝑃 𝐶 × 𝑃 𝑅 𝐶 ×
𝑃! 𝑅
𝑃 𝑅 + 𝑃 ~𝑅 𝐶

𝑃! ~𝑅
𝑃 ~𝑅  

 
When commitments change, but one nevertheless withholds full commitment to some 
reason, then—since a partial commitment to R is a partial commitment in ~R—JC 
prescribes that one conditionalize on both R and ~R accordingly. But this does not 
readily fit with a threshold application of acceptability. 

For instance, consider—as Example 2—an acceptability threshold of ta≥0.85, and set 
prior commitments to: P(R)=1−P(~R)=0.2; P(C)=1−P(~C)=0.3; and 
P(R|C)=1−P(~R|C)=0.8. Since no prior (including priors on the complements) meets 
the acceptability threshold, none of these elements count as accepted. Now suppose new 
                                                
25 The acceptability of a set of reasons is some function of the acceptability of constituent reasons. Those 
considering the acceptability of individual and conjoint reasons may find that different acceptability 
standards are in effect (e.g., a higher threshold for the deliverances of reason and sensation than for 
memory or testimony). 
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information prompts a revision to P1(R)=1−P1(~R)=0.5, where, as before, ‘Pn(φ)’ 
denotes the nth revision of P(φ). A threshold application still instructs withholding 
commitment from both R and ~R, and therefore to not act inferentially on either. 
According to JC, however, commitment in the claim should change, from P(C)=0.3 to 
P1(C)=0.675, rendering one’s commitment about twice as strong, although still below 
the acceptability threshold. Now iterate, by updating to P2(R)=1−P2(~R)=0.8, and the 
threshold application still requires withholding commitment, so one is not to act 
inferentially on either R or ~R. But JC now reports P2(C)=0.867, which exceeds the 
acceptability threshold.  

Finally consider—as Example 3—that the same effects of relevance and sufficiency 
can be achieved with only a single, small sub-threshold change in one’s commitment to 
a reason, so long as the reason’s link to a claim is strong enough (because the reason is 
highly sensitive, or its negation highly selective to the claim). In case commitment in a 
reason changes from P(R)=0.2 to Pf(R)=0.4, where R is highly sensitive to C, i.e., 
P(R|C)=0.8, and where ~R is quite selective for ~C, i.e., P(~R|~C)=0.6, then although a 
balance of considerations acceptability threshold on R having not been met after update, 
R is nevertheless relevant since i=1.9 (by equation 19). Further, assuming a sufficiency 
threshold, ts=0.9, and an indifferent (or uninformative) prior on C, i.e., P(C)=0.5, we 
have it that ts/P(C)=1.8. Since i≥tS/P(C) (equation 29), R meets the sufficiency criterion, 
and JC yields a final probability Pf(C)=0.95≥tS. 

Thus, applying acceptability thresholds interpreted as necessary preconditions for 
inferential update would prevent an update of commitments, even though the final 
commitment in the claim permits acceptance. 
 
 
5. Discussion 
 
5.1 The RSA conditions 
 
On the above analysis, relevance, sufficiency and acceptability are neither conceptually 
primitive nor conceptually independent. Rather, they each depend on a common set of 
factors. Analyzed in terms of impact (equations 9 and 18), relevance (equation 22) is a 
function of the change in the acceptability of a reason, together with its sensitivity to, 
and its selectivity for, the claim. Sufficiency (equation 29) is determined not by changes 
in the acceptability of the reason and its connection to the claim alone, but also by one’s 
prior commitment to the claim, and the threshold of acceptability required of the claim. 
And by the law of total probability (equation 11), the acceptability of a relevant reason 
changes according to the updated, final probability of a claim. 

As an item of potentially good news for informal logicians, our analysis suggests 
that properly applying the RSA criteria tracks the underlying features of argument 
cogency just mentioned. But, at best, this indicates a loose affinity between informal 
and probabilistic approaches to argumentative norms (see Section 5.3). After all, if our 
analysis is any good, then a probabilistic approach also offers an important corrective to 
typical informalist applications of these criteria. 
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5.2 Applying the RSA conditions 
 
Informal logicians who pursue a criterial approach to argument appraisal view 
argumentative norms as permissive norms. On this approach, the RSA criteria specify 
individually necessary and jointly sufficient conditions of cogency. Good, or cogent, 
arguments feature reasons that sufficiently support their conclusions, thereby permitting 
arguers to accept conclusions on the basis of such reasons. 

As we saw in Section 4, a criterial approach readily lends itself to a threshold 
application, whereby standards of relevance, acceptability, and inferential sufficiency 
become necessary conditions for inferential update. Since audiences should decline an 
“invitation to inference” issued in the form of non-cogent arguments, they should not 
inferentially act upon such arguments. For example, if reasons falling below the 
acceptability threshold cannot be positively or negatively relevant to a claim—compare 
Johnson (2000: 342-43) prescribing the application of the acceptability criterion prior to 
checking an argument for relevance—then unacceptable reasons are impotent in 
generating support for or against a claim.  

However, our analysis suggests that informal logicians commit to important 
differences concerning the application of the cogency conditions as conditions for 
inferential update, by comparison to the standards offered by a probabilistic construal of 
argument cogency. A threshold application for the acceptability of inferential 
sufficiency of reasons, whereby one ought not to act inferentially upon information that 
fails to meet some threshold, may lead to mistakes (see Example 1). Relatedly, using the 
satisfaction of some condition, say acceptability, as a precondition for the testing, or 
satisfaction, of some other condition, say relevance or sufficiency, can likewise lead to 
mistakes (see Examples 2, 3). 

Generally, then, a criterial approach to the cogency conditions, and thereby to 
argumentation evaluation, can lead to mistakes. More generally yet, when cogency 
standards are informally interpreted as permissive norms, they license the acceptance of 
reasons or permit inferences where these norms are satisfied. On our analysis, by 
contrast, cogency conditions are not merely entitlement establishing. Rather, they 
amount to constraints on commitment and its dynamics. That is, satisfying them can be 
obligatory in view of the probabilistic calculus. 
 
5.3 Argument appraisal 
 
Section 2.3 had noted probabilistic analyses for a range of commonplace defeasible 
arguments and their schemes, including those standardly identified as fallacious and as 
presumptive. The account of argument cogency offered here complements this work, 
and contributes to the cohesion and completeness of a probabilistic account of 
argumentative norms. 

Hamblin (1970) argued that fallaciousness is a dialectical rather than a logical or 
epistemic feature of argument. In this context, the Woods-Walton (Woods & Walton 
2007) approach to the fallacies held that instances of the same argumentative structure 
could be cogent, or fallacious, depending on context. By contrast, a probabilistic 
account (e.g., Hahn & Oaksford, 2007) shows that fallaciousness cannot merely be a 
dialectical or contextual feature, but that content features—particularly those identified 
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above—are determinative. Importantly, informal logicians came to reject fallacy-based 
approaches to argument appraisal, on which “[a] good argument will be one that is free 
of fallacy, and the presence of a fallacy is a prima facie weakness, if not a fatal flaw, in 
the argument” (Johnson & Blair, 2002: 369). Instead, Johnson and Blair (2002: 370) 
argued that fallacies are recognizable and stereotypical failures of the RSA cogency 
conditions: “[a] fallacy is … a violation of one or more of the criteria of acceptability, 
relevance and sufficiency.” If so, then some analysis like the one offered here should be 
welcome. Indeed, if probability theory can account for fallacies, on one hand, but 
fallacies can also be explained by recourse to the RSA conditions for argument 
cogency, on the other, then to demonstrate the possibility of a probabilistic analysis of 
cogency would be an expectable result. In fact, this is just what we have provided. 

A similar result holds with argumentation schemes (Walton, Reed, & Macagno, 
2008). Just as the study of the fallacies aims at cataloguing stereotypical ways for 
arguments to fail, so argumentation schemes seek to provide an inventory of 
commonplace forms of defeasible, presumptive argument. Informal logicians test and 
explain the presumptive nature, or probative merit, of instances of such schemes by 
their satisfaction of the RSA cogency conditions. Similarly with the critical questions—
the usual evaluation tools for schematic arguments. For example, Godden and Walton 
(2007: 269) claim that: “[t]he function of a critical question is to test a typical or 
common way in which an argument of a certain schematic type can fail to meet one (or 
more) of the RSA criteria.” 

Recently, Hahn and Hornikx (2016), having provided a probabilistic account of 
three argumentation schemes, conclude that “a Bayesian perspective on the catalogue of 
argumentation schemes, once systematically applied across the catalogue, will deliver, 
we think, a comprehensive theory of informal argument” (Hahn & Hornikx, 2016: 
1868f.). Thus, again, if the goodness of schematic arguments is explained—as the 
informalists claim—by their satisfaction of the RSA cogency conditions, and—as 
probability theorists claim—by their satisfaction of certain conditions identified in the 
theory of probability, then theorists should hope to find some probabilistic analysis of 
the cogency conditions, of the sort offered here. Hahn and Hornikx (2016: 1869) claim 
that “it is Bayesianism [i.e., probability theory] that carries the normative weight.” If so, 
then the normative success of informal approaches to argument appraisal prior to 
probabilistic analysis requires some explanation. The explanation our analysis suggests 
is that the RSA conditions, when applied correctly, track content features of arguments 
on which their inductive strength depends. 
 
 
6. Conclusion 
 
This paper has provided a probabilistic analysis for the standard informal conditions of 
argument cogency: acceptability, relevance, and inferential sufficiency (RSA). We have 
identified content features of defeasible argument on which the cogency conditions 
depend, namely (i) the change in the acceptability of the reason; (ii) the reason’s 
sensitivity and selectivity to the claim, and (iii) one’s prior credence in the claim itself, 
together with (iv) the contextually determined thresholds of acceptability for reasons 
and for claims (i.e., inferential sufficiency). 
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 A probabilistic analysis of the RSA conditions contrast with, and may indeed serve 
to correct, their orthodox informal understanding and application, for it shows that a 
threshold application of the orthodox RSA criteria as update-gates can lead to what on a 
probabilistic construal are mistakes. Moreover, while satisfying the cogency conditions 
is entitlement establishing, on this analysis cogency is nevertheless an obligatory norm, 
rather than a permissive one. Finally, our analysis advances the probabilistic approach 
to argumentation particularly regarding the fallacies and argumentation schemes.  
 A probabilistic analysis of argument cogency particularly shows how the informal 
treatment of schemes and fallacies as situated successes or failures to meet the RSA 
cogency conditions coheres with a probabilistic appraisal of schemes and fallacies. This 
explains how these two normative theories can in principle, if not in fact, agree, and so 
contributes to the cohesion and completeness of an account of argumentative norms. 
 
 
Appendix: Calculations for Example 1 (Section 4.4) 
 
The law of total probability (equation 11) serves to calculate the initial priors on each of 
the reasons as follows:  
𝑃 𝑅! = 𝑃 𝑅! 𝐶 ×𝑃 𝐶 + 𝑃 𝑅! ~𝐶 ×𝑃 ~𝐶  
                          = 0.25×0.17+ 0.15×0.83 
                          = 0.167 
Using BT (equation 8) to successively update on each reason, R1 to R4, for the first 
update:  

𝑃! 𝐶 =
𝑃 𝑅! 𝐶
𝑃 𝑅!

×𝑃 𝐶  

                        =
0.25
0.167×0.17 

                        = 0.2545 
Update 1 fails to satisfy equation 28, since 
𝑃(𝑅!|𝐶)
𝑃(𝑅!)

<
𝑡!
𝑃(𝐶) =

0.25
0.167 <

0.5001
0.17 = 1.497 < 2.492 

 
Given the updated value for P(C), we then recalculate the prior on each remaining 
reason: 
𝑃 𝑅! = 𝑃 𝑅! 𝐶 ×𝑃 𝐶 + 𝑃 𝑅! ~𝐶 ×𝑃 ~𝐶  
                          = 0.25×0.2545+ 0.15×0.7455 
                          = 0.1755 
For the second update, on R2, we find:  

𝑃! 𝐶 =
𝑃 𝑅! 𝐶
𝑃 𝑅!

×𝑃 𝐶  

                        =
0.25
0.1755×0.2545 

                        = 0.3625 
So also the second update fails to satisfy equation 28, since 
𝑃(𝑅!|𝐶)
𝑃(𝑅!)

<
𝑡!
𝑃(𝐶) =

0.25
0.1755 <

0.5001
0.12545 = 1.425 < 1.965 
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Again recalculating the priors on the remaining reasons: 
𝑃 𝑅! = 𝑃 𝑅! 𝐶 ×𝑃 𝐶 + 𝑃 𝑅! ~𝐶 ×𝑃 ~𝐶  
                          = 0.25×0.3625+ 0.15×0.6375 
                          = 0.1875 
We find for the third update, on R3:  

𝑃! 𝐶 =
𝑃 𝑅! 𝐶
𝑃 𝑅!

×𝑃 𝐶  

                        =
0.25
0.1875×0.3625 

                        = 0.4833 
So that also the third update fails to satisfy equation 28, since 
𝑃(𝑅!|𝐶)
𝑃(𝑅!)

<
𝑡!
𝑃(𝐶) =

0.25
0.1875 <

0.5001
0.3625 = 1.333 < 1.379 

 
Finally recalculating the prior on the remaining reason, R4: 
𝑃 𝑅! = 𝑃 𝑅! 𝐶 ×𝑃 𝐶 + 𝑃 𝑅! ~𝐶 ×𝑃 ~𝐶  
                          = 0.25×0.4833+ 0.15×0.6167 
                          = 0.1983 
For the fourth update we find:  

𝑃! 𝐶 =
𝑃 𝑅! 𝐶
𝑃 𝑅!

×𝑃 𝐶  

                        =
0.25
0.1983×0.4833 

                        = 0.6093 
Therefore, had the first three updates already taken place, then a threshold application of 
sufficiency would permit the fourth update, since 
𝑃(𝑅!|𝐶)
𝑃(𝑅!)

≥
𝑡!
𝑃(𝐶) =

0.25
0.1983 ≥

0.5001
0.4833 = 1.26 ≥ 1.035 
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